REGULAR EIGENVALUE PROBLEM WITH EIGENPARAMETER CONTAINED IN THE EQUATION AND THE BOUNDARY CONDITIONS

E.M.E. ZAYED
Department of Mathematics
Faculty of Science
University of Emirates
P.O. Box 15551, Al-Ain, U.A.E.
and
S.F.M. IBRAHIM
Department of Mathematics
Faculty of Education
Ain Shams University Heliopolis, Cairo, Egypt
(Received May 8, 1989 and in revised form September 25, 1989)

ABSTRACT. The purpose of this paper is to establish the expansion theorem for a regular right-definite eigenvalue problem for the Laplace operator in R^{n}, ($n \geq 2$) with an eigenvalue parameter λ contained in the equation and the Robin boundary conditions on two "parts" of a smooth boundary of a simply connected bounded domain.

KEY WORDS AND PHRASES. An expansion theorem, a regular right-definite eigenvalue problem, an eigenparameter in Robin boundary conditions, a simply connected bounded domain with a smooth boundary.
1980 AMS subject classification code (1985). 65NXX, 65N25.

1. INTRODUCTION.

Regular right-definite eigenvalue problems for ordinary differential equations with eigenvalue parameter in the boundary conditions have been studied by Fulton [1], Hinton [2], Ibrahim [3], Schneider [4], Walter [5], Zayed and Ibrahim [6], Zayed [7] and many others, while in the present paper we shall study regular right-definite eigenvalue problems for partial differential equations with eigenvalue parameter in Robin boundary conditions.

The object of this paper is to prove the expansion theorem for the following problem:

Let $\Omega \subseteq R^{n},(n \geq 2)$ be a simply connected bounded domain with a smooth boundary $\partial \Omega$. Consider the partial differential equation

$$
\begin{equation*}
\tau u:=\frac{1}{r}\left(-\Delta_{n} u\right)=\lambda u \quad \text { in } \quad \Omega, \tag{1.1}
\end{equation*}
$$

together with the Robin boundary conditions

$$
\begin{equation*}
\left.u_{v}+h_{1} \underset{\sim}{x}\right) u=\lambda u \quad \text { on } \quad \Gamma \text {, } \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{v}+h_{2}(\underset{\sim}{x}) u=\lambda u \quad \text { on } \quad \partial \Omega \backslash \Gamma \tag{1.3}
\end{equation*}
$$

where we assume throughout that
(i) $\Delta_{n}=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$ is the Laplace operator in $R^{n},(n \geq 2)$.
(ii) $u_{v}=\sum_{i=1}^{n} u_{x_{i}}(\underset{\sim}{x}) v_{i}(\underset{\sim}{x})$ denotes differentiation of $u(\underset{\sim}{x})$ along the outward unit normal $v(\underset{\sim}{x})=\left(v_{1}(\underset{\sim}{x}), \ldots, \nu_{n}(\underset{\sim}{x})\right)$ to the boundary $\partial \Omega$, where $\underset{\sim}{x}=\left(x_{1}, \ldots, x_{n}\right)$ is a generic point in the Euclidean space R^{n}.
(iii) The weight function $r(x)$ is a real-valued positive function with $r \in C^{\alpha}(\bar{\Omega})$, $\bar{\Omega}=\Omega$ Ua Ω where $C^{\alpha}(\bar{\Omega})$ is the space of all Hठ1der continuous functions with exponent $\alpha, 0<\alpha<1$ which are defined on $\bar{\Omega}$, while $C^{k+\alpha}(\bar{\Omega})$ denotes the space of all functions in $C^{k}(\bar{\Omega})$ whose derivatives are H81der continuous with exponent α. (iv) $h_{1}(\underset{\sim}{x}),(\underset{\sim}{x} \Gamma)$ and $h_{2}(\underset{\sim}{x}),(\underset{\sim}{x} \varepsilon \partial \Omega \backslash \Gamma)$ are non-negative real functions, where Γ is a part of the boundary $\partial \Omega$ while $\partial \Omega \backslash \Gamma$ is the remaining part of $\partial \Omega \cdot$

(v) λ is a complex number.

If $\lambda=0, h_{1}(\underset{\sim}{x})=-\mu, h_{2}(\underset{\sim}{x})=0$, then problem (1.1)-(1.3) reduces to

$$
\begin{array}{ll}
\Delta_{n} u=0 & \text { in } \Omega \\
u_{v}=\mu u & \text { on } \Gamma \\
u_{v}=0 & \text { on } \partial \Omega \backslash \Gamma \tag{1.6}
\end{array}
$$

wherein μ is an eigenvalue parameter. The eigenvalue problem (1.4)-(1.6) is called a "Steklov problem", which has been studied by Canavati and Minzoni [8], Odhnoff [9] and many others. Odhnoff's approach is to give problem (1.4)-(1.6) an operatortheoretic formulation by associating with it a semi-bounded self-adjoint extension operator A and to obtain a direct expansion theorem by using the spectral resolution of A. Moreover, Odhnoff proved that there exists a complete set of generalized eigenfunctions of every self-adjoint extension operator A. Canavati and Minzoni have associated with problem (1.4)-(1.6) a self-adjoint operator L which has compact resolvent and they have shown that the spectrum of L consists of a sequence $\left\{\lambda_{j}\right\}$ of non-negative eigenvalues such that $\lambda_{j} \rightarrow 0$ as $j \rightarrow \infty$. Furthermore, they have derived an eigenfunction expansion by using a suitable Green's function.

Recently, Ibrahim [3] has discussed the eigenvalue equation (1.1) together with the Robin boundary condition

$$
\begin{equation*}
u_{v}+h(\underset{\sim}{x}) u=\lambda u \quad \text { on } \quad \partial \Omega, \tag{1.7}
\end{equation*}
$$

where $h(x)$ is a non-negative real function on the whole boundary $\partial \Omega$. Ibrahim's approach is to give the regular right-definite eigenvalue problem (1.1) and (1.7) an operator-theoretic formulation by associating with it a self-adjoint operator A with compact resolvent in a suitable Hilbert space H and he has shown that the spectrum of A consists of an unbounded sequence of eigenvalues $\left\{\lambda_{j}\right\}$ such that $\lambda_{j} \rightarrow \infty$ as $j+\infty$ and also that the corresponding eigenfunctions of A form a complete fundamental system in H.

In this paper, our approach is to find a suitable Hilbert space H and an essentially self-adjoint operator A with compact resolvent defined in H in such a way that problem (1.1)-(1.3) can be considered as an eigenvalue problem of this operator.

2. HILBERT SPACE FORMULATION.

Let $L_{r}^{2}(\Omega), L^{2}(\Gamma)$ and $L^{2}(\partial \Omega \backslash \Gamma)$ be three complex Hilbert spaces of Lebesgue measurable functions $f(\underset{\sim}{x})$ in Ω, on Γ and on $\partial \Omega \backslash \Gamma$ respectively, satisfying

$$
\begin{equation*}
\int_{\Omega} r(\underset{\sim}{x})|f(\underset{\sim}{x})|^{2} \underset{\sim}{x}<\infty \tag{i}
\end{equation*}
$$

and
(iii) $\underset{\partial \Omega \backslash \Gamma}{\int}|f(\underset{\sim}{x})|^{2} \mathrm{ds}_{2}<\infty \quad$.

DEFINITION 2.1. We define a Hilbert space H of three-component vectors by

$$
\begin{equation*}
\mathrm{H}=\mathrm{L}_{\mathrm{r}}^{2}(\Omega) \oplus \mathrm{L}^{2}(\Gamma) \oplus \mathrm{L}^{2}(\partial \Omega \backslash \Gamma) ; \tag{2.1}
\end{equation*}
$$

with inner product
$\langle f, g\rangle=\int_{\Omega} r(\underset{\sim}{x}) f_{1}(\underset{\sim}{x}) \overline{g_{1}(\underset{\sim}{x})} d \underset{\sim}{x}+\int_{\Gamma} f_{2}(\underset{\sim}{x}) \overline{g_{2}(\underset{\sim}{x}} d S_{1}+\underset{\partial \Omega \backslash \Gamma}{f_{3}(\underset{\sim}{x})} \overline{g_{3}(x)} d S_{2}$,
and norm
for each $f=\left(f_{1}, f_{2}, f_{3}\right)$ and $g=\left(g_{1}, g_{2}, g_{3}\right)$ in H, where $d x=d x_{\sim} \ldots d x_{n}$ is the volume element corresponding to Ω while dS_{1} and dS_{2} are the surface elements corresponding to Γ and $\partial \Omega \backslash \Gamma$ respectively.

DEFINITION 2.2. Let H_{1} be a set of all those elements f satisfying

$$
f \in C^{1}(\bar{\Omega}) \cap \mathrm{C}^{2}(\Omega) \quad \text { and } \quad \Delta_{\mathrm{n}} \mathrm{feL}_{r}^{2}(\Omega)
$$

We define a linear operator $A: D(A) \rightarrow H$ by

$$
\begin{equation*}
A f=\left(\tau f_{1}, f_{1 \nu}+h_{1}(\underset{\sim}{x}) f_{1}, f_{1 \nu}+h_{2}(\underset{\sim}{x}) f_{1}\right) \tag{2.4}
\end{equation*}
$$

for each $f=\left(f_{1}, f_{2}, f_{3}\right)$ in $D(A)$, in which the domain $D(A)$ of A is defined as follows:

$$
D(A)=\left\{\left(\left.f\right|_{\Omega},\left.f\right|_{\Gamma},\left.f\right|_{\partial \Omega \backslash \Gamma}\right) \varepsilon H: f \varepsilon H_{1}\right\}
$$

where $\left.f\right|_{\Omega},\left.f\right|_{\Gamma}$ and $\left.f\right|_{\partial \Omega \backslash \Gamma}$ are restrictions of f on Ω, on Γ and on $\partial \Omega \backslash \Gamma$ respectively.

REMARK 2.1. The parameter λ is an eigenvalue and f_{1} is a corresponding eigenfunction of problem (1.1)-(1.3) if and only if

$$
\begin{equation*}
f=\left(f_{1}, f_{2}, f_{3}\right) \in D(A) \quad \text { and } \quad A f=\lambda f \tag{2.5}
\end{equation*}
$$

Therefore, the eigenvalues and the eigenfunctions of problem (1.1)-(1.3) are equivalent to the eigenvalues and the eigenfunctions of operator A in H.

REMARK 2.2. $D(A)$ is a dense subset of H with respect to the inner product (2.2) .

LEMMA 2.1. The 1inear operator A in H is symmetric.
PROOF. Let $\mathrm{E}=\left(\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}\right)$ and $\mathrm{g}=\left(g_{1}, g_{2}, g_{3}\right)$ be any two elements in $\mathrm{D}(\mathrm{A})$, then

$$
\begin{align*}
\langle A f, g\rangle & =-\int\left\{\Delta_{\Omega} f_{1}(\underset{\sim}{x})\right\} \bar{g}_{1}(\underset{\sim}{x}) d \underset{\sim}{x}+\int_{\Gamma}^{\int}\left\{f_{1 v}(\underset{\sim}{x})+h_{1}(\underset{\sim}{x}){\underset{\sim}{f}}_{1}(\underset{\sim}{x})\right\} \bar{g}_{2}(\underset{\sim}{x}) d S_{1}+ \\
& +\int_{\partial \Omega}^{\int}\left\{f_{1 v}(\underset{\sim}{x})+h_{2}(\underset{\sim}{x}) f_{1}(\underset{\sim}{x})\right\} \bar{g}_{3}(\underset{\sim}{x}) d S_{2} . \tag{2.6}
\end{align*}
$$

Making use of first Green's formula [10, p. 50] in (2.6), we obtain

$$
\begin{align*}
\langle A f, g\rangle & =\int\left(\operatorname{grad} f_{1}, \operatorname{grad} \underset{\Omega}{g_{1}}\right) d \underset{\sim}{x}+\int_{\Gamma} f_{1}(x) h_{1}(x) \bar{\sim} g_{1}(x) d S_{\sim}+ \\
& +\int_{\partial \Omega}^{f} f_{1}(\underset{\sim}{x}) h_{2}(\underset{\sim}{x}) \overline{g_{1}(x)}{\underset{\sim}{x}}_{2} . \tag{2.7}
\end{align*}
$$

where

$$
\left(\operatorname{grad} f_{1}, \operatorname{grad} g_{1}\right)=\sum_{i=1}^{n} f_{1 x_{i}}(x) \overline{g_{1 x_{i}}(x)} \quad \text { for } \underset{\sim}{x \varepsilon \Omega}
$$

Applying a similar argument, it follows that

$$
\begin{align*}
& \left.+\underset{\partial \Omega \backslash \Gamma}{f} f_{1} \underset{\sim}{x}\right) h_{2} \underset{\sim}{(x)} \overline{g_{1}(\underset{\sim}{x})} d S_{2} . \tag{2.8}
\end{align*}
$$

From (2.7) and (2.8) we find that

$$
\begin{equation*}
\langle A f, g\rangle=\langle f, A g\rangle \tag{2.9}
\end{equation*}
$$

Therefore A is a symmetric linear operator in H.
LEMMA 2.2. Let $f=\left(f_{1}, f_{2}, f_{3}\right) \in C^{1}(\bar{\Omega})$ be a complex-valued function. Then $\left.\int_{\Omega}\left|f_{1}(\underset{\sim}{x})\right|^{2} \underset{\sim}{x} \leq 16 \mu^{2} \quad \underset{\Omega}{\int} \mid \operatorname{grad} f_{1} \underset{\sim}{x}\right)\left.\right|^{2} \underset{\sim}{x}+2 \mu \underset{\Gamma}{\int_{\Gamma}}\left|f_{2}(x)\right|^{2} d S_{1}+$

$$
\begin{equation*}
+2 \mu \underset{\partial \Omega}{\mathcal{S}} \quad\left|f_{3}(\underset{\sim}{x})\right|^{2} d S_{2} \tag{2.10}
\end{equation*}
$$

where

$$
\mu=\sup \left\{\left|x_{1}\right|: \underset{\sim}{x}=\left(x_{1}, \ldots, x_{n}\right) \varepsilon \Omega\right\}
$$

PROOF. Since $\left|f_{1}(\underset{\sim}{x})\right|$ is a real-valued function and $\left|f_{1} \underset{\sim}{(x)}\right| \varepsilon C^{1}(\bar{\Omega})$, then by using Theorem 2 in [10, p. 67], we have

$$
\begin{align*}
& \int_{\Omega}\left|f_{1}(x)\right|^{2} d \underset{\sim}{x} \leq 4 \mu^{2} \int_{\Omega} \sum_{i=1}^{n}\left\{\left|f_{1}(\underset{\sim}{x})\right|_{x_{i}}\right\}^{2} d \underset{\sim}{x}+2 \mu \underset{\Gamma}{f}\left|f_{2}(\underset{\sim}{x})\right|^{2} d S_{1}+ \\
& +2 \mu \underset{\partial \Omega}{ }\left\{_{\Gamma}\left|f_{3}(x)\right|^{2} \mathrm{dS}_{2} .\right. \tag{2.11}
\end{align*}
$$

Substituting the inequality

$$
\left.\left\{\left|f_{1}(\underset{\sim}{x})\right|_{x_{i}}\right\}^{2} \leq 4\left\{\mid f_{1 x_{i}} \underset{\sim}{x}\right) \mid\right\}^{2}, \quad \underset{\sim}{x} \Omega \Omega
$$

into (2.11) we arrive at (2.10).
REMARK 2.3. Since A in H is symmetric, then it has only real eigenvalues.
3. THE BOUNDEDNESS.

We shall show that the linear operator A in H is bounded from below, unbounded from above and strictly positive.

LEMMA 3.1. The linear operator A in H is bounded from below.
PROOF. Let $f=\left(f_{1}, f_{2}, f_{3}\right)$ be any element in $D(A)$. We have

$$
\begin{align*}
& \left.\langle A f, f\rangle=-\int_{\Omega}\left\{\Delta_{n} f_{1}(\underset{\sim}{x})\right\} \overline{f_{1}(\underset{\sim}{x})} d \underset{\sim}{x}+\int_{\Gamma}\left\{f_{1 v}(\underset{\sim}{x})+h_{1}(\underset{\sim}{x}) f_{1} \underset{\sim}{x}\right)\right\} \overline{f_{2}(\underset{\sim}{x}) d S_{1}}+ \\
& +\underset{\partial \Omega \backslash r}{\int}\left\{f_{1 \nu}(x)+h_{\sim}(\underset{\sim}{x}) f_{1}(\underset{\sim}{x})\right\} \overline{f_{3}(x)} \underset{\sim}{x} d S_{2} . \tag{3.1}
\end{align*}
$$

By using the first Green's formula, (3.1) becomes

$$
\begin{equation*}
\left.\langle A f, f\rangle=\int_{\Omega}\left|g r a d f_{1} \underset{\sim}{x}(x)\right|^{2} \underset{\sim}{x}+\int_{\Gamma} h_{1}(\underset{\sim}{x})\left|f_{2}(\underset{\sim}{x})\right|^{2} d S_{1}+\underset{\partial \Omega}{\int_{V}} h_{2} \underset{\sim}{x}\right)\left|f_{3}(\underset{\sim}{x})\right|^{2} d S_{2} \tag{3.2}
\end{equation*}
$$

With $B=\max \left\{16 \mu^{2}, 2 \mu, 2 \mu\right\}$, Lemma 2.2. gives the inequality
$\frac{1}{\beta} \int_{\Omega}\left|f_{1}(\underset{\sim}{x})\right|^{2} \underset{\sim}{d x}-\int_{\Gamma}\left|f_{2}(\underset{\sim}{x})\right|^{2} d S_{1}-\int_{\partial \Omega} \int_{\Gamma}\left|f_{3}(\underset{\sim}{x})\right|^{2} d S_{2} \leq \int_{\Omega}\left|\operatorname{grad} f_{1}(\underset{\sim}{x})\right|^{2} d \underset{\sim}{x}$.
Substituting (3.3) into (3.2), we have

$$
\begin{align*}
& \left.\left.\langle A f, f\rangle \geq \frac{1}{\beta} \int_{\Omega}^{\int} \frac{1}{r(x)} \underset{\sim}{r(x)}|\underset{\sim}{f} \underset{\sim}{(x)}|^{2} \underset{\sim}{d x}+\int_{\Gamma}^{\int}\left\{h_{1}(\underset{\sim}{x})-1\right\} \right\rvert\, f_{2} \underset{\sim}{x}\right)\left.\right|^{2} d S_{1}+ \tag{3.4}
\end{align*}
$$

where

This proves that the linear operator A in H is bounded from below.
REMARK 3.1.
(i) Since $r(\underset{\sim}{x})>0$ for $\underset{\sim}{x} \varepsilon \Omega$, and if $\left.h_{1} \underset{\sim}{x}\right)>1$ for $\underset{\sim}{x} \varepsilon \Gamma$ and if $\left.h_{2} \underset{\sim}{x}\right)>1$ for $\underset{\sim}{x} \varepsilon \partial \Omega \backslash \Gamma \quad$ then $C_{0}>0$ and consequently the linear operator A in H is strictly positive. We assume these conditions on $h_{1}(x)$ and $h_{2}(x)$ for the remainder of the paper.
(ii) Since A in H is strictly positive, then $\lambda=0$ is not an eigenvalue of A in H .

LEMMA 3.2. The linear operator A in H is unbounded from above.
PROOF. Let $X(\underset{\sim}{x})$ be a test function with the compact support on $\bar{\Omega}$ and define a sequence of this test function in $D(A)$ by

$$
x_{N}(\underset{\sim}{x})=x(\underset{\sim}{N x}), \quad \underset{\sim}{x}, \quad N=1,2, \ldots
$$

By using the same argument of Lemma 3.1, we find that

$$
\begin{equation*}
\left.\left\langle A x_{N}, x_{N} \geq C_{1} N^{4}\right|\left|x_{N}\right|\right|^{2} \tag{3.6}
\end{equation*}
$$

where C_{1} is a positive constant.
Taking the limit as $N \rightarrow \infty$ in (3.6), we obtain

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left\langle A X_{N}, X_{N}\right\rangle=\infty . \tag{3.7}
\end{equation*}
$$

In other words, A is unbounded from above.
REMARK 3.2.
(i) Since A in H is bounded from below, then the set of all eigenvalues of A is also bounded from below by the constant C_{o} defined by (3.5).
(ii) Since A in H is unbounded from above, then the set of all eigenvalues is too.

DEFINITION 3.1. The linear operator A in H is said to be essentially selfadjoint if
(i) A in H is symmetric
(ii) ($A+i E) D(A)$ and $(A-i E) D(A)$ are dense in H, where E is the identity operator and $i=\sqrt{-1}$ (see $[10, p .172]$).

REMARK 3.3. Since A in H is symmetric, then $\pm i$ cannot be an eigenvalue of A.
LEMMA 3.3. The linear operator A in H is essentially self-adjoint.

PROOF. We must prove that $(A \pm i E) D(A)$ is dense in H. Suppose the contrary; first of all, suppose that $(A+i E) D(A)$ is not dense in H. Then there exists a non-zero element $\underset{\sim}{0} \neq f=\left(f_{1}, f_{2}, f_{3}\right) \varepsilon H$ such that

$$
\langle f,(A+i E) g\rangle=0, \quad \forall g=\left(g_{1}, g_{2}, g_{3}\right) \varepsilon D(A)
$$

By using the same argument of Lemma 2.1, we find that

$$
<(A-i E) f, g\rangle=0, \quad \forall g \varepsilon C^{1}(\bar{\Omega}) \bigcap C^{2}(\Omega)
$$

which means that $(A-i E) f=0$ and consequently $A f=i f$.
Since $f \in H$, it follows that $A f E H$. Thus $f \varepsilon D(A)$ and since $f \neq \underset{\sim}{0}$, then $+i$ must be an eigenvalue of A. This contradicts the fact that A in H is symmetric.

Similarly, we can show that $(A-i E) D(A)$ is dense in H.

4. THE RESOLVENT OPERATOR.

Since $\lambda=0$ is not an eigenvalue of the linear operator A in H, then the inverse operator A^{-1} of A exists in H. To study the operator A^{-1} it is convenient to give an explicit formula for it in terms of the Robin's function $R(x, y)$ for the Laplacian Δ_{n} on Ω.

Here it is difficult to characterize $D\left(A^{-1}\right)=R(A)$, the range of A, exactly. In any case, it is not true that

$$
D\left(A^{-1}\right)=\left\{\left(\left.f\right|_{\Omega},\left.f\right|_{\Gamma},\left.f\right|_{\partial \Omega \backslash \Gamma}\right) \varepsilon H: f \varepsilon C^{0}(\bar{\Omega})\right\}
$$

because for such an f we cannot in general find $u=\left(u_{1}, u_{2}, u_{3}\right) \varepsilon D(A)$ with $A u=f$. Hence we define A^{-1} in H by

$$
\begin{equation*}
\text { and } \quad D\left(A^{-1}\right)=\left\{\left(\left.f\right|_{\Omega},\left.f\right|_{\Gamma},\left.f\right|_{\partial \Omega \backslash \Gamma}\right) \varepsilon H: f \in C^{\alpha}(\bar{\Omega})\right\}, \tag{4.1}
\end{equation*}
$$

$$
A^{-1}: D\left(A^{-1}\right) \rightarrow H
$$

$$
\begin{equation*}
A^{-1} f=\left(\underset{\Omega}{\int R(x, y)} \underset{\sim}{x} f_{1}(\underset{\sim}{y}) r(\underset{\sim}{y}) d \underset{\sim}{y}, \quad \int R(\underset{\sim}{x}, \underset{\sim}{y}) f_{2}(\underset{\sim}{y}) d S_{1}, \quad \int_{\Gamma}^{\int} \quad R(\underset{\sim}{x}, \underset{\sim}{y}) f_{3}(\underset{\sim}{y}) d S_{2}\right), \tag{4.2}
\end{equation*}
$$ for each $f=\left(f_{1}, f_{2}, f_{3}\right) \in D\left(A^{-1}\right)$.

REMARK 4.1.
(i) $D\left(A^{-1}\right)$ is dense in H.
(ii) A^{-1} is a linear operator in H.

REMARK 4.2.
The Robin's function $R(x, y)$ for fixed $x \varepsilon \bar{\Omega}$ is a fundamental solution of y with respect to Ω (see $[10], \tilde{[11}]$), i.e.,

$$
\begin{equation*}
\mathrm{R}(\underset{\sim}{x}, \underset{\sim}{y})=S(\underset{\sim}{x}, \underset{\sim}{y})+\mathrm{K}(\underset{\sim}{x}, \underset{\sim}{y}) \tag{4.3}
\end{equation*}
$$

where $S(\underset{\sim}{x}, \underset{\sim}{x})$ is a singularity function defined as follows:

$$
S(\underset{\sim}{x}, \underset{\sim}{y})=\left\{\begin{array}{cl}
\frac{1}{(n-2) \omega_{n}}|\underset{\sim}{x}-\underset{\sim}{y}|^{2-n} & \text { for } n>2 \tag{4.4}\\
-\frac{1}{2 \pi} 10 g|\underset{\sim}{x}-\underset{\sim}{y}| & \text { for } n=2
\end{array}\right.
$$

which is the solution of the equation $\Delta_{n} u=0$ for $\underset{\sim}{x} \neq \underset{\sim}{y}$, where ω_{n} denotes the surface of the unit ball in R^{n}, while $K(\underset{\sim}{x}, \underset{\sim}{y})$ is a regular function satisfying the following:

$$
\begin{aligned}
& K(\underset{\sim}{x}, \underset{\sim}{\mathrm{x}}) \varepsilon \mathrm{C}^{1}(\bar{\Omega}) \bigcap \mathrm{C}^{2}(\Omega), \\
& \Delta_{\mathrm{n}} \mathrm{~K}(\mathrm{x}, \mathrm{y})=0 \quad \text { in } \Omega, \\
& K_{v}(\underset{\sim}{x}, \underset{\sim}{y})+h_{1}(\underset{\sim}{y}) \underset{\sim}{x}(\underset{\sim}{x}, \underset{\sim}{y})=-\left\{S_{v}(\underset{\sim}{x}, \underset{\sim}{y})+h_{1}(\underset{\sim}{y}) \underset{\sim}{x}(\underset{\sim}{x})\right\} \text { on } \Gamma \text {, } \\
& \mathrm{K}_{v}(\mathrm{x}, \mathrm{y})+\mathrm{h}_{2}(\underset{\sim}{\mathrm{y}}) \mathrm{K}(\underset{\sim}{\mathrm{x}}, \mathrm{y})=-\left\{\mathrm{S}_{\nu}(\underset{\sim}{\mathrm{x}}, \mathrm{y})+\mathrm{h}_{2}(\mathrm{y}) \mathrm{S}(\underset{\sim}{\mathrm{x}}, \underset{\mathrm{y}}{\mathrm{y}})\right\} \text { on } \partial \Omega \backslash \mathrm{\Gamma} \text {. }
\end{aligned}
$$

and
dEFINITION 4.1. We define the linear operators B_{1}, B_{2}, B_{3} as follows:
(i) $D\left(B_{1}\right)=\left\{u \in L_{r}^{2}(\Omega): u \in C^{0}(\bar{\Omega})\right\}$,

$$
\mathrm{B}_{1} \mathrm{u}=\int_{\Omega} \mathrm{R}(\underset{\sim}{x}, \underset{\sim}{y}) \mathrm{u}(\underset{\sim}{\mathrm{y}}) \mathrm{r}(\underset{\sim}{\mathrm{y}}) \mathrm{dy},
$$

for each $u \in D\left(B_{1}\right)$.
(ii) $D\left(B_{2}\right)=\left\{u \in L^{2}(\Gamma): u \in C^{0}(\bar{\Omega})\right\}$,

$$
\mathrm{B}_{2}^{\mathrm{u}}=\int_{\Gamma}^{\mathrm{R}}(\underset{\sim}{\mathrm{x}}, \underset{\sim}{\mathrm{y}}) \mathrm{u}(\underset{\sim}{\mathrm{y}}) \mathrm{dS}_{1},
$$

for each $u \in D\left(B_{2}\right)$.
(iii) $D\left(B_{3}\right)=\left\{u \in L^{2}(a \Omega \backslash \Gamma): u \in C^{\circ}(\bar{\Omega})\right\}$,
$B_{3}{ }^{u}=\partial \Omega\left\{_{\Gamma} \underset{\sim}{R(x, \underset{\sim}{x})} \mathbf{u} \underset{\sim}{y}\right) d S_{2}$,
for each $u \in D\left(B_{3}\right)$.
REMARK 4.3.
(i) With reference to [10, p. 128] we conclude that the linear operators ${ }_{B}, \mathrm{~B}_{2}, \mathrm{~B}_{3}$ are compact in $\mathrm{L}_{\mathrm{r}}^{2}(\Omega), \mathrm{L}^{2}(\mathrm{\Gamma}), \mathrm{L}^{2}(\partial \Omega \backslash \mathrm{r})$ respectively. Consequently, formula (4.2) shows that ${ }^{r}{ }^{-1}$ is also compact.
(ii) From Lemmas $2.1,3.1,3.2$ and theorem 3 in [10, p. 60], we deduce that the set of all eigenvalues of A, counted according to multiplicity, forms an increasing sequence

$$
0<c_{0} \leq \lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{\mathrm{j}} \leq \cdots, \lambda_{\mathrm{j}} \rightarrow \infty \text { as } \mathrm{j} \rightarrow \infty .
$$

(iii) Since A in H is symmetric, then A^{-1} in H is also symmetric.
(iv) Since $D\left(A^{-1}\right) \neq \mathrm{H}$, then only the closure of A^{-1} is self-adjoint.
(v) On using theorem 3 in [10, p. 30] we deduce that the density of $D(A)$ in H gives us the completeness of the orthonormal system of the eigenfunctions $\Phi_{1}, \Phi_{2}, \Phi_{3}, \ldots$ of the operator A.

5. AN EXPANSION THEOREM.

We now arrive at the problem of expanding an arbitrary function fel in terms of the eigenfunctions $\left\{\Phi_{j}\right\}_{j=1}^{\infty}$ of the operator A.

The results of our investigations are summarized in the following theorem:
THEOREM 5.1. The spectrum of A consists of an unbounded sequence of real eigenvalues of finite multiplicity without accumulation point in ($-\infty, \infty$). Denoting them by

$$
0<\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \cdots
$$

and the corresponding eigenfunctions by $\Phi_{1}, \Phi_{2}, \Phi_{3}, \ldots$, we have $\left\{\Phi_{j}\right\}_{j=1}^{\infty}$ forms a complete fundamental system in H and for every feH we have the expansion formula

$$
\begin{equation*}
\mathbf{f}=\sum_{j=1}^{\infty}\left\langle f, \Phi_{j}\right\rangle \Phi_{j} \tag{5.1}
\end{equation*}
$$

in the sense of strong convergence in H.

The above theorem has some interesting corollaries for particular choices of the function $\mathrm{f} \varepsilon \mathrm{H}$.

COROLLARY 5.1. If $\mathrm{f}=\left(\mathrm{f}_{1}, \mathrm{f}_{2}, 0\right) \in \mathrm{H}, \mathrm{f}_{1} \varepsilon \mathrm{~L}_{\mathrm{r}}^{2}(\Omega)$ and $\mathrm{f}_{2} \varepsilon \mathrm{~L}^{2}(\Gamma)$ then we have
and

$$
\left.0=\sum_{j=1}^{\infty}\left\{\int_{\Omega} r(\underset{\sim}{x}) f_{1}(\underset{\sim}{x}) \Phi \underset{j 1}{ } \underset{\sim}{x}\right) \underset{\sim}{x}+\int_{\Gamma} f_{2}(\underset{\sim}{x}) \Phi_{j 2}(\underset{\sim}{x}) d S_{1}\right\} \Phi_{j}(\underset{\sim}{x})
$$

$\underset{\infty}{\operatorname{COROLLARY}} 5.2$. If $\mathrm{f}=\left(\mathrm{f}_{1}, 0, \mathrm{f}_{3}\right) \in \mathrm{H}, \mathrm{f}_{1} \in \mathrm{~L}_{\mathrm{r}}^{2}(\Omega)$ and $\mathrm{f}_{3} \in \mathrm{LL}^{2}(\partial \Omega \backslash \mathrm{r})$ then we have
and

ACKNOWLEDGEMENT. The authors would like to express their sincere thanks to the referee for his interesting suggestions and comments.

REFERENCES

1. FULTON, C.T., Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proc. Royal. Soc. Edinburgh 77A, (1977), 293-308.
2. HINTON, D.B., An expansion theorem for an eigenvalue problem with eigenvalue parameter in the boundary condition, Quart. J. Math. Oxford 2, 30, (1979), 33-42.
3. IBRAHIM, R., Ph.D. Thesis, University of Dundee, Scotland 1981.
4. SCHNEIDER, A., A note on eigenvalue problems with eigenvalue parameter in the boundary conditions, Math. Z. 136, (1974), 163-167.
5. WALTER, J., Regular eigenvalue problems with eigenvalue parameter in the boundary condition, Math. Z. 133, (1973), 301-312.
6. ZAYED, E.M.E. and IBRAHIM, S.F.M., Eigenfunction expansion for a regular fourth order eigenvalue problem with eigenvalue parameter in the boundary conditions, Internat. J. Math. \& Math. Sci. 12, No. 2 (1989), 341-348.

$$
\begin{aligned}
& f_{3}=\sum_{j=1}^{\infty}\left\{\int_{\Omega} r(\underset{\sim}{x}) f_{1}(\underset{\sim}{x}) \Phi_{j 1}(\underset{\sim}{x}) \underset{\sim}{x}+\int_{\partial \Omega V} f_{3}(x) \Phi_{\sim}{ }_{3}(\underset{\sim}{x}) d S_{2}\right\} \Phi_{j}(x) . \\
& \underset{\infty}{\operatorname{COROLLARY}} \text { 5.3. If } f=\left(0, f_{2}, f_{3}\right) \varepsilon H, f_{2} \in L^{2}(\Gamma) \text { and } f_{3} \in L^{2}(\partial \Omega \bigvee \Gamma) \text { then we have } \\
& 0=\sum_{j=1}^{\infty}\left\{\int_{\Gamma} f_{2}(\underset{\sim}{x}) \Phi_{j 2}(\underset{\sim}{x}) d S_{1}+\int_{\partial \Omega} f_{\Gamma}(\underset{\sim}{x}) \Phi_{j 3}(x) d S_{2}\right\} \Phi_{j 1}(x) \text {, } \\
& \left.\underset{\text { and }}{f_{2}(x)}=\sum_{j=1}^{\infty} \underset{\Gamma}{\left\{\int f_{2}(x) \Phi_{\sim}\right.} \underset{\sim}{(x) d S_{1}}+\int_{\partial \Omega}{ }_{\Gamma}{\underset{\sim}{f}}_{3}(x) \Phi_{j 3}(x) d S_{2}\right\} \Phi_{j 2} \underset{\sim}{(x)} \text {, } \\
& f_{3}(x)=\sum_{j=1}^{\infty}\left\{\int_{\Gamma} f_{2}(\underset{\sim}{x}) \Phi_{j 2}(x) d S_{1}+\int_{\partial \Omega} f_{\Gamma}(\underset{\sim}{x}) \Phi_{j 3}(x) d S_{2}\right\} \Phi_{j}(x) .
\end{aligned}
$$

7. ZAYED, E.M.E., Regular eigenvalue problem with eigenvalue parameter in the boundary conditions, Proc. Math. Phys. Soc. Egypt 58, (1984), 55-62.
8. CANAVATI, J.A. and MINZONI, A.A., A discontinuous Steklov problem with an application to water waves, J. Math. Anal. Appl. 69, (1979), 540-558.
9. ODHNOFF, J., Operators generated by differential problems with eigenvalue parameter in equation and boundary condition, Meddl. Lunds University. Mat. Sem. 14, (1959), 1-80.
10. HELLWIG, G., Differential operators of mathematical physics, Addison-Wesley Pub. Com., U.S.A., 1967.
11. MIZOHATA, S., The theory of partial differential equations, Cambridge Univ. Press, 1973.

