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Introduction. In the abstract theory of semigroups, the begriff
of regular element was first introduced by Thierrin [11] as a gener-
alization in the semigroup theory of the begriff of inverse element in
the group theory. And this begriff of regular element has been
effectively used in the ideal theory of semigroups, for example, in
Miller and Clifford [5]. But the structure of regular semigroups, that
is, semigroups in which all the elements are regular, is complicated
and until now very little was known about it. Inverse semigroup is
an important sort of regular semigroups, whose structure was com-
pletely determined (Preston [7], [8]).

Ordered semigroups have been studied by several authors, for
example, Alimov [1] and Clifford [2]. However, as far as we know,
none discussed systematically ordered semigroups in our general sense
(cf. §1). In the previous paper [10], we characterized ordered idem-
potent semigroups, that is, ordered semigroups in which all the ele-
ments are idempotent. In the continuation of our investigation of
ordered semigroups, in this note, we concern essentially with ordered
regular semigroups.

Main purpose of this note is to give a catalog of all possible
types of subsemigroups generated by regular pairs of ordered semi-
groups. The subsemigroups of an ordered semigroup S generated by
regular pairs are the analogs of the cyclic subgroups of a group, in
fact reduce to exactly these when S is a group. It therefore should
be useful in the study of ordered regular semigroups to have catalog
of them available. A list of 39 ordered semigroups, each generated
by a (non-idempotent) regular pair, is given in this note, and it is
shown that every such ordered semigroup is (order-and-product) iso-
morphic with one of these. Theorems 3, 4 and 5 serve as an index
to this catalog.

Moreover, this note contains the following by-products which
seem to be interesting:

(a) the set of idempotents of an ordered semigroup S is a sub-
semigroup of S (Corollary of Lemma 1);

(b) any regular conjugate of an idempotent of an ordered semi-
group S is idempotent (Theorem 1);

(c) the set of regular elements of an ordered semigroup S is a
subgsemigroup of S (Corollary 2 of Lemma 5);

(d) a regular element of finite order of an ordered semigroup S
Received May 23, 1962.

263



264 TORU SAITO

can have order only 1 or 2 Theorem 2.

Finally we remark that, even though the subsemigroup of a semi-
group S generated by a regular pair need not be regular in general,
it is regular if S is ordered.

In §1, we give some definitions and some elementary results in
preparation of the following discussion. In §§2-5, we discuss the
case when a regular pair is of finite order, while in §§ 6-9, we dis-
cuss the case when it is of infinite order. In the final § 10, we
remark some applications in special ordered semigroups.

1. Preliminaries. We denote by S an ordered semigroup, that
is, a semigroup S with a simple order < which satisfies the following
condition:

(1) for z,y,2¢€ S, 2 <y implies 2z < yz and 2x < 2y .

If two elements x and ¥ of S generate the same principal left ideal,
then we write « = y(L), while if # and ¥ generate the same prin-
cipal right ideal, then we write z = y(R). We write v = y(D) if
there exists an element z of S such that x = 2(L) and z = y(R). As
is well-known, these relations are equivalence relation (Green [3]).
An element z of S is called regular if there exists an element y of
S such that

(2) xyr =% and Yxy =Y

(Miller and Clifford [5]). When a pair (x, ) of elements of S satisfy
@), (x, v) is called a regular pair and y is called a regular conjugate
of x. As is easily seen by (2), for every regular pair (x, ¥), both xy
and yx are idempotents. An element & of S is called positive if
2 > 2, while z is called negative if z* < z. For an element x of S,
the number of distinct natural powers of z is called the order of z
(Clifford [2]). If x is an element of finite order =, then = is the
minimal natural number such that z* = z**'. Evidently z is of order
1 if and only if « is idempotent. The set of all idempotents of S is
denoted by E. For an ordered semigroup S, we call the multiplica-
tive dual or, simply, dual of S the ordered semigroup constructed
from S by interchanging the order of multiplication but by preserving
the order of S. An element z of S is said to lie between x and y,
if either s = 2=y or y < z < 2, while 2z is said to lie between x and
y in the strict sense, if either x <z<yory<z< 2.

LeMmMA 1. If x and y are nonnegative, then, xy is nonnegative.
If © and y are non-positive, then xy is non-positive.

Proof. For nonnegative z and ¥, if 2 < y, then 2y < &®y < (zy)?,
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and, if ¥y =< x, then zy < zy* < (xy)>. The second assertion can be
proved similarly.

COROLLARY. The set E of all idempotents of S, 1f it is nonvoid,
18 a subsemigroup of S.

LEMMA 2. If % is nonnegative, y s non-positive and « < vy, then
both xy and yx are idempotents which lie between x and ¥.

Proof.
xy < o'y < (ey) = wy’ S ay,
and so xy is idempotent. Moreover
r=rsexy =Y =y.

With respect to the order in S, the subsemigroup E is clearly
an ordered semigroup, which plays an important role in the following
discussion. As is easily seen, for g, hc E,

(3) g=MhL)in S if and only if gh =¢ and hg=#h ,
(4) g=h(R) in S if and only if gh =h and hg=g¢ .
Hence

(5) g=MhL) and g = W(R) in S if and only if g =+h .

By (8) and (4), for elements of E, L-equivalence and R-equivalence in
E coincide with L-equivalence and R-equivalence in S, respectively.
However, for D-equivalence, such a situation does not occur. Of
course, for g, hec E, g = (D) in E implies g = h(D) in S, but the
converse is not always true. (The semigroup J in § 8 will offer a
counter-example.) The D-equivalence in E is denoted by D,-equiva-
lence.

LEMMA 3. If g,hec E and g < h, then the following conditions
are equivalent to each other:

(@) gh =hg, (b) ghg=gh, (c) hgh =hg, (d) gh = hg(L).

Proof. (a) implies (b), for
gh = g(gh) = ghg < (gh)h = gh .

(b) implies (c), for hg = (hg)(hg) = hgh. Similarly (c¢) implies (b).
Hence if (¢) holds, then both (b) and (¢) hold, and so we obtain (d).
Finally (d) implies (a), for, by (3), gh = (gh)(hg) = ghg, and so by
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Lemma 2, g < gh = ghg < hg < h.

LEMMA 8. If g,he E and g £ h, then the following conditions
are equivalent to each other:

(@) hg = gh, (b) hgh =gh, (c) ghg =hg, (d) gh = hg(R).

COROLLARY. gh = hg(Dj) for every g, hec E.
Ordered idempotent semigroups are studied in our previous paper
[10], from which we mention one more lemma without proof.

LEMMA 4. Each Dg-equivalence class in E consists of either

only one L-equivalence class in FE. or only one R-equivalence class
wn E.

A Dg-equivalence class, if it consists of only one L-equivalence
class in E, is called L-typed, while, if it consists of only one R-
equivalence class, it is called R-typed. A regular pair (z,%) of S is
called L-typed, if the Dy-equivalence class which contains (xy)(yx) is
L-typed. By Corollary of Lemma 3, a regular pair (z,y) is L-typed
if and only if the Dj-equivalence class which contains (yx)(xy) is L-
typed. An R-typed regular pair is defined similarly. A regular pair
(x, ) is said to be of order m, if both 2 and y are elements of order
n. A regular pair of order 1 is also called an idempotent regular
pair.

2. Idempotent regular pair. In this section, we give a theorem
which characterizes idempotent regular pairs.

THEOREM 1. (a) For a regular pair (z,y) of S, © is idempotent
if and only 1f y 1s idempotent.

(b) For g,heE, (9,h) is a regular pair if and only if g =
h(Dy).

Proof. (a) Suppose that (x,y) is a regular pair and that x is
an idempotent. Then y = yaxy = (yx)(zy) is an idempotent, by Corol-
lary of Lemma 1. (b) First suppose that (g, k) is an idempotent
regular pair and that g < h. By (2),

g=hg(L)y, h=gh(L), g=gh(R), h=hg(R).

If gh < hg, then, by Lemma 3, hg = gh(L), and so g = k(L). If
hg < gh, then we obtain g = A(R) similarly. Next suppose that
g = k(D). Then, by Lemma 4, either g = h(L) or g = h(R). If
g = h(L), then
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ghg =(gh)g =9 =g, hgh = (hg)h = h* = h ,

and so (g, &) is a regular pair. In the case when g = A(R), we obtain
the same result by a similar way.

3. Regular pair of finite order. In this section, we study regu-
lar pairs of finite order. But, first of all, we give some lemmas
about general regular pairs which are necessary also for coming sec-
tions.

LemMMA 5. For two regular pairs (x,y) and (z, w), (xz, wy) s a
regular pair,

Proof. By Corollary of Lemma 1, both yxzw and zwyx are idem-
potent. Hence
(x2)(wy)(xz) = (ryx)zwyr(zwz) = x(yrzw)z = a7,
(wy)(@2)(wy) = (wzw)yzzw(yzy) = wrwyr)y = wy .

COROLLARY 1. If (x,y) is a regular pair, then, for every
natural number n, (x*, y") ts a regular pair.

COROLLARY 2. The set of all regular elements of S, if it is
nonvotd, 1s a subsemigroup of S.

LEMMA 6. If (p,q) is a regular pair such that q < p, then ¢
18 non-positive and p 18 nonnegative.

Proof. ¢ =<qpqg=¢q and p = pgp < p*, from which the lemma
follows immediately.

LEMMA 7. Let (p,q) be a regular pair such that ¢ < p and
gp < pq. Then the following six conditions are equivalent to each
other:

(@) p¢=p¢'p, () ¢p=¢, () ¢=¢,
@ gp=gqr¢, (& Pe=p, () P=9p.

Moreover, these conditions imply

(2) (ap)(pe) = ¢ = p* = (pg)(gp)(L) .

Proof. (a) implies (b), for ¢’p = qpg’p = qpq* = ¢*. (b) implies
(c), for ¢’p* = ¢*» = ¢* and so ¢* is an idempotent, by Corollary 1 of
Lemma 5. (c¢) implies (a), for
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¢ = pg® = pg*p = pg’(gp) = Pg’(pq) = pe* .

Similarly the conditions (d), (¢) and (f) are equivalent to each other,
Now (c) implies (f), for, by Theorem 1 and Corollary 1 of Lemma 5,
(% ¢*) is an idempotent regular pair. Similarly (f) implies (c). This
proves the first half of the lemma. Next suppose that these condi-
tions hold. Then

(er’0)a* = (@P’9)9)a = qp’a ,  (@pv’q) = (¢*p)P)e = ¢*,
Y = (p)p = ¢*, ¢ = (pq)q = p*,
P (pa’p) = (P’9)a)p = p*, (p@’p)P* = (p@’P)P)P = PIP .
Hence (g) holds.

LemMmA T'. Let (p,q) be a regular pair such that ¢ < p and
pq = qp. Then the following six conditions are equivalent to each
other:

(@) ¢p=1p¢p, (b) p¢’=4¢, () ¢=4¢,
d) 2¢q=4qpq, (e) qp’'=9p, 6 »=9p.
Moreover, these conditions t1mply

(2) @»(pg) = ¢ = p* = (pg)(gv)(R).

COROLLARY. For a regular pair (x,¥), x is an element of order
2 if and only if y is of order 2.

THEOREM 2. If (%,y) is a regular pair such that either © or ¥y
18 an element of finite order, then (x,y) is a regular pair of order
either 2 or 1.

Proof. By Theorem 1 and Corollary of Lemma 7, it suffices to
show that if z is an element of finite order, then # is of order at
most 2. Here we prove this assertion only in the case when z <y
and zy < yx. Then, by Lemma 6, z is non-positive. Now suppose it
were true that 2 > 2* = x**' for a natural number » = 3, Then
2" = " > " = gyx” and so x"* > yx*. Hence ' = yz"'. On
the other hand,

et = gyt £ (yx)xtTt = Yot = yar .
Hence 2 = yx**!, Then we would have
xn — mn_lx — yxn+2 — yxn+1 — a,;n—l ,

which is a contradiction.
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4. Ordered T-semigroups. In this section, we give some ex-
amples of ordered semigroups each of which has a regular element
of order 2.

ExAMPLE 1. We denote by T, the system consisting of eight
elements ordered by

s<g<e<<t<r<f<p<u

and with the following multiplication table:

s q¢q e t v f p u

s s 8§ s s 8 s s s

q 8§ 8 8 s s q e ¢t

e s g e t t t t t

(6) t |t t t t t t t t
vi{ v v v v v v v v

f v v v v v f DU

ply v f P U U U U U

| ou ow U U U U U U

It can be verified that this system T, is an ordered semigroup.

ExaMpPLE 2. We denote by 7, the system arising from T, by
identifying ¢ and v. Clearly this identification is possible, and the
constructed system T,; is an ordered semigroup.

ExaMPLE 3. We denote by T, the ordered semigroup which is
multiplicative dual to 7,,. Thus the multiplication table of T is
symmetric in the main diagonal to the table (6).

ExaMPLE 4, We denote by T,; the ordered semigroup which is
dual to T%;.

In each of these four ordered semigroups, (p,q) is a regular pair
of order 2 with negative ¢ and positive p. In T,; and T,;, (p, q) is
L-typed, while, in T\, and T, it is R-typed. The ordered semigroups
Ty Ty, Ty and T,, are called ordered T-semigroups. Ordered T-
semigroups 7., and 7, are called L-typed, while T,, and T, are
called R-typed.

5. Regular pair of order 2. In this section, we characterize the
subsemigroup generated by a regular pair of order 2.
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LemMA 8. If (¢, y) is @ non-tdempotent regular pair, then both
xy and yx lie between x and y in the strict sense.

Proof. Suppose that 2 < y. Then, by Lemma 6 and Theorem 1,
x is negative and y is positive. Now we suppose that z = xy were
true. Then, by Lemma 2, x = (xy)x would be an idempotent, which
is a contradiction. Hence # < xzy. The remaining assertions can be
proved similarly.

In the rest of this section, we assume that (p,q) is a regular
pair of order 2 such that ¢ < p, and set

(1y =9 u=p, ¢ = min {pqg, ¢p} ,
f=max{pqg, qp}, t=min{ef, fe}, v=max{ef, fe}.

First we suppose that gp = pq. Then, by Lemma 7, (¢p)(pq) =
(pg)(gp)(L), and so, by Lemma 3, (¢p)(pq) = (pg)(gp). Hence

(7 e=qp, [f=pnq, t=ef, v = fe.

By Lemma 8, s = ¢* < g < eand f < p < p* = u. Moreover, by Lemma
T, pt=p¢=p">p=pe and qv=¢p=¢"<qg=gqf, and so t > e
and v < f. Thus

(8) s<g<e<tsv<f<p<u.

Now we denote by T* the set consisting of elements s, q,¢,t, 2, f, p
and #. By Lemma 7, we can verify that the elements of T* are
multiplied together just as in the table (6) of the ordered semigroup
T,, in Example 1 in §4. Especially T* is a subsemigroup, which is
clearly the subsemigroup generated by (p,q). If ¢+ v, then T* is
isomorphic to T.;, while, if ¢t = v, then T* is isomorphic to T,;.

Similarly, in the case when pg < ¢qp, we can show that, if ¢ £ v,
then the subsemigroup T* generated by (p,q) is isomorphic to Ty
and, if ¢t = v, then T* is isomorphic to T,.

THEOREM 3. Let (p, q) be a regular pair of order 2 such that
q = p, and let T* be the subsemigroup of S generated by (p, q).

(a) If qp < pg and qp’q = pg*p, then T* is isomorphic to the
L-typed ordered T-semigroup Ty;

M) if qp £ pq and qp’q = pg*p, then T* is isomorphic to the
L-typed ordered T-semigroup T,

() if pg < qgp and qp’q + po’q, then T* s isomorphic to the
R-typed ordered T-semigroup T.g;

d) if pg < qgp and qp'q = pg*p, then T* is isomorphic to the
R-typed ordered T-semigroup T,p.
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6. Ordered I-semigroups. In this section, we give some ex-
amples of ordered semigroups each of which has a regular pair of
infinite order.

ExAMPLE 1. The set of all integers forms an ordered semigroup
with respect to the usual order and the usual addition. We denote
this ordered semigroup by I, I, is even an ordered group.

ExAMPLE 2. Let U be an ordered semigroup consisting of two
elements —1 and 1, with the usual order and the left singular multi-
plication:

ab = a for every a,be U.

We consider the lexicographically ordered direct product of I, and U,
that is, the system I, consisting of pairs (4, a) with 1€, a€ U, in
which the order and the multiplication are defined by

(1,a) < (4,b) ifi<jori=4ja<b;
@, a)5,0)=0G@+J,ab) =+ J,a).

It can easily be verified that this system I,; is an ordered semigroup.
(Here we remark that lexicographically ordered direct product of two
ordered semigroups is not always an ordered semigroup.) In I;, the
subsemigroup, consisting of elements with the second component 1,
is isomorphic to the ordered semigroup I,.

ExaMPLE 3. Let V be a system consisting of six elements with
the order

62<61<t<’0<f1<f2
and with the multiplication table:

e, e, t v fi f,

e, | & e e e € ¢
el ez 61 t t t t
(9) t e ¢t ot ot ¢

v
S v v v v fi f
Ll Hh i o i i fu.

It can be verified that V is an ordered idempotent semigroup. Now
we define two mappings @ and + of V into itself:
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ple) = ple) = p(t) = p(v) = €;, P(f)=¢e, P(f)=1;
yle) = v, J(e) =fi, ¥() =) =) =) =re.

As is easily seen, these mappings have the following properties;
(a) both @ and + are monotone:
g = h implies p(g) < p(h), ¥(g) =< ¥(h);
(b) both @ and + are semigroup-homomorphisms:
p(gh) = p(g)p(Rk), (gh) = y(g)y(h) for every g, he V;
(¢) P(P(9)) = e, ¥(¥(9)) = f; for every ge V;
@) o(g)e. = exp(9) = (9), v(9)f1 = fiv(9) = +¥(9) for every ge V;
(e) P(v(9)) = e, V(P(9)) = frg for every ge V.
We consider the system K, consisting of pairs (¢, g) with 7¢I, ge V,
in which the order is defined lexicographically and the multiplication
is defined by

(t+37,9e) ifis -2,
@+, 99h) if i = -1,
(10) @, 94, h) =1G+J,9k) L i=0,
(G+35,9vR)if 1 =1,
(t+4,9f) ifi=z2.

Using the properties (a)-(e) of ¢ and +, we can prove that K is an
ordered semigroup. Finally we consider the subset I, of K, con-
sisting of elements with

1= —2, g+#e,f, or
1= —1, ¢ # f1, or
an ¢ = 0, g arbitrary, or
1=1, g + e or
122, gF e, fi.

It can also be proved that I, is closed with respect to the multi-
plication, and so forms an ordered semigroup. In I,;, the subsemi-
group consisting of elements with the second component e, or f;, is
isomorphic to I;, and the subsemigroup consisting of elements with
the second component e, is isomorphic to I,.

ExAMPLE 4. Let V,® and 4 be the same as in the preceding
Example 3. We consider the system K’, consisting of pairs (4, g)
with 1€ I, ge V, in which the order is defined lexicographically and
the multiplication is defined by
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(t+J,9f) ifis -2,
¢+ 3,99 if ©= -1,
(10) (¢, 9)g, k) =1G+J4,9k) fi=0,
(¢t +J,99Mh) if i=1,
(t+34,9e) ifiz=2
In a similar way as in Example 3, we can prove that K' is an

ordered semigroup, in which the subset I;, consisting of elements
(%, g) with

1< —2, g Fe,f, Or
3= ~1, g+ e, or
a1 v = 0, g arbitrary, or
t=1, g #f, or
1=2, g=-e6,f1,

forms an ordered semigroup. In I,, the subsemigroup consisting of
elements with the second component ¢, or f,, 18 isomorphic to I;, and
the subsemigroup consisting of elements with the second component
¢, is isomorphic to I,.

ExamMPLE 5. We denote by I,; the ordered semigroup constructed
from I,; by identifying (7, t) and (¢, v) for every ie I,. It can be seen
that this identification is possible,

ExAmpLE 6. The ordered semigroup I, constructed from I, by
identifying (¢, ) and (¢, ») for every ¢ ¢ .

ExaMPLE 7. The ordered semigroup I, which is dual to I,.
ExAMPLE 8. The ordered semigroup I,; which is dual to I,;.
ExamMPLE 9. The ordered semigroup I, which is dual to I,
ExampLE 10. The ordered semigroup I, which is dual to I,;.

ExampLE 11. The ordered semigroup I, which is dual to I,.

These eleven ordered semigroups I, I,;, I,;, -+, I,z are called
ordered I-semigroups, in which I, is called the fundamental ordered
I-semigroup. Every ordered I[-semigroup contains a subsemigroup
which is isomorphic to the fundamental ordered I-semigroup I,.

7. Regular pair of infinite order (1). In this section, we charac-
terize the subsemigroup generated by a regular pair of infinite order
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under some conditions. For brevity, in this section, always we denote
by (p, @) a regular pair of infinite order such that ¢ < p and set

1g) & =min{ep, ¢}, f.=maxien”, p°¢"t (v =1,2,3, ),
tzmin{elflyflel}; vzmax{elflyflel}'
LEMMA 9. - << @¢<g< 2= <t<vsf, <
HEfHSE - <p< P <P < e,

Proof. By Lemma 2, ¢, =t < v =f,. By Lemma 6, ¢ is nega-
tive and p is positive, and so ¢ < ¢*, p* < p"** for every natural
number #. First we suppose that gp < pg. Then

"t = q"(gp)p” = ¢ (pQ)p" = q"p",

and similarly p"*'¢"** = p~¢®. Hence we obtain, for every natural
number n,

€ =q" TP Z e, =q"0" S 6, =qp = fi = pg
Efu=9"¢" = forn =0

Finally, by Corollary 1 of Lemma 5,
qqn — qn-}—l < qn — qnpnqn — 6nqn , fnpn — pnqnpn — pn < pn+1 — ppn

and so ¢ <e,,f. <p. In the case when pq < qp, we can prove this
theorem in a similar way.

COROLLARY. For every natural number n, both e, and f, are
idempotent. If qp < pq, then e, = ¢*p*, f, = p"q". If pq < qp, then
e, = "q*, fn = q"D".

LEMMA 10. For two natural numbers m and n such that m < mn,

€nn = €48m = €y,  JuSn =JFuSm =Fun.

Proof. We prove only the first assertion in the case when gp <
pq. By the preceding Corollary and Corollary 1 of Lemma 5,

€ney = "D Q"P" = (¢"P"¢")¢" D" = "¢ D" = e, ,
€wen = Q""" = ¢ T (PTYTP) = PP = e,
Now we remark that two relations
(A) efize, efi=ef
are equivalent to each other. In fact, if e,f, = ¢, then

efi = (fHzefizeaf,
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and so e,f1 = e, f.. If e,f, = e.fi, then e,f, = ¢, f, = €l = ¢,
Similarly we can prove that each of the following sets of rela-
tions consists of equivalent relations:

(B) Heo=fi, o= fe

(A) fiea= e,  fie,=fie,

(B) efi=f, efi=efi.
Also the three relations

©) fezfi, fe=f, fe=1

are equivalent to each other. In fact, if f,e, = f,, then

f2 = fie :fz(f2el) gfzfl =fa,

and so fi.e, = f,. If fie, = f,, then, without loss of generality by as-
suming that ¢p = pg, we have ¢ = ¢*f, = ¢*f,e, = ¢*p, and so ¢° = ¢*p°,
Therefore f, = p’¢* = p*¢*p" = fye,. Finally, if f.e, = f,, then fe, =
f 262 = f g = fl

Similarly we can prove that each of the following sets of rela-
tions consists of equivalent relations:

(D) efi = e, e.f1 =€, 6.f, = ey ;
(CI) efs = /1, efs =13, e.f: =1
(D" Sie, = e, fie; = e, fees = e, .

In what follows, we refer to the above-mentioned sets of equi-
valent relations as (A), (B), ---,(D’), as shown at the left end of
each line.

LemMA 11, If either (C) or (C') holds, then e, =e¢, = +--. If
either (D) or (D') holds, then f, = f; = --.

Proof. We prove only that (C) implies e, = ¢, = --- in the case
when ¢p = pg. In this case, as is shown in the proof of equivalence
of relations in (C), we have ¢* = ¢°p, and so

2

e=q¢p =¢=q¢p =¢ =¢'p'= ...

LeMMA 12. If (p, q) is L-typed, then
(@) (C) s equivalent to (A’), and (D) is equivalent to (B');
{b) (A) implies (A'), and (B) implies (B’).

Proof. (a) We prove only that (C) is equivalent to (A’) in the
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case when ¢p =< pq. If (C) holds, then, as is shown in the proof of
equivalence of relations in (C), we have ¢’ = ¢°p, and so

Jie. = p@’P’ = pg’p = fie, .
Thus (A’) holds. If (A’) holds, then, by Lemma 3, f.e f, = fi¢, and so

fo = 0°¢* = nfieq = pfieq = P’¢*0'q = foefi
= (f2f1)elf1 = fz(flel) = fze1 .

Thus (C) holds. (b) We prove only (A) implies (A’). By Lemma 8
and (A),

(f; 131)(f 1€2) = (fre.f: Ve = fie.e; = fre,,
(f1e)(fre) = file.Sfr)e, = fiefrie, = fie, .

Hence fie, = fie(R). Therefore, by the assumption of being L-typed
of (p, q), we obtain fie, = fie..

Lemma 12'. If (p, q) is R-typed, then
(a) (C) is equivalent to (A), and (D') is equivalent to (B);
(b) (A’) implies (A), and (B') implies (B).

We divide the investigation of a regular pair of infinite order
into two cases:

Case 1. the case when e, = e fi(Dy);

Case 2. the case when e, = e fi(Dy).

In the rest of this section we study Case 1, and Case 2 will be:
studied in §9.

Case 1 is divided into two subcases:

Case 1L. the subcase of Case 1 when (p, q) is L-typed;

Case 1R. the subcase of Case 1 when (p, q) 18 R-typed.

Now we consider Case 1L, that is, suppose that (p,q) is an L-
typed regular pair of infinite order such that ¢ < p and e, = e, fi(Dj).
Then e, = ¢.f; = fie(L), and so e, = efe.f1) = e, f1, fie. = (fie)e, = fie,.

Hence (D) and (A’) hold. Then, by Lemma 12, also (B’) and (C) hold..
Moreover, by Lemma 11, we have

(13) €y = @3 = -, f2:f3:....

Furthermore, by Lemma 3,
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(14) t:e1f1=31f1619 v:flelzflelfl'

We denote by E the set consisting of ¢, e, ¢, v, /. and f,. Then,
by (A7), B, (C), (D), (13) and (14), we can verify that elements of E
are multiplied together just as in the table (9) in Example 3 in § 6.
We divide Case 1L into two subcases:

Case 1L1. the subcase of Case 1L when qp < pgq;
Case 1L2, the subcase of Case 1L when pg = qp.
First we consider Case 1L1. In this case, by Corollary of Lemma

9, we have ¢, = ¢"p" and f, = p*q". Therefore, by f.e, = f, and e,f, =
e,, we obtain

(15) P»=rq, ¢=¢q,
and, by 61f1 = 31f131 and f1e1 = f161f1;
(16) P’q = p’¢’p, p = ¢'p’q .

Now we consider the mappings @ and 4 of E into itself which
have been defined in Example 8 in § 6, that is,

Ple) = Ple) = () = P(v) = e,, P(f)=¢e, PU)=¢t;

Yie) =v, P =f, ¥ =) =30 =9) =1 .
Then, by (15) and (16), it is easily verified that
a7 99 = P(9)9 , pg = y(g)p for every ge E.
Especially we have qe, = e,q, pf. = fop, and so
(18) q e, = e,q" , pf, = fyp" for every natural number n.
Moreover by (17)

7’9 = qP(9)q = PPN = eq® = ¢*,

P9 = py(9)p = v(vw(@)P* = f.p’ = p°,
and so

(19 gg=e9"=4q", p'g=rfp"=2Dp" for every ge K, n = 2.

By (18) eqm*'p"*! = e,q"e,p" = qme6,p" = q"e,p" = e,q"p" and fup™tigtt =
f.p™g® in a similar way. Hence

‘e,q™ " if m>mn,
(20) e,q"p" = e, iftm=n,

e, v ™ if m<mn,
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foor T if m>n,
(21) Lp™q" = 1 f, if m=mn,
fqm ™ i m<mn.

By (19) and (20),

99"hq" = ge,q™"

mh — e m ,
tm=2, aq geq
(22) ge.q™™ when m >n,
gq"hp" = {ge, when m =n ,

ge.,p™™ when m < n.
Similarly by (19) and {21),

go™hp" = gfpmt",

mh — 8 n ,
it m=2, gp 9f:p
(23) gf:p™™* when m > n,
go"hq" = {gf, when m = n ,

g9fq*™ when m <n.

We have mentioned in §6 that o(g)e, = #(9) and {(g9)f; = ¥(g).
Hence by (17),

(gqhq” = gp(h)g™t,

h = go(h
@4) gq gp(h)q ,
gqhp = gp(h) ,
gghp™ = gp(h)p" if n=2;
gphp® = gy(h)p™**,
h = gy (R)p ,
(25) gp gyr(h)p
gphq = gy (h) ,

gphq® = gy(h)g*™ if n=2.

We denote by I* the set consisting of elements of the forms
gq™ or gp" or g with ge E and natural number n. By (22)-(25), we
see that I'* is a subsemigroup, which is then clearly the subsemigroup
generated by the regular pair (p, 9).

Since ¢ = ¢,¢ and p = fip, we have

(26) vq = fiq , ep=1tp.
By (26) and relations e,q* = ¢* = e,¢*, fop* = P* = fip',

@27 eg"=eq", vg"=fq", ep"=tp", fip*=fp* forn=2,
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By (18), ¢*(fug™™") = ¢""° < ¢"** = e,9"** = ¢*(e,9™) and ¢*(f9) = ¢* < ¢* =
e.q9" = ¢’¢,, and so

(28) f W <eqr, fa<e.
Similarly
(29) fi<ep,  fip" <ep"tt.

Thus the elements of I* are ordered by

LGS =S <eg Seq Xt =v9 = fiq
(30) <62§61§t§7)§f1§f2<32p§tpévpéflpéfzp
<P =t S vwr =it < e

Lemma 13. In this Case 1L1, all the following relations are
equivalent to each other:
cy 6q" =10, V¢ = [0, eq = e, eq = tq, vq = fu,
e, =2¢, ¢, =1t v=7f, f1 =/, ep=1tp, vp=[f1p,
flp :fzpy 622')2 = tp27 'Up2 = fngy o
Proof. First we prove that the four relationse, = ¢, ¢, =t, v =
fi, fi = f, are equivalent to each other. In fact, if ¢, = ¢,, then
e, =6, = 6f =ef =t.
If e, =t, then
Ji = peq = ptg = f, .

It can similarly be proved that f, = f, implies v = f; and that v = f;
implies e, = ¢,. Next we prove that vg" = f,q" are equivalent to v =
fi. In faet, if vg" = f,q*, then, by taking account of the table (9),
V= vq"p" = f.9"p" = f,, and so v = f,. If v = f,, then, by the result
proved above, v = f; = f,, and so vq" = f,q". Similarly we can prove
that each of the remaining relations is equivalent to one of the rela-
tions e, =e, e, =t, v=71, i = [
In a similar way, we can prove the following

LEMMA 14. In this Case 1L1, all the following relations are
equivalent to each other:

e, ¢ =0, tg =g, t =, tp = vp, tP' = VP, +--
Now we study Case 1L1 by dividing into subcases.

1°. Subcase of Case 1L1 when e, + e, t % v.
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In this subcase, by Lemmas 13 and 14, all the elements of I[*
written in (30) are different from each other. We consider a mapping
of I,; of Example 8 in § 6 into I*:

gp' if1>0,
(31) (tg)—4g i£i=0
gg~t if 1 <0,

By (11) in § 6, this mapping is one-to-one and onto. Moreover, it is
order-preserving. Furthermore, comparing (10) in § 6 and (22)-(25),
we see that this mapping is an isomorphism. Thus I* is isomorphic
to I;. We remark, by the above isomorphism, (—1, ¢;) and (1, f) are
mapped into ¢ 'and p, respectively.

2°, Subcase of Case 1L1 when e, + ¢, t = v,

In this subcase, by Lemmas 13 and 14 and the consideration of
1°, I* is isomorphic to I,;.

3°. Subcase of Case 1L1 when e, = e, t # v.

By Lemmas 13 and 14, I* consists of elements

"’<32q2=q2<f2q2<32q=q<f2‘]<ez
<fi<ep<fip=p<Lep < fp=p<"--,

and, by (22)-(25), we have

gqmhg” = gq™t*,

99"h = 9q™ ,
(32) gg ™ ifm>n,
9q™hp" = {g if m=mn,

gp~™ if m<n,

gp"hp™ = gp™** ,

gp"h = gp™ ,
(82) gp™ ™ if m>mn,
gp"hg" = 19 ifm=mn,

gg" ™ if m<mn.
Also we have
(32"”) ghq" =gq", gh=g, ghp"=gp".

Thus, in this subcase, the mapping
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ept if1>0),
#, —1)— e, if1=0,
(33) eqt if 1 <0,
St if 1> 0,
G —4f, ifi=0,
St if 1 <0,
is an isomorphism of I; onto I*. We remark, in this isomorphism,
(—1, —1) and (1, 1) are mapped into ¢ and p, respectively.
4°. Subcase of Case 1L1 when e, = e, t = v.

In this subcase, by Lemmas 13 and 14, I* consists of elements
L PLE<Lg< = =t=v=Ffi=L<p< PP -+,
and, by (22)-(25),

qm ™ if m >n,
pt =pqt ={e,  fm=mn,
prm if m<n,

eq” =q"e,=q",  ep" = pre =p".

Thus the mapping

p ifi>0,
i—<e, ifi1=0,
g it i <0,

is an isomorphism of I, onto I*,
Next we consider Case 1L2.

1°. Subcase of Case 1L2 when e, #+ e, t % v.

We can prove, in a similar way as in the corresponding subcase
of Case 1L1, that the subsemigroup I* generated by (v, q¢) consists
of elements

<L <KW < P <[l <eg << <fy=9¢<Sfy<e
<e<t<v<fi<hfhi<ep<ep=p<tp<vp <fp<ep
<t <opt < fupf < vk,
and that the mapping given by the same formula (31) as in Case 1L1

ig' an isomorphism of I, onto I*. In particular, (—1,f) and (1,e¢e)
are mapped into ¢ and p, respectively.
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2°. Subcase of Case 1L2 when e, #+ e, t = v.

The subsemigroup I* generated by (p, ¢) is isomorphic to I.
3°. Subcase of Case 1L2 when e, = e, t + v.

The subsemigroup I* generated by (p, ¢) consists of elements

< e < =0C<eq<fg=q<e
<fi<ep=p<fp<ep=p<fip’< -+,

and so consists of the same elements as in the corresponding subcase
in Case 1L1. Also the multiplication in I* is given by the same
formula (32)-(32”) as in Case 1L1. Hence the mapping (33) is an
isomorphism of I,; onto I*. However, in this subcase, (—1,1) and
(1, —1) are mapped into ¢ and p, respectively.

4°. Subcase of Case 1L2 when e, =e, t = v.

The subsemigroup I* generated by (p, ¢) is the same, in all re-
spects, as that in the corresponding subcase in Case 1L1.

In Case 1R, we can argue in a similar way.

THEOREM 4. Using the notations given in (12), let (p,q) be a
regular pair of infinite order such that q < p and e, = e, fi(Dy), let
I* be the subsemigroup generated by (v, q), and let I,—I; be the
ordered I-semigroups given in § 6.

@) If e;=-e¢, and t = v, then I* is isomorphic to I

() if (p, q) is L-typed, ¢, = e, and t + v, then I* is isomorphic
to I;

() of (p,q) is L-typed, qp < pq, e, #+ e, and t + v, then I* is
isomorphic to I;;

d) of (»,q) ts L-typed, pq < qp, e,+* e, and t + v, then I* is
iwsomorphic to L,

(e) of (p,q) is L-typed, qp < pq, e, + e, and t = v, then I* is
isomorphic to I,;

(f) if (p, q) is L-typed, pq < qp, e, e, and t=wv, then I* is
1somorphic to I;;

(g) if (v, q) is R-typed, e, = e, and t # v, then I* is isomorphic
to Lg;

(h) if (p,q) is R-typed, pq < qp, e, + e, and t + v, then I* is
isomorphic to Ly;

() if (p,q) is R-typed, qp = pq, e, + e, and t =+ v, then I* is
isomorphic to Lg;
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(G) if (p,q) is R-typed, pq < qp, ¢, + ¢, and t = v, then I* 1is
rsomorphic to I,g;

X&) if (p,q) is R-typed, qp < pq, e, + ¢, and t = v, then I* is
isomorphic to I,

COROLLARY. Under the assumptions of Theorem 4, I* contains
subsemigroup isomorphic to the ordered additive group I, of integers.

8. Ordered J-semigroups. In § 6, we gave examples of ordered
semigroups each of which has a regular pair of infinite order. In
this section, we give examples of another kind of such semigroups.

ExaMPLE 1. Let J be the set of pairs (m,n) of nonnegative
integers with the multiplication

k+m-—10,n iflm,

As is well known, J is an abstract semigroup (Lyapin [4] or Saitd
[9]). It can be verified that the semigroup J turns out to be an
ordered semigroup when we define the order in J by

k,DHD<mm ifk+n<m+l ork+n=m+l k<m.
This ordered semigroup is denoted by J,.

ExaMPLE 2. It can be verified that the semigroup J in Example
1 turns out to be an ordered semigroup when we define the order in
J by

F,)<(mm) ifk+n>m+l ork+n=m+1 E<m.
This ordered semigroup is denoted by J,.

ExAMPLE 8. The ordered semigroup J,;, which is the semigroup
J with the order

Eh<mmn) ifk+n<m+l ork+n=m+1l k>m.

ExAMPLE 4. The ordered semigroup J,, which is the semigroup
J with the order

k,D)<(mmn) ifk+n>m+1] ork+n=m-+1 k>m.

In each of the ordered semigroups J,—Jy, ((0,1), (1, 0)) is a regular
pair of infinite order, which generates the corresponding ordered
semigroup. In J,, and J, (0,1) is negative and (1, 0) is positive,
while in J,, and J,, (0, 1) is positive and (1, 0) is negative.
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ExamPLE 5. Let W be a system consisting of infinite elements
ordered by

ez<e1<t<'v<f1<f2<"'r

and with the following multiplication table:

€; €, t v fl f2 fs' M

e, e, e t t t fy fi- -
e, | e e t t t fi fir -
t t t t fi firoo oo
(34) v v ov v fy fie oo
J1 v v fi fi for oo

v v
fz fz fz fz fz fz fz fs' ot
fs fa fs fa fa fa fs fs' c

----------------

It can be verified that W is an ordered idempotent semigroup. We
define two mappings @ and + of W into itself by

Pple)) = p(e) = P(t) = P(v) = €, P(f) = &y,
P(f) =t Pfs) =S -5
¥(e) = v, yle) = fi, ¥(@) = ¥(v) = ¥(f) = fo
¥(fs) =Fo ¥(f) =F0u -

As is easily seen, these mappings have the following properties:
(a) both @ and v are monotone;
(b) both @ and + are semigroup-homomorphisms;

(©) P(9)e, = ep(9) = P(9), ¥(9)f: = fi(g) = ¥(9) for every ge W;
(@) P((9) = eg, V(P(9)) = frg for every ge W.
For brevity, we use notations:

P 9) = P(9), PY(9) = P(P(9)), P(g) = PP(P(@))), *-+

vH(9) = ¥(9), ¥(9) = v(¥(9)), ¥(9) = ¥v(v(¥(9))), --- .
Now we consider the system H, consisting of pairs (¢, g) with te I,
and ge W, where I, is the ordered additive group of integers as is

defined in § 6. In H, we define the order lexicographically and define
the multiplication by

(0 + 4, 997(h)) if 1 <0,
(35) (3, 9)(4, B) = (i + g, gh) ifi=0,
@+ 4,99(R)) ife>0.
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Using the properties (a)-(d) of ¢ and ++, we can prove that H is an
ordered semigroup. Finally, we consider the subset J,, of H consist-
ing of elements with

ié '_‘27 gielyfly or
4 = _1’ gifl; or

(36) ¢ = 0, g arbitrary, or
1=1, g =t, or
7; ; 27 g __Z_f'b .

It can be verified that J,, is closed with respect to the multiplica-
tion, and so forms an ordered semigroup. Here we remark that the
ordered semigroup .J,; contains a subsemigroup which is isomorphic
to J,. In fact, we can verify that the following mapping of J, into
Jz is an isomorphism into J,;;:
(m—mn,e) if m=0,
m,n) —{(m —n,t) ifm=1,
m—mn,f) if m=2.

EXAMPLE 6. Let W, @ and + be the same as in the preceding
Example 5. We can verify that the system .J,,;, consisting of pairs
(¢, g) with 2¢ I, ge W which satisfies

ié _27 g gfi, or

1 =—1,g=t¢t, or

1 =0, g arbitrary, or
1=1, g+ fi, or
7:=>:27 giel’fl?

forms an ordered semigroup, when we define the order lexicographi-
cally and define the multiplication by

¢+ 7, 997(h)) if + <0,
(¢, 9, h) = {(t + 4, gh) ifi=0,
@+ 7, 99%h) if 1 >0.
Moreover we can verify that the mapping of J, into Jy,; defined by
(n—m,e) if m=0,
(m,n) —<{(n—m,t) ifm=1,
(n —m, f.) if m=2

is an isomorphism into J,,, and so J,,; containg a subsemigroup which
is isomorphic to J,.
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EXAMPLE 7. Let W' be the system consisting of infinite ele-
ments ordered by

...<e3<62<61<t<v<f1<f29

and with the multiplication table arising from the table (34) by

means of replacing e, e, 0,/ fo for o0 VY fufu vt 6,66, -0
respectively. It can be verified that W' is an ordered idempotent

gemigroup. We define two mappings y and @ of W' into itself by

x(f) = 1) = 1) = 1) = fo, xe) = fy,

x(e) = v, x(e) =€y =0+
o(fy) =t, o(f) = e, 0(v) = o(t) = le) = 6,

w(e,) = €, W(e) =€y *+ - .

In a similar way as in Example 5, the system .J,;;, consisting of pairs
(i, g) with 1e I, g W' which satisfies

1< —2, g+e,f, Or
1=—1,g+e, or

t =0, g arbitrary, or
1=19g=w, or
122 g=Ze

forms an ordered semigroup, when we order it lexicographically and
define the multiplication by
(¢ + 4, 977%h)) if 1 <0,
(%, 9)(4, ) = (¢ + 4, gh) ifi=0,
(i + j, gwi(h)) if i>0.
The mapping of Jy, into Jy;; defined by
(m—’ﬂ,fz) lfm:O’
(m, n) —{(m —n,v) if m=1,
(m—m,e,) if m=2

is an isomorphism into J;, and so J;; contains a subsemigroup which
is isomorphic to Jy.

ExAMPLE 8. The ordered semigroup J., consists of pairs (i, g)
with ie I,, gc W’ which satisfies

1= —2,9g=<e¢, or
1= '—17 g é v, or
¢ =0, g arbitrary, or
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1=1, g + e, or
7:22! giel’fl'
It is ordered lexicographically and has the multiplication
(t+ 4, 907h)) it 1 <0,

(%, 9)(J4, B) = {(3 + J, gh) if 1=0,
(t+ J,9x(h)) i 1>0.
The mapping of J, into J,,, defined by
mnm—m,f) it m=0,

(m,n) —{n —m,v) ifm=1,
n—m,e,) if m=z=2

is an isomorphism into J,,;.

EXAMPLE 9. The ordered semigroup J,; is constructed from J,;;
by identifying elements contained in each of the following four pairs:

(—1) 62)7 ('_1’ 61); (Ov 62), (O’ el); (07 ,U)’ (Orfl)r (11 ?1), (17f1) .

Ju; containg a subsemigroup which is isomorphic to .

ExampLE 10. The ordered semigroup J,,; is constructed from J,;
by identifying elements contained in each of the following four pairs:

(—1,2), (—=1,71); (0,e,), (0,¢); (0,v), (0,f); (1,e), (1,6).

J,; contains a subsemigroup which is isomorphic to J,.

ExaMpLE 11. The ordered semigroup J,,, is constructed from J,,;
by identifying elements contained in each of the following four pairs:

(=1, 7)), (=1,1); (0, ), (0,%); (0,1), (0,/); A, e), (1,9).

Jy contains a subsemigroup which is isomorphic to J,.

ExamMpLE 12. The ordered semigroup J,, is constructed from J,,;
by identifying elements contained in each of the following four pairs:

(—1,e), (—1,1); (0,e), (0,2); (0,/), (0,f); (L, /), (L, /).
Jr contains a subsemigroup which is isomorphic to J,,.
ExaumpLE 13. The ordered semigroup J, is constructed from J,

by identifying (¢,¢) and (¢, %) for each i =<1. J, contains a sub-
semigroup which is isomorphic to J,.
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ExAMPLE 14. The ordered semigroup J,, is constructed from .J,,,
by identifying (¢,t) and (4, v) for each ¢ = —1. J,, contains a sub-
semigroup which is isomorphic to J,. Here we remark that the
ordered semigroup .J,, is isomorphic to the dual of ordered semigroup
Ju. In fact, we can verify that the mapping of the dual of ordered
semigroup J, into J,, defined by

(G, ¥7(9) if i<0,
(¢, 9)— {0, 9) if =0,
(@ P(g) ifi>0

is an isomorphism onto J,.

ExamMPLE 15. The ordered semigroup J,, is constructed from .J,;
by identifying (7, t) and (¢, ) for each 7 < 1. J, contains a subsemi-
group which is isomorphic to J.

ExampPLE 16. The ordered semigroup oJ,, is constructed from J,,,
by identifying (7,%) and (¢, v) for each ¢ = —1. J,, contains a sub-
semigroup which is isomorphic to J,,. We remark that J,, is isomorphic
to the dual of ordered semigroup J,.

ExampLES 17-24. The ordered semigroups Juz, -+, Jur are multi-
plicative dual to Jy;, « -+, Juz, respectively.

These 24 ordered semigroups given above are called ordered J-
semigroups. Ordered J-semigroups Jy, Jyn, Ji and J,, are called
Sfundamental ordered J-semigroups.

9. Regular pair of infinite order (2). In this section, the nota-
tions of elements e,, f,, t, v and the notations of conditions (A)-(D’)
are used just as is defined in §7. In §7, we divided the investiga-
tion of a regular pair of infinite order into two cases, and Case 1
was studied in that section. Now we study Case 2. Thus, in this
section, we suppose that (p, @) is a regular pair of infinite order
such that ¢ < p and e, = e, f{(Dy).

Case 2 is divided into two subcases:
Case 2L: the subcase of Case 2 when (p,q) s L-typed;

Case 2R: the subcase of Case 2 when (p, q) 18 R-typed,
and moreover Case 2L is divided into two subcases:

Case 2L1: the subcase of Case 2L when the condition (C) holds;
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Case 2L2: the subcase of Case 2L when (C) does mot hold.

Now we consider Case 2L1. Thus we assume that (p,q) is L-
typed and satisfies (C). Then, by Lemma 12, the condition (A’) holds.
Hence (e.f))e. = e,(fie)) = e.f;,, and so, since e, = e,f.(Dy), we obtain
e.f1 = efef) #+ e,. Hence (D) does not hold, and so, by Lemma 12,
(B’) does not hold. Hence (A) and (C’) hold. Moreover, by Lemma 11,

37 e =€, —=@e,= ++»,
Since (p, ¢) is L-typed, we have, by Lemma 3,
t =ef, v=re, efe =ef, fiefi = fien .

Now we denote by E the set consisting of elements e, ¢, £, v, fi,

f%) fa, M
We have ¢, < t. In fact, otherwise, we would have ¢, = ¢, f; and
8o, by Lemma 10, e, = e,f;, which is a relation in (D). We have
Jfi < f.. In fact, otherwise, we would have f, = f, and so e, f, = e.f,,
which is a relation in (B’). We have f, < f,.. for every n = 2. In
fact, otherwise, we would have f, = f,.;.. Without loss of generality,
we assume that qp < pq. Then, by Corollary of Lemma 9, ¢, = ¢"p"
and f, = p"q". Hence, by (387), (A) and (A’), we would have
6 = e, = ¢"P"q"p" = Q" f,p" = ¢"fond" = €, fe,
= 62f162 = (62f1)(f162) = (elf1)(f161) = elfl =t,
which contradicts that e, < e <t Thus the elements of FE are
ordered by
(38) 32§61<t§v§f1<f2<f3<“‘-

Using Lemma 10 and conditions (A), (A"), (C), (C’), we can verify that
the elements of E are multiplied together just as in the table (34)
in Example 5 in §8.

Case 2L1 is divided into two subcases:
Case 2L11: the subcase of Case 2L1 when qp = pq;
Case 2L12: the subcase of Case 2L1 when pq < qp.

Now we consider Case 2L11. Then e, = q*p*, f, = p"¢*, and so,
by (C) and (C),

(39) @w=9, ¢r=q¢.
Moreover, by e, f. = e.f.e. and fie, = fie.f;, we obtain

(40) v'q = pd’p , ¢y = ¢*vq .
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Now we consider the mappings @ and + of E into itself which have
been defined in § 8, that is,

P(e,) = Ple) = P(t) = P(v) = e,, P(f) = e,
P(f) =, P(fs) =fo o0
¥le) = v, yle) = fi, ¥(&) = ¥(®) = v(f) = fa
Vv (f2) = fu "#(fa) =foy e
Then, by (39) and (40), we can verify that

(41) g9 = ®(9)9, pg = ¥(9)p for every gec E .

Moreover, as is shown in § 8, @ and + satisfy the conditions: (a)-(d)
given there. Hence, if { = m + 1, then

PHYG™ P = PHg)gmen” = PH(g)P™(e)a™ D"
= P"(P'™(9)e)g"p" = PP (@))e"p" = PUGI"P" .
Similarly, if [ = m + 1, then we have
PHGP" M = Y (g)p e .
Using these relations, we can verify that

gqrhq" = gp™(h)g™+" ,
g9q"h = gp™(h)q™ ,
(42) gp™(h)gm ™ if m >n,
gqmhp* = {9p™(h) if m=mn,
g™ (h)p~™ if m<mn.

gp"hp" = gy™(h)p™t,

gp™h = gy (h)p™ ,
(43) gy™h)ypm ™ if m>n,

gp"hq" = gy (h) if m=mn,

gy™(h)gm™ if m<mn.

Now we denote by J* the set consisting of elements of the forms
gq*, gp* or g with g€ F and natural number n». By (42) and (43),
we see that J* is a subsemigroup, which is then clearly the sub-

semigroup generated by regular pair (p, g).
Since ¢ = e,q, we have

(44) vq = fq .
By (44) and e,¢* = ¢* = ¢,9°, we have

(45) eq" = eq”, vq" = fiq" for n = 2.
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Since tp = qp’gp = qp* = ¢*P* = e,p < €,p < ip, we have
(46) ep =ep=1tp.
If n= 2, then f,p" = p"q"p" = p" = qp**! = ¢*p" ™ = e,p*, and so,
47) 6P = ep" = tp" = vp" = fip" = -+ = f,p" for n = 2,
We have f,.q™™ < e,q™, for, otherwise, we would have
gttt = @ f,q"" Z qreq™ = Pre)qm = gt

which contradicts Lemma 9. Therefore we also have f,0 <e, We
have eq™ < tq*, for, otherwise, we would have

€, = eq"p" = tq"p" =te, =1t ,

which contradicts (38). Similarly we obtain f,.¢™ < f,+.9™. We have
Fap™ < e,p™t, for, otherwise, we would have

SuSn = Fu0™q™ = ep™ " = ey f i = €,

which contradicts f,g < e,. If m = n, then we have f,p" < fn:i.0"
for, otherwise, we would have

fm = fmpnqn g fm+1pnqn = fm+1 s
which contradicts (88). Thus the elements of J* are ordered by

L <P =P <[ <[ < - < e =eg < g
(48) éUQ<fzq<fsQ< <62§61<t§?)§f1<f2<f3< e
<tp§vp§f1p<f2p<fsp< <f2p2<f3p2< Tt .

LEMMA 15. In this Case 2L11, the following four conditions are
equivalent to each other:

vg =fip, v=1_1, €6 =6, eq =eq.

Proof. If vp = fip, then v =vpg = fipq =f.. If v=f, then
€, = qup = qfip =¢,. If e, = e, then clearly ¢, = e,q. If e,q = eq,
then vp = pe,gp = peqgp = p = fip.

LemmA 16. In this Case 2111, all the following conditions are
equivalent to each other:

e, 8¢ =g 1 =0t g =g, t=0, tp=vp.

Proof. 1If ¢t = v, then clearly tq™ = vg™ and tp = vp. If tp = vp,
then t = tpg = vpq = v. Similarly, if tg” = vg" for some n, then ¢t = .
Now we investigate Case 2111 by dividing into several subcases.
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1°. Subcase of Case 2L11 when e, + e,, T + v.

By Lemmas 15 and 16, all the elements of J* written in (48)
are different. We consider mapping of J,,; of Example 5 in § 8 into
I*:

gp* if » >0,
(49) ng—q9 ifn=0,
g™ if n<O0.

By (86) in § 8, this mapping is one-to-one and onto. Moreover it is
order-preserving. Furthermore, comparing (35) in § 8 to (42) and (43),
we see that this mapping is an isomorphism. Thus J* is isomorphie
to Ju;. We remark, by the above isomorphism, (—1,e) and (1, 1)
are mapped into ¢ and p, respectively.

2°. Subcase of Case 2L11 when e, = e,, t + v.
By Lemmas 15 and 16, J* is isomorphic to J,;; of Example 9 in § 8.
3°. Subcase of Case 2L11 when e, + e,, t = v.
By Lemmas 15 and 16, J* is isomorphic to J, of Example 13 in § 8.
4°, Subcase of Case 2L11 when e, = ¢, t = v.

By Lemmas 15 and 16, J* consists of elements

e L KPP < o <eg << [ < fg < e
s <ez<t<f2<f3< e <tp<fzp<f3p< "'<fzp2
<f3p2< e,

We can verify that the mapping of J, into J* defined by

e.q" ifm=0 n>0,

e, fm=n=0,

tg™t ifm=1,n>1,

t ifm=n=1,

(m, n) — .

tp fm=1n=0,
@™ ifm=2 m<mn,
I fm=2 m=mn,
fup™™ ifm=2 m>n=0

is an isomorphism onto J*.
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Similarly we can discuss Case 2L12.

Now we consider Case 2L2. In this case, (C) does not hold, and
so, by Lemma 12, also (A’) does not hold. Hence (B) and (D’) hold,
and so, by Lemma 12, also (B’) and (D) hold. Thus we can argue in
a similar way as in Case 2L1.

We can discuss Case 2R in a similar way.

THEOREM 5. Using the notations given in (12), let (p,q) be a
regular patr of infinite order such that ¢ < p and e, = e fi(Dy), let
J* be the subsemigroups generated by (p, q), and let J, —J,r be the
ordered J-semigroups given in § 8.

(@) If gp < pq, e, =e¢, t =0, then J* is isomorphic to Jy;

) if pg < qp, e, = ¢, t = v, then J* is tsomorphic to J;

(©) if pg = qp, fi=f. t =, then J* is isomorphic to Jy;

@ if gp £ pq, fi=f,, t =, then J* is isomorphic to J,;

(e) if (p, ) 1s L-typed, qp = pq, fi = fi6r, €5 €, ¢+ v, then
J* is isomorphic to J;

(£) of (v,9) s L-typed, pq = qp, fL £ S, & F 6, L+ v, then
J* is isomorphic to Jy;

(8 of (p,9) is L-typed, pq < qp, fie. <[, Jr# Jo t# v, then
J* s isomorphic to Jy;

(h) if (p,q) is L-typed, qp = pq, fie. < Jfiy J1# [o L# 0, then
J* is isomorphic to J.;;

(i) if (p,q) is L-typed, qp = pq, f, < for, € =€, t # v, then
J* 18 isomorphic to Jyy;

(G) <f (p,q) is L-typed, pq = qp, fi = fi6,, €. =€, L+ v, then
J* is isomorphic to Jy;

k) <f (p,q) ts L-typed, pq = qp, fo. < S1, J1=Vo t # v, then
J* 1s isomorphic to Ju;

(1) if (p,q) is L-typed, qp = pq, fie.: < Ji fi=Fi, t# v, then
J* is isomorphic to Ju;

(m) if qp < pq, e, + e, t = v, either (v, q) s L-typed and f, <
fe or (p, Q) is R-typed and f, < e, f,, then J* is isomorphic to J,;

(n) if pqg = qp, e, + e, t = v, either (v, q) is L-typed and f, <
fien o7 (p, q) 15 R-typed and f, < e.f;, themn J* is isomorphic to Jy;

() if pg = qp, fi#fi t =, either (p,q) is L-typed and
fie. < f1or (p, q) is R-typed and e.f, < fi, then J* is isomorphic to J,;

(v) if ap < pq, f1 # fo t = v, either (p, q) is L-typed and fie, < f,
or (p, q) is R-typed and e f, < fi, then J* is isomorphic to J,;

(@ if (p,q) is R-typed, pq = qp, fi = e.fs € # €, T+ v, then
J* is isomorphic to Jug;

(r) <f (p,q) is R-typed, qp = pq, f1 < e.fs €+ €, t # v, then
J* s isomorphic t0 Jyg;
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(8) of (p, @) is R-typed, qv = pq, e.fa<fi, fr# S t #+ v, then
J* is isomorphic to Jyg;

(t) if (p, 9) is R-typed, pq = qp, e.fs < fi, f1 # fo, t + v, then J*
is isomorphic to Jyg;

(W) if (p,q) is R-typed, pq < qp, fr=ef, e =¢e, t +v, then
J* 18 isomorphic to Jyug;

(v) f (p,q) 18 R-typed, qp = pq, fi=ef, e, =e, t + v, then
J* is 1somorphic to Jyg;

(W) if (p,q) is R-typed, qp < pq, efe < fi, fi=/Ju t# v, then
J* 18 isomorphic to Jyp;

(x) iof (p,9) 18 R-typed, pq =< qp, efu < Jfi, f1 =/ s, t# v, then
J* is isomorphic to Jyx.

COROLLARY. Under the assumptions of Theorem 5, J* contains
a subsemigroup which 1is isomorphic to ome of the fundamental
ordered J-semigroups.

§ 10. Applications., A semigroup S is called an inverse semi-
group if every element of S is regular and each pair of idempotents
of § commute (Munn and Penrose [6]). It can be seen that every
subsemigroup of an inverse semigroup S in which every element is
regular is an inverse subsemigroup. Hence, by Corollary 2 of Lemma
5, for a regular pair (», q) of S, the subsemigroup generated by (p, q)
is an inverse subsemigroup. Now we see that, except I, Jy, Ju, Js
and J,, all ordered semigroups given in examples in §§ 4, 6 and 8 are
not inverse semigroups. Hence we have

THEOREM 6. Let (p, q) be a non-idempotent regular pair of an
ordered inverse semigroup. Then the subsemigroup generated by
(p, Q) ts isomorphic to etther the additive ordered group I, of integers
or one of the fundamental ordered J-semigroups.

Evidently fundamental ordered J-semigroups are not commutative.
Hence we have

THEOREM 7. Let (v, q) be a mon-idempotent regular pair of an
ordered commutative semigroup. Then the subsemigroup generated
by (p, @) is isomorphic to the additive ordered group I, of integers.
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