Regular Elements of the Semigroup $B_{X}(D)$ Defined by Semilattices of the Class $\Sigma_{2}(X, 8)$ and Their Calculation Formulas

Nino Tsinaridze, Shota Makharadze, Guladi Fartenadze
Department of Mathematics, Faculty of Physics, Mathematics and Computer Sciences, Shota Rustaveli Batumi State University, Batumi, Georgia
Email: ninocinaridze@mail.ru, shota_59@mail.ru, guladi@bsu.edu.ge

Received 13 February 2015; accepted 27 December 2015; published 30 December 2015
Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

The paper gives description of regular elements of the semigroup $B_{X}(D)$ which are defined by semilattices of the class $\Sigma_{2}(X, 8)$, for which intersection the minimal elements is not empty. When X is a finite set, the formulas are derived, by means of which the number of regular elements of the semigroup is calculated. In this case the set of all regular elements is a subsemigroup of the semigroup $B_{X}(D)$ which is defined by semilattices of the class $\Sigma_{2}(X, 8)$.

Keywords

Semilattice, Semigroup, Binary Relation, Regular Element

1. Introduction

An element α taken from the semigroup $B_{X}(D)$ is called a regular element of $B_{X}(D)$, if in $B_{X}(D)$ there exists an element β such that $\alpha \circ \beta \circ \alpha=\alpha$ (see [1] [2]).

Definition 1.1. We say that a complete X-semilattice of unions D is an $X I$-semilattice of unions if it satisfies the following two conditions:

1) $\wedge\left(D, D_{t}\right) \in D$ for any $t \in \breve{D}$;
2) $Z=\bigcup_{t \in \mathcal{L}} \wedge\left(D, D_{t}\right)$ for any nonempty element Z of D (see ([1], Definition 1.14.2), ([2], Definition 1.14.2)).

Definition 1.2. The one-to-one mapping φ between the complete X-semilattices of unions $\phi(Q, Q)$ and $D^{\prime \prime}$ is called a complete isomorphism if the condition $\varphi\left(D_{1}\right)=\bigcup_{T \in D_{1}} \varphi\left(T^{\prime}\right)$ is fulfilled for each nonempty sub-

[^0]set D_{1} of the semilattice D^{\prime} (see ([1], Definition 6.3.2), ([2], Definition 6.3.2) or [3]).
Definition 1.3. Let α be some binary relation of the semigroup $B_{X}(D)$. We say that the complete isomorphism φ between the complete semilattices of unions Q and D^{\prime} is a complete α-isomorphism if

1) $Q=V(D, \alpha)$;
2) $\varphi(\varnothing)=\varnothing$ for $\varnothing \in V(D, \alpha)$ and $\varphi(T) \alpha=T$ for all $T \in V(D, \alpha)$ (see ([1], Definition 6.3.3), ([2], Definition 6.3.3) or [3]).

Theorem 1.1. Let R be the set of all regular elements of the semigroup $B_{X}(D)$. Then the following statements are true:

1) $R\left(D^{\prime}\right) \cap R\left(D^{\prime \prime}\right)=\varnothing$ for any $D^{\prime}, D^{\prime \prime} \in \Sigma_{X I}(D)$ and $D^{\prime} \neq D^{\prime \prime}$;
2) $R=\bigcup_{D^{\prime} \in \Sigma_{X I}(D)} R\left(D^{\prime}\right)$;
3) If X is a finite set, then $|R|=\sum_{D^{\prime} \in \Sigma_{X I}(D)}\left|R\left(D^{\prime}\right)\right|$ (see ([1], Theorem 6.3.6) or ([2], Theorem 6.3.6) or [3]).

2. Result

By the symbol $\Sigma_{2}(X, 8)$ we denote the class of all X-semilattices of unions whose every element is isomorphic to an X-semilattice of form $D=\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{3}, Z_{2}, Z_{1}, \breve{D}\right\}$, where

$$
\begin{aligned}
& Z_{6} \subset Z_{3} \subset Z_{1} \subset \breve{D}, Z_{6} \subset Z_{4} \subset Z_{1} \subset D, Z_{6} \subset Z_{4} \subset Z_{2} \subset \breve{D} \\
& Z_{7} \subset Z_{4} \subset Z_{1} \subset \breve{D}, Z_{7} \subset Z_{4} \subset Z_{2} \subset \breve{D}, Z_{7} \subset Z_{5} \subset Z_{1} \subset \breve{D} \\
& Z_{i} \backslash Z_{j} \neq \varnothing,(i, j) \in\{(7,6),(6,7),(5,4),(4,5),(5,3),(3,5),(4,3),(3,4),(2,1),(1,2)\}
\end{aligned}
$$

(see [4]).
Now assume that $D \in \Sigma_{2}(X, 8)$. We introduce the following notation:

1) $Q_{1}=\{T\}$, where $T \in D$ (see diagram 1 in Figure 1);
2) $Q_{2}=\left\{T, T^{\prime}\right\}$, where $T, T^{\prime} \in D$ and $T \subset T^{\prime}$ (see diagram 2 in Figure 1);
3) $Q_{3}=\left\{T, T^{\prime}, T^{\prime \prime}\right\}$, where $T, T^{\prime}, T^{\prime \prime} \in D$ and $T \subset T^{\prime} \subset T^{\prime \prime}$ (see diagram 3 in Figure 1);
4) $Q_{4}=\left\{T, T^{\prime}, T^{\prime \prime}, \breve{D}\right\}$, where $T, T^{\prime}, T^{\prime \prime} \in D$ and $T \subset T^{\prime} \subset T^{\prime \prime} \subset \breve{D}$ (see diagram 4 in Figure 1);
5) $Q_{5}=\left\{T, T^{\prime}, T^{\prime \prime}, T^{\prime} \cup T^{\prime \prime}\right\}$, where $T, T^{\prime}, T^{\prime \prime} \in D, T \subset T^{\prime}, T \subset T^{\prime \prime}$ and $T^{\prime} \backslash T^{\prime \prime} \neq \varnothing, T^{\prime \prime} \backslash T^{\prime} \neq \varnothing$ (see diagram 5 in Figure 1);
6) $Q_{6}=\left\{T, Z_{4}, Z, Z^{\prime}, \breve{D}\right\}$, where $T \in\left\{Z_{7}, Z_{6}\right\}, Z, Z^{\prime} \in\left\{Z_{2}, Z_{1}\right\}, Z \neq Z^{\prime}$ and $Z \backslash Z^{\prime} \neq \varnothing, Z^{\prime} \backslash Z \neq \varnothing$ (see diagram 6 in Figure 1);
7) $Q_{7}=\left\{T, T^{\prime}, T^{\prime \prime}, T^{\prime} \cup T^{\prime \prime}, \breve{D}\right\}$, where $T, T^{\prime}, T^{\prime \prime} \in D, T \subset T^{\prime}, T \subset T^{\prime \prime}$ and $T^{\prime} \backslash T^{\prime \prime} \neq \varnothing, T^{\prime \prime} \backslash T^{\prime} \neq \varnothing$ (see diagram 7 in Figure 1);
8) $Q_{8}=\left\{T, T^{\prime}, Z_{4}, Z_{4} \cup T^{\prime}, Z, \breve{D}\right\}$, where $T \in\left\{Z_{7}, Z_{6}\right\}, T^{\prime} \in\left\{Z_{5}, Z_{3}\right\}, T \subset T^{\prime}, Z_{4} \cup T^{\prime}, Z \in\left\{Z_{2}, Z_{1}\right\}$, $Z_{4} \cup T^{\prime} \neq Z, \quad T^{\prime} \backslash Z_{4} \neq \varnothing, \quad Z_{4} \backslash T^{\prime} \neq \varnothing$ and $\left(Z_{4} \cup T^{\prime}\right) \backslash Z \neq \varnothing, \quad Z \backslash\left(Z_{4} \cup T^{\prime}\right) \neq \varnothing$ (see diagram 8 in Figure 1);
9) $Q_{9}=\left\{T, T^{\prime}, T \cup T^{\prime}\right\}$, where $T, T^{\prime} \in D, T \backslash T^{\prime} \neq \varnothing, T^{\prime} \backslash T \neq \varnothing$ and $T \cap T^{\prime}=\varnothing$ (see diagram 9 in Figure 1);
10) $Q_{10}=\left\{T, T^{\prime}, T \cup T^{\prime}, T^{\prime \prime}\right\}$, where $T, T^{\prime}, T^{\prime \prime} \in D,\left(T \cup T^{\prime}\right) \subset T^{\prime \prime}, T \backslash T^{\prime} \neq \varnothing, T^{\prime} \backslash T \neq \varnothing$ and $T \cap T^{\prime}=\varnothing$ (see diagram 10 in Figure 1);
11) $Q_{11}=\left\{Z_{7}, Z_{6}, Z_{4}, Z, \breve{D}\right\}$, where $Z \in\left\{Z_{2}, Z_{1}\right\}$ and $Z_{7} \cap Z_{6}=\varnothing$ (see diagram 11 in Figure 1);
12) $Q_{12}=\left\{Z_{7}, Z_{6}, Z_{4}, Z_{2}, Z_{1}, \breve{D}\right\}$, where $Z_{7} \cap Z_{6}=\varnothing$ (see diagram 12 in Figure 1);
13) $Q_{13}=\left\{T, T^{\prime}, T \cup T^{\prime}, T^{\prime \prime}, Z\right\}$, where $T, T^{\prime}, T^{\prime \prime}, Z \in D,\left(T \cup T^{\prime}\right) \subset Z, T^{\prime} \subset T^{\prime \prime} \subset Z,\left(T \cup T^{\prime}\right) \backslash T^{\prime \prime} \neq \varnothing$, $T^{\prime \prime} \backslash\left(T \cup T^{\prime}\right) \neq \varnothing$ and $T \cap T^{\prime \prime}=\varnothing$ (see diagram 13 in Figure 1);
14) $Q_{14}=\left\{T, T^{\prime}, Z_{4}, Z, Z^{\prime}, \breve{D}\right\}$, where $T, T^{\prime}, Z, Z^{\prime} \in D, T, T^{\prime} \in\left\{Z_{7}, Z_{6}\right\}, T \neq T^{\prime}, Z_{4} \subset Z^{\prime} \subset \breve{D}$, $T^{\prime} \subset Z \subset Z^{\prime}, \quad Z_{4} \backslash Z \neq \varnothing, Z \backslash Z_{4} \neq \varnothing$ and $T \cap Z=\varnothing$ (see diagram 14 in Figure 1);
15) $Q_{15}=\left\{T^{\prime}, T, Z_{4}, T^{\prime \prime}, Z, T^{\prime \prime} \cup Z_{4}, \breve{D}\right\}$, where $T, T^{\prime} \in\left\{Z_{7}, Z_{6}\right\}, T \neq T^{\prime}, T \subset T^{\prime \prime}, T^{\prime \prime} \in\left\{Z_{5}, Z_{3}\right\}, Z_{4} \subset Z$, $\left(T^{\prime \prime} \cup Z_{4}\right) \cup Z=\bar{D}, \quad T^{\prime \prime} \backslash Z_{4} \neq \varnothing, \quad Z_{4} \backslash T^{\prime \prime} \neq \varnothing, \quad\left(T^{\prime \prime} \cup Z_{4}\right) \backslash Z \neq \varnothing, \quad Z \backslash\left(T^{\prime \prime} \cup Z_{4}\right) \neq \varnothing$ and $T^{\prime} \cap T^{\prime \prime}=\varnothing$ (see diagram 15 in Figure 1);
16) $Q_{16}=\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{3}, Z_{2}, Z_{1}, \breve{D}\right\}$, where $Z_{5} \cap Z_{3}=\varnothing$ (see diagram 16 in Figure 1).

Denote by the symbol $\sum\left(Q_{i}\right)(i=1,2, \cdots, 16)$ the set of all XI-subsemilattices of the semilattice D isomorphic to Q_{i}. Assume that $D^{\prime} \in \sum\left(Q_{i}\right)$ and denote by the symbol $R\left(D^{\prime}\right)$ the set of all regular elements α of the semigroup $B_{X}\left(D^{\prime}\right)$, for which the semilattices $V(D, \alpha)$ and Q_{i} are mutually α isomorphic and $V(D, \alpha)=Q_{i}$.

Definition 1.4. Let the symbol $\sum_{X I}^{\prime}(X, D)$ denote the set of all $X I$-subsemilattices of the semilattice D.
Let, further, $D, D^{\prime} \in \Sigma^{\prime}(X, D)$ and $\vartheta_{X I} \subseteq \sum_{X I}^{\prime}(X, D) \times \sum_{X I}^{\prime}(X, D)$. It is assumed that $D \vartheta_{X I} D^{\prime}$ if and only if there exists some complete isomorphism φ between the semilattices D and D^{\prime}. One can easily verify that the binary relation $\vartheta_{X I}$ is an equivalence relation on the set $\sum_{X I}^{\prime}(X, D)$.

Let the symbol $Q_{i} \vartheta_{X I}$ denote the $\vartheta_{X I}$-class of equivalence of the set $\sum_{X I}^{\prime}(X, D)$, where every element is isomorphic to the X-semilattice Q_{i} and

$$
R^{*}\left(Q_{i}\right)=\bigcup_{D \in Q_{i} \mathcal{Y}_{X I}} R\left(D^{\prime}\right)
$$

(see ([1], Definition 6.3.5), ([2], Definition 6.3.5) or [5]).
Lemma 1.1. If X be a finite set and $|\Omega(Q)|=m_{0}$, then the following equalities are true:

1) $\left|R\left(Q_{1}\right)\right|=1$;
2) $\left|R\left(Q_{2}\right)\right|=m_{0} \cdot\left(2^{\left|T^{\prime} \backslash\right|}-1\right) \cdot 2^{\left|X \backslash T^{\prime}\right|}$;
3) $\left|R\left(Q_{3}\right)\right|=m_{0} \cdot\left(2^{\left|T^{\prime} T\right|}-1\right) \cdot\left(3^{\left|T^{\prime \prime} \backslash T^{\prime}\right|}-2^{\left|T^{P^{\prime}} T^{T}\right|}\right) \cdot 3^{\left|X \backslash T^{N}\right|}$;

Figure 1. Diagrams of $Q_{i},(i=1,2,3, \cdots, 16)$.
4) $\left|R\left(Q_{4}\right)\right|=m_{0} \cdot\left(2^{|T T T|}-1\right) \cdot\left(3^{\left|T^{T Y T T}\right|}-2^{\left|T^{n} \backslash T\right|}\right) \cdot\left(4^{|\check{D} \backslash T|}-3^{|\check{D} \backslash T|}\right) \cdot 4^{|X| \bar{D} \mid}$;
5) $\left|R\left(Q_{5}\right)\right|=2 \cdot m_{0} \cdot\left(2^{\left|T^{\prime} \backslash T^{T}\right|}-1\right) \cdot\left(2^{\left|T^{T Y T}\right|}-1\right) \cdot 4^{\left|X \backslash\left(T^{\prime} \backslash T^{T}\right)\right|}$;
6) $\left|R\left(Q_{6}\right)\right|=2 \cdot m_{0} \cdot\left(2^{\left|Z_{4}\right| T \mid}-1\right) \cdot 2^{\left|\left(Z \cap Z^{\prime}\right)\right| Z_{4} \mid} \cdot\left(3^{|Z| Z^{\prime} \mid}-2^{\left|\left|Z Z^{\prime}\right|\right.}\right) \cdot\left(3^{\left|Z^{\prime} Z\right|}-2^{\left|Z^{\prime} \backslash Z\right|}\right) \cdot 5^{|X| \bar{D} \mid}$;
7) $\left|R\left(Q_{7}\right)\right|=2 \cdot m_{0} \cdot\left(2^{\left|T^{\prime} \backslash T^{T}\right|}-1\right) \cdot\left(2^{\left|T^{T I T}\right|}-1\right) \cdot\left(5^{\left|\check{D}\left(T^{\prime} \cup T^{0}\right)\right|}-4^{\left|\check{D}\left(T^{\prime} \cup T^{0}\right)\right|}\right) \cdot 5^{|X| \bar{D} \mid}$;
8) $\left|R\left(Q_{8}\right)\right|=2 \cdot m_{0} \cdot\left(2^{\left|T^{\prime}\right| Z \mid}-1\right) \cdot\left(2^{\left|Z_{4}\right| T^{\prime} \mid}-1\right) \cdot\left(3^{|Z|\left(Z_{4} \cup T^{\prime}\right) \mid}-2^{|Z|\left(Z_{4} \cup T^{\prime}| |\right.}\right) \cdot 6^{|X \backslash \bar{D}|}$;
9) $\left|R\left(Q_{9}\right)\right|=2 \cdot m_{0} \cdot 3^{\left|X\left(T \cup T^{\prime}\right)\right|}$;
10) $\left|R\left(Q_{10}\right)\right|=2 \cdot m_{0} \cdot\left(4^{\mid T^{v}\left(\left(T \cup T^{\prime}\right) \mid\right.}-3^{\mid T^{n}\left(T \cup T^{\prime} \mid\right)}\right) \cdot 4^{\left|X \backslash T^{T}\right|}$;
11) $\left|R\left(Q_{11}\right)\right|=2 \cdot m_{0} \cdot\left(4^{\left|z \backslash Z_{4}\right|}-3^{\left|Z \backslash Z_{4}\right|}\right) \cdot\left(5^{|\check{D}| z \mid}-4^{|\check{D}| \overline{ } \mid}\right) \cdot 5^{|X| \bar{D} \mid}$;
12) $\left|R\left(Q_{12}\right)\right|=4 \cdot m_{0} \cdot\left(4^{\left|Z_{1} \backslash Z_{2}\right|}-3^{\left|Z_{1} \backslash Z_{2}\right|}\right) \cdot\left(4^{\left|Z_{2} \backslash Z_{1}\right|}-3^{\left|Z_{2} \backslash Z_{1}\right|}\right) \cdot 6^{|X| \bar{D} \mid}$;
13) $\left|R\left(Q_{13}\right)\right|=m_{0} \cdot\left(2^{\left|T^{2}\left(T^{\prime} \cup T\right)\right|}-1\right) \cdot 5^{|X \backslash|] \mid}$;
14) $\left|R\left(Q_{14}\right)\right|=m_{0} \cdot\left(2^{\left|Z Z_{4}\right|}-1\right) \cdot\left(6^{\left|\bar{D} \backslash Z^{\prime}\right|}-5^{|\bar{D}| Z^{\prime} \mid}\right) \cdot 6^{|X| \bar{D} \mid}$;
15) $\left|R\left(Q_{15}\right)\right|=m_{0} \cdot\left(2^{\left|T^{n} \backslash Z\right|}-1\right) \cdot\left(4^{\left|Z \backslash\left(T^{*} \cup Z_{4}\right)\right|}-3^{\left|Z\left(T^{*} \cup Z_{4}\right)\right|}\right) \cdot 7^{|X \backslash \bar{D}|}$;
16) $\left|R\left(Q_{16}\right)\right|=2 \cdot m_{0} \cdot\left(2^{\left|Z_{5} \backslash Z_{1}\right|}-1\right) \cdot\left(2^{\left|Z_{3} \backslash Z_{2}\right|}-1\right) \cdot 8^{|X \backslash \overline{0}|}$.

Proof. The statements 1)-4) immediately follows from the Theorem 13.1.2 in [1], Theorem 13.1.2 in [2]; the statements 5)-7) immediately follows from the Theorem 13.3.2 in [1], Theorem 13.3.2 in [2]; the statement 8) immediately follows from the Theorem 13.7.5 in [1], Theorem 13.7 .5 in [2]; the statements 9)-11) immediately follows from the Theorem 13.2.2 in [1], Theorem 13.2.2 in [2]; the statement 12) immediately follows from the Theorem 13.5.2 in [1], Theorem 13.5.2 in [2]; the statements 13), 14) immediately follows from the Theorem 13.4.2 in [1], Theorem 13.4.2 in [2], the statement 15) immediately follows from the Corollary 13.10 .2 in [1] and the statement 16) immediately follows from the Theorem 2.2 in [4].

The lemma is proved.
Lemma 1.2. Let $D=\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{3}, Z_{2}, Z_{1}, \breve{D}\right\} \in \Sigma_{2}(X, 8)$ and $Z_{7} \cap Z_{6} \neq \varnothing$. Then the following sets exhibit all XI-subsemilattices of the given semilattice D :

1) $\{\breve{D}\},\left\{Z_{1}\right\},\left\{Z_{2}\right\},\left\{Z_{3}\right\},\left\{Z_{4}\right\},\left\{Z_{5}\right\},\left\{Z_{6}\right\},\left\{Z_{7}\right\}$, (see diagram 1 of the Figure 1);
2) $\left\{Z_{7}, Z_{5}\right\},\left\{Z_{7}, Z_{4}\right\},\left\{Z_{7}, Z_{2}\right\},\left\{Z_{7}, Z_{1}\right\},\left\{Z_{7}, \breve{D}\right\},\left\{Z_{6}, Z_{4}\right\},\left\{Z_{6}, Z_{3}\right\},\left\{Z_{6}, Z_{2}\right\},\left\{Z_{6}, Z_{1}\right\},\left\{Z_{6}, \breve{D}\right\}$, $\left\{Z_{5}, Z_{2}\right\},\left\{Z_{5}, \breve{D}\right\},\left\{Z_{4}, Z_{2}\right\},\left\{Z_{4}, Z_{1}\right\},\left\{Z_{4}, \breve{D}\right\},\left\{Z_{3}, Z_{1}\right\},\left\{Z_{3}, \breve{D}\right\},\left\{Z_{2}, \breve{D}\right\},\left\{Z_{1}, \breve{D}\right\}$, (see diagram 2 of the Figure 1);
3) $\left\{Z_{7}, Z_{5}, Z_{2}\right\},\left\{Z_{7}, Z_{5}, \breve{D}\right\},\left\{Z_{7}, Z_{4}, Z_{2}\right\},\left\{Z_{7}, Z_{4}, Z_{1}\right\},\left\{Z_{7}, Z_{4}, \breve{D}\right\},\left\{Z_{7}, Z_{2}, \breve{D}\right\},\left\{Z_{7}, Z_{1}, \breve{D}\right\}$, $\left\{Z_{6}, Z_{4}, Z_{2}\right\},\left\{Z_{6}, Z_{4}, \breve{D}\right\},\left\{Z_{6}, Z_{4}, Z_{1}\right\},\left\{Z_{6}, Z_{2}, \breve{D}\right\},\left\{Z_{6}, Z_{3}, Z_{1}\right\},\left\{Z_{6}, Z_{3}, \breve{D}\right\},\left\{Z_{6}, Z_{1}, \breve{D}\right\}$, (see diagram 3 of the Figure 1);
4) $\left\{Z_{7}, Z_{5}, Z_{2}, \breve{D}\right\},\left\{Z_{7}, Z_{4}, Z_{2}, \breve{D}\right\},\left\{Z_{7}, Z_{4}, Z_{1}, \breve{D}\right\},\left\{Z_{6}, Z_{4}, Z_{2}, \breve{D}\right\},\left\{Z_{6}, Z_{4}, Z_{1}, \breve{D}\right\},\left\{Z_{6}, Z_{3}, Z_{1}, \breve{D}\right\}$, (see diagram 4 of the Figure 1);
5) $\left\{Z_{7}, Z_{5}, Z_{4}, Z_{2}\right\},\left\{Z_{7}, Z_{5}, Z_{1}, \breve{D}\right\},\left\{Z_{7}, Z_{2}, Z_{1}, \breve{D}\right\},\left\{Z_{6}, Z_{4}, Z_{3}, Z_{1}\right\},\left\{Z_{6}, Z_{3}, Z_{2}, \breve{D}\right\},\left\{Z_{6}, Z_{2}, Z_{1}, \breve{D}\right\}$, $\left\{Z_{4}, Z_{2}, Z_{1}, \breve{D}\right\}$, (see diagram 5 of the Figure 1);
6) $\left\{Z_{7}, Z_{4}, Z_{2}, Z_{1}, \breve{D}\right\},\left\{Z_{6}, Z_{4}, Z_{2}, Z_{1}, \breve{D}\right\}$, (see diagram 6 of the Figure 1);
7) $\left\{Z_{7}, Z_{5}, Z_{4}, Z_{2}, \breve{D}\right\},\left\{Z_{6}, Z_{4}, Z_{3}, Z_{1}, \breve{D}\right\}$, (see diagram 7 of the Figure 1);
8) $\left\{Z_{7}, Z_{5}, Z_{4}, Z_{2}, Z_{1}, \breve{D}\right\},\left\{Z_{6}, Z_{4}, Z_{3}, Z_{2}, Z_{1}, \breve{D}\right\}$, (see diagram 8 of the Figure 1);

Proof. The statements 1)-4) immediately follows from the Theorems 11.6 .1 in [1], 11.6.1 in [2] or in [5], the statements 5)-7) immediately follows from the Theorems 11.6.3 in [1], 11.6.3 in [2] or in [5] and the statement 8) immediately follows from the Theorems 11.7.2 in [1].

The lemma is proved.
Theorem 2.1. Let $D=\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{3}, Z_{2}, Z_{1}, \breve{D}\right\} \in \Sigma_{2}(X, 8)$ and $Z_{7} \cap Z_{6} \neq \varnothing$. Then a binary relation α of the semigroup $B_{X}(D)$ that has a quasinormal representation of the form to be given below is a regular element of this semigroup iff there exist a complete α-isomorphism φ of the semilattice $V(D, \alpha)$ on some subsemilattice D^{\prime} of the semilattice D that satisfies at least one of the following conditions:

1) $\alpha=X \times T$, where $T \in D$;
2) $\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{T^{\prime}}^{\alpha} \times T^{\prime}\right)$, where $T, T^{\prime} \in D, T \subset T^{\prime}, Y_{T}^{\alpha}, Y_{T^{\prime}}^{\alpha} \notin\{\varnothing\}$ and satisfies the conditions:
$Y_{T}^{\alpha} \supseteq \varphi(T), \quad Y_{T^{\prime}}^{\alpha} \cap \varphi\left(T^{\prime}\right) \neq \varnothing$;
3) $\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{T^{\prime}}^{\alpha} \times T^{\prime}\right) \cup\left(Y_{T^{\prime \prime}}^{\alpha} \times T^{\prime \prime}\right)$, where $T, T^{\prime}, T^{\prime \prime} \in D, T \subset T^{\prime} \subset T^{\prime \prime}, Y_{T}^{\alpha}, Y_{T^{\prime}}^{\alpha}, Y_{T^{\prime \prime}}^{\alpha} \notin\{\varnothing\}$ and satisfies the conditions: $Y_{T}^{\alpha} \supseteq \varphi(T), \quad Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq \varphi\left(T^{\prime}\right), \quad Y_{T^{\prime}}^{\alpha} \cap \varphi\left(T^{\prime}\right) \neq \varnothing, \quad Y_{T^{\prime \prime}}^{\alpha} \cap \varphi\left(T^{\prime \prime}\right) \neq \varnothing$;
4) $\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{T^{\prime}}^{\alpha} \times T^{\prime}\right) \cup\left(Y_{T^{\prime \prime}}^{\alpha} \times T^{\prime \prime}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$, where $T, T^{\prime}, T^{\prime \prime} \in D, T \subset T^{\prime} \subset T^{\prime \prime} \subset \breve{D}$,
$Y_{T}^{\alpha}, Y_{T^{\prime}}^{\alpha}, Y_{T^{\prime \prime}}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$ and satisfies the conditions: $Y_{T}^{\alpha} \supseteq \varphi(T), \quad Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq \varphi\left(T^{\prime}\right), Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha} \supseteq \varphi\left(T^{\prime \prime}\right)$, $Y_{T^{\prime}}^{\alpha} \cap \varphi\left(T^{\prime}\right) \neq \varnothing, \quad Y_{T^{\prime \prime}}^{\alpha} \cap \varphi\left(T^{\prime \prime}\right) \neq \varnothing, \quad Y_{0}^{\alpha} \cap \varphi(\breve{D}) \neq \varnothing ;$
5) $\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{T^{\prime}}^{\alpha} \times T^{\prime}\right) \cup\left(Y_{T^{\prime \prime}}^{\alpha} \times T^{\prime \prime}\right) \cup\left(Y_{T^{\prime} \cup T^{\prime \prime}}^{\alpha} \times\left(T^{\prime} \cup T^{\prime \prime}\right)\right)$, where $T, T^{\prime}, T^{\prime \prime} \in D, \quad T \subset T^{\prime}, \quad T \subset T^{\prime \prime}$, $T^{\prime} \backslash T^{\prime \prime} \neq \varnothing, \quad T^{\prime \prime} \backslash T^{\prime} \neq \varnothing, \quad Y_{T}^{\alpha}, Y_{T^{\prime}}^{\alpha}, Y_{T^{\prime \prime}}^{\alpha} \notin\{\varnothing\} \quad$ and satisfies the conditions: $Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq \varphi\left(T^{\prime}\right)$, $Y_{T}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha} \supseteq \varphi\left(T^{\prime \prime}\right), \quad Y_{T^{\prime}}^{\alpha} \cap \varphi\left(T^{\prime}\right) \neq \varnothing, \quad Y_{T^{\prime \prime}}^{\alpha} \cap \varphi\left(T^{\prime \prime}\right) \neq \varnothing ;$
6) $\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{4}^{\alpha} \times Z_{4}\right) \cup\left(Y_{Z^{\prime}}^{\alpha} \times Z^{\prime}\right) \cup\left(Y_{Z}^{\alpha} \times Z\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$, where $T \in\left\{Z_{7}, Z_{6}\right\}, Z, Z Z^{\prime} \in\left\{Z_{2}, Z_{1}\right\}, \quad Z \neq Z^{\prime}$, $Z \backslash Z^{\prime} \neq \varnothing, \quad Z^{\prime} \backslash Z \neq \varnothing, Y_{T}^{\alpha}, Y_{4}^{\alpha}, Y_{Z^{\prime}}^{\alpha}, Y_{Z}^{\alpha} \notin\{\varnothing\}$ and satisfies the conditions $Y_{T}^{\alpha} \supseteq \varphi(T), Y_{T}^{\alpha} \cup Y_{4}^{\alpha} \supseteq \varphi\left(Z_{4}\right)$, $Y_{T}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{Z}^{\alpha} \supseteq \varphi(Z), \quad Y_{T}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{Z^{\prime}}^{\alpha} \supseteq \varphi\left(Z^{\prime}\right), \quad Y_{4}^{\alpha} \cap \varphi\left(Z_{4}\right) \neq \varnothing, \quad Y_{Z}^{\alpha} \cap \varphi(Z) \neq \varnothing, \quad Y_{Z^{\prime}}^{\alpha} \cap \varphi\left(Z^{\prime}\right) \neq \varnothing ;$
7) $\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{T^{\prime}}^{\alpha} \times T^{\prime}\right) \cup\left(Y_{T^{\prime \prime}}^{\alpha} \times T^{\prime \prime}\right) \cup\left(Y_{T^{\prime} \cup T^{\prime \prime}}^{\alpha} \times\left(T^{\prime} \cup T^{\prime \prime}\right)\right) \cup\left(Y_{0}^{\alpha} \times \check{D}\right)$, where $T, T^{\prime}, T^{\prime \prime} \in D, \quad T \subset T^{\prime}$, $T \subset T^{\prime \prime}, \quad T^{\prime} \backslash T^{\prime \prime} \neq \varnothing, \quad T^{\prime \prime} \backslash T^{\prime} \neq \varnothing, \quad Y_{T}^{\alpha}, Y_{T^{\prime}}^{\alpha}, Y_{T^{\prime \prime}}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\} \quad$ and satisfies the conditions $Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq \varphi\left(T^{\prime}\right)$ $Y_{T}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha} \supseteq \varphi\left(T^{\prime \prime}\right), \quad Y_{T^{\prime}}^{\alpha} \cap \varphi\left(T^{\prime}\right) \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap \varphi\left(T^{\prime \prime}\right) \neq \varnothing, Y_{0}^{\alpha} \cap \varphi(\breve{D}) \neq \varnothing ;$
8) $\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{T^{\prime}}^{\alpha} \times T^{\prime}\right) \cup\left(Y_{4}^{\alpha} \times Z_{4}\right) \cup\left(Y_{T^{\prime} \cup Z_{4}}^{\alpha} \times\left(T^{\prime} \cup Z_{4}\right)\right) \cup\left(Y_{Z}^{\alpha} \times Z\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$, where $T \in\left\{Z_{7}, Z_{6}\right\}$, $T^{\prime} \in\left\{Z_{5}, Z_{3}\right\}, \quad T \subset T^{\prime}, Z_{4} \cup T^{\prime}, Z \in\left\{Z_{2}, Z_{1}\right\}, \quad Z_{4} \cup T^{\prime} \neq Z, \quad T^{\prime} \backslash Z_{4} \neq \varnothing, \quad Z_{4} \backslash T^{\prime} \neq \varnothing, \quad\left(Z_{4} \cup T^{\prime}\right) \backslash Z \neq \varnothing$, $Z \backslash\left(Z_{4} \cup T^{\prime}\right) \neq \varnothing, \quad Y_{T}^{\alpha}, Y_{T^{\prime}}^{\alpha}, Y_{4}^{\alpha}, Y_{Z}^{\alpha} \notin\{\varnothing\}$ and satisfies the conditions $Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq \varphi\left(T^{\prime}\right), Y_{T}^{\alpha} \cup Y_{4}^{\alpha} \supseteq \varphi\left(Z_{4}\right)$, $Y_{T}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{Z}^{\alpha} \supseteq \varphi(Z), \quad Y_{T^{\prime}}^{\alpha} \cap \varphi\left(T^{\prime}\right) \neq \varnothing, \quad Y_{4}^{\alpha} \cap \varphi\left(Z_{4}\right) \neq \varnothing, \quad Y_{Z}^{\alpha} \cap \varphi(Z) \neq \varnothing$.

Proof. In this case, when $Z_{7} \cap Z_{6} \neq \varnothing$, from the Lemma 1.2 it follows that diagrams 1-8 given in Figure 1 exhibit all diagrams of $X I$-subsemilattices of the semilattices D, a quasinormal representation of regular elements of the semigroup $B_{X}(D)$, which are defined by these XI-semilattices, may have one of the forms listed above. Then the validity of the statements 1)-4) immediately follows from the Theorem 13.1.1 in [1], Theorem 13.1.1 in [2], the statements 5)-7) immediately follows from the Theorem 13.3.1 in [1], Theorem 13.3.1 in [2] and the statement 8) immediately follows from the Theorem 13.7.1 in [1], Theorem 13.7.1 in [2].

The theorem is proved.

1) Lemm 2.1. Let $D=\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{3}, Z_{2}, Z_{1}, \breve{D}\right\} \in \Sigma_{2}(X, 8)$ and $Z_{7} \cap Z_{6} \neq \varnothing$. If by $R^{*}\left(Q_{1}\right)$ denoted all regular elements of the semigroup $B_{X}(D)$ satisfying the condition 1) of the Theorem 2.1, then

$$
\left|R^{*}\left(Q_{1}\right)\right|=8 .
$$

Proof. According to the definition of the semilattice D we have

$$
Q_{1} \vartheta_{X I}=\left\{\left\{Z_{7}\right\},\left\{Z_{6}\right\},\left\{Z_{5}\right\},\left\{Z_{4}\right\},\left\{Z_{3}\right\},\left\{Z_{2}\right\},\left\{Z_{1}\right\},\{\breve{D}\}\right\} .
$$

Assume that $D_{1}^{\prime}=\left\{Z_{7}\right\}, D_{2}^{\prime}=\left\{Z_{6}\right\}, D_{3}^{\prime}=\left\{Z_{5}\right\}, D_{4}^{\prime}=\left\{Z_{4}\right\}, D_{5}^{\prime}=\left\{Z_{3}\right\}, D_{6}^{\prime}=\left\{Z_{2}\right\}, D_{7}^{\prime}=\left\{Z_{1}\right\}, D_{8}^{\prime}=\{\breve{D}\}$.
Then from Theorem 1.1 we obtain

$$
\left|R^{*}\left(Q_{1}\right)\right|=\left|R\left(D_{1}^{\prime}\right)\right|+\left|R\left(D_{2}^{\prime}\right)\right|+\left|R\left(D_{3}^{\prime}\right)\right|+\left|R\left(D_{4}^{\prime}\right)\right|+\left|R\left(D_{5}^{\prime}\right)\right|+\left|R\left(D_{6}^{\prime}\right)\right|+\left|R\left(D_{7}^{\prime}\right)\right|+\left|R\left(D_{8}^{\prime}\right)\right| .
$$

From this and by the statement 1) of Lemma 1.1 we obtain $\left|R^{*}\left(Q_{1}\right)\right|=1+1+1+1+1+1+1+1=8$.
The lemma is proved.
2) Now let binary relation α of the semigroup $B_{X}(D)$ satisfying the condition 2) of the Theorem 2.1. In this case we have $Q_{2}=\left\{T, T^{\prime}\right\}$, where $T, T^{\prime} \in D$ and $T \subset T^{\prime}$. By definition of the semilattice D follows that

$$
\begin{aligned}
Q_{2} \theta_{X I}= & \left\{\left\{Z_{7}, Z_{5}\right\},\left\{Z_{7}, Z_{4}\right\},\left\{Z_{7}, Z_{2}\right\},\left\{Z_{7}, Z_{1}\right\},\left\{Z_{7}, \breve{D}\right\},\left\{Z_{6}, Z_{4}\right\},\left\{Z_{6}, Z_{3}\right\},\left\{Z_{6}, Z_{2}\right\},\left\{Z_{6}, Z_{1}\right\},\right. \\
& \left.\left\{Z_{6}, \breve{D}\right\},\left\{Z_{5}, Z_{2}\right\},\left\{Z_{5}, \breve{D}\right\},\left\{Z_{4}, Z_{2}\right\},\left\{Z_{4}, Z_{1}\right\},\left\{Z_{4}, \breve{D}\right\},\left\{Z_{3}, Z_{1}\right\},\left\{Z_{3}, \breve{D}\right\},\left\{Z_{2}, \breve{D}\right\},\left\{Z_{1}, \breve{D}\right\}\right\} .
\end{aligned}
$$

If the equalities

$$
\begin{aligned}
& D_{1}^{\prime}=\left\{Z_{7}, \breve{D}\right\}, D_{2}^{\prime}=\left\{Z_{6}, \breve{D}\right\}, D_{3}^{\prime}=\left\{Z_{4}, \breve{D}\right\}, D_{4}^{\prime}=\left\{Z_{7}, Z_{4}\right\}, D_{5}^{\prime}=\left\{Z_{7}, Z_{2}\right\}, D_{6}^{\prime}=\left\{Z_{7}, Z_{1}\right\}, D_{7}^{\prime}=\left\{Z_{6}, Z_{4}\right\}, \\
& D_{8}^{\prime}=\left\{Z_{6}, Z_{3}\right\}, D_{9}^{\prime}=\left\{Z_{6}, Z_{2}\right\}, D_{10}^{\prime}=\left\{Z_{6}, Z_{1}\right\}, D_{11}^{\prime}=\left\{Z_{5}, Z_{2}\right\}, D_{12}^{\prime}=\left\{Z_{5}, \breve{D}\right\}, D_{13}^{\prime}=\left\{Z_{4}, Z_{2}\right\}, \\
& D_{14}^{\prime}=\left\{Z_{4}, Z_{1}\right\}, D_{15}^{\prime}=\left\{Z_{7}, Z_{5}\right\}, D_{16}^{\prime}=\left\{Z_{3}, Z_{1}\right\}, D_{17}^{\prime}=\left\{Z_{3}, \breve{D}\right\}, D_{18}^{\prime}=\left\{Z_{2}, \breve{D}\right\}, D_{19}^{\prime}=\left\{Z_{1}, \breve{D}\right\}
\end{aligned}
$$

Then from Theorem 1.1 we obtain:

$$
\begin{equation*}
R^{*}\left(Q_{2}\right)=\bigcup_{i=1}^{19} R\left(D_{i}^{\prime}\right) \tag{2.1}
\end{equation*}
$$

Lemma 2.2. Let $D=\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{3}, Z_{2}, Z_{1}, \breve{D}\right\} \in \Sigma_{2}(X, 8)$ and $Z_{7} \cap Z_{6} \neq \varnothing$. If X is a finite set, then

$$
\left|R^{*}\left(Q_{2}\right)\right|=\left|R\left(D_{1}^{\prime}\right)\right|+\left|R\left(D_{2}^{\prime}\right)\right|-\left|R\left(D_{3}^{\prime}\right)\right| .
$$

Proof. Let $D^{\prime}=\left\{Z, Z^{\prime}\right\} \in Q_{2} \theta_{X I}$, then $Z, Z^{\prime} \in D$ and $Z \subset Z^{\prime}$. If $\alpha \in R\left(D^{\prime}\right)$ then quasinormal representation of a binary relation α has form $\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{T^{\prime}}^{\alpha} \times T^{\prime}\right)$ for some $T, T^{\prime} \in D, T \subset T^{\prime}, Y_{T}^{\alpha}, Y_{T^{\prime}}^{\alpha} \notin\{\varnothing\}$ and by statement 2) of the Theorem 2.1 satisfies the conditions $Y_{T}^{\alpha} \supseteq Z$ and $Y_{T^{\prime}}^{\alpha} \cap Z^{\prime} \neq \varnothing$. Since Z_{7} and Z_{6} are minimal elements of the semilattice D, we have $Z \supseteq Z_{7}$ or $Z \supseteq Z_{6}$.

On the other hand, \breve{D} is maximal elements of the semilattice D, therefore $\breve{D} \supseteq Z^{\prime}$. Hence, in the considered case, only one of the following two conditions is fulfilled:

$$
Y_{T}^{\alpha} \supseteq Z_{7} \text { and } Y_{T^{\prime}}^{\alpha} \cap \check{D} \neq \varnothing \text { or } Y_{T}^{\alpha} \supseteq Z_{6} \text { and } Y_{T^{\prime}}^{\alpha} \cap \check{D} \neq \varnothing \text {. }
$$

i.e., $\alpha \in R\left(D_{1}^{\prime}\right)$ or $\alpha \in R\left(D_{2}^{\prime}\right)$. Hence, using equality (2.1), we obtain

$$
\begin{equation*}
R^{*}\left(Q_{2}\right)=R\left(D_{1}^{\prime}\right) \cup R\left(D_{2}^{\prime}\right) \tag{2.2}
\end{equation*}
$$

Now, let $\alpha \in R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right)$ then

$$
\begin{align*}
& Y_{T}^{\alpha} \supseteq Z_{7}, Y_{T^{\prime}}^{\alpha} \cap \breve{D} \neq \varnothing \\
& Y_{T}^{\alpha} \supseteq Z_{6}, Y_{T^{\prime}}^{\alpha} \cap \breve{D} \neq \varnothing \tag{2.3}
\end{align*}
$$

Of this we have that $Y_{T}^{\alpha} \supseteq Z_{7} \cup Z_{6}=Z_{4}, Y_{T^{\prime}}^{\alpha} \cap \breve{D} \neq \varnothing$, i.e. $\alpha \in R\left(D_{3}^{\prime}\right)$ and $R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right) \subseteq R\left(D_{3}^{\prime}\right)$.
Of the other hand if $\alpha \in R\left(D_{3}^{\prime}\right)$, then $Y_{T}^{\alpha} \supseteq Z_{4}, Y_{T^{\prime}}^{\alpha} \cap \breve{D} \neq \varnothing$ and the condition (2.3) is hold. Of this follows that $\alpha \in R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right)$, i.e. $R\left(D_{3}^{\prime}\right) \subseteq R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right)$. Therefore the equality

$$
\begin{equation*}
R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right)=R\left(D_{3}^{\prime}\right) \tag{2.4}
\end{equation*}
$$

is fulfilled. Now of the equalities (2.2) and (2.4) follows the following equality

$$
\left|R^{*}\left(Q_{2}\right)\right|=\left|R\left(D_{1}^{\prime}\right)\right|+\left|R\left(D_{2}^{\prime}\right)\right|-\left|R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right)\right|=\left|R\left(D_{1}^{\prime}\right)\right|+\left|R\left(D_{2}^{\prime}\right)\right|-\left|R\left(D_{3}^{\prime}\right)\right|
$$

The lemma is proved.
Lemma 2.3. Let $D=\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{3}, Z_{2}, Z_{1}, \breve{D}\right\} \in \Sigma_{2}(X, 8)$ and $Z_{7} \cap Z_{6} \neq \varnothing$. If X is a finite set, then

$$
\left|R^{*}\left(Q_{2}\right)\right|=19 \cdot\left(2^{\left|\check{D} \backslash Z_{7}\right|}-1\right) \cdot 2^{|X \backslash \bar{D}|}+19 \cdot\left(2^{\left|\check{D} \backslash Z_{6}\right|}-1\right) \cdot 2^{|X \backslash \breve{D}|}-19 \cdot\left(2^{\left|\check{D} \backslash Z_{4}\right|}-1\right) \cdot 2^{|X \backslash \check{D}|}
$$

Proof: It is easy to see $\left|\Phi\left(Q_{2}, Q_{2}\right)\right|=1$ and $\left|\Omega\left(Q_{2}\right)\right|=19$, then by statement 2) of the Lemma 1.1 and by Lemma 2.2 we obtain the validity of Lemma 2.3.

The lemma is proved.
3) Let binary relation α of the semigroup $B_{X}(D)$ satisfying the condition 3) of the Theorem 2.1. In this case we have $Q_{3}=\left\{T, T^{\prime}, T^{\prime \prime}\right\}$, where $T, T^{\prime}, T^{\prime \prime} \in D$ and $T \subset T^{\prime} \subset T^{\prime \prime}$. By definition of the semilattice D follows that

$$
\begin{aligned}
Q_{3} \theta_{X I}= & \left\{\left\{Z_{7}, Z_{5}, Z_{2}\right\},\left\{Z_{7}, Z_{5}, \breve{D}\right\},\left\{Z_{7}, Z_{4}, Z_{2}\right\},\left\{Z_{7}, Z_{4}, Z_{1}\right\},\left\{Z_{7}, Z_{4}, \breve{D}\right\},\left\{Z_{7}, Z_{2}, \breve{D}\right\},\left\{Z_{7}, Z_{1}, \breve{D}\right\},\right. \\
& \left\{Z_{6}, Z_{4}, Z_{2}\right\},\left\{Z_{6}, Z_{4}, Z_{1}\right\},\left\{Z_{6}, Z_{4}, \breve{D}\right\},\left\{Z_{6}, Z_{3}, Z_{1}\right\},\left\{Z_{6}, Z_{3}, \breve{D}\right\},\left\{Z_{6}, Z_{2}, \breve{D}\right\},\left\{Z_{6}, Z_{1}, \breve{D}\right\}, \\
& \left.\left\{Z_{5}, Z_{2}, \breve{D}\right\},\left\{Z_{4}, Z_{2}, \breve{D}\right\},\left\{Z_{4}, Z_{1}, \breve{D}\right\},\left\{Z_{3}, Z_{1}, \breve{D}\right\}\right\} .
\end{aligned}
$$

Now if

$$
\begin{aligned}
& D_{1}^{\prime}=\left\{Z_{7}, Z_{5}, \breve{D}\right\}, D_{2}^{\prime}=\left\{Z_{7}, Z_{4}, \breve{D}\right\}, D_{3}^{\prime}=\left\{Z_{7}, Z_{2}, \breve{D}\right\}, D_{4}^{\prime}=\left\{Z_{7}, Z_{1}, \breve{D}\right\}, D_{5}^{\prime}=\left\{Z_{6}, Z_{4}, \breve{D}\right\}, \\
& D_{6}^{\prime}=\left\{Z_{6}, Z_{3}, \breve{D}\right\}, D_{7}^{\prime}=\left\{Z_{6}, Z_{2}, \breve{D}\right\}, D_{8}^{\prime}=\left\{Z_{6}, Z_{1}, \breve{D}\right\}, D_{9}^{\prime}=\left\{Z_{4}, Z_{2}, \breve{D}\right\}, D_{10}^{\prime}=\left\{Z_{4}, Z_{1}, \breve{D}\right\}, \\
& D_{11}^{\prime}=\left\{Z_{7}, Z_{5}, Z_{2}\right\}, D_{12}^{\prime}=\left\{Z_{7}, Z_{4}, Z_{2}\right\}, D_{13}^{\prime}=\left\{Z_{7}, Z_{4}, Z_{1}\right\}, D_{14}^{\prime}=\left\{Z_{6}, Z_{4}, Z_{2}\right\}, \\
& D_{15}^{\prime}=\left\{Z_{6}, Z_{4}, Z_{1}\right\}, D_{16}^{\prime}=\left\{Z_{6}, Z_{3}, Z_{1}\right\}, D_{17}^{\prime}=\left\{Z_{5}, Z_{2}, \breve{D}\right\}, D_{18}^{\prime}=\left\{Z_{3}, Z_{1}, \breve{D}\right\} .
\end{aligned}
$$

Then from Theorem 1.1 we obtain:

$$
\begin{equation*}
R^{*}\left(Q_{3}\right)=\bigcup_{i=1}^{18} R\left(D_{i}^{\prime}\right) \tag{3.1}
\end{equation*}
$$

Lemma 3.1. Let $D=\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{3}, Z_{2}, Z_{1}, \breve{D}\right\} \in \Sigma_{2}(X, 8)$ and $Z_{7} \cap Z_{6} \neq \varnothing$. If X is a finite set, then

$$
\begin{aligned}
\left|R^{*}\left(Q_{3}\right)\right|= & \left|R\left(D_{1}^{\prime}\right)\right|+\left|R\left(D_{2}^{\prime}\right)\right|+\left|R\left(D_{3}^{\prime}\right)\right|+\left|R\left(D_{4}^{\prime}\right)\right|+\left|R\left(D_{5}^{\prime}\right)\right|+\left|R\left(D_{6}^{\prime}\right)\right|+\left|R\left(D_{7}^{\prime}\right)\right|+\left|R\left(D_{8}^{\prime}\right)\right| \\
& -\left|R\left(D_{9}^{\prime}\right)\right|-\left|R\left(D_{10}^{\prime}\right)\right|-\left|R\left(D_{1}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right)\right|-\left|R\left(D_{2}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right)\right|-\left|R\left(D_{2}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)\right| \\
& -\left|R\left(D_{5}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right)\right|-\left|R\left(D_{5}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right)\right|-\left|R\left(D_{6}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right)\right| .
\end{aligned}
$$

Proof. Let $D^{\prime}=\left\{Z, Z^{\prime}, Z^{\prime \prime}\right\}\left(Z \subset Z^{\prime} \subset Z^{\prime \prime}\right)$ be arbitrary element of the set $Q_{3} \vartheta_{X I}$ and $\alpha \in R\left(D^{\prime}\right)$. Then
quasinormal representation of a binary relation α has form $\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{T^{\prime}}^{\alpha} \times T^{\prime}\right) \cup\left(Y_{T^{\prime \prime}}^{\alpha} \times T^{\prime \prime}\right)$ for some $T, T^{\prime}, T^{\prime \prime} \in D, \quad T \subset T^{\prime} \subset T^{\prime \prime}, \quad Y_{T}^{\alpha}, Y_{T^{\prime}}^{\alpha}, Y_{T^{\prime \prime}}^{\alpha} \notin\{\varnothing\}$ and by statement 3) of the Theorem 2.1 satisfies the conditions $Y_{T}^{\alpha} \supseteq Z, \quad Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z^{\prime}, \quad Y_{T^{\prime}}^{\alpha} \cap Z^{\prime} \neq \varnothing$ and $Y_{T^{\prime \prime}}^{\alpha} \cap Z^{\prime \prime} \neq \varnothing$. By definition of the semilattice D we have $Z \supseteq Z_{7}$ or $Z \supseteq Z_{6}$ and $\breve{D} \supseteq Z^{\prime \prime}$. Of this and by the conditions $Y_{T}^{\alpha} \supseteq Z, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z^{\prime}, \quad Y_{T^{\prime}}^{\alpha} \cap Z^{\prime} \neq \varnothing$, $Y_{T^{n}}^{\alpha} \cap Z^{\prime \prime} \neq \varnothing$ we have:

$$
\begin{gathered}
Y_{T}^{\alpha} \supseteq Z_{7}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z^{\prime}, Y_{T^{\prime}}^{\alpha} \cap Z^{\prime} \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap \breve{D} \neq \varnothing \text { or } \\
Y_{T}^{\alpha} \supseteq Z_{6}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z^{\prime}, Y_{T^{\prime}}^{\alpha} \cap Z^{\prime} \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap \breve{D} \neq \varnothing
\end{gathered}
$$

i.e. $\alpha \in R\left(D_{1}^{\prime \prime}\right)$ or $\alpha \in R\left(D_{2}^{\prime \prime}\right)$, where $D_{1}^{\prime \prime}=\left\{Z_{7}, Z^{\prime}, \breve{D}\right\}$ and $D_{2}^{\prime \prime}=\left\{Z_{6}, Z^{\prime}, \breve{D}\right\}$. Hence, using equality (3.1), we obtain

$$
\begin{equation*}
R^{*}\left(Q_{3}\right)=\bigcup_{i=1}^{8} R\left(D_{i}^{\prime}\right) \tag{3.2}
\end{equation*}
$$

Now we show that the following equalities are true:

$$
\begin{align*}
& R\left(D_{1}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)=\varnothing, R\left(D_{1}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right)=\varnothing, R\left(D_{1}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=\varnothing, R\left(D_{1}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right)=\varnothing \\
& R\left(D_{2}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right)=\varnothing, R\left(D_{2}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right)=\varnothing, R\left(D_{2}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right)=\varnothing, R\left(D_{3}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)=\varnothing \\
& R\left(D_{3}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right)=\varnothing, R\left(D_{3}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=\varnothing, R\left(D_{3}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right)=\varnothing, R\left(D_{4}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right)=\varnothing, \\
& R\left(D_{4}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right)=\varnothing, R\left(D_{6}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right)=\varnothing, R\left(D_{7}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right)=\varnothing . \\
& R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right)=R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right), R\left(D_{1}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right)=R\left(D_{1}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right), \tag{3.3}\\
& R\left(D_{2}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=R\left(D_{2}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=R\left(D_{2}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right), \\
& R\left(D_{3}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right)=R\left(D_{9}^{\prime}\right), R\left(D_{4}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=R\left(D_{4}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right), \\
& R\left(D_{5}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=R\left(D_{5}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right), R\left(D_{4}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right)=R\left(D_{10}^{\prime}\right) .
\end{align*}
$$

For this we consider the following case.
a) If $\alpha \in R\left(D_{1}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)$, then

$$
\begin{aligned}
& Y_{T}^{\alpha} \supseteq Z_{7}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{5}, Y_{T^{\prime}}^{\alpha} \cap Z_{5} \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap \breve{D} \neq \varnothing \\
& Y_{T}^{\alpha} \supseteq Z_{7}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{1}, Y_{T^{\prime}}^{\alpha} \cap Z_{1} \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap \breve{D} \neq \varnothing .
\end{aligned}
$$

It follows that $Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{1} \cup Z_{5}=\breve{D}$ and $\left(Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha}\right) \cap Y_{T^{\prime \prime}}^{\alpha} \supseteq \breve{D} \cap Y_{T^{\prime \prime}}^{\alpha} \neq \varnothing$. But the inequality $\left(Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha}\right) \cap Y_{T^{\prime \prime}}^{\alpha} \neq \varnothing$ contradiction of the condition that representation of binary relation α is quazinormal. So, the equality $R\left(D_{1}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)=\varnothing$ is hold.

The similar way we can show that the following equalities are hold:

$$
\begin{aligned}
& R\left(D_{1}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=\varnothing, \quad R\left(D_{1}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right)=\varnothing, \quad R\left(D_{3}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)=\varnothing, \quad R\left(D_{3}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=\varnothing \\
& R\left(D_{3}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right)=\varnothing, \quad R\left(D_{4}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right)=\varnothing, \quad R\left(D_{6}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right)=\varnothing, \quad R\left(D_{7}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right)=\varnothing .
\end{aligned}
$$

b) If $\alpha \in R\left(D_{1}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right)$, then

$$
\begin{aligned}
& Y_{T}^{\alpha} \supseteq Z_{7}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{5}, Y_{T^{\prime}}^{\alpha} \cap Z_{5} \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap \breve{D} \neq \varnothing \\
& Y_{T}^{\alpha} \supseteq Z_{6}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{4}, Y_{T^{\prime}}^{\alpha} \cap Z_{4} \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap \breve{D} \neq \varnothing
\end{aligned}
$$

It follows that $Y_{T}^{\alpha} \supseteq Z_{6} \cup Z_{7}=Z_{4}$ and $Y_{T}^{\alpha} \cap Y_{T^{\prime}}^{\alpha} \supseteq Z_{4} \cap Y_{T^{\prime}}^{\alpha} \neq \varnothing$. But the inequality $Y_{T}^{\alpha} \cap Y_{T^{\prime}}^{\alpha} \neq \varnothing$ contradiction of the condition that representation of binary relation α is quazinormal. So, the equality $R\left(D_{1}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right)=\varnothing$ is true.

The similar way we can show that the following equalities are hold:

$$
\begin{gathered}
R\left(D_{2}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right)=\varnothing, \quad R\left(D_{2}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right)=\varnothing, \quad R\left(D_{2}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right)=\varnothing, \\
R\left(D_{3}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right)=\varnothing, \quad R\left(D_{4}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right)=\varnothing .
\end{gathered}
$$

c) If $\alpha \in R\left(D_{3}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right)$, then

$$
\begin{align*}
& Y_{T}^{\alpha} \supseteq Z_{7}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{2}, Y_{T^{\prime}}^{\alpha} \cap Z_{2} \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap \breve{D} \neq \varnothing \\
& Y_{T}^{\alpha} \supseteq Z_{6}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{2}, Y_{T^{\prime}}^{\alpha} \cap Z_{2} \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap \breve{D} \neq \varnothing . \tag{3.4}
\end{align*}
$$

It follows that

$$
\begin{equation*}
Y_{T}^{\alpha} \supseteq Z_{6} \cup Z_{7}=Z_{4}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{2}, Y_{T^{\prime}}^{\alpha} \cap Z_{2} \neq \varnothing, Y_{T^{\prime}}^{\alpha} \cap \check{D} \neq \varnothing, \tag{3.5}
\end{equation*}
$$

i.e., $\alpha \in R\left(D_{9}^{\prime}\right)$. So, the inclusion $R\left(D_{3}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right) \subseteq R\left(D_{9}^{\prime}\right)$ is hold.

Of the other hand, if $\alpha \in R\left(D_{9}^{\prime}\right)$, then the conditions (3.4) and (3.5) are fulfilled, i.e. $\alpha \in R\left(D_{3}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right)$ and $R\left(D_{9}^{\prime}\right) \subseteq R\left(D_{3}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right)$. Therefore, the equality $R\left(D_{9}^{\prime}\right)=R\left(D_{3}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right)$ is true.

The similar way we can show that the following equality is hold: $R\left(D_{10}^{\prime}\right)=R\left(D_{4}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right)$.
d) If $\alpha \in R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right)$, then

$$
\begin{align*}
& Y_{T}^{\alpha} \supseteq Z_{7}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{5}, Y_{T^{\prime}}^{\alpha} \cap Z_{5} \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap \breve{D} \neq \varnothing \\
& Y_{T}^{\alpha} \supseteq Z_{7}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{4}, Y_{T^{\prime}}^{\alpha} \cap Z_{4} \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap \breve{D} \neq \varnothing \tag{3.6}\\
& Y_{T}^{\alpha} \supseteq Z_{7}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{2}, Y_{T^{\prime}}^{\alpha} \cap Z_{2} \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap \breve{D} \neq \varnothing .
\end{align*}
$$

It follows that

$$
\begin{equation*}
Y_{T}^{\alpha} \supseteq Z_{7}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{2}, Y_{T^{\prime}}^{\alpha} \cap Z_{5} \neq \varnothing, Y_{T^{\prime}}^{\alpha} \cap Z_{4} \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap \breve{D} \neq \varnothing \tag{3.7}
\end{equation*}
$$

i.e., $\alpha \in R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right)$. So, the inclusion $R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right) \subseteq R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right)$ is hold.

Of the other hand, if $\alpha \in R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right)$, then the conditions (3.6) and (3.7) are fulfilled, i.e., $\alpha \in R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right)$ and $R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right) \subseteq R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right)$. Therefore, the equality $R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right)=R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right)$ is true.

The similar way we can show that the following equalities are hold:

$$
\begin{gathered}
R\left(D_{1}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right)=R\left(D_{1}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right), \\
R\left(D_{2}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=R\left(D_{2}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=R\left(D_{2}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right), \\
R\left(D_{4}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=R\left(D_{4}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right), \\
R\left(D_{5}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=R\left(D_{5}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right) .
\end{gathered}
$$

We have that all equalities of (3.3) are true. Now, by the equalities of (3.2) and (3.3) we obtain the validity of Lemma 3.1.

The lemma is proved.
Lemma 3.2. Let $D^{\prime}=\left\{Y, Y^{\prime}, \breve{D}\right\}, D^{\prime \prime}=\left\{Y_{1}, Y_{1}^{\prime}, \breve{D}\right\}$, where $Y, Y^{\prime}, Y_{1}, Y_{1}^{\prime} \in D \quad Y_{1} \supseteq Y$ and $Y_{1}^{\prime} \supseteq Y^{\prime}$. If quasinormal representation of binary relation α of the semigroup $B_{X}(D)$ has a form $\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{T^{\prime}}^{\alpha} \times T^{\prime}\right) \cup$ $\left(Y_{0}^{\alpha} \times \breve{D}\right)$ for some $T, T^{\prime} \in D, T \subset T^{\prime} \subset \breve{D}$ and $Y_{T}^{\alpha}, Y_{T^{\prime}}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$, then $\alpha \in R\left(D^{\prime}\right) \cap R\left(D^{\prime \prime}\right)$ iff

$$
Y_{T}^{\alpha} \supseteq Y_{1}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Y_{1}^{\prime}, Y_{T^{\prime}}^{\alpha} \cap Y^{\prime} \neq \varnothing, Y_{0}^{\alpha} \cap \breve{D} \neq \varnothing .
$$

Proof. If $\alpha \in R\left(D^{\prime}\right) \cap R\left(D^{\prime \prime}\right)$, then by statement 3) of the Theorem 2.1 we have

$$
\begin{align*}
& Y_{T}^{\alpha} \supseteq Y, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Y^{\prime}, Y_{T^{\prime}}^{\alpha} \cap Y^{\prime} \neq \varnothing, Y_{0}^{\alpha} \cap \breve{D} \neq \varnothing \\
& Y_{T}^{\alpha} \supseteq Y_{1}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Y_{1}^{\prime}, Y_{T^{\prime}}^{\alpha} \cap Y_{1}^{\prime} \neq \varnothing, Y_{0}^{\alpha} \cap \breve{D} \neq \varnothing . \tag{3.8}
\end{align*}
$$

Of the last condition we have

$$
\begin{equation*}
Y_{T}^{\alpha} \supseteq Y_{1}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Y_{1}^{\prime}, Y_{T^{\prime}}^{\alpha} \cap Y^{\prime} \neq \varnothing, Y_{0}^{\alpha} \cap \breve{D} \neq \varnothing, \tag{3.9}
\end{equation*}
$$

since $Y_{1} \supseteq Y$ and $Y_{1}^{\prime} \supseteq Y^{\prime}$ by assumption.
Of the other hand, if the conditions of (3.9) are hold, then also hold the conditions of (3.8), i.e. $\alpha \in R\left(D^{\prime}\right) \cap R\left(D^{\prime \prime}\right)$.

The lemma is proved.
Lemma 3.3. Let $D=\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{3}, Z_{2}, Z_{1}, \breve{D}\right\} \in \Sigma_{2}(X, 8)$ and $Z_{7} \cap Z_{6} \neq \varnothing$. If X is a finite set, then the following equalities are hold:

$$
\begin{aligned}
& \left|R\left(D_{1}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right)\right|=18 \cdot 2^{\left|Z_{2}\right| Z_{5} \mid} \cdot\left(2^{\left|Z_{5}\right| Z_{7} \mid}-1\right) \cdot\left(3^{\left|\check{D} \backslash Z_{2}\right|}-2^{\left|\check{D} \backslash Z_{2}\right|}\right) \cdot 3^{|X \backslash \check{D}|}, \\
& \left|R\left(D_{2}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right)\right|=18 \cdot 2^{\left|Z_{2} \backslash Z_{4}\right|} \cdot\left(2^{\left|Z_{4} \backslash Z_{7}\right|}-1\right) \cdot\left(3^{\left|\bar{D} \backslash Z_{2}\right|}-2^{\left|\check{D} \backslash Z_{2}\right|}\right) \cdot 3^{|X \backslash \breve{D}|}, \\
& \left|R\left(D_{2}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)\right|=18 \cdot 2^{\left|Z_{1} \backslash Z_{4}\right|} \cdot\left(2^{\left|Z_{4} \backslash Z_{7}\right|}-1\right) \cdot\left(3^{\left|\widetilde{D} \backslash Z_{1}\right|}-2^{\left|\widetilde{D} \backslash Z_{1}\right|}\right) \cdot 3^{|X \backslash \breve{D}|}, \\
& \left|R\left(D_{5}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right)\right|=18 \cdot 2^{\left|Z_{2} \backslash Z_{4}\right|} \cdot\left(2^{\left|Z_{4} \backslash Z_{6}\right|}-1\right) \cdot\left(3^{\left|\check{D} \backslash Z_{2}\right|}-2^{\left|\check{D} \backslash Z_{2}\right|}\right) \cdot 3^{|X \backslash \breve{D}|}, \\
& \left|R\left(D_{5}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right)\right|=18 \cdot 2^{\left|Z_{1} \backslash Z_{4}\right|} \cdot\left(2^{\left|Z_{4} \backslash Z_{6}\right|}-1\right) \cdot\left(3^{\left|\check{D} \backslash Z_{1}\right|}-2^{\left|\check{D} \backslash Z_{1}\right|}\right) \cdot 3^{|X \backslash \check{D}|}, \\
& \left|R\left(D_{6}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right)\right|=18 \cdot 2^{\left|Z_{1} \backslash Z_{3}\right|} \cdot\left(2^{\left|Z_{3} \backslash Z_{6}\right|}-1\right) \cdot\left(3^{\left|\check{D} \backslash Z_{1}\right|}-2^{\left|\widetilde{D} \backslash Z_{1}\right|}\right) \cdot 3^{|X \backslash \breve{D}|} .
\end{aligned}
$$

Proof. Let $D^{\prime}=\left\{Y, Y^{\prime}, \breve{D}\right\}, D^{\prime \prime}=\left\{Y_{1}, Y_{1}^{\prime}, \breve{D}\right\} \in\left\{D_{1}^{\prime}, D_{2}^{\prime}, \cdots, D_{8}^{\prime}\right\}$, where $Y_{1} \supseteq Y$ and $Y_{1}^{\prime} \supseteq Y^{\prime}$. Assume that $\alpha \in R\left(D^{\prime}\right) \cap R\left(D^{\prime \prime}\right)$ and a quasinormal representation of a regular binary relation α has the form $\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{T^{\prime}}^{\alpha} \times T^{\prime}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$ for some $T, T^{\prime} \in D, T \subset T^{\prime} \subset \breve{D}$ and $Y_{T}^{\alpha}, Y_{T^{\prime}}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$. Then by statement c) of the Theorem 3.1.1, we have

$$
\begin{equation*}
Y_{T}^{\alpha} \supseteq Y_{1}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Y_{1}^{\prime}, Y_{T^{\prime}}^{\alpha} \cap Y^{\prime} \neq \varnothing, Y_{0}^{\alpha} \cap \breve{D} \neq \varnothing \tag{3.10}
\end{equation*}
$$

Let f_{α} is a mapping of the set X in the semilattice D satisfying the conditions $f_{\alpha}(t)=t \alpha$ for all $t \in X$. $f_{0 \alpha}, f_{1 \alpha}, f_{2 \alpha}$ and $f_{3 \alpha}$ are the restrictions of the mapping f_{α} on the sets $Y_{1}, Y_{1}^{\prime} \backslash Y_{1}, \breve{D} \backslash Y_{1}^{\prime}, X \backslash \check{D}$ respectively. It is clear, that the intersection disjoint elements of the set $\left\{Y_{1}, Y_{1}^{\prime} \backslash Y_{1}, \breve{D} \backslash Y_{1}^{\prime}, X \backslash \breve{D}\right\}$ is empty set, and $Y_{1} \cup\left(Y_{1}^{\prime} \backslash Y_{1}\right) \cup\left(\breve{D} \backslash Y_{1}^{\prime}\right) \cup(X \backslash \check{D})=X$.

We are going to find properties of the maps $f_{0 \alpha}, f_{1 \alpha}, f_{2 \alpha}, f_{3 \alpha}$.

1) $t \in Y_{1}$. Then by the properties (3.10) we have $Y_{1} \subseteq Y_{T}^{\alpha}$, i.e., $t \in Y_{T}^{\alpha}$ and $t \alpha=T$ by definition of the set Y_{T}^{α}. Therefore $f_{0 \alpha}(t)=T$ for all $t \in Y_{1}$.
2) $t \in Y_{1}^{\prime} \backslash Y_{1}$. Then by the properties (3.10) we have $Y_{1}^{\prime} \backslash Y_{1} \subseteq Y_{1}^{\prime} \subseteq Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha}$, i.e., $t \in Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha}$ and $t \alpha \in\left\{T, T^{\prime}\right\}$ by definition of the sets Y_{T}^{α} and $Y_{T^{\prime}}^{\alpha}$. Therefore $f_{1 \alpha}(t) \in\left\{T, T^{\prime}\right\}$ for all $t \in Y_{1}^{\prime} \backslash Y_{1}$.

Preposition we have that $Y_{T^{\prime}}^{\alpha} \cap Y^{\prime} \neq \varnothing$, i.e. $t^{\prime} \alpha=T^{\prime}$ for some $t^{\prime} \in Y^{\prime}$. If $t^{\prime} \in Y_{1}$, then $t^{\prime} \in Y_{1} \subseteq Y_{T}^{\alpha}$. Therefore $t^{\prime} \alpha=T$. That is contradict of the equality $t^{\prime} \alpha=T^{\prime}$, while $T \neq T^{\prime}$ by definition of the semilattice D. Therefore $f_{1 \alpha}\left(t^{\prime}\right)=T^{\prime}$ for some $t^{\prime} \in Y^{\prime} \backslash Y_{1}$.
3) $t \in \breve{D} \backslash Y_{1}^{\prime}$. Then by properties (3.10) we have $\breve{D} \backslash Y_{1}^{\prime} \subseteq \breve{D} \subseteq Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \cup Y_{0}^{\alpha}=X$, i.e., $t \in Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \cup Y_{0}^{\alpha}$ and $t \alpha \in\left\{T, T^{\prime}, \breve{D}\right\}$ by definition of the sets $Y_{T}^{\alpha}, Y_{T^{\prime}}^{\alpha}$ and Y_{0}^{α}. Therefore $f_{3 \alpha}(t) \in\left\{T, T^{\prime}, \breve{D}\right\}$ for all $t \in \check{D} \backslash Y_{1}^{\prime}$.

Preposition we have that $Y_{0}^{\alpha} \cap \breve{D} \neq \varnothing$, i.e. $t^{\prime \prime} \alpha=\breve{D}$ for some $t^{\prime \prime} \in \breve{D}$. If $t^{\prime \prime} \in Y_{1}^{\prime}$. Then $t^{\prime \prime} \in Y_{1}^{\prime} \subseteq Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha}$. Therefore $t^{\prime \prime} \alpha \in\left\{T, T^{\prime}\right\}$ by definition of the set Y_{T}^{α} and $Y_{T^{\prime}}^{\alpha}$. We have contradict of the equality $t^{\prime \prime} \alpha=T^{\prime \prime}$. Therefore $f_{3 \alpha}\left(t^{\prime \prime}\right)=\bar{D}$ for some $t^{\prime \prime} \in \breve{D} \backslash Y_{1}^{\prime}$.
4) $t \in X \backslash D$. Then by definition quasinormal representation binary relation α and by property (3.10) we have $t \in X \backslash \breve{D} \subseteq X=Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \cup Y_{0}^{\alpha}$, i.e. $t \alpha \in\left\{T, T^{\prime}, \breve{D}\right\}$ by definition of the sets $Y_{T}^{\alpha}, Y_{T^{\prime}}^{\alpha}$ and Y_{0}^{α}. Therefore $f_{4 \alpha}(t) \in\left\{T, T^{\prime}, \breve{D}\right\}$ for all $t \in X \backslash \breve{D}$.

Therefore for every binary relation $\alpha \in R\left(D^{\prime}\right) \cap R\left(D^{\prime \prime}\right)$ exist ordered system ($\left.f_{0 \alpha}, f_{1 \alpha}, f_{2 \alpha}, f_{3 \alpha}\right)$. It is obvious that for disjoint binary relations exist disjoint ordered systems.

Now, let $f_{0}: Y_{1} \rightarrow\{T\}, f_{1}: Y_{1}^{\prime} \backslash Y_{1} \rightarrow\left\{T, T^{\prime}\right\}, f_{2}: \breve{D} \backslash Y_{1}^{\prime} \rightarrow\left\{T, T^{\prime}, \breve{D}\right\}, f_{3}: X \backslash \breve{D} \rightarrow\left\{T, T^{\prime}, \breve{D}\right\}$ are such mappings, which satisfying the conditions:
5) $f_{0}(t)=T$ for all $t \in Y_{1}$;
6) $f_{1}(t) \in\left\{T, T^{\prime}\right\}$ for all $t \in Y_{1}^{\prime} \backslash Y_{1}$ and $f_{1}\left(t^{\prime}\right)=T^{\prime}$ for some $t^{\prime} \in Y^{\prime} \backslash Y_{1}$;
7) $f_{2}(t) \in\left\{T, T^{\prime}, \breve{D}\right\}$ for all $t \in \breve{D} \backslash Y_{1}^{\prime}$ and $f_{2}\left(t^{\prime \prime}\right)=\breve{D}$ for some $t^{\prime \prime} \in \breve{D} \backslash Y_{1}^{\prime}$;
8) $f_{3}(t) \in\left\{T, T^{\prime}, \breve{D}\right\}$ for all $t \in X \backslash \breve{D}$.

Now we define a map f of a set X in the semilattice D, which satisfies the condition:

$$
f(t)=\left\{\begin{array}{l}
f_{0}(t), \text { if } t \in Y_{1}, \\
f_{1}(t), \text { if } t \in Y_{1}^{\prime} \backslash Y_{1}, \\
f_{2}(t), \text { if } t \in \breve{D} \backslash Y_{1}^{\prime}, \\
f_{3}(t), \text { if } t \in X \backslash \breve{D} .
\end{array}\right.
$$

Let $\beta=\bigcup_{x \in X}(\{x\} \times f(x)), \quad Y_{T}^{\beta}=\{t \mid t \beta=T\}, \quad Y_{T^{\prime}}^{\beta}=\left\{t \mid t \beta=T^{\prime}\right\}$ and $Y_{0}^{\beta}=\{t \mid t \beta=\breve{D}\}$. Then binary relation β can be representation by form $\beta=\left(Y_{T}^{\beta} \times T\right) \cup\left(Y_{T^{\prime}}^{\beta} \times T^{\prime}\right) \cup\left(Y_{0}^{\beta} \times \check{D}\right)$ and satisfying the conditions:

$$
Y_{T}^{\beta} \supseteq Y_{1}, Y_{T}^{\beta} \cup Y_{T^{\prime}}^{\beta} \supseteq Y_{1}^{\prime}, Y_{T^{\prime}}^{\beta} \cap Y^{\prime} \neq \varnothing, Y_{0}^{\beta} \cap \breve{D} \neq \varnothing
$$

(By suppose $f_{1}\left(t^{\prime}\right)=T^{\prime}$ for some $t^{\prime} \in Y^{\prime} \backslash Y_{1}$ and $f_{2}\left(t^{\prime \prime}\right)=\breve{D}$ for some $t^{\prime \prime} \in \breve{D} \backslash Y_{1}^{\prime}$), i.e., by lemma 2.5 we have that $\beta \in R\left(D^{\prime}\right) \cap R\left(D^{\prime \prime}\right)$.

Therefore for every binary relation $\alpha \in R\left(D^{\prime}\right) \cap R\left(D^{\prime \prime}\right)$ and ordered system ($\left.f_{0 \alpha}, f_{1 \alpha}, f_{2 \alpha}, f_{3 \alpha}\right)$ exist one to one mapping.

By ([1], Theorem 1.18.2) the number of the mappings $f_{0 \alpha}, f_{1 \alpha}, f_{2 \alpha}, f_{3 \alpha}$ are respectively:

$$
1, \quad 2^{\left|Y_{1}^{\prime}\left(Y^{\prime} \cup Y_{1}\right)\right|} \cdot\left(2^{\left|Y^{\prime} Y_{1}\right|}-1\right), 3^{\left|\check{D} \backslash Y_{1}\right|}-2^{\left|\widetilde{D} \backslash Y_{1}^{\prime}\right|}, 3^{|X \backslash \bar{D}|}
$$

Note that the number $2^{\left|Y_{1}^{\prime}\left(Y^{\prime} \cup Y_{1}\right)\right|} \cdot\left(2^{\left|Y^{\prime} \backslash Y_{1}\right|}-1\right) \cdot\left(3^{\left|\check{D} \backslash Y_{1}\right|}-2^{\left|\check{D} \backslash Y_{1}\right|}\right) \cdot 3^{|X \backslash \check{D}|}$ does not depend on choice of chains $T \subset T^{\prime} \subset T^{\prime \prime} \quad\left(T, T^{\prime}, T^{\prime \prime} \in D\right)$ of the semilattice D. Sins the number of such different chains of the semilattice D is equal to 18 , for arbitrary $T, T^{\prime}, T^{\prime \prime} \in D$ where $T \subset T^{\prime} \subset T^{\prime \prime}$, the number of regular elements of the set $R\left(D^{\prime}\right) \cap R\left(D^{\prime \prime}\right)$ is equal to

$$
\left|R\left(D^{\prime}\right) \cap R\left(D^{\prime \prime}\right)\right|=18 \cdot 2^{\left|Y_{1}^{\prime}\left(Y^{\prime} \cup Y_{1}\right)\right|} \cdot\left(2^{\left|Y^{\prime} \backslash Y_{1}\right|}-1\right) \cdot\left(3^{\left|\check{D} \backslash Y_{1}\right|}-2^{\left|\widetilde{D} \backslash Y_{1}\right|}\right) \cdot 3^{|X \backslash \breve{D}|} .
$$

Note that the number $2^{\left|Y_{1}^{\prime}\left(Y^{\prime} \cup Y_{1}\right)\right|} \cdot\left(2^{\left|Y^{\prime} \backslash Y_{1}\right|}-1\right) \cdot\left(3^{|\check{D}| Y_{1} \mid}-2^{\left|\check{D} \backslash Y_{1}\right|}\right) \cdot 3^{|X \backslash \bar{D}|}$ does not depend on choice of chains $T \subset T^{\prime} \subset T^{\prime \prime} \quad\left(T, T^{\prime}, T^{\prime \prime} \in D\right)$ of the semilattice D. Since the number of such different chains of the semilattice D is equal to 18 , for arbitrary $T, T^{\prime}, T^{\prime \prime} \in D$ where $T \subset T^{\prime} \subset T^{\prime \prime}$, the number of regular elements of the set $R\left(D^{\prime}\right) \cap R\left(D^{\prime \prime}\right)$ is equal to $\left|R\left(D^{\prime}\right) \cap R\left(D^{\prime \prime}\right)\right|=18 \cdot 2^{\left|Y_{1}^{\prime}\right|\left(Y^{\prime} \cup Y_{1}\right) \mid} \cdot\left(2^{\left|Y^{\prime} \backslash Y_{1}\right|}-1\right) \cdot\left(3^{\left|\check{D} Y_{1}\right|}-2^{|\widetilde{D}| Y_{1}^{\prime} \mid}\right) \cdot 3^{|X \backslash \breve{D}|}$. Therefore, we obtain the validity of Lemma 3.3.

The lemma is proved.
Lemma 3.4. Let X be a finite set, $D=\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{3}, Z_{2}, Z_{1}, \breve{D}\right\} \in \Sigma_{2}(X, 8)$ and $Z_{7} \cap Z_{6} \neq \varnothing$. If by $R^{*}\left(Q_{3}\right)$ denoted all regular elements of the semigroup $B_{X}(D)$ satisfying the condition 3) of the Theorem 2.1, then

$$
\begin{aligned}
& \left|R^{*}\left(Q_{3}\right)\right|=18 \cdot\left(2^{\left|Z_{5}\right| Z_{7} \mid}-1\right) \cdot\left(3^{\left|\check{D} \backslash Z_{5}\right|}-2^{\left|\check{D} \backslash Z_{5}\right|}\right) \cdot 3^{|X \backslash \check{D}|}+18 \cdot\left(2^{\left|Z_{4} \backslash Z_{7}\right|}-1\right) \cdot\left(3^{\left|\check{D} \backslash Z_{4}\right|}-2^{\left|\check{D} \backslash Z_{4}\right|}\right) \cdot 3^{|X \backslash \check{D}|} \\
& +18 \cdot\left(2^{\left|Z_{2} \backslash Z_{7}\right|}-1\right) \cdot\left(3^{\left|\bar{D} \backslash Z_{2}\right|}-2^{\left|\check{D} \backslash Z_{2}\right|}\right) \cdot 3^{|X \backslash \bar{D}|}+18 \cdot\left(2^{\left|Z_{1} \backslash Z_{7}\right|}-1\right) \cdot\left(3^{\left|\bar{D} \backslash Z_{1}\right|}-2^{\left|\widetilde{D} \backslash Z_{1}\right|}\right) \cdot 3^{|X \backslash \bar{D}|} \\
& +18 \cdot\left(2^{\left|Z_{4} \backslash Z_{6}\right|}-1\right) \cdot\left(3^{\left|\check{D} \backslash Z_{4}\right|}-2^{\left|\check{D} \backslash Z_{4}\right|}\right) \cdot 3^{|X \backslash \widetilde{D}|}+18 \cdot\left(2^{\left|Z_{3} \backslash Z_{6}\right|}-1\right) \cdot\left(3^{\left|\check{D} \backslash Z_{3}\right|}-2^{\left|\check{D} \backslash Z_{3}\right|}\right) \cdot 3^{|X \backslash \widetilde{D}|} \\
& +18 \cdot\left(2^{\left|Z_{2} \backslash Z_{6}\right|}-1\right) \cdot\left(3^{\left|\check{D} \backslash Z_{2}\right|}-2^{\left|\check{D} \backslash Z_{2}\right|}\right) \cdot 3^{|X \backslash \breve{D}|}+18 \cdot\left(2^{\left|Z_{1} \backslash Z_{6}\right|}-1\right) \cdot\left(3^{\left|\check{D} \backslash Z_{1}\right|}-2^{\left|\check{D} \backslash Z_{1}\right|}\right) \cdot 3^{|X \backslash \check{D}|} \\
& -18 \cdot\left(2^{\left|Z_{2} \backslash Z_{4}\right|}-1\right) \cdot\left(3^{\left|\check{D} \backslash Z_{2}\right|}-2^{\left|\check{D} \backslash Z_{2}\right|}\right) \cdot 3^{|X \backslash \bar{D}|}-18 \cdot\left(2^{\left|Z_{1} \backslash Z_{4}\right|}-1\right) \cdot\left(3^{\left|\bar{D} \backslash Z_{1}\right|}-2^{\left|\check{D} \backslash Z_{1}\right|}\right) \cdot 3^{|X \backslash \check{D}|} \\
& -18 \cdot 2^{\left|Z_{2} \backslash Z_{5}\right|} \cdot\left(2^{\left|Z_{5} \backslash Z_{7}\right|}-1\right) \cdot\left(3^{\left|\check{D} \backslash Z_{2}\right|}-2^{\left|\widetilde{D} \backslash Z_{2}\right|}\right) \cdot 3^{|X \backslash \widetilde{D}|}-18 \cdot 2^{\left|Z_{2} \backslash Z_{4}\right|} \cdot\left(2^{\left|Z_{4} \backslash Z_{7}\right|}-1\right) \cdot\left(3^{\left|\bar{D} \backslash Z_{2}\right|}-2^{\left|\bar{D} \backslash Z_{2}\right|}\right) \cdot 3^{|X \backslash \bar{D}|} \\
& -18 \cdot 2^{\left|Z_{1} \backslash Z_{4}\right|} \cdot\left(2^{\left|Z_{4} \backslash Z_{7}\right|}-1\right) \cdot\left(3^{\left|\check{D} \backslash Z_{1}\right|}-2^{\left|\check{D} \backslash Z_{1}\right|}\right) \cdot 3^{|X \backslash \bar{D}|}-18 \cdot 2^{\left|Z_{2} \backslash Z_{4}\right|} \cdot\left(2^{\left|Z_{4} \backslash Z_{6}\right|}-1\right) \cdot\left(3^{\left|\check{D} \backslash Z_{2}\right|}-2^{\left|\check{D} \backslash Z_{2}\right|}\right) \cdot 3^{|X \backslash \check{D}|} \\
& -18 \cdot 2^{\left|Z_{1} \backslash Z_{4}\right|} \cdot\left(2^{\left|Z_{4} \backslash Z_{6}\right|}-1\right) \cdot\left(3^{\left|\check{D} \backslash Z_{1}\right|}-2^{\left|\check{D} \backslash Z_{1}\right|}\right) \cdot 3^{|X \backslash \check{D}|}-18 \cdot 2^{\left|Z_{1} \backslash Z_{3}\right|} \cdot\left(2^{\left|Z_{3} \backslash Z_{6}\right|}-1\right) \cdot\left(3^{\left|\check{D} \backslash Z_{1}\right|}-2^{\left|\check{D} \backslash Z_{1}\right|}\right) \cdot 3^{|X \backslash \check{D}|} .
\end{aligned}
$$

Proof: It is easy to see $\left|\Phi\left(Q_{3}, Q_{3}\right)\right|=1$ and $\left|\Omega\left(Q_{3}\right)\right|=18$, then by statement 3) of the Lemma 1.1, by Lemma 3.1 and by Lemma 3.3 we obtain the validity of Lemma 3.4.

The lemma is proved.
4) Now let binary relation α of the semigroup $B_{X}(D)$ satisfying the condition 4) of the Theorem 2.1. In this case we have $Q_{4}=\left\{T, T^{\prime}, T^{\prime \prime}, \breve{D}\right\}$, where $T, T^{\prime}, T^{\prime \prime} \in D$ and $T \subset T^{\prime} \subset T^{\prime \prime}$. By definition of the semilattice D follows that

$$
\begin{aligned}
Q_{4} \vartheta_{X I}= & \left\{\left\{Z_{7}, Z_{5}, Z_{2}, \breve{D}\right\}\left\{Z_{7}, Z_{4}, Z_{2}, \breve{D}\right\},\left\{Z_{7}, Z_{4}, Z_{1}, \breve{D}\right\}\right. \\
& \left.\left\{Z_{6}, Z_{4}, Z_{2}, \breve{D}\right\},\left\{Z_{6}, Z_{3}, Z_{1}, \breve{D}\right\},\left\{Z_{6}, Z_{4}, Z_{1}, \breve{D}\right\}\right\}
\end{aligned}
$$

Now if

$$
\begin{aligned}
& D_{1}^{\prime}=\left\{Z_{7}, Z_{5}, Z_{2}, \breve{D}\right\}, D_{2}^{\prime}=\left\{Z_{7}, Z_{4}, Z_{2}, \breve{D}\right\}, D_{3}^{\prime}=\left\{Z_{7}, Z_{4}, Z_{1}, \breve{D}\right\} \\
& D_{4}^{\prime}=\left\{Z_{6}, Z_{4}, Z_{2}, \breve{D}\right\}, D_{5}^{\prime}=\left\{Z_{6}, Z_{3}, Z_{1}, \breve{D}\right\}, D_{6}^{\prime}=\left\{Z_{6}, Z_{4}, Z_{1}, \breve{D}\right\}
\end{aligned}
$$

Then from Theorem 1.1 we obtain

$$
\begin{equation*}
R^{*}\left(Q_{4}\right)=\bigcup_{i=1}^{6} R\left(D_{i}^{\prime}\right) \tag{4.1}
\end{equation*}
$$

Lemma 4.1. Let X be a finite set, $D=\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{3}, Z_{2}, Z_{1}, \breve{D}\right\} \in \Sigma_{2}(X, 8)$ and $Z_{7} \cap Z_{6} \neq \varnothing$. If by $R^{*}\left(Q_{4}\right)$ denoted all regular elements of the semigroup $B_{X}(D)$ satisfying the condition 4) of the Theorem 2.1, then

$$
\begin{aligned}
& \left|R^{*}\left(Q_{4}\right)\right|=6 \cdot\left(2^{\left|Z_{5} \backslash Z_{7}\right|}-1\right) \cdot\left(3^{\left|Z_{2}\right| Z_{5} \mid}-2^{\left|Z_{2} \backslash Z_{5}\right|}\right) \cdot\left(4^{\left|\check{D} \backslash Z_{2}\right|}-3^{\left|\check{D} Z_{2}\right|}\right) \cdot 4^{|X \breve{D}|} \\
& +6 \cdot\left(2^{\left|Z_{4}\right| Z_{7} \mid}-1\right) \cdot\left(3^{\left|Z_{2}\right| Z_{4} \mid}-2^{\left|Z_{2} \backslash Z_{4}\right|}\right) \cdot\left(4^{\left|\check{D} \backslash Z_{2}\right|}-3^{\left|\check{D} \backslash Z_{2}\right|}\right) \cdot 4^{|X \backslash \check{D}|} \\
& +6 \cdot\left(2^{\left|Z_{4}\right| Z_{7} \mid}-1\right) \cdot\left(3^{\left|Z_{1}\right| Z_{4} \mid}-2^{\left|Z_{1} \backslash Z_{4}\right|}\right) \cdot\left(4^{\left|\check{D} Z_{1}\right|}-3^{\left|\check{D} Z_{1}\right|}\right) \cdot 4^{|X \backslash \check{D}|} \\
& +6 \cdot\left(2^{\left|Z_{4}\right| Z_{6} \mid}-1\right) \cdot\left(3^{\left|Z_{2}\right| Z_{4} \mid}-2^{\left|Z_{2} \backslash Z_{4}\right|}\right) \cdot\left(4^{\left|\breve{D} \backslash Z_{2}\right|}-3^{\left|\widetilde{D} \backslash Z_{2}\right|}\right) \cdot 4^{|X \backslash \bar{D}|} \\
& +6 \cdot\left(2^{\left|Z_{4} \backslash Z_{6}\right|}-1\right) \cdot\left(3^{\left|Z_{1} \backslash Z_{4}\right|}-2^{\left|Z_{1} \backslash Z_{4}\right|}\right) \cdot\left(4^{\left|\widetilde{D} \backslash Z_{1}\right|}-3^{\left|\check{D} \backslash Z_{1}\right|}\right) \cdot 4^{|X \backslash \bar{D}|} \\
& +6 \cdot\left(2^{\left|Z_{3} \backslash Z_{6}\right|}-1\right) \cdot\left(3^{\left|Z_{1} 1 Z_{3}\right|}-2^{\left|Z_{1} \backslash Z_{3}\right|}\right) \cdot\left(4^{\left|\check{D} \backslash Z_{1}\right|}-3^{\left|\check{D} \backslash Z_{1}\right|}\right) \cdot 4^{|X \backslash \breve{D}|} .
\end{aligned}
$$

Proof. First we show that the following equalities are hold:

$$
\begin{align*}
& R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right)=\varnothing, R\left(D_{1}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right)=\varnothing, R\left(D_{1}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)=\varnothing \\
& R\left(D_{1}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right)=\varnothing, R\left(D_{1}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=\varnothing, R\left(D_{2}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right)=\varnothing \\
& R\left(D_{2}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)=\varnothing, R\left(D_{2}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right)=\varnothing, R\left(D_{2}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=\varnothing \tag{4.2}\\
& R\left(D_{3}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)=\varnothing, R\left(D_{3}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right)=\varnothing, R\left(D_{3}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=\varnothing, \\
& R\left(D_{4}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right)=\varnothing, R\left(D_{4}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=\varnothing, R\left(D_{5}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=\varnothing .
\end{align*}
$$

For this we consider the following case.
a) Let $\alpha \in R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right)$. If a quasinormal representation of a regular binary relation α has the form $\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{T^{\prime}}^{\alpha} \times T^{\prime}\right) \cup\left(Y_{T^{\prime \prime}}^{\alpha} \times T^{\prime \prime}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$ for some $T, T^{\prime}, T^{\prime \prime} \in D, T \subset T^{\prime} \subset T^{\prime \prime}$ and $Y_{T}^{\alpha}, Y_{T^{\prime}}^{\alpha}, Y_{T^{\prime \prime}}^{\alpha} \notin\{\varnothing\}$. Then by statement 4) of the Theorem 2.1, we have

$$
\begin{aligned}
& Y_{T}^{\alpha} \supseteq Z_{7}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{5}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha} \supseteq Z_{2}, Y_{T^{\prime}}^{\alpha} \cap Z_{5} \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap Z_{2} \neq \varnothing, Y_{0}^{\alpha} \cap \breve{D} \neq \varnothing \\
& Y_{T}^{\alpha} \supseteq Z_{7}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{4}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha} \supseteq Z_{2}, Y_{T^{\prime \prime}}^{\alpha} \cap Z_{4} \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap Z_{2} \neq \varnothing, Y_{0}^{\alpha} \cap \breve{D} \neq \varnothing
\end{aligned}
$$

It follows that $Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{5} \cup Z_{4}=Z_{2}$ and $\left(Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha}\right) \cap Y_{T^{\prime \prime}}^{\alpha} \supseteq Z_{2} \cap Y_{T^{\prime \prime}}^{\alpha} \neq \varnothing$. But the inequality $\left(Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha}\right) \cap Y_{T^{\prime}}^{\alpha} \neq \varnothing$ contradiction of the condition that representation of binary relation α is quazinormal. So, the equality $R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right)=\varnothing$ is hold.
The similar way we can show that the following equalities are hold:

$$
\begin{aligned}
& R\left(D_{1}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)=\varnothing, R\left(D_{2}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)=\varnothing, R\left(D_{3}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right)=\varnothing, \\
& R\left(D_{3}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=\varnothing, R\left(D_{5}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=\varnothing,
\end{aligned}
$$

b) Let $\alpha \in R\left(D_{1}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right)$ and a quasinormal representation of a regular binary relation α has the form $\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{T^{\prime}}^{\alpha} \times T^{\prime}\right) \cup\left(Y_{T^{\prime \prime}}^{\alpha} \times T^{\prime \prime}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$ for some $T, T^{\prime}, T^{\prime \prime} \in D, T \subset T^{\prime} \subset T^{\prime \prime}$ and $Y_{T}^{\alpha}, Y_{T^{\prime}}^{\alpha}, Y_{T^{\prime \prime}}^{\alpha} \notin\{\varnothing\}$. Then by statement 4) of the Theorem 2.1, we have

$$
\begin{aligned}
& Y_{T}^{\alpha} \supseteq Z_{7}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{5}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{2}, Y_{T^{\prime}}^{\alpha} \cap Z_{5} \neq \varnothing, Y_{T^{\circ}}^{\alpha} \cap Z_{2} \neq \varnothing, Y_{0}^{\alpha} \cap \check{D} \neq \varnothing ; \\
& Y_{T}^{\alpha} \supseteq Z_{7}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{4}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{1}, Y_{T^{\prime}}^{\alpha} \cap Z_{4} \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap Z_{1} \neq \varnothing, Y_{0}^{\alpha} \cap \widetilde{D} \neq \varnothing .
\end{aligned}
$$

It follows that $Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha} \supseteq Z_{1} \cup Z_{2}=\breve{D}$ and $\left(Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha}\right) \cap Y_{0}^{\alpha} \supseteq \breve{D} \cap Y_{0}^{\alpha} \neq \varnothing$. But the inequality $\left(Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \cup Y_{T^{\prime}}^{\alpha}\right) \cap Y_{0}^{\alpha} \neq \varnothing$ contradiction of the condition that representation of binary relation α is quazinormal. So, the equality $R\left(D_{1}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right)=\varnothing$ is hold.
The similar way we can show that the following equalities are hold:

$$
\begin{aligned}
& R\left(D_{1}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right)=\varnothing, R\left(D_{1}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=\varnothing, R\left(D_{2}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right)=\varnothing, \\
& R\left(D_{2}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right)=\varnothing, R\left(D_{2}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=\varnothing, R\left(D_{3}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)=\varnothing, \\
& R\left(D_{4}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right)=\varnothing, R\left(D_{4}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=\varnothing
\end{aligned}
$$

By equalities (4.1) and (4.2) follows, that

$$
\left|R^{*}\left(Q_{4}\right)\right|=\left|R\left(D_{1}^{\prime}\right)\right|+\left|R\left(D_{2}^{\prime}\right)\right|+\left|R\left(D_{3}^{\prime}\right)\right|+\left|R\left(D_{4}^{\prime}\right)\right|+\left|R\left(D_{5}^{\prime}\right)\right|+\left|R\left(D_{6}^{\prime}\right)\right| .
$$

It is easy to see $\left|\Phi\left(Q_{4}, Q_{4}\right)\right|=1$ and $\left|\Omega\left(Q_{4}\right)\right|=6$, of the last equalities and by statement 4) of the Lemma 1.1 we obtain the validity of Lemma 4.1.
The lemma is proved.
5) Now let binary relation α of the semigroup $B_{X}(D)$ satisfying the condition 5) of the Theorem 2.1. In this case we have $Q_{5}=\left\{T, T^{\prime}, T^{\prime \prime}, T^{\prime} \cup T^{\prime \prime}\right\}$, where $T, T^{\prime}, T^{\prime \prime} \in D$ and $T \subset T^{\prime}, T \subset T^{\prime \prime}, T^{\prime} \backslash T^{\prime \prime} \neq \varnothing$ and $T^{\prime \prime} \backslash T^{\prime} \neq \varnothing$. By definition of the semilattice D follows that

$$
\begin{aligned}
Q_{5} \vartheta_{X I}= & \left\{\left\{Z_{7}, Z_{2}, Z_{1}, \breve{D}\right\},\left\{Z_{7}, Z_{5}, Z_{1}, \breve{D}\right\},\left\{Z_{6}, Z_{3}, Z_{2}, \breve{D}\right\},\left\{Z_{7}, Z_{5}, Z_{4}, Z_{2}\right\}\right. \\
& \left.\left\{Z_{6}, Z_{4}, Z_{3}, Z_{1}\right\},\left\{Z_{6}, Z_{2}, Z_{1}, \breve{D}\right\},\left\{Z_{4}, Z_{2}, Z_{1}, \breve{D}\right\}\right\}
\end{aligned}
$$

Now if

$$
\begin{aligned}
& D_{1}^{\prime}=\left\{Z_{7}, Z_{2}, Z_{1}, \breve{D}\right\}, D_{2}^{\prime}=\left\{Z_{7}, Z_{1}, Z_{2}, \breve{D}\right\}, D_{3}^{\prime}=\left\{Z_{7}, Z_{5}, Z_{1}, \breve{D}\right\}, \\
& D_{4}^{\prime}=\left\{Z_{7}, Z_{1}, Z_{5}, \breve{D}\right\}, D_{5}^{\prime}=\left\{Z_{6}, Z_{3}, Z_{2}, \breve{D}\right\}, D_{6}^{\prime}=\left\{Z_{6}, Z_{2}, Z_{3}, \breve{D}\right\}, \\
& D_{7}^{\prime}=\left\{Z_{7}, Z_{5}, Z_{4}, Z_{2}\right\}, D_{8}^{\prime}=\left\{Z_{7}, Z_{4}, Z_{5}, Z_{2}\right\}, D_{9}^{\prime}=\left\{Z_{6}, Z_{4}, Z_{3}, Z_{1}\right\}, \\
& D_{10}^{\prime}=\left\{Z_{6}, Z_{3}, Z_{4}, Z_{1}\right\}, D_{11}^{\prime}=\left\{Z_{6}, Z_{2}, Z_{1}, \breve{D}\right\}, D_{12}^{\prime}=\left\{Z_{6}, Z_{1}, Z_{2}, \breve{D}\right\}, \\
& D_{13}^{\prime}=\left\{Z_{4}, Z_{2}, Z_{1}, \breve{D}\right\}, D_{14}^{\prime}=\left\{Z_{4}, Z_{1}, Z_{2}, \breve{D}\right\} .
\end{aligned}
$$

Then from Theorem 1.1 we obtain

$$
\begin{equation*}
R^{*}\left(Q_{5}\right)=\bigcup_{i=1}^{14} R\left(D_{i}^{\prime}\right) . \tag{5.1}
\end{equation*}
$$

Lemma 5.1. Let X be a finite set, $D=\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{3}, Z_{2}, Z_{1}, \breve{D}\right\} \in \Sigma_{2}(X, 8)$ and $Z_{7} \cap Z_{6} \neq \varnothing$. If by $R^{*}\left(Q_{5}\right)$ denoted all regular elements of the semigroup $B_{X}(D)$ satisfying the condition 5) of the Theorem 2.1, then

$$
\begin{aligned}
\left|R^{*}\left(Q_{5}\right)\right| & =\left|R\left(D_{1}^{\prime}\right)\right|+\left|R\left(D_{2}^{\prime}\right)\right|+\left|R\left(D_{3}^{\prime}\right)\right|+\left|R\left(D_{4}^{\prime}\right)\right|+\left|R\left(D_{5}^{\prime}\right)\right|+\left|R\left(D_{6}^{\prime}\right)\right|+\left|R\left(D_{7}^{\prime}\right)\right| \\
& +\left|R\left(D_{8}^{\prime}\right)\right|+\left|R\left(D_{9}^{\prime}\right)\right|+\left|R\left(D_{10}^{\prime}\right)\right|-\left|R\left(D_{1}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right)\right|-\left|R\left(D_{1}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)\right| \\
& -\left|R\left(D_{2}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)\right|-\left|R\left(D_{2}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right)\right|-\left|R\left(D_{3}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right)\right| \\
& -\left|R\left(D_{4}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right)\right|-\left|R\left(D_{5}^{\prime}\right) \cap R\left(D_{10}^{\prime}\right)\right|-\left|R\left(D_{6}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right)\right| .
\end{aligned}
$$

Proof. Let $\tilde{D}=\left\{Z, Z^{\prime}, Z^{\prime \prime}, Z^{\prime} \cup Z^{\prime \prime}\right\}$ be arbitrary element of the set $\left\{D_{1}^{\prime}, D_{2}^{\prime}, \cdots, D_{14}^{\prime}\right\}$ and $\alpha \in R\left(D^{\prime}\right)$. Then quasinormal representation binary relation α of the semigroup $B_{X}(D)$ has a form

$$
\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{T^{\prime}}^{\alpha} \times T^{\prime}\right) \cup\left(Y_{T^{\prime \prime}}^{\alpha} \times T^{\prime \prime}\right) \cup\left(Y_{T^{\prime} \cup T^{\prime \prime}}^{\alpha} \times\left(T^{\prime} \cup T^{\prime \prime}\right)\right),
$$

where $T, T^{\prime}, T^{\prime \prime} \in D, T \subset T^{\prime}, T \subset T^{\prime \prime}, T^{\prime} \backslash T^{\prime \prime} \neq \varnothing, T^{\prime \prime} \backslash T^{\prime} \neq \varnothing$ and by statement 5) of the Theorem 2.1 satisfies the following conditions:

$$
Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z^{\prime}, \quad Y_{T}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha} \supseteq Z^{\prime \prime}, \quad Y_{T^{\prime}}^{\alpha} \cap Z^{\prime} \neq \varnothing \quad \text { and } \quad Y_{T^{\prime \prime}}^{\alpha} \cap Z^{\prime \prime} \neq \varnothing
$$

Of this we have that the inclusions $R\left(D_{1}^{\prime}\right)=R\left(D_{11}^{\prime}\right)=R\left(D_{13}^{\prime}\right), R\left(D_{2}^{\prime}\right)=R\left(D_{12}^{\prime}\right)=R\left(D_{14}^{\prime}\right)$ are fulfilled. Therefore, of the equality (5.1) follows, that

$$
\begin{equation*}
R^{*}\left(Q_{5}\right)=\bigcup_{i=1}^{10} R\left(D_{i}^{\prime}\right) \tag{5.2}
\end{equation*}
$$

Now we show that the following equalities are hold:

$$
\begin{align*}
& R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right)=\varnothing, R\left(D_{1}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)=\varnothing, R\left(D_{1}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right)=\varnothing, R\left(D_{1}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right)=\varnothing, \\
& R\left(D_{1}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right)=\varnothing, R\left(D_{1}^{\prime}\right) \cap R\left(D_{10}^{\prime}\right)=\varnothing, R\left(D_{2}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right)=\varnothing, R\left(D_{2}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=\varnothing, \\
& R\left(D_{2}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right)=\varnothing, R\left(D_{2}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right)=\varnothing, R\left(D_{2}^{\prime}\right) \cap R\left(D_{10}^{\prime}\right)=\varnothing, R\left(D_{3}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)=\varnothing, \\
& R\left(D_{3}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right)=\varnothing, R\left(D_{3}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right)=\varnothing, R\left(D_{3}^{\prime}\right) \cap R\left(D_{10}^{\prime}\right)=\varnothing, R\left(D_{4}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=\varnothing, \\
& R\left(D_{4}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right)=\varnothing, R\left(D_{4}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right)=\varnothing, R\left(D_{5}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=\varnothing, R\left(D_{5}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right)=\varnothing, \\
& R\left(D_{5}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right)=\varnothing, R\left(D_{6}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right)=\varnothing, R\left(D_{6}^{\prime}\right) \cap R\left(D_{10}^{\prime}\right)=\varnothing, R\left(D_{7}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right)=\varnothing, \\
& R\left(D_{7}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right)=\varnothing, R\left(D_{7}^{\prime}\right) \cap R\left(D_{10}^{\prime}\right)=\varnothing, R\left(D_{8}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right)=\varnothing, R\left(D_{8}^{\prime}\right) \cap R\left(D_{10}^{\prime}\right)=\varnothing, \\
& R\left(D_{9}^{\prime}\right) \cap R\left(D_{10}^{\prime}\right)=\varnothing . \\
& R\left(D_{1}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right)=R\left(D_{1}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right), R\left(D_{2}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right)=R\left(D_{2}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right), \tag{5.3}\\
& R\left(D_{3}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=R\left(D_{1}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right), \\
& R\left(D_{3}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right)=R\left(D_{1}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right)=R\left(D_{1}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right) \\
& \\
& =R\left(D_{3}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right), \\
& R\left(D_{4}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right)=R\left(D_{2}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right), R\left(D_{4}^{\prime}\right) \cap R\left(D_{10}^{\prime}\right)=R\left(D_{4}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right) \cap R\left(D_{10}^{\prime}\right), \\
& R\left(D_{5}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right)=R\left(D_{2}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right)=R\left(D_{4}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right) \\
& \\
& \\
& =R\left(D_{2}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right), \\
& R\left(D_{6}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right)=R\left(D_{3}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right) .
\end{align*}
$$

a) Let $\alpha \in R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right)$. Then quasinormal representation binary relation α of the semigroup $B_{X}(D)$ has a form $\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{T^{\prime}}^{\alpha} \times T^{\prime}\right) \cup\left(Y_{T^{\prime \prime}}^{\alpha} \times T^{\prime \prime}\right) \cup\left(Y_{T^{\prime} \cup T^{\prime \prime}}^{\alpha} \times\left(T^{\prime} \cup T^{\prime \prime}\right)\right)$, where $T, T^{\prime}, T^{\prime \prime} \in D, T \subset T^{\prime}, T \subset T^{\prime \prime}$,
$T^{\prime} \backslash T^{\prime \prime} \neq \varnothing, \quad T^{\prime \prime} \backslash T^{\prime} \neq \varnothing$ and by statement 5) of the Theorem 2.1 satisfies the following conditions:

$$
\begin{aligned}
& Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{2}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{1}, Y_{T^{\prime}}^{\alpha} \cap Z_{2} \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap Z_{1} \neq \varnothing, \\
& Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{1}, Y_{T}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha} \supseteq Z_{2}, Y_{T^{\prime}}^{\alpha} \cap Z_{1} \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap Z_{2} \neq \varnothing
\end{aligned}
$$

Of this conditions follows that $Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{1} \cup Z_{2}=\breve{D}$, then $\left(Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha}\right) \cap Y_{T^{\prime \prime}}^{\alpha} \supseteq \breve{D} \cap Y_{T^{\prime \prime}}^{\alpha} \supseteq Z_{1} \cap Y_{T^{\prime \prime}}^{\alpha} \neq \varnothing$. But the inequality $\left(Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha}\right) \cap Y_{T^{\prime \prime}}^{\alpha} \neq \varnothing$ contradiction of the condition that representation of binary relation α is quazinormal. So, the equality $R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right)=\varnothing$ is hold.
The similar way we can show that the following equalities are hold:

$$
\begin{gathered}
R\left(D_{1}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)=\varnothing, \quad R\left(D_{1}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right)=\varnothing, \quad R\left(D_{1}^{\prime}\right) \cap R\left(D_{10}^{\prime}\right)=\varnothing, \\
R\left(D_{2}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right)=\varnothing, \quad R\left(D_{2}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=\varnothing, \quad R\left(D_{2}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right)=\varnothing, \\
R\left(D_{3}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)=\varnothing, \quad R\left(D_{3}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right)=\varnothing, \quad R\left(D_{3}^{\prime}\right) \cap R\left(D_{10}^{\prime}\right)=\varnothing, \\
R\left(D_{4}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=\varnothing, \quad R\left(D_{4}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right)=\varnothing, \quad R\left(D_{4}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right)=\varnothing, \\
R\left(D_{5}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=\varnothing, \quad R\left(D_{5}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right)=\varnothing, \quad R\left(D_{6}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right)=\varnothing, \\
R\left(D_{7}^{\prime}\right) \cap R\left(D_{10}^{\prime}\right)=\varnothing, \quad R\left(D_{8}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right)=\varnothing .
\end{gathered}
$$

b) Let $\alpha \in R\left(D_{1}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right)$. Then quasinormal representation binary relation α of the semigroup $B_{X}(D)$ has a form $\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{T^{\prime}}^{\alpha} \times T^{\prime}\right) \cup\left(Y_{T^{\prime \prime}}^{\alpha} \times T^{\prime \prime}\right) \cup\left(Y_{T^{\prime} \cup T^{\prime \prime}}^{\alpha} \times\left(T^{\prime} \cup T^{\prime \prime}\right)\right)$, where $T, T^{\prime}, T^{\prime \prime} \in D, T \subset T^{\prime}, T \subset T^{\prime \prime}$, $T^{\prime} \backslash T^{\prime \prime} \neq \varnothing, \quad T^{\prime \prime} \backslash T^{\prime} \neq \varnothing$ and by statement 5) of the Theorem 2.1 satisfies the following conditions:

$$
\begin{aligned}
& Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{2}, Y_{T}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha} \supseteq Z_{1}, Y_{T^{\prime}}^{\alpha} \cap Z_{2} \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap Z_{1} \neq \varnothing \\
& Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{5}, Y_{T}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha} \supseteq Z_{4}, Y_{T^{\prime}}^{\alpha} \cap Z_{5} \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap Z_{4} \neq \varnothing .
\end{aligned}
$$

Of this conditions follows that $Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{5} \cup Z_{2}=Z_{2}$, then $\left(Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha}\right) \cap Y_{T^{\prime \prime}}^{\alpha} \supseteq Z_{2} \cap Y_{T^{\prime \prime}}^{\alpha} \neq \varnothing$. But the inequality $\left(Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha}\right) \cap Y_{T^{\prime \prime}}^{\alpha} \neq \varnothing$ contradiction of the condition that representation of binary relation α is quazinormal. So, the equality $R\left(D_{1}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right)=\varnothing$ is hold.

The similar way we can show that the following equalities are hold:

$$
\begin{array}{cl}
R\left(D_{1}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right)=\varnothing, & R\left(D_{2}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right)=\varnothing, \quad R\left(D_{2}^{\prime}\right) \cap R\left(D_{10}^{\prime}\right)=\varnothing, \\
R\left(D_{3}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right)=\varnothing, & R\left(D_{5}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right)=\varnothing, \quad R\left(D_{6}^{\prime}\right) \cap R\left(D_{10}^{\prime}\right)=\varnothing, \\
R\left(D_{7}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right)=\varnothing, & R\left(D_{7}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right)=\varnothing, \quad R\left(D_{8}^{\prime}\right) \cap R\left(D_{10}^{\prime}\right)=\varnothing, \\
& R\left(D_{9}^{\prime}\right) \cap R\left(D_{10}^{\prime}\right)=\varnothing .
\end{array}
$$

c) If $\alpha \in R\left(D_{1}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right)$, then

$$
\begin{align*}
& Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{2}, Y_{T}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha} \supseteq Z_{1}, Y_{T^{\prime}}^{\alpha} \cap Z_{2} \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap Z_{1} \neq \varnothing, \\
& Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{2}, Y_{T}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha} \supseteq Z_{3}, Y_{T^{\prime}}^{\alpha} \cap Z_{2} \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap Z_{3} \neq \varnothing, \tag{5.4}\\
& Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{4}, Y_{T}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha} \supseteq Z_{3}, Y_{T^{\prime}}^{\alpha} \cap Z_{4} \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap Z_{3} \neq \varnothing
\end{align*}
$$

It follows that

$$
\begin{equation*}
Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{2}, Y_{T}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha} \supseteq Z_{1}, Y_{T^{\prime}}^{\alpha} \cap Z_{4} \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap Z_{3} \neq \varnothing, \tag{5.5}
\end{equation*}
$$

i.e., $\alpha \in R\left(D_{1}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right)$. So, the inclusion $R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right) \subseteq R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right)$ is hold.

Of the other hand, if $\alpha \in R\left(D_{1}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right)$, then the conditions (5.4) and (5.5) are fulfilled, i.e., $R\left(D_{1}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right) \subseteq R\left(D_{1}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right)$. Therefore, the equality
$R\left(D_{1}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right)=R\left(D_{1}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right)$ is true.
The similar way we can show that the following equalities are hold:

$$
\begin{aligned}
R\left(D_{2}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right) & =R\left(D_{2}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right), R\left(D_{3}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)=R\left(D_{1}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right), \\
R\left(D_{3}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right) & =R\left(D_{1}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right)=R\left(D_{1}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right) \\
& =R\left(D_{3}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right), \\
R\left(D_{4}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right) & =R\left(D_{2}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right), R\left(D_{4}^{\prime}\right) \cap R\left(D_{10}^{\prime}\right)=R\left(D_{4}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right) \cap R\left(D_{10}^{\prime}\right), \\
R\left(D_{5}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right) & =R\left(D_{2}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right)=R\left(D_{4}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right) \\
& =R\left(D_{2}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right), \\
R\left(D_{6}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right) & =R\left(D_{3}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right) .
\end{aligned}
$$

Now by equalities (5.2) and (5.3) we obtain the validity of Lemma 5.1.
The lemma is proved.
Lemma 5.2. Let $D^{\prime}=\left\{\tilde{Z}, Z, Z^{\prime}, Z \cup Z^{\prime}\right\}$ and $D^{\prime \prime}=\left\{\tilde{Y}, Y, Y^{\prime}, Y \cup Y^{\prime}\right\}$ are arbitrary elements of the set $\left\{D_{1}^{\prime}, D_{2}^{\prime}, D_{3}^{\prime}, D_{4}^{\prime}, D_{5}^{\prime}, D_{6}^{\prime}, D_{7}^{\prime}, D_{8}^{\prime}, D_{9}^{\prime}, D_{10}^{\prime}\right\}$, where $D^{\prime} \neq D^{\prime \prime}, Z \supseteq Y$ and $Z^{\prime} \supseteq Y^{\prime}$. If quasinormal representation of binary relation α of the semigroup $B_{X}(D)$ has a form

$$
\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{T^{\prime}}^{\alpha} \times T^{\prime}\right) \cup\left(Y_{T^{\prime \prime}}^{\alpha} \times T^{\prime \prime}\right) \cup\left(Y_{T^{\prime} \cup T^{\prime \prime}}^{\alpha} \times\left(T^{\prime} \cup T^{\prime \prime}\right)\right),
$$

for some $T, T^{\prime}, T^{\prime \prime} \in D, T \subset T^{\prime}, T \subset T^{\prime \prime}, T^{\prime} \backslash T^{\prime \prime} \neq \varnothing, T^{\prime \prime} \backslash T^{\prime} \neq \varnothing$ and $Y_{T}^{\alpha}, Y_{T^{\prime}}^{\alpha}, Y_{T^{\prime \prime}}^{\alpha} \notin\{\varnothing\}$, then $\alpha \in R\left(D^{\prime}\right)$ $\cap R\left(D^{\prime \prime}\right)$ iff $Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z, Y_{T}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha} \supseteq Z^{\prime}, Y_{T^{\prime}}^{\alpha} \cap Y \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap Y^{\prime} \neq \varnothing$.

Proof. If $\alpha \in R\left(D^{\prime}\right) \cap R\left(D^{\prime \prime}\right)$, then we have

$$
\begin{align*}
& Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z, Y_{T}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha} \supseteq Z^{\prime}, Y_{T^{\prime}}^{\alpha} \cap Z \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap Z^{\prime} \neq \varnothing \\
& Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Y, Y_{T}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha} \supseteq Y^{\prime}, Y_{T^{\prime}}^{\alpha} \cap Y \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap Y^{\prime} \neq \varnothing \tag{5.6}
\end{align*}
$$

Of the last condition we have

$$
\begin{equation*}
Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z, Y_{T}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha} \supseteq Z^{\prime}, Y_{T^{\prime}}^{\alpha} \cap Y \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap Y^{\prime} \neq \varnothing \tag{5.7}
\end{equation*}
$$

since $Z \supseteq Y$ and $Z^{\prime} \supseteq Y^{\prime}$ by supposition.
Of the other hand, if the conditions of (5.7) are hold, then, also hold the conditions of (5.6) i.e.
$\alpha \in R\left(D^{\prime}\right) \cap R\left(D^{\prime \prime}\right)$.
The lemma is proved.
Lemma 5.3. Let X be a finite set, $D^{\prime}=\left\{\tilde{Z}, Z, Z^{\prime}, Z \cup Z^{\prime}\right\}$ and $D^{\prime \prime}=\left\{\tilde{Y}, Y, Y^{\prime}, Y \cup Y^{\prime}\right\}$ are arbitrary elements of the set $\left\{D_{1}^{\prime}, D_{2}^{\prime}, D_{3}^{\prime}, D_{4}^{\prime}, D_{5}^{\prime}, D_{6}^{\prime}, D_{7}^{\prime}, D_{8}^{\prime}, D_{9}^{\prime}, D_{10}^{\prime}\right\}$, where $D^{\prime} \neq D^{\prime \prime}, Z \supseteq Y$ and $Z^{\prime} \supseteq Y^{\prime}$. Then the following equalities are hold:

$$
\begin{aligned}
& \left|R\left(D_{1}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right)\right|=7 \cdot 2^{\left|Z_{2} \backslash \breve{D}\right|} \cdot\left(2^{\left|Z_{5} \backslash Z_{1}\right|}-1\right) \cdot 2^{\left|Z_{1} \backslash \breve{D}\right|} \cdot\left(2^{\left|Z_{1} \backslash Z_{2}\right|}-1\right) \cdot 4^{|X \backslash \bar{D}|} \\
& \left|R\left(D_{1}^{\prime}\right) \cap R\left(D_{6}^{\prime}\right)\right|=7 \cdot 2^{\left|Z_{2} \backslash \breve{D}\right|} \cdot\left(2^{\left|Z_{2}\right| Z_{Z} \mid}-1\right) \cdot 2^{\left|Z_{1} \backslash \breve{D}\right|} \cdot\left(2^{\left|Z_{3} \backslash Z_{2}\right|}-1\right) \cdot 4^{|X \backslash \breve{D}|} \\
& \left|R\left(D_{2}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)\right|=7 \cdot 2^{\left|Z_{1} \backslash \breve{D}\right|} \cdot\left(2^{\left|Z_{1} \backslash Z_{2}\right|}-1\right) \cdot 2^{\left|Z_{2} \backslash \breve{D}\right|} \cdot\left(2^{\left|Z_{5} \backslash Z_{1}\right|}-1\right) \cdot 4^{|X \backslash \breve{D}|} \\
& \left|R\left(D_{2}^{\prime}\right) \cap R\left(D_{5}^{\prime}\right)\right|=7 \cdot 2^{\left|Z_{1} \backslash \breve{D}\right|} \cdot\left(2^{\left|Z_{1}\right| Z_{2} \mid}-1\right) \cdot 2^{\left|Z_{2} \backslash \breve{D}\right|} \cdot\left(2^{\left|Z_{2}\right| Z_{1} \mid}-1\right) \cdot 4^{|X \backslash \check{D}|} \\
& \left|R\left(D_{3}^{\prime}\right) \cap R\left(D_{7}^{\prime}\right)\right|=7 \cdot 2^{\left|Z_{5} \backslash \breve{D}\right|} \cdot\left(2^{\left|Z_{5} \backslash Z_{1}\right|}-1\right) \cdot 2^{\left|Z_{1} \backslash Z_{2}\right|} \cdot\left(2^{\left|Z_{4} \backslash Z_{5}\right|}-1\right) \cdot 4^{|X \backslash \breve{D}|} \\
& \left|R\left(D_{4}^{\prime}\right) \cap R\left(D_{8}^{\prime}\right)\right|=7 \cdot 2^{\left|Z_{1} \backslash Z_{2}\right|} \cdot\left(2^{\left|Z_{4} \backslash Z_{5}\right|}-1\right) \cdot 2^{\left|Z_{5} \breve{D}\right|} \cdot\left(2^{\left|Z_{5} \backslash Z_{1}\right|}-1\right) \cdot 4^{|X \backslash \breve{D}|} \\
& \left|R\left(D_{5}^{\prime}\right) \cap R\left(D_{10}^{\prime}\right)\right|=7 \cdot 2^{\left|z_{3} \backslash \breve{D}\right|} \cdot\left(2^{\left|Z_{3} \backslash Z_{2}\right|}-1\right) \cdot 2^{\left|Z_{2}\right| Z_{1} \mid} \cdot\left(2^{\left|Z_{4} \backslash Z_{3}\right|}-1\right) \cdot 4^{|X \backslash \breve{D}|} \\
& \left|R\left(D_{6}^{\prime}\right) \cap R\left(D_{9}^{\prime}\right)\right|=7 \cdot 2^{\left|Z_{2} \backslash Z_{1}\right|} \cdot\left(2^{\left|Z_{4} \backslash Z_{3}\right|}-1\right) \cdot 2^{\left|Z_{3} \backslash \breve{D}\right|} \cdot\left(2^{\left|Z_{3} \backslash Z_{2}\right|}-1\right) \cdot 4^{|X \backslash \breve{D}|}
\end{aligned}
$$

Proof. Let $D^{\prime}=\left\{\tilde{Z}, Z, Z^{\prime}, Z \cup Z^{\prime}\right\}$ and $D^{\prime \prime}=\left\{\tilde{Y}, Y, Y^{\prime}, Y \cup Y^{\prime}\right\}$ are arbitrary elements of the set
$\left\{D_{1}^{\prime}, D_{2}^{\prime}, D_{3}^{\prime}, D_{4}^{\prime}, D_{5}^{\prime}, D_{6}^{\prime}, D_{7}^{\prime}, D_{8}^{\prime}, D_{9}^{\prime}, D_{10}^{\prime}\right\}$, where $D^{\prime} \neq D^{\prime \prime}, Z \supseteq Y$ and $Z^{\prime} \supseteq Y^{\prime}$. If $\alpha \in R\left(D^{\prime}\right) \cap R\left(D^{\prime \prime}\right)$, then quasinormal representation of a binary relation α of semigroup $B_{X}(D)$ has a form

$$
\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{T^{\prime}}^{\alpha} \times T^{\prime}\right) \cup\left(Y_{T^{\prime \prime}}^{\alpha} \times T^{\prime \prime}\right) \cup\left(Y_{T^{\prime} \cup T^{\prime \prime}}^{\alpha} \times\left(T^{\prime} \cup T^{\prime \prime}\right)\right)
$$

for some $T, T^{\prime}, T^{\prime \prime} \in D, T \subset T^{\prime}, T \subset T^{\prime \prime}, T^{\prime} \backslash T^{\prime \prime} \neq \varnothing, T^{\prime \prime} \backslash T^{\prime} \neq \varnothing, Y_{T}^{\alpha}, Y_{T^{\prime}}^{\alpha}, Y_{T^{\prime \prime}}^{\alpha} \notin\{\varnothing\}$, then by statement 5) of the Theorem 2.1, we have

$$
\begin{equation*}
Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z, Y_{T}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha} \supseteq Z^{\prime}, Y_{T^{\prime}}^{\alpha} \cap Y \neq \varnothing, Y_{T^{\prime \prime}}^{\alpha} \cap Y^{\prime} \neq \varnothing . \tag{5.8}
\end{equation*}
$$

Let f_{α} is a mapping of the set X in the semilattice D satisfying the conditions $f_{\alpha}(t)=t \alpha$ for all $t \in X . f_{0 \alpha}$, $f_{1 \alpha}, f_{2 \alpha}$ and $f_{3 \alpha}$ are the restrictions of the mapping f_{α} on the sets $Z \cap Z^{\prime}, Z \backslash Z^{\prime}, Z^{\prime} \backslash Z, X \backslash\left(Z \cup Z^{\prime}\right)$ respectively. It is clear, that the intersection disjoint elements of the set $\left\{Z \cap Z^{\prime}, Z \backslash Z^{\prime}, Z^{\prime} \backslash Z, X \backslash\left(Z \cup Z^{\prime}\right)\right\}$ is empty set and $\left(Z \cap Z^{\prime}\right) \cup\left(Z \backslash Z^{\prime}\right) \cup\left(Z^{\prime} \backslash Z\right) \cup\left(X \backslash\left(Z \cup Z^{\prime}\right)\right)=X$.

We are going to find properties of the maps $f_{0 \alpha}, f_{1 \alpha}, f_{2 \alpha}$ and $f_{3 \alpha}$.

1) $t \in Z \cap Z^{\prime}$. Then by the properties (5.8) we have $Z \cap Z^{\prime} \subseteq\left(Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha}\right) \cap\left(Y_{T}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha}\right)=Y_{T}^{\alpha}$, since $Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha}$ $\supseteq Z$ and $Y_{T}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha} \supseteq Z^{\prime}$. i.e., $t \in Y_{T}^{\alpha}$ and $t \alpha=T$ by definition of the set Y_{T}^{α}. Therefore $f_{0 \alpha}(t)=T$ for all $t \in Z \cap Z^{\prime}$.
2) $t \in Z \backslash Z^{\prime}$. Then by the properties (5.8) we have $Z \backslash Z^{\prime} \subseteq Z \subseteq Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha}$, i.e., $t \in Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha}$ and $t \alpha \in\left\{T, T^{\prime}\right\}$ by definition of the set Y_{T}^{α} and $Y_{T^{\prime}}^{\alpha}$. Therefore $f_{1 \alpha}(t) \in\left\{T, T^{\prime}\right\}$ for all $t \in Z \backslash Z^{\prime}$.

Preposition we have that $Y_{T^{\prime}}^{\alpha} \cap Y \neq \varnothing$, i.e. $t^{\prime} \alpha=T^{\prime}$ for some $t^{\prime} \in Y$. Then $t^{\prime} \in Z$ sense $Y \subseteq Z$. If $t^{\prime} \in Z^{\prime}$, then $t^{\prime} \in Z^{\prime} \subseteq Y_{T}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha}$. Therefore $t^{\prime} \alpha \in\left\{T, T^{\prime \prime}\right\}$. That is contradiction of the equality $t^{\prime} \alpha=T^{\prime}$, while $T^{\prime} \neq T$ and $T^{\prime} \neq T^{\prime \prime}$ by definition of the semilattice D.

Therefore $f_{1 \alpha}\left(t^{\prime}\right)=T^{\prime}$ for some $t^{\prime} \in Y \backslash Z^{\prime}$.
3) $t \in Z^{\prime} \backslash Z$. Then by the properties (5.8) we have $Z^{\prime} \backslash Z \subseteq Z^{\prime} \subseteq Y_{T}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha}$, i.e., $t \in Y_{T}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha}$ and $t \alpha \in\left\{T, T^{\prime \prime}\right\}$ by definition of the set Y_{T}^{α} and $Y_{T^{\prime \prime}}^{\alpha}$. Therefore $f_{2 \alpha}(t) \in\left\{T, T^{\prime \prime}\right\}$ for all $t \in Z^{\prime} \backslash Z$.

Preposition we have that $Y_{T^{\prime \prime}}^{\alpha} \cap Y^{\prime} \neq \varnothing$, i.e. $t^{\prime \prime} \alpha=T^{\prime \prime}$ for some $t^{\prime \prime} \in Y^{\prime}$. Then $t^{\prime \prime} \in Z^{\prime}$ sense $Y^{\prime} \subseteq Z^{\prime}$. If $t^{\prime \prime} \in Z$ then $t^{\prime \prime} \in Z \subseteq Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha}$. Therefore $t^{\prime \prime} \alpha \in\left\{T, T^{\prime}\right\}$. That is contradiction of the equality $t^{\prime \prime} \alpha=T^{\prime \prime}$, while $T \neq T^{\prime \prime}$ and $T^{\prime} \neq T^{\prime \prime}$ by definition of the semilattice D. Therefore $f_{2 \alpha}\left(t^{\prime \prime}\right)=T^{\prime \prime}$ for some $t^{\prime \prime} \in Y^{\prime} \backslash Z$.
4) $t \in X \backslash\left(Z \cup Z^{\prime}\right)$. Then by definition quasinormal representation binary relation α and by property (5.8) we have $X \backslash\left(Z \cup Z^{\prime}\right) \subseteq X=Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha} \cup Y_{T^{\prime} \cup T^{\prime \prime}}^{\alpha}$, i.e. $t \alpha \in\left\{T, T^{\prime}, T^{\prime \prime}, T^{\prime} \cup T^{\prime \prime}\right\}$ by definition of the sets Y_{T}^{α}, $Y_{T^{\prime}}^{\alpha}, Y_{T^{\prime \prime}}^{\alpha}$ and $Y_{T^{\prime} \cup T^{\prime \prime}}^{\alpha}$. Therefore $f_{6 \alpha}(t) \in\left\{T, T^{\prime}, T^{\prime \prime}, T^{\prime} \cup T^{\prime \prime}\right\}$ for all $t \in X \backslash\left(Z \cup Z^{\prime}\right)$.

Therefore for every binary relation $\alpha \in R\left(D^{\prime}\right) \cap R\left(D^{\prime \prime}\right)$ exist ordered system $\left(f_{0 \alpha}, f_{1 \alpha}, f_{2 \alpha}, f_{3 \alpha}\right)$. It is obvious that for disjoint binary relations exist disjoint ordered systems.

Now let $f_{0}: Z \cap Z^{\prime} \rightarrow\{T\}, \quad f_{1}: Z \backslash Z^{\prime} \rightarrow\left\{T, T^{\prime}\right\}, f_{2}: Z^{\prime} \backslash Z \rightarrow\left\{T, T^{\prime \prime}\right\}$,
$f_{3}: X \backslash\left(Z \cup Z^{\prime}\right) \rightarrow\left\{T, T^{\prime}, T^{\prime \prime}, T^{\prime} \cup T^{\prime \prime}\right\}$ are such mappings, which satisfying the conditions:
5) $f_{0}(t)=T$ for all $t \in Z \cap Z^{\prime}$;
6) $f_{1}(t) \in\left\{T, T^{\prime}\right\}$ for all $t \in Z \backslash Z^{\prime}$ and $f_{1}\left(t_{1}^{\prime}\right)=T^{\prime}$ for some $t_{1}^{\prime} \in Y \backslash Z^{\prime}$;
7) $f_{2}(t) \in\left\{T, T^{\prime \prime}\right\}$ for all $t \in Z^{\prime} \backslash Z$ and $f_{2}\left(t_{2}^{\prime}\right)=T^{\prime \prime}$ for some $t_{2}^{\prime} \in Y^{\prime} \backslash Z$;
8) $f_{3 \alpha}(t) \in\left\{T, T^{\prime}, T^{\prime \prime}, T^{\prime} \cup T^{\prime \prime}\right\}$ for all $t \in X \backslash\left(Z \cup Z^{\prime}\right)$.

Now we define a map f of a set X in the semilattice D, which satisfies the condition:

$$
f(t)=\left\{\begin{array}{l}
f_{0}(t), \text { if } t \in Z \cap Z^{\prime}, \\
f_{1}(t), \text { if } t \in Z \backslash Z^{\prime}, \\
f_{2}(t), \text { if } t \in Z^{\prime} \backslash Z, \\
f_{3}(t), \text { if } t \in X \backslash\left(Z \cup Z^{\prime}\right) .
\end{array}\right.
$$

Now let $\beta=\bigcup_{x \in X}(\{x\} \times f(x)), Y_{T}^{\beta}=\{t \mid t \beta=T\}, \quad Y_{T^{\prime}}^{\beta}=\left\{t \mid t \beta=T^{\prime}\right\}, \quad Y_{T^{\prime \prime}}^{\beta}=\left\{t \mid t \beta=T^{\prime \prime}\right\}$ and $Y_{T^{\prime} \cup T^{\prime \prime}}^{\beta}=\left\{t \mid t \beta=T^{\prime} \cup T^{\prime \prime}\right\}$. Then binary relation β can be representation by form

$$
\beta=\left(Y_{T}^{\beta} \times T\right) \cup\left(Y_{T^{\prime}}^{\beta} \times T^{\prime}\right) \cup\left(Y_{T^{\prime \prime}}^{\beta} \times T^{\prime \prime}\right) \cup\left(Y_{T^{\prime} \cup T^{\prime \prime}}^{\beta} \times\left(T^{\prime} \cup T^{\prime \prime}\right)\right)
$$

and satisfying the conditions:

$$
Y_{T}^{\beta} \cup Y_{T^{\prime}}^{\beta} \supseteq Z, Y_{T}^{\beta} \cup Y_{T^{\prime}}^{\beta} \supseteq Z^{\prime}, Y_{T^{\prime}}^{\beta} \cap Y \neq \varnothing, Y_{T^{\prime}}^{\beta} \cap Y^{\prime} \neq \varnothing .
$$

(By suppose $f_{1}\left(t_{1}^{\prime}\right)=T^{\prime}$ for some $t_{1}^{\prime} \in Z \backslash Y^{\prime}$ and $f_{2}\left(t_{2}^{\prime}\right)=T^{\prime \prime}$ for some $t_{2}^{\prime} \in Y^{\prime} \backslash Z$), i.e., by Lemma 2.10 we have that $\beta \in R\left(D^{\prime}\right) \cap R\left(D^{\prime \prime}\right)$.

Therefore for every binary relation $\alpha \in R\left(D^{\prime}\right) \cap R\left(D^{\prime \prime}\right)$ and ordered system $\left(f_{0 \alpha}, f_{1 \alpha}, f_{2 \alpha}, f_{3 \alpha}\right)$ exist one to one mapping.

By ([1], Theorem 1.18.2) the number of the mappings $f_{0 \alpha}, f_{1 \alpha}, f_{2 \alpha}$ and $f_{3 \alpha}\left(\alpha \in R\left(D^{\prime}\right) \cap R\left(D^{\prime \prime}\right)\right)$ are respectively:

$$
1,2^{\left|Z\left(Y \cup Z^{\prime}\right)\right|} \cdot\left(2^{\left|Y Z^{\prime}\right|}-1\right), 2^{\left|Z^{\prime}\left(Y^{\prime} \cup Z\right)\right|} \cdot\left(2^{\left|Y^{\prime} Z\right|}-1\right), 4^{\left|X\left(Z \cup Z^{\prime}\right)\right|} .
$$

Note that the number $2^{\left|Z\left(Y \cup Z^{\prime}\right)\right|} \cdot\left(2^{||X Z|}-1\right) \cdot 2^{Z^{\prime}\left(Y^{\prime} \cup Z\right) \mid} \cdot\left(2^{\left|Y^{\prime}\right| z \mid}-1\right) \cdot 4^{\left|X \backslash\left(Z \cup Z^{\prime}\right)\right|}$ does not depend on choice of elements $T, T^{\prime}, T^{\prime \prime} \in D$ of the semilattice D, where $T \subset T^{\prime}, T \subset T^{\prime \prime}, T^{\prime} \backslash T^{\prime \prime} \neq \varnothing$ and $T^{\prime \prime} \backslash T^{\prime} \neq \varnothing$. Since the number of such different elements of the semilattice D are equal to 7 , the number of regular elements of the set $R\left(D^{\prime}\right) \cap R\left(D^{\prime \prime}\right)$ is equal to $\left|R\left(D^{\prime}\right) \cap R\left(D^{\prime \prime}\right)\right|=7 \cdot 2^{\mid Z\left(Y \cup Z^{\prime}\right)} \cdot\left(2^{\left|Y Z Z^{\prime}\right|}-1\right) \cdot 2^{\left|Z^{\prime}\left(Y^{\prime} \cup Z\right)\right|} \cdot\left(2^{\left|Y^{\prime}\right| z \mid}-1\right) \cdot 4^{\left|X\left(Z \cup Z^{\prime}\right)\right|}$.

The lemma is proved.
Lemma 5.4. Let X be a finite set, $D=\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{3}, Z_{2}, Z_{1}, \breve{D}\right\} \in \Sigma_{2}(X, 8)$ and $Z_{6} \cap Z_{7} \neq \varnothing$. If by $R^{*}\left(Q_{5}\right)$ denoted all regular elements of the semigroup $B_{X}(D)$ satisfying the condition 5) of the Theorem 2.1, then

$$
\begin{aligned}
& \left|R^{*}\left(Q_{5}\right)\right|=14 \cdot\left(2^{\left|Z_{2} \backslash Z_{1}\right|}-1\right) \cdot\left(2^{\left|Z_{1} \backslash Z_{2}\right|}-1\right) \cdot 4^{|X \bar{\sim}|}+14 \cdot\left(2^{\left|Z_{5}\right| Z_{1} \mid}-1\right) \cdot\left(2^{\left|Z_{1} \backslash Z_{5}\right|}-1\right) \cdot 4^{X X \backslash \bar{D} \mid} \\
& +14 \cdot\left(2^{\left|Z_{3} \backslash Z_{2}\right|}-1\right) \cdot\left(2^{\left|Z_{2}\right| Z_{3} \mid}-1\right) \cdot 4^{|X| \bar{D} \mid}+14 \cdot\left(2^{\left|Z_{5} \backslash Z_{4}\right|}-1\right) \cdot\left(2^{\left|Z_{4}\right| Z_{5} \mid}-1\right) \cdot 4^{|X| Z_{2} \mid} \\
& +14 \cdot\left(2^{\left|Z_{3} \backslash Z_{4}\right|}-1\right) \cdot\left(2^{\left|Z_{4} \backslash Z_{3}\right|}-1\right) \cdot 4^{|X| Z_{1} \mid} \\
& -7 \cdot 2^{\left|Z_{2} \backslash \breve{D}\right|} \cdot\left(2^{\left|Z_{5} \backslash Z_{1}\right|}-1\right) \cdot 2^{\left|Z_{1}\right| \bar{D} \mid} \cdot\left(2^{\left|Z_{1} \backslash Z_{2}\right|}-1\right) \cdot 4^{|X \backslash \breve{D}|}-7 \cdot 2^{\left|Z_{2} \backslash \bar{D}\right|} \cdot\left(2^{\left|Z_{2} \backslash Z_{1}\right|}-1\right) \cdot 2^{\left|Z_{1} \bar{D}\right|} \cdot\left(2^{\left|Z_{3} \backslash Z_{2}\right|}-1\right) \cdot 4^{|X \backslash \bar{D}|} \\
& -7 \cdot 2^{\left|Z_{1}\right| \breve{D} \mid} \cdot\left(2^{\left|Z_{1} \backslash Z_{2}\right|}-1\right) \cdot 2^{\left|Z_{2} \backslash \bar{D}\right|} \cdot\left(2^{\left|Z_{5} \backslash Z_{1}\right|}-1\right) \cdot 4^{|X \backslash \breve{D}|}-7 \cdot 2^{\left|Z_{1}\right| \breve{D} \mid} \cdot\left(2^{\left|Z_{3}\right| Z_{2} \mid}-1\right) \cdot 2^{\left|Z_{2}\right| \breve{D} \mid} \cdot\left(2^{\left|Z_{2} \backslash Z_{1}\right|}-1\right) \cdot 4^{|X \backslash \bar{D}|} \\
& -7 \cdot 2^{\left|Z_{5} \leq \bar{D}\right|} \cdot\left(2^{\left|Z_{5} \backslash Z_{1}\right|}-1\right) \cdot 2^{\left|Z_{1} 1 Z_{2}\right|} \cdot\left(2^{\left|Z_{4} \backslash Z_{5}\right|}-1\right) \cdot 4^{|X| \bar{D} \mid}-7 \cdot 2^{\left|Z_{1} \backslash Z_{2}\right|} \cdot\left(2^{\left|Z_{4} \backslash Z_{5}\right|}-1\right) \cdot 2^{\left|Z_{5} \leq \bar{D}\right|} \cdot\left(2^{\left|Z_{5} \backslash Z_{1}\right|}-1\right) \cdot 4^{|X| \bar{D} \mid} \\
& -7 \cdot 2^{\left|Z_{3} \backslash \bar{D}\right|} \cdot\left(2^{\left|Z_{3} \backslash Z_{2}\right|}-1\right) \cdot 2^{\left|Z_{2} \backslash Z_{1}\right|} \cdot\left(2^{\left|Z_{4} \backslash Z_{3}\right|}-1\right) \cdot 4^{|X \backslash \bar{D}|}-7 \cdot 2^{\left|Z_{2} \backslash Z_{1}\right|} \cdot\left(2^{\left|Z_{4} \backslash Z_{3}\right|}-1\right) \cdot 2^{\left|Z_{3} \backslash \bar{D}\right|} \cdot\left(2^{\left|Z_{3} \backslash Z_{2}\right|}-1\right) \cdot 4^{|X \backslash \bar{D}|}
\end{aligned}
$$

Proof. It is easy to see $\left|\Phi\left(Q_{5}, Q_{5}\right)\right|=2$ and $\left|\Omega\left(Q_{5}\right)\right|=7$, then by statement 5) of the Lemma 1.1, by Lemma 5.1 and by Lemma 5.3 we obtain the validity of Lemma 5.4.

The lemma is proved.
6) Let binary relation α of the semigroup $B_{X}(D)$ satisfying the condition 6) of the Theorem 2.1. In this case we have $Q_{6}=\left\{T, Z_{4}, Z, Z^{\prime}, \breve{D}\right\}$, where $T, Z, Z^{\prime} \in D, T \subset Z_{4} \subset Z \subset \bar{D}, T \subset Z_{4} \subset Z^{\prime} \subset \bar{D}, Z \backslash Z^{\prime} \neq \varnothing$ and $Z^{\prime} \backslash Z \neq \varnothing$. By definition of the semilattice D follows that

$$
Q_{6} \theta_{X I}=\left\{\left\{Z_{7}, Z_{4}, Z_{2}, Z_{1}, \breve{D}\right\},\left\{Z_{6}, Z_{4}, Z_{2}, Z_{1}, \breve{D}\right\}\right\} .
$$

If $D_{1}^{\prime}=\left\{Z_{7}, Z_{4}, Z_{2}, Z_{1}, \breve{D}\right\}, \quad D_{2}^{\prime}=\left\{Z_{7}, Z_{4}, Z_{1}, Z_{2}, \breve{D}\right\}, \quad D_{3}^{\prime}=\left\{Z_{6}, Z_{4}, Z_{2}, Z_{1}, \breve{D}\right\}, \quad D_{4}^{\prime}=\left\{Z_{6}, Z_{4}, Z_{1}, Z_{2}, \breve{D}\right\}$, then from Theorem 1.1 we obtain

$$
\begin{equation*}
R^{*}\left(Q_{6}\right)=R\left(D_{1}^{\prime}\right) \cup R\left(D_{2}^{\prime}\right) \cup R\left(D_{3}^{\prime}\right) \cup R\left(D_{4}^{\prime}\right) . \tag{6.1}
\end{equation*}
$$

Lemma 6.1. Let X be a finite set, $D=\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{3}, Z_{2}, Z_{1}, \breve{D}\right\} \in \Sigma_{2}(X, 8)$ and $Z_{6} \cap Z_{7} \neq \varnothing$. If by $R^{*}\left(Q_{6}\right)$ denoted all regular elements of the semigroup $B_{X}(D)$ satisfying the condition 6) of the Theorem 2.1, then

$$
\begin{aligned}
& \left|R^{*}\left(Q_{6}\right)\right|=2 \cdot\left(2^{\left|Z_{4} \backslash Z_{7}\right|}-1\right) \cdot 2^{\left|\left(Z_{1} \cap z_{2}\right) \backslash Z_{4}\right|} \cdot\left(3^{\left|Z_{1} \backslash Z_{2}\right|}-2^{\left|Z_{1}\right| Z_{2} \mid}\right) \cdot\left(3^{\left|Z_{2} \backslash z_{1}\right|}-2^{\left|Z_{2} \backslash Z_{1}\right|}\right) \cdot 5^{|X \backslash \breve{D}|} \\
& +2 \cdot\left(2^{\left|Z_{4}\right| Z_{Z} \mid}-1\right) \cdot 2^{\left|\left(Z_{1} \cap Z_{2}\right) \backslash Z_{4}\right|} \cdot\left(3^{\left|Z_{2}\right| Z_{1} \mid}-2^{\left|Z_{2} \backslash Z_{1}\right|}\right) \cdot\left(3^{\left|Z_{1}\right| Z_{2} \mid}-2^{\left|Z_{1}\right| Z_{2} \mid}\right) \cdot 5^{|X \backslash \check{D}|} \\
& +2 \cdot\left(2^{\left|Z_{4}\right| Z_{6} \mid}-1\right) \cdot 2^{\left|\left(Z_{1} \cap Z_{2}\right)\right| Z_{4} \mid} \cdot\left(3^{\left|Z_{1}\right| Z_{2} \mid}-2^{\left|Z_{1} \backslash Z_{2}\right|}\right) \cdot\left(3^{\left|Z_{2} \backslash Z_{1}\right|}-2^{\left|Z_{2}\right| Z_{1} \mid}\right) \cdot 5^{|X \backslash \check{D}|} \\
& +2 \cdot\left(2^{\left|Z_{4} \backslash Z_{6}\right|}-1\right) \cdot 2^{\left|\left(Z_{1} \cap Z_{2}\right)\right| Z_{4} \mid} \cdot\left(3^{\left|Z_{2} \backslash Z_{1}\right|}-2^{\left|Z_{2} \backslash Z_{1}\right|}\right) \cdot\left(3^{\left|Z_{1} \backslash Z_{2}\right|}-2^{\left|Z_{1}\right| Z_{2} \mid}\right) \cdot 5^{|X \backslash \breve{D}|} .
\end{aligned}
$$

Proof. First we show that the following equalities are hold:

$$
\begin{align*}
& R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right)=\varnothing, R\left(D_{1}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right)=\varnothing, R\left(D_{1}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)=\varnothing \\
& R\left(D_{2}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right)=\varnothing, R\left(D_{2}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)=\varnothing, R\left(D_{3}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)=\varnothing \tag{6.2}
\end{align*}
$$

For this we consider the following case.
a) Let $\alpha \in R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right)$. If a quasinormal representation of a regular binary relation α has the form $\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{4}^{\alpha} \times Z_{4}\right) \cup\left(Y_{Z}^{\alpha} \times Z\right) \cup\left(Y_{Z^{\prime}}^{\alpha} \times Z^{\prime}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$ for some $T, Z, Z^{\prime} \in D, T \subset Z_{4} \subset Z \subset \breve{D}$, $T \subset Z_{4} \subset Z^{\prime} \subset \breve{D}, \quad Z \backslash Z^{\prime} \neq \varnothing, Z^{\prime} \backslash Z \neq \varnothing$ and $Y_{T}^{\alpha}, Y_{Z}^{\alpha}, Y_{Z^{\prime}}^{\alpha} \notin\{\varnothing\}$. Then by statement 6) of the Theorem 2.1, we have

$$
\begin{aligned}
& Y_{T}^{\alpha} \supseteq Z_{7}, Y_{T}^{\alpha} \cup Y_{4}^{\alpha} \supseteq Z_{4}, Y_{T}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{Z^{\prime}}^{\alpha} \supseteq Z_{2}, Y_{T}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{Z}^{\alpha} \supseteq Z_{1}, \\
& Y_{4}^{\alpha} \cap Z_{4} \neq \varnothing, Y_{Z^{\prime}}^{\alpha} \cap Z_{2} \neq \varnothing, Y_{Z}^{\alpha} \cap Z_{1} \neq \varnothing \\
& Y_{T}^{\alpha} \supseteq Z_{7}, Y_{T}^{\alpha} \cup Y_{4}^{\alpha} \supseteq Z_{4}, Y_{T}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{Z^{\prime}}^{\alpha} \supseteq Z_{1}, Y_{T}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{Z}^{\alpha} \supseteq Z_{2}, \\
& Y_{4}^{\alpha} \cap Z_{4} \neq \varnothing, Y_{Z^{\prime}}^{\alpha} \cap Z_{1} \neq \varnothing, Y_{Z}^{\alpha} \cap Z_{2} \neq \varnothing
\end{aligned}
$$

It follows that $Y_{T}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{Z^{\prime}}^{\alpha} \supseteq Z_{2} \cup Z_{1}=\check{D}$ and $\left(Y_{T}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{Z^{\prime}}^{\alpha}\right) \cap Y_{Z}^{\alpha} \supseteq \breve{D} \cap Y_{Z}^{\alpha} \supseteq Z_{1} \cap Y_{Z}^{\alpha} \neq \varnothing$. But the inequality $\left(Y_{T}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{Z^{\prime}}^{\alpha}\right) \cap Y_{Z}^{\alpha} \neq \varnothing$ contradiction of the condition that representation of binary relation α is quazinormal. So, the equality $R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right)=\varnothing$ is hold.

The similar way we can show that the following equality is hold: $R\left(D_{3}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)=\varnothing$.
b) Let $\alpha \in R\left(D_{1}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right)$ and a quasinormal representation of a regular binary relation α has the form $\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{4}^{\alpha} \times Z_{4}\right) \cup\left(Y_{Z}^{\alpha} \times Z\right) \cup\left(Y_{Z^{\prime}}^{\alpha} \times Z^{\prime}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$ for some $T, Z, Z^{\prime} \in D$ and $T \subset Z_{4} \subset Z \subset \breve{D}$, $T \subset Z_{4} \subset Z^{\prime} \subset \breve{D}, \quad Z \backslash Z^{\prime} \neq \varnothing, Z^{\prime} \backslash Z \neq \varnothing$ and $Y_{T}^{\alpha}, Y_{Z}^{\alpha}, Y_{Z^{\prime}}^{\alpha} \notin\{\varnothing\}$. Then by statement 6) of the Theorem 2.1, we have

$$
\begin{aligned}
& Y_{T}^{\alpha} \supseteq Z_{7}, Y_{Z}^{\alpha} \cup Y_{4}^{\alpha} \supseteq Z_{4}, Y_{T}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{Z^{\prime}}^{\alpha} \supseteq Z_{2}, Y_{T}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{Z}^{\alpha} \supseteq Z_{1}, \\
& Y_{4}^{\alpha} \cap Z_{4} \neq \varnothing, Y_{Z^{\prime}}^{\alpha} \cap Z_{2} \neq \varnothing, Y_{Z}^{\alpha} \cap Z_{1} \neq \varnothing \\
& Y_{T}^{\alpha} \supseteq Z_{6}, Y_{Z}^{\alpha} \cup Y_{4}^{\alpha} \supseteq Z_{4}, Y_{T}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{Z^{\prime}}^{\alpha} \supseteq Z_{2}, Y_{T}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{Z}^{\alpha} \supseteq Z_{1}, \\
& Y_{4}^{\alpha} \cap Z_{4} \neq \varnothing, Y_{Z^{\prime}}^{\alpha} \cap Z_{2} \neq \varnothing, Y_{Z}^{\alpha} \cap Z_{1} \neq \varnothing
\end{aligned}
$$

It follows that $Y_{T}^{\alpha} \supseteq Z_{7} \cup Z_{6}=Z_{4}$ and $Y_{T}^{\alpha} \cap Y_{4}^{\alpha} \supseteq Z_{4} \cap Y_{4}^{\alpha} \neq \varnothing$. But the inequality $Y_{T}^{\alpha} \cap Y_{4}^{\alpha} \neq \varnothing$ contradiction of the condition that representation of binary relation α is quazinormal. So, the equality $R\left(D_{1}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right)=\varnothing$ is hold.

The similar way we can show that the following equalities are hold:

$$
R\left(D_{1}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)=\varnothing, R\left(D_{2}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right)=\varnothing, R\left(D_{2}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)=\varnothing
$$

By equalities (6.1) and (6.2) follows that $\left|R^{*}\left(Q_{6}\right)\right|=\left|R\left(D_{1}^{\prime}\right)\right|+\left|R\left(D_{2}^{\prime}\right)\right|+\left|R\left(D_{3}^{\prime}\right)\right|+\left|R\left(D_{4}^{\prime}\right)\right|$.
It is easy to see $\left|\Phi\left(Q_{6}, Q_{6}\right)\right|=2$ and $\left|\Omega\left(Q_{6}\right)\right|=2$, then by statement 6) of the Lemma 1.1 we obtain validity of Lemma 6.1.

The lemma is proved.
7) Let binary relation α of the semigroup $B_{X}(D)$ satisfying the condition 7) of the Theorem 2.1. In this
case we have $Q_{7}=\left\{T, T^{\prime}, T^{\prime \prime}, T^{\prime} \cup T^{\prime \prime}, \breve{D}\right\}$, where $T, T^{\prime}, T^{\prime \prime} \in D, \quad T \subset T^{\prime} \subset \breve{D}, T \subset T^{\prime \prime} \subset \breve{D}, \quad T^{\prime} \backslash T^{\prime \prime} \neq \varnothing$, $T^{\prime \prime} \backslash T^{\prime} \neq \varnothing$. By definition of the semilattice D follows that

$$
Q_{7} \theta_{X I}=\left\{\left\{Z_{7}, Z_{5}, Z_{4}, Z_{2}, \breve{D}\right\},\left\{Z_{6}, Z_{4}, Z_{3}, Z_{1}, \breve{D}\right\}\right\} .
$$

If $D_{1}^{\prime}=\left\{Z_{7}, Z_{5}, Z_{4}, Z_{2}, \breve{D}\right\}, \quad D_{2}^{\prime}=\left\{Z_{7}, Z_{4}, Z_{5}, Z_{2}, \breve{D}\right\}, \quad D_{3}^{\prime}=\left\{Z_{6}, Z_{4}, Z_{3}, Z_{1}, \breve{D}\right\}, \quad D_{4}^{\prime}=\left\{Z_{6}, Z_{3}, Z_{4}, Z_{1}, \breve{D}\right\}$, then from the Theorem 1.1 we obtain

$$
\begin{equation*}
R^{*}\left(Q_{7}\right)=R\left(D_{1}^{\prime}\right) \cup R\left(D_{2}^{\prime}\right) \cup R\left(D_{3}^{\prime}\right) \cup R\left(D_{4}^{\prime}\right) . \tag{7.1}
\end{equation*}
$$

Lemma 7.1. Let X be a finite set, $D=\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{3}, Z_{2}, Z_{1}, \breve{D}\right\} \in \Sigma_{2}(X, 8)$ and $Z_{6} \cap Z_{7} \neq \varnothing$. If by $R^{*}\left(Q_{7}\right)$ denoted all regular elements of the semigroup $B_{X}(D)$ satisfying the condition 7) of the Theorem 2.1, then

$$
\begin{aligned}
\left|R^{*}\left(Q_{7}\right)\right| & =2 \cdot\left(2^{\left|Z_{5} \backslash Z_{4}\right|}-1\right) \cdot\left(2^{\left|Z_{4} \backslash Z_{5}\right|}-1\right) \cdot\left(5^{\left|\bar{D} \backslash Z_{2}\right|}-4^{\left|\check{D} \backslash Z_{2}\right|}\right) \cdot 5^{|X \backslash \breve{D}|} \\
& +2 \cdot\left(2^{\left|Z_{4} \backslash Z_{5}\right|}-1\right) \cdot\left(2^{\left|Z_{5} \backslash Z_{4}\right|}-1\right) \cdot\left(5^{\left|\check{D} \backslash Z_{2}\right|}-4^{\left|\check{D} \backslash Z_{2}\right|}\right) \cdot 5^{|X \backslash \bar{D}|} \\
& +2 \cdot\left(2^{\left|Z_{4} \backslash Z_{3}\right|}-1\right) \cdot\left(2^{\left|Z_{3} \backslash Z_{4}\right|}-1\right) \cdot\left(5^{\left|\check{D} \backslash Z_{1}\right|}-4^{\left|\check{D} \backslash Z_{1}\right|}\right) \cdot 5^{|X \backslash \breve{D}|} \\
& +2 \cdot\left(2^{\left|Z_{3} \backslash Z_{4}\right|}-1\right) \cdot\left(2^{\left|Z_{4} \backslash Z_{3}\right|}-1\right) \cdot\left(5^{\left|\check{D} \backslash Z_{1}\right|}-4^{\left|\check{D} \backslash Z_{1}\right|}\right) \cdot 5^{|X \backslash \breve{D}|}
\end{aligned}
$$

Proof. First we show that the following equalities are hold:

$$
\begin{align*}
& R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right)=\varnothing, R\left(D_{1}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right)=\varnothing, R\left(D_{1}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)=\varnothing \\
& R\left(D_{2}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right)=\varnothing, R\left(D_{2}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)=\varnothing, R\left(D_{3}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)=\varnothing \tag{7.2}
\end{align*}
$$

For this we consider the following case.
a) Let $\alpha \in R\left(D_{1}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)$. If a quasinormal representation of a regular binary relation α has the form $\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{T^{\prime}}^{\alpha} \times T^{\prime}\right) \cup\left(Y_{T^{\prime \prime}}^{\alpha} \times T^{\prime \prime}\right) \cup\left(Y_{T^{\prime} \cup T^{\prime \prime}}^{\alpha} \times\left(T^{\prime} \cup T^{\prime \prime}\right)\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$ for some $T, T^{\prime}, T^{\prime \prime} \in D$ and $T \subset T^{\prime} \subset \breve{D}, T \subset T^{\prime \prime} \subset \breve{D}, T^{\prime} \backslash T^{\prime \prime} \neq \varnothing, T^{\prime \prime} \backslash T^{\prime} \neq \varnothing$ and $Y_{T}^{\alpha}, Y_{T^{\prime}}^{\alpha}, Y_{T^{\prime \prime}}^{\alpha} \notin\{\varnothing\}$. Then by statement 7) of the theorem 2.1, we have

$$
\begin{aligned}
& Y_{T}^{\alpha} \supseteq Z_{5} \cap Z_{4} \supseteq Z_{7}, Y_{T}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha} \supseteq Z_{5}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{4}, Y_{T^{\prime \prime}}^{\alpha} \cap Z_{5} \neq \varnothing, Y_{T^{\prime}}^{\alpha} \cap Z_{4} \neq \varnothing, Y_{0}^{\alpha} \cap \breve{D} \neq \varnothing . \\
& Y_{T}^{\alpha} \supseteq Z_{4} \cap Z_{3} \supseteq Z_{6}, Y_{T}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha} \supseteq Z_{3}, Y_{Z}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{4}, Y_{T^{\prime \prime}}^{\alpha} \cap Z_{3} \neq \varnothing, Y_{T^{\prime}}^{\alpha} \cap Z_{4} \neq \varnothing, Y_{0}^{\alpha} \cap \breve{D} \neq \varnothing
\end{aligned}
$$

It follows that $Y_{T}^{\alpha} \supseteq Z_{7} \cup Z_{6}=Z_{4}$ and $Y_{T}^{\alpha} \cap Y_{T^{\prime}}^{\alpha} \supseteq Z_{4} \cap Y_{T^{\prime}}^{\alpha} \neq \varnothing$. But the inequality $Y_{T}^{\alpha} \cap Y_{T^{\prime}}^{\alpha} \neq \varnothing$ contradiction of the condition that representation of binary relation α is quazinormal. So, the equality $R\left(D_{1}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)=\varnothing$ is hold.

The similar way we can show that the following equality is hold: $R\left(D_{2}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right)=\varnothing$.
b) Let $\alpha \in R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right)$. If a quasinormal representation of a regular binary relation α has the form $\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{T^{\prime}}^{\alpha} \times T^{\prime}\right) \cup\left(Y_{T^{\prime \prime}}^{\alpha} \times T^{\prime \prime}\right) \cup\left(Y_{T^{\prime} \cup T^{\prime \prime}}^{\alpha} \times\left(T^{\prime} \cup T^{\prime \prime}\right)\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$ for some $T, T^{\prime}, T^{\prime \prime} \in D$ and $T \subset T^{\prime} \subset \check{D}, \quad T \subset T^{\prime \prime} \subset \check{D}, T^{\prime} \backslash T^{\prime \prime} \neq \varnothing, T^{\prime \prime} \backslash T^{\prime} \neq \varnothing$ and $Y_{T}^{\alpha}, Y_{T^{\prime}}^{\alpha}, Y_{T^{\prime \prime}}^{\alpha} \notin\{\varnothing\}$. Then by statement 7) of the theorem 2.1, we have

$$
\begin{aligned}
& Y_{T}^{\alpha} \supseteq Z_{5} \cap Z_{4}, Y_{T}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha} \supseteq Z_{5}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{4}, Y_{T^{\prime \prime}}^{\alpha} \cap Z_{5} \neq \varnothing, Y_{T^{\prime}}^{\alpha} \cap Z_{4} \neq \varnothing, Y_{0}^{\alpha} \cap \breve{D} \neq \varnothing \\
& Y_{T}^{\alpha} \supseteq Z_{4} \cap Z_{5}, Y_{T}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha} \supseteq Z_{4}, Y_{Z}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{5}, Y_{T^{\prime \prime}}^{\alpha} \cap Z_{4} \neq \varnothing, Y_{T^{\prime}}^{\alpha} \cap Z_{5} \neq \varnothing, Y_{0}^{\alpha} \cap \breve{D} \neq \varnothing
\end{aligned}
$$

It follows that $Y_{T}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha} \supseteq Z_{5} \cup Z_{4}=Z_{2}$ and $\left(Y_{T}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha}\right) \cap Y_{T^{\prime}}^{\alpha} \supseteq Z_{2} \cap Y_{T^{\prime}}^{\alpha} \supseteq Z_{5} \cap Y_{T^{\prime}}^{\alpha} \neq \varnothing$. But the inequality $\left(Y_{T}^{\alpha} \cup Y_{T^{\prime \prime}}^{\alpha}\right) \cap Y_{T^{\prime}}^{\alpha} \neq \varnothing$ contradiction of the condition that representation of binary relation α is quazinormal. So, the equality $R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right)=\varnothing$ is hold.

The similar way we can show that the following equalities are hold:

$$
R\left(D_{1}^{\prime}\right) \cap R\left(D_{3}^{\prime}\right)=\varnothing, R\left(D_{2}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)=\varnothing, R\left(D_{3}^{\prime}\right) \cap R\left(D_{4}^{\prime}\right)=\varnothing
$$

By equalities (7.1) and (7.2) follows that $\left|R^{*}\left(Q_{7}\right)\right|=\left|R\left(D_{1}^{\prime}\right)\right|+\left|R\left(D_{2}^{\prime}\right)\right|+\left|R\left(D_{3}^{\prime}\right)\right|+\left|R\left(D_{4}^{\prime}\right)\right|$.
It is easy to see $\left|\Phi\left(Q_{7}, Q_{7}\right)\right|=2$ and $\left|\Omega\left(Q_{7}\right)\right|=2$ then by statement 7) of the Lemma 1.1 we obtain validity of Lemma 7.1.

The lemma is proved.
8) Let binary relation α of the semigroup $B_{X}(D)$ satisfying the condition 8) of the Theorem 2.1. In this case we have $Q_{8}=\left\{T, T^{\prime}, Z_{4}, Z_{4} \cup T^{\prime}, Z, \check{D}\right\}$. By definition of the semilattice D follows that

$$
Q_{8} \vartheta_{X I}=\left\{\left\{Z_{7}, Z_{5}, Z_{4}, Z_{2}, Z_{1}, \breve{D}\right\},\left\{Z_{6}, Z_{4}, Z_{3}, Z_{2}, Z_{1}, \breve{D}\right\}\right\}
$$

If $D_{1}^{\prime}=\left\{Z_{7}, Z_{5}, Z_{4}, Z_{2}, Z_{1}, \breve{D}\right\}, D_{2}^{\prime}=\left\{Z_{6}, Z_{4}, Z_{3}, Z_{2}, Z_{1}, \breve{D}\right\}$, then from Theorem 1.1 we obtain

$$
\begin{equation*}
R^{*}\left(Q_{8}\right)=R\left(D_{1}^{\prime}\right) \cup R\left(D_{2}^{\prime}\right) \tag{8.1}
\end{equation*}
$$

Lemma 8.1. Let X be a finite set, $D=\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{3}, Z_{2}, Z_{1}, \breve{D}\right\} \in \Sigma_{2}(X, 8)$ and $Z_{6} \cap Z_{7} \neq \varnothing$. If by $R^{*}\left(Q_{8}\right)$ denoted all regular elements of the semigroup $B_{X}(D)$ satisfying the condition 8) of the Theorem 2.1, then

$$
\begin{aligned}
R^{*}\left(Q_{8}\right)= & 2 \cdot\left(2^{\left|Z_{3} \backslash Z_{2}\right|}-1\right) \cdot\left(2^{\left|Z_{4} \backslash Z_{3}\right|}-1\right) \cdot\left(3^{\left|Z_{2} \backslash Z_{1}\right|}-2^{\left|Z_{2} \backslash Z_{1}\right|}\right) \cdot 6^{|X \backslash \check{D}|} \\
& +2 \cdot\left(2^{\left|z_{5} \backslash Z_{1}\right|}-1\right) \cdot\left(2^{\left|Z_{4} \backslash Z_{5}\right|}-1\right) \cdot\left(3^{\left|z_{2} \backslash Z_{1}\right|}-2^{\left|Z_{2} \backslash Z_{1}\right|}\right) \cdot 6^{|X \backslash \check{D}|}
\end{aligned}
$$

Proof. First we show that the following equalities are hold:

$$
\begin{equation*}
R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right)=\varnothing \tag{8.2}
\end{equation*}
$$

Let $\alpha \in R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right)$. If a quasinormal representation of a regular binary relation α has the form

$$
\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{T^{\prime}}^{\alpha} \times T^{\prime}\right) \cup\left(Y_{4}^{\alpha} \times Z_{4}\right) \cup\left(Y_{T^{\prime} \cup Z_{4}}^{\alpha} \times\left(T^{\prime} \cup Z_{4}\right)\right) \cup\left(Y_{Z}^{\alpha} \times Z\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right),
$$

where $T \in\left\{Z_{7}, Z_{6}\right\}, \quad T^{\prime} \in\left\{Z_{5}, Z_{3}\right\}, \quad Z_{4} \cup T^{\prime}, Z \in\left\{Z_{2}, Z_{1}\right\}, \quad Z_{4} \cup T^{\prime} \neq Z, \quad T \subset T^{\prime}, T^{\prime} \backslash Z_{4} \neq \varnothing$, $Z_{4} \backslash T^{\prime} \neq \varnothing,\left(Z_{4} \cup T^{\prime}\right) \backslash Z \neq \varnothing, Z \backslash\left(Z_{4} \cup T^{\prime}\right) \neq \varnothing$ and $Y_{T}^{\alpha}, Y_{T^{\prime}}^{\alpha}, Y_{4}^{\alpha}, Y_{Z}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$. Then by statement 8) of the Theorem 2.1, we have

$$
\begin{aligned}
& Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{5}, Y_{T}^{\alpha} \cup Y_{4}^{\alpha} \supseteq Z_{4}, Y_{T}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{Z}^{\alpha} \supseteq Z_{2}, \\
& Y_{T^{\prime}}^{\alpha} \cap Z_{5} \neq \varnothing, Y_{4}^{\alpha} \cap Z_{4} \neq \varnothing, Y_{Z}^{\alpha} \cap Z_{2} \neq \varnothing \\
& Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq Z_{3}, Y_{T}^{\alpha} \cup Y_{4}^{\alpha} \supseteq Z_{4}, Y_{T}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{T^{\prime} \cup Z_{4}}^{\alpha} \supseteq Z_{1}, \\
& Y_{T^{\prime}}^{\alpha} \cap Z_{3} \neq \varnothing, Y_{4}^{\alpha} \cap Z_{4} \neq \varnothing, Y_{T^{\prime} \cup Z_{4}}^{\alpha} \cap Z_{1} \neq \varnothing .
\end{aligned}
$$

It follows that $Y_{T}^{\alpha} \cup Y_{4}^{\alpha} \supseteq Z_{4}$ and $\left(Y_{T}^{\alpha} \cap Y_{4}^{\alpha}\right) \cap Y_{Z}^{\alpha} \supseteq Z_{4} \cap Y_{T^{\prime}}^{\alpha} \supseteq Z_{2} \cap Y_{T^{\prime}}^{\alpha} \neq \varnothing$. But the inequality $\left(Y_{T}^{\alpha} \cap Y_{4}^{\alpha}\right) \cap Y_{Z}^{\alpha} \neq \varnothing$ contradiction of the condition that representation of binary relation α is quazinormal. So, the equality $R\left(D_{1}^{\prime}\right) \cap R\left(D_{2}^{\prime}\right)=\varnothing$ is hold.

By equalities (8.1) and (8.2) follows that $\left|R^{*}\left(Q_{8}\right)\right|=\left|R\left(D_{1}^{\prime}\right)\right|+\left|R\left(D_{2}^{\prime}\right)\right|$.
It is easy to see $\left|\Phi\left(Q_{8}, Q_{8}\right)\right|=1$ and $\left|\Omega\left(Q_{8}\right)\right|=1$, then by statement 8) of the Lemma 1.1 we obtain validity of Lemma 8.1.

The lemma is proved.
Let X be a finite set and $Z_{7} \cap Z_{6} \neq \varnothing$ and us assume that

$$
r_{1}=\left|R^{*}\left(Q_{1}\right)\right|+\left|R^{*}\left(Q_{2}\right)\right|+\left|R^{*}\left(Q_{3}\right)\right|+\left|R^{*}\left(Q_{4}\right)\right|+\left|R^{*}\left(Q_{5}\right)\right|+\left|R^{*}\left(Q_{6}\right)\right|+\left|R^{*}\left(Q_{7}\right)\right|+\left|R^{*}\left(Q_{8}\right)\right| .
$$

Theorem 2.2. Let X is a finite set, $D=\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{3}, Z_{2}, Z_{1}, \breve{D}\right\} \in \Sigma_{2}(X, 8)$ and $Z_{6} \cap Z_{7} \neq \varnothing$. If R_{D} is a set of all regular elements of the semigroup $B_{X}(D)$, then $\left|R_{D}\right|=r_{1}$.

Proof. This Theorem immediately follows from the Theorem 2.1.
The theorem is proved.
I was seen in ([6], Theorem 2) that if α and β are regular elements of $B_{X}(D)$ then $V(D, \alpha \circ \beta)$ is an XI-subsemilattice of D. Therefore $\alpha \circ \beta$ is regular element of $B_{X}(D)$.

Theorem 2.3. Let $D=\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{3}, Z_{2}, Z_{1}, \breve{D}\right\} \in \Sigma_{2}(X, 8)$ and $Z_{6} \cap Z_{7} \neq \varnothing$. The set of all regular elements is a subsemigroup of the semigroup $B_{X}(D)$ which is defined by semilattices of the class $\Sigma_{2}(X, 8)$.

Proof. This Theorem immediately follows from the Theorem 2 in [6].
The theorem is proved.

References

[1] Diasamidze, Ya. and Makharadze, Sh. (2013) Complete Semigroups of Binary Relations. Monograph, Kriter, Turkey, 1-520 p.
[2] Diasamidze, Ya. and Makharadze, Sh. (2010) Complete Semigroups of Binary Relations. Monograph. M., Sputnik+, 657 p. (In Russian)
[3] Diasamidze, Ya. (2009) The Properties of Right Units of Semigroups Belonging to Some Classes of Complete Semigroups of Binary Relations. Proceedings of A. Razmadze Mathematical Institute, 150, 51-70.
[4] Tsinaridze, N. and Makharadze, Sh. (2015) Regular Elements of the Complete Semigroups $B_{X}(D)$ of Binary Relations of the Class $\Sigma_{2}(X, 8)$. Applied Mathematics, 6, 447-455.
[5] Diasamidze, Ya., Makharadze, Sh. and Diasamidze, Il. (2008) Idempotents and Regular Elements of Complete Semigroups of Binary Relations. Journal of Mathematical Sciences, 153, 481-499. http://dx.doi.org/10.1007/s10958-008-9132-1
[6] Diasamidze, Ya. and Bakuridze, Al. (2015) On Some Properties of Regular Elements of Complete Semigroups Defined by Semilaices of the Class $\Sigma_{4}(X, 8)$. International Journal of Engineering Science and Innovative Technology (IJESIT), 4, 8-15.

[^0]: How to cite this paper: Tsinaridze, N., Makharadze, S. and Fartenadze, G. (2015) Regular Elements of the Semigroup $B_{X}(D)$ Defined by Semilattices of the Class $\Sigma_{2}(X, 8)$ and Their Calculation Formulas. Applied Mathematics, 6, 2257-2278.
 http://dx.doi.org/10.4236/am.2015.614199

