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Abstract— Recent intrusion detection systems (IDS) use regular
expressions instead of static patterns as a more efficient way to
represent hazardous packet payload contents. This paper focuses
on regular expressions pattern matching engines implemented in
reconfigurable hardware. We present a Nondeterministic Finite
Automata (NFA) based implementation, which takes advantage
of new basic building blocks to support more complex regular
expressions than the previous approaches. Our methodology is
supported by a tool that automatically generates the circuitry for
the given regular expressions, outputting VHDL representations
ready for logic synthesis. Furthermore, we include techniques to
reduce the area cost of our designs and maximize performance
when targeting FPGAs. Experimental results show that our tool is
able to generate a regular expression engine to match more than
500 IDS regular expressions (from the Snort ruleset) using only
25K logic cells and achieving 2 Gbps throughput on a Virtex2
and 2.9 on a Virtex4 device. Concerning the throughput per area
required per matching non-Meta character, our design is 3.4 and
10× more efficient than previous ASIC and FPGA approaches,
respectively.

I. INTRODUCTION

High speed and always-on network access is becoming com-
monplace around the world, creating a demand for increased
network security. Intrusion Detection Systems (IDS) such as
Snort [1] are currently the most efficient solution for network
security. Instead of only checking the header of each incoming
packet, IDS also scan the payload of the packets to detect
suspicious contents. These systems must be able to frequently
update their ruleset with new descriptions of known attacks.
This required flexibility and the fast processing rates needed
might be only achieved using reconfigurable technology by
exploiting specialized circuitry and parallelism.

In the past years, many researchers have worked on recon-
figurable IDS focusing mostly on the payload scan, which
turns out to be the most computationally intensive task [2].
Numerous techniques for reconfigurable IDS static pattern
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matching have been proposed [3]–[9]. Many of them employ
regular expressions to represent the search static patterns,
implementing either nondeterministic or deterministic finite
automata (NFAs or DFAs) [4]–[6]. However, the representation
of a single static pattern using a regular expression usually
requires relatively simple regular expressions (RegExp) syntax
such as concatenation, union operators (a|b) or wildcards (a∗).

Although in the past years IDS used mostly static patterns
to scan packet payloads, recently, regular expressions have
become frequently utilized to describe more efficiently haz-
ardous contents. For example, the recent ruleset of Snort IDS
includes about 2,000 static patterns and more than 500 reg-
ular expressions which require complex syntax support such
as constrained repetitions (i.e. a{10}, a{10+}, a{10, 12}).
Although wildcards, Union and Concatenation operators have
been efficiently implemented previously in hardware [3], the
constrained repetitions are more complicated since they require
keeping track of multiple states. One solution to this problem
is the use of DFAs which allow only one active state at any
time. However, a theoretical worst case study shows that a
single regular expression of length n can be expressed as a
DFA of up to O(

∑n
) states (where

∑
is the DFA finite

set of input symbols, that is 28 symbols for the extended
ASCII code), while an NFA representation would require only
O(n) states [10]. Therefore, DFAs can produce inefficient
designs in terms of area (logic or memory). On the other
hand, when designed properly, NFAs can be more compact and
area efficient. DFAs are more suitable for software solutions,
since running sequential code makes difficult and slow to keep
track of multiple active states. Since hardware is inherently
concurrent, NFAs (implemented using specialized circuitries)
is an attractive solution. This solution may fully exploit
concurrency and it is relatively easy to keep track of multiple
active states.

Our work addresses efficient implementations of NFA-
based regular expression pattern matching engines. The main
contributions of this paper are the following:
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• We introduce new basic building blocks for constrained
repetition operators, which are able to detect all overlap-
ping matches. When combined with previous research in
hardware NFA implementations, efficient designs can be
achieved.

• To achieve more efficient hardware designs, we recompile
the extracted IDS regular expressions and discard or
replace all the syntax features that have been inserted to
only accelerate software implementations (i.e. conditional
branches, lookahead statements etc.).

• We employ several techniques to reduce the area require-
ments of our designs, such as RegExp prefix sharing, pre-
decoding, centralized substring matching and character
classes blocks, etc. We take advantage of Xilinx SRL16
shift registers to store multiple states with fewer hardware
resources.

• We introduce a methodology to automatically generate
the regular expression pattern matching engine from
the regular expressions. We show how an hierarchical
representation of the regular expressions is currently
used to facilitate the automatic VHDL generation using
basic building blocks. A tool that outputs the VHDL
representation of the engine suitable for logic synthesis
is presented.

• It shows we are able to generate efficient regular ex-
pression engines, in terms of area and performance, out-
performing previous ASIC and reconfigurable hardware
related approaches.

• Finally, we present a complete implementation of a
payload scanner 1 for the SNORT v2.4 rule set (consisting
of 2,200 static patterns and 509 RegExp).

The remainder of the paper is organized as follows: In
section II, we discuss previous work on hardware regular
expression matching and in section III we present the Snort-
PCRE regular expression syntax. In Section IV, we describe
the top-level approach of our regular expression engine, the
basic building blocks and the techniques employed to reduce
area and increase performance. In Section V, we present
implementation results and compare them with related work.
Finally, in Section VI we conclude the paper.

II. RELATED WORK

Matching Regular Expressions in hardware has been widely
studied in the past. In 1982, Floyd and Ullman discussed
the implementation of NFAs in hardware [11], proposing
among other aspects an hierarchical implementation produced
by the McNaughton-Yamada algorithm [12]. More recently,
Sidhu and Prasanna presented an FPGA implementation to
match regular expressions formulated in NFAs and designed
the basic blocks for Concatenation, Kleene-star and Union
operators. Franklin et al. used NFAs to represent all the
Snort static patterns into a single regular expression, requiring
substantially lower area [4]. Moscola et al. used DFAs to

1assuming an extracted stream of packet payloads, after reassembling and
reordering of packets.

TABLE I

SNORT-PCRE BASIC SYNTAX CURRENTLY SUPPORTED BY OUR

APPROACH.

Feature Description

a All ASCII characters, excluding meta-characters, match a
single instance of themselves

[\∧$.—?*+() Meta-characters. Each one has a special meaning
. Matches any character except new line
\? Backslash escapes meta-characters, returning them to their

literal meaning
[abc] Character class. Matches one character inside the brackets.

In this case, equivalent to (a|b|c)
[a-fA-F0-9] Character class with range.
[∧abc] Negated character class. Matches every character except

each non-Meta character inside breackets.
RegExp* Kleene Star. Matches zero or more times the regular

expression.
RegExp+ Plus. Matches one or more times the regular expression.
RegExp? Question. Matches zero or one times the regular expres-

sion.
RegExp{N} Exactly. Matches N times the regular expression.
RegExp{N, } AtLeast. Matches N times or more the regular expression.
RegExp{N,M} Between. Matches between N and M times the regular

expression.
\xFF Matches the ASCII character with the numerical value

indicated by the hexadecimal number FF.
\000 Matches the ASCII character with the numerical value

indicated by the octal number 000.
\d, \w and \s PCRE Shorthand character classes matching digits 0-

9, word characters (letters and digits) and whitespace,
respectively.

\n, \r and \t Match an LF character, CR character and a tab character
respectively.

(RegExp) Groups regular expressions, so operators can be applied.
RegExp1RegExp2 Concatenation. Regular Expression 1, followed by Regular

Expression 2
RegExp1 | RegExp2 Union. Regular Expression 1 or Regular Expression 2.
∧RegExp Matches Regular Expression 1 only if at the beginning of

the string.
RegExp$ Dollar. Matches Regular Expression only if at the end of

the string.
(?=RegExp),
(?!RegExp),
(?<=text), (?<!text)

Lookaround. Without consuming characters, stops the
matching if the RegExp inside does not match.

(?(?=RegExp) then
|else)

Conditional. If the lookahead succeeds, continues the
matching with the then RegExp. If not, with the else
RegExp.

\1, \2. . .\N Backreferences. Have the same value as the text matched
by the corresponding pair of capturing parethesis, from 1st
through Nth.

Flags Description

i Regular Expression becomes case insensitive.
s Dot matches all characters, including newline.
m ∧ and $ match after and before newlines.

match static patterns, since they discovered that static patterns
can be represented in DFAs of practically O(n) states [5].
Clark and Schimmel used pre-decoding to share the character
comparators of their NFA implementations and thus reducing
even more hardware resources [6]. Lin et al. minimized the
area cost of their NFA designs by sharing parts of the regular
expressions [13]. Brodie et al. converted the IDS patterns and
RegExp into DFAs and implemented them with pipelined FSM
structures specially designed for regular expression matching
[14]. Their architecture uses memories to store transition and
indirection tables and aims an ASIC implementation. Finally,
Baker et al. described a microcontroller implementation in
FPGA for matching IDS regular expressions using DFAs [15].
Their design updates its ruleset by only changing the memory
contents. The Snort RegExp are converted to DFAs in order
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Fig. 1. Block diagram of our Regular Expression Engine.

to be ported into the proposed microcontroller. Some of the
related works use DFAs to match the IDS patterns resulting in
designs with significant area/memory requirements [5], [14],
[15]. The rest employ NFAs without solving the problem of
constrained repetitions and they consequently repeat the same
circuit to implement the above syntax [16].

III. SNORT PERL-COMPATIBLE REGULAR EXPRESSIONS

In this section, we discuss the regular expressions used
in packet payload scanning. More precisely, we describe
the features of the regular expressions included in Snort
IDS. Snort adopted the Perl-compatible regular expression
syntax (PCRE) [17]. For example, alert tcp any ->

(pcre:"/∧PASS\s*\n/smi";) is a Snort rule. Based on
the above rule, Snort will detect any packet with payload
including a string that matches the “/∧PASS\s*\n/smi”
regular expression. Apart from the well known features of a
strict definition of regular expressions, PCRE includes more
features such as constrained repetitions and several flags.
Table I describes the PCRE basic syntax supported by our
regular expression pattern matching engines. The PCRE syntax
not currently supported is related to some anchors (\A, \Z,
\z), word boundaries (\b, \B), differences between Greedy
and Lazy quantifiers (we report both matches), continuing
from the previous match (\G), and some Snort specific flags
(\U, \R and \B). Since current Snort ruleset does not use
these features, not currently supported by our engines, we
have been able to implement a regular expression matching
engine including all the 509 regular expressions of Snort. As
described in the following section, the flags determine the
functionality of some blocks, while the constrained repetitions
and the rest of the features are either mapped directly to
hardwired blocks or replaced with equivalent descriptions that
suit our hardware implementation.

IV. REGULAR EXPRESSIONS ENGINE

In this section, we describe our regular expression engine.
Figure 1 depicts the top-level diagram of our design. The
incoming data feed a centralized ASCII decoder (8 to 256
bits). The output of the decoder provides a single wire per
character to the regular expression modules. This way, we

TABLE II

THE BASIC BUILDING BLOCKS OF OUR REGULAR EXPRESSION ENGINE.

Block Description

Character Matches a single character, based on the design of single character
described in [3].

Dollar ($) Validates the match if in the end of the packet/string. Based on
the Character Block [3].

Dot Matches any character except new line. Based on the Character
Block [3] the input character is the “newline” (\n) character
inverted.

Caret (ˆ ) Starts a match every time a packet/string arrives. Based
on the Character Block [3], the input character is the
“beginning of packet” character.

Character Class Matches a set of characters. Based on the Character Block [3],
the input character is one of the outputs of character class
module. The character class module ORs the characters
included in a character class.

RegexBlock Encapsulates hardware blocks that implement regular expressions
or sub-blocks of regular expressions.

Question (?) One or zero times the regular expression, based on the design
of Kleene-star (r∗) described in [3]. The incoming OR gate (to
the flip-flop) has to be removed, consequently, the input token (i)
goes directly to the flip-flop.

Plus (+) One or more times the regular expression, based on the design
of Kleene-star (r∗) described in [3]. The outgoing OR gate has
to be removed, consequently, the output token (o) is the output
of the flip-flop, instead of the output of the second OR gate.

Kleene (*) Zero or more times the regular expression, as described in [3].
Exactly Matches exactly N times. Constraint Repetition for single char-

acters and sets of characters. Described in Section IV-A.
AtLeast Matches atleast N times. Constraint Repetition for single char-

acters and sets of characters. Described in Section IV-A.
Between Matches between N and M times. Constraint Repetition for

single characters and sets of characters. Described in Section IV-
A.

OrBlock Union operator for regular expressions, as described in [3].
Pattern Matches a string of characters. It has an interface for the DCAM

Module. The input token has to be delayed for N cycles through
an SRL16 in order to be correctly aligned with the output of the
static pattern matching module.

match each character only once and all the regular expres-
sion modules receive the output lines from the decoder. For
each Snort regular expression there is a separate RegExp
module. Regular expressions with common prefixes share
the same prefix sub-module. The static strings (more than
one character) that are included in the regular expressions
are matched separately in a DCAM (Decoded CAM) static
pattern matching module described in our previous work [7].
DCAM pre-decodes incoming characters, aligns (shifts) the
decoded data and ANDs them to produce the match signal
for each pattern. Resource sharing is due to the centralized
ASCII decoder and the shared shift registers. We match the
sub-patterns using DCAM instead of PHmem [8] (Perfect-
Hashing memory which is a more area efficient technique)
because it can be integrated easier with the rest of the Regular
Expression Engine. Similarly, the character classes (union of
several characters e.g. (a|b)) are also implemented separately
and share their results among the RegExp modules. Both static
pattern matching and character classes modules are feed from
the ASCII decoder. Each RegExp module outputs a match for
the corresponding regular expression and subsequently, all the
partial matches are encoded on a priority encoder.

A. Basic NFA blocks

We describe next the basic building blocks of our approach.
We use the blocks described by Sidhu and Prasanna for
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Fig. 2. The Exactly block: a{N}.

Kleene-star (*), Union (|) and Concatenation [3]. Based on
those blocks, we have implemented blocks such as Caret,
Dollar, Dot, Question-mark, Plus, etc. Furthermore, we intro-
duce three new blocks to implement constrained repetitions
(Exactly, AtLeast, and Between). Table II depicts the list with
a brief description of our basic building blocks.

Concerning the constrained repetition blocks, our imple-
mentation minimizes the number of resources used, especially
when comparing to previous DFA and NFA approaches [4]–
[6], [13], [14], [16]. In the previous approaches, the con-
strained repetition blocks have to be unrolled, and thus require
substantially larger amount of hardware resources.

Finally, we should note that our designs detect all

overlapping matches, which is not the case for previous DFA
approaches [5], [13], [14]. Consider the following example
to illustrate overlapping matches. In case of the regular
expression: “((ad?|b) + bcd)|d(bb)?” and the input stream:
“adbbcb”, the following overlapping matches are detected by
our engines: “d”, “dbb” and “adbbcb”.

Exactly block: Figure 2 illustrates the Exactly block
(a{N}). When a token (it represents the logic value ’1’, that
is passed between the blocks, indicating they are allowed to
try a match) is received, the exactly block forwards it after
N matches. The circuit is implemented as follows: when a
token occurs, it enters the shift register if there is a match
of the a character (otherwise the register is reset). The shift
register (successive FFs and SRL16 resources) is N bits long
and one bit wide. The token is shifted for N cycles if there
is no mismatch. In case of a mismatch, the shift register
must be reset. Each SRL16 (16 bits long) is implemented
in a single LUT and does not have a reset pin. Therefore,
a mechanism is required to reset the contents of the shift
register. To do so, we inserted flip-flops (FFs) between the
SRL16s. The first FF is reset whenever a mismatch occurs.
The rest of the FFs are reset for 16 cycles in order to erase
the contents of the SRL16s. When the shift register is shorter
than 17 bits (N < 17) then the reset of the second FF lasts
N −1 cycles. We use a 4-bit counter in order to reset the FFs
for 16 cycles. The use of SRL16 minimizes the cost of the
block, since an SRL16 and a FF can be mapped on a single
logic cell. As an example, the expression a{1000} requires
only 65 logic cells. Finally, notice that a new token can be
immediately processed in the cycle after a reset, since the
first FF and SRL16 continue to shift their contents. This is

FFi

Match

olog2N Bit

Counter

Reset

Count N

Fig. 3. The AtLeast block: a{N, }.

the reason why this block and all our basic building blocks
detect overlapped matches.

AtLeast block: Figure 3 depicts the AtLeast block
(a{N, }). When a token occurs, the block outputs a token
after N matches. The output should remain active until the
first mismatch. This is the actual reason why there is no
need to record states for multiple intermediate tokens. Even
if new tokens arrive after another token has already started
matching, the output will not be affected. Thus, the AtLeast
block can be implemented using only a counter that keeps
track of the number of matches (up to N). About 72% of
the constrained repetitions in Snort ruleset are of this kind.
Therefore, the above implementation reduces substantially
the area requirements of our hardware engines.

i
o

Chain of SRLs

log2(M-N) 

Bit Counter

log2N Bit

Counter

Match Reset

Count N

Start Counting

M-N

N Matches

Candidate

o

Start Reset

Output “1” for 

(M-N) matches

Fig. 4. The Between block: a{N, M}.

Between block: For the Between block (a{N,M}), the
interval between N and M ’a’ matches have to be detected.
As depicted in Figure 4, the incoming token enters the shift
register (length N ) and starts/enables the first counter (counts
up to N as long as there is no mismatch of a). After N

simultaneous matches, if the output of the SRL16 is ‘1’ and
the counter has not been reset in the meantime, the second
counter is enabled. The second counter (counts M − N )
outputs ‘1’ for M − N simultaneous matches. Furthermore,
it is reset and starts counting from ‘0’ whenever it is enabled
by the first counter, even if it has already started counting for
a previous token. In case of an intermediate mismatch, the
counters are reset. It could be assumed that the AtLeast block
and the second counter would be sufficient to implement
this block without the use of SRL16s. However, this is not
possible since the intermediate tokens (i.e., tokens that arrive
after a token starts matching until a mismatch or a match)
would be lost and therefore other (overlapped) matches might
be missed.
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We should note that the above constrained repetition blocks
support repetitions of only a single character or a character
class. They do not support repetitions of expressions that re-
quire more than one cycle to match (e.g., (ab){10}), especially
when the length of the expression between the parenthesis is
unknown or not constant (e.g., ((ca) ∗ |b){10}, ((ab|b){10})).
In these cases, the expressions are unrolled. Fortunately, more
than 95% of the constrained repetitions included in Snort
regular expressions are of single character or character class.

We describe next an implementation example of the regular
expression b+[∧\n]{2} illustrated in Figure 5. The above
regular expression detects one or more “b” characters followed
by two characters that are not “new lines”. The module
consists of a Plus block (upper-left), a character block (down-
left), and an exactly{2} block (on the right). Consider an input
string “bba \ n”. In the first cycle the input “i” will be high,
and the first “b” will be accepted. Hence, the first FF will be
activated. At the second cycle the second “b” will keep the
first flip-flop high, and activate the second flip-flop. At the
third cycle, an “a” arrives, the first flip-flop goes low, while
the other two FFs are high and the module outputs a match
for the input string “bba”. Subsequently, an “\n” character
arrives, which resets the exactly block, and therefore, we do
not have a second match for the input string ‘ba \ n”.

B. Reducing Area

We apply several techniques to reduce the area cost of
our designs. Apart from the centralized ASCII decoder, first
introduced by Clark and Schimmel [6], we perform the follow-
ing optimizations. As mentioned in the previous subsection,
we employ the SRL16 modules to implement single bit shift
registers requiring a single logic cell per shift register 17-bits
long (one LUT and one flip-flop). Additionally, we share all
the common prefixes of the ruleset so that regular expressions
with a common prefix share the output of the same prefix
sub-module. Static patterns and character classes are also
implemented separately in order to share their results among
the RegExp modules. The above optimizations, excluding the
use of SRL16, save more than 30% of the total area resources.
Below we discuss each optimization in more detail.

Xilinx SRL16: Usually, the states of the NFA are stored in
flip-flops, each flip-flop representing a single state. An efficient
solution to store certain states, which saves a lot of hardware

resources, is to take advantage of the capability of Xilinx
FPGAs to configure LUT resources as shift registers (SRL16s).
Many basic blocks, such as constrained repetitions, need to
store a large number of states, which can also be implemented
by shift registers. Those shift registers are true FIFOs, and
consequently, can be implemented with SRL16s which require
a single logic cell (a single LUT plus a flip-flop) to store 17
states. This extensive use of SRL16s, to efficiently represent
a great number of states, is one of the main optimizations to
reduce the area of our designs.

Prefix Sharing: In Snort ruleset a large number of regu-
lar expressions have the same prefixes. Consequently, these
prefixes can be shared as depicted in Figure 1. Without any
additional hardware the common prefixes are implemented
separately, as complete regular expressions, and their outputs
provide an input to the suffixes of the corresponding regular
expressions.

Character Classes sharing: Character Classes are widely
used in Snort ruleset. Each character class is a Union of
several characters. We implement these blocks separately and
share their outputs in order to reduce the area cost. There
are more than 3,500 character class cases in the Snort regular
expressions, which are reduced to about 50 unique cases.

Static Patterns sharing: Similar to the character classes,
we implement a static pattern matching module to match
static strings included in the regular expression set. We utilize
our previously proposed technique DCAM [7] and share the
outputs of the module. The Snort v2.4 Regular Expressions set
includes more than 1,500 static patterns (600 unique patterns
of 7,600 characters in total), and therefore, a large amount of
resources is saved.

C. Increase Performance

Two techniques have been employed to improve the perfor-
mance of our designs. The first one keeps the fan-out of certain
modules low, while the second one pipelines (when possible)
combinational logic. More precisely, similarly to our previous
work [18], we implemented fan-out trees to transfer the outputs
of the decoder, the static pattern matching (DCAM) and the
character class blocks to the regular expression modules. By
doing so, we reduce the delays of the above connections at
the cost of a few registers. Second, we pipeline modules such
as the decoder, the DCAM and the character class modules.
Pipelining the above modules is based on the observation that
the minimum amount of logic in each pipeline stage can fit
in a 4-input LUT and its corresponding register. This decision
was made based on the structure of Xilinx logic cells. The area
overhead cost of this pipeline is zero since each logic cell used
for combinational logic also includes a flip-flop. Finally, the
output of the pipelined modules is correctly aligned with the
rest of the design.

D. Methodology - Hierarchical Implementation

We describe next the methodology followed to generate
RegExp Engines (see Figure 6).
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First, the regular expressions are extracted from the SNORT
ruleset. Then, an automatic pre-processing step is responsible
to rewrite regular expressions in order to discard any software
related features (conditionals-lookahead) and to change other
features (back references) to suit hardware implementation.
A conditional-lookahead statement chooses, between multiple
RegExp suffixes, a single one that should be followed, based
on the condition. In hardware, we implement all the multiple
RegExp suffixes and discard the conditional statement. A
back-reference stores the string that matched a sub-RegExp
and uses it in another part of the RegExp. We replace the
back-references with the sub-RegExp they refer to. Therefore,
our designs will not miss any matches compared to the
PCRE-software implementation and might output some extra
matches. Finally, the flags included in regular expressions are
considered, in order to change (if necessary) the functionality
of some blocks (flags such as case (in)sensitive, multi-line,
DOT includes \n, etc.).

After rewriting, each regular expression is transformed
into a list of tokens (in this case with the same meaning
used by lexical analysis), and the sequences of tokens are
assigned to ”basic building blocks” which can be automatically
mapped to hardwired modules. Performing multiple passes,
our tool creates an hierarchical structure of each regular
expression in order to generate the VHDL descriptions for
the hardware engines. Figure 7 illustrates an example of an
hierarchical decomposition of the regular expression “∧CEL\
s[∧\n]{100, }”. First, the tool parses the regular expression

CARET PATTERN
CHAR

CLASS
QUANTIFIER

ATLEAST

CHAR

CLASS(N)

^ CEL \s

{100,}

[^\n]

CARET PATTERN
CHAR

CLASS
ATLEAST

CHAR

CLASS(N)

^ CEL \s {100,}[^\n]

Fig. 7. Example of an hierarchical decomposition.

and creates the parenthesis hierarchy (upper part of Figure 7).
Then, the parser detects and links the quantifiers (in this case
the AtLeast block) and the Union operators as depicted in the
bottom part of Figure 7.

Subsequently, the generation of the VHDL representation
is straightforward. A bottom-up scheme is used to construct
each regular expression pattern matching module based on the
hierarchy extracted by the tool.

After the VHDL generation, the functionality of the design
is automatically verified. Based on the regular expression set,
our tool generates input traces to be used by the hardware im-
plementations and by a software regular expression engine. As
shown in Figure 6, the hardware implementations are verified
by comparing their outputs with the results of the software
RegExp engine. Finally, we should note that the compilation
of the Snort RegExp into VHDL hardware description requires
a few tens of seconds, while the place & route process of the
design takes about a couple of hours. Consequently, the design
can be updated/regenerated in acceptable time limits.

V. EVALUATION & COMPARISON

In this section, we evaluate the efficiency of our regular
expression pattern matching engines and compare them against
previous work. Our design has been implemented using Xilinx
Virtex2 and Virtex4 devices (Xilinx ISE 8.1 software has
been used). We measure performance in terms of processing
throughput (post place & route results), and area cost in terms
of required FPGA logic cells per non-Meta character2. We
count non-meta characters to measure the density of the match-
ing regular expressions. This might not be the most indicative
metric to measure the size of a regular expression, however, it
enables us to compare against related regular expression and
static pattern matching approaches. Furthermore, in order to

2Meta characters are those characters which have a special mean-
ing/function in the regular expression. The rest are the non-Meta characters.
A character class [A − Z] or a constrained repetition a{100} counts as one
non-Meta character.
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TABLE III

CONSTRAINT REPETITIONS IN SNORT V2.4 PCRE REGULAR

EXPRESSIONS.

# of ConstraintAverage # of Area (# of logic cells)
Repetitions Iterations # of Iterations

in Snort v2.4 in Snort v2.4 10 (-20)100 (-200)1,000 (-2,000)

Exactly - A{x} 209 185 8 12 65
AtLeast - A{x,} 470 956 7 15 25

Between - A{x,y} 2 124-238 16 37 106

compare in terms of area with designs that utilize memory, we
measure the memory area cost based on the fact that 12 bytes
of memory occupy area similar to a logic cell [19]. Finally,
we evaluate our schemes and compare them with the related
research, using a Performance Efficiency Metric (PEM), which
takes into account both performance and area cost, described
in the following equation:

PEM =
Performance

Area Cost
=

Throughput

Logic Cells +
MEMbytes

12

Non−Meta Characters

(1)

We implemented a Regular Expression Engine using the
rules of the Snort v2.4 open-source intrusion detection sys-
tem [1]. Snort v2.4 has 509 unique regular expressions of
19,580 non-Meta characters in total. Table III illustrates some
statistics about the constrained repetitions of Snort regular
expressions. Almost 700 of constrained repetitions were found,
which on average define more than 700 iterations. Addition-
ally, Table III shows the area cost of the constrained repetition
blocks for various number of iterations. The exactly block of
1,000 iterations requires only 65 logic cells. The Atleast block
of 1,000 iterations is more efficient since does not require
SRL16s and occupies 25 logic cells. Finally, a Between block
of 1,000-2,000 uses 106 logic cells.

TABLE IV

A COMPETE PAYLOAD SCANNER: MATCHING REGULAR EXPRESSIONS

AND STATIC PATTERNS.

Description
Input

Device
Throu-

LUTs Logic
LC/char

MEM
# RegExp

bits ghput
/FFs Cells Kbits

or
/cycle (Gbps) Patterns

RegExp Engine

8
Virtex2

2.000

16,720
25,074 1.39 0 509

Regular Expressions
-4000

19,656
PHmem 4,165

9,466 0.28 630 2,188
Matching 8,252

Total 8
Virtex2

2.000 34,540 630 509+2,188
-4000

Our design processes one incoming byte per cycle and
supports 2 Gbps throughput in a Virtex2-3000-6 and 2.9 Gbps
in a Virtex4-40-12 device. The Xilinx post place & route
report of the design indicates maximum clock frequencies of
250 MHz for Virtex2 and 362 MHz for Virtex4. The design
requires about 25,000 logic cells to implement 509 regular
expressions, conducing in this case to 1.28 logic cells per
non-Meta character. Table IV depicts the detailed results of our
RegExp Engine and also the implementation of a static pattern
matching design using our previously proposed static pattern

TABLE V

COMPARISON BETWEEN OUR REGEXP ENGINE AND OTHER REGULAR

EXPRESSION APPROACHES.

Description
RegExp/ Input

Device
Throu-

Logic
Logic

MEM
#chars PEMStatic bits ghput

Cells6 Cells
Kbits

Patterns7 /cycle (Gbps) /char

Our Proposed
RegExp 8

Virtex2 2.0
25,074 1.28 0 19,580

1.56
Scheme Virtex4 2.9 2.27

Lin et al. [13] NFA
RegExp 8

VirtexE
N/A4 13,734 0.66 0 20,914 N/A4

sharing sub-RegExp -2000
Brodie et al. [14]

RegExp 64
Virtex2 4.0 860 N/A 8 per engine5 N/A5

DFAs ASIC 16.0 ∼247K5 22.2 2,296 11,126 0.665

Baker et al. [15]
RegExp 8

Virtex4
1.4 N/A 2.56 6,000 16,715 0.22

DFA μ-controllers -100
Sidhu et al. [3]

RegExp 8
Virtex

0.46 1,920 66 0 29 0.01
NFAs -100

Franklin et al. [4] Static
8

VirtexE
0.4 40,232 2.52 0 16,028 0.16

NFAs Patterns -2000
Clark et al. [6] Static 8 Virtex2 2.0 29,281 1.70 0

17,537
1.19

Decoded NFAs Patterns 32 -8000 7.0 54,890 3.1 0 2.26
Moscola et al. [5] Static

32
VirtexE

1.18 8,134 19.4 0 420 0.06
DFAs Patterns -2000

matching technique Perfect-Hashing memory (PHmem) [8].
PHmem applies a perfect hashing technique to the incoming
data in order to specify which static pattern (of the search
pattern set) would possibly match and subsequently, read the
pattern from a memory and compare it against incoming
data. Hence, a payload scanner that matches all the regular
expressions and the static patterns of the recent Snort ruleset
needs about 34,500 logic cells and supports 2 Gbps, when
processing one byte per cycle in a Virtex2.

In Table V, we attempt a fair comparison with previously
reported research on regular expression matching designs.
Apart from the performance and area results we calculate the
PEM of the designs in order to measure and compare their
efficiency. When compared against designs that process the
same number of incoming bits per cycle, our designs achieve
similar or better throughput. Furthermore, our RegExp engine
requires the second lowest area cost. More precisely, com-
pared to Lin et al. [13], our design requires about 2× more
resources. However, Lin et al. do not report any performance
results focusing only on minimizing the hardware resources
of their NFA designs. Brodie et al. implemented DFAs using
FSM-based engines aiming ASIC implementations [14]. Their
design matches 315 Snort-PCRE regular expressions. How-
ever, due to their high area cost it cannot be implemented
in current FPGA devices. An engine of Brodie et al. that
matches approximately a single regular expression has been

4There are no performance results (frequency-throughput) for this design.
5The authors provide the logic and memory cost per Engine. They need

287 engines to match 315 PCRE-Snort regular expressions. Their complete
ASIC design matching the 315 regular expressions (11,126 characters) would
require about 247,000 logic cells and 27 Mbits of memory if it could be
implemented in a Virtex2.

6Two Logic Cells form one Slice. We calculate the number of
logic cells required for a design according to the next equation:
Logic Cells = 2 × Slices, where slices is the reported number of
used slices of the Xilinx ISE tool.

7We denoted as “RegExp” the designs that match PCRE Snort regular
expressions, and “Static patterns” the ones that match IDS (Snort) static
patterns by converting them into regular expressions.
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prototyped in a Virtex2 device. It achieves 4 Gbps (2× vs. our
design), processing 8 bytes per cycle. A single engine requires
860 logic cells and 8 Kbits memory. The area cost of their
complete ASIC design (if calculated in terms of logic cells)
is 19× higher than our approach, while their performance
is 5.5× higher. Their ASIC design, calculating the area cost
in FPGA terms (logic cells), is 3.4× less efficient than our
Virtex4 implementation. Baker et al. implemented multiple
DFA microcontrollers, which are updated by changing the
contents of their memories instead of reconfiguring the FPGA
device [15]. Due to this decision, their design requires about
5× more resources than our design. Furthermore, their design
achieves about half the throughput compared to our solution
and its efficiency is 10× lower.

Clark et al. and Franklin et al. match only static patterns
transformed into regular expressions [4], [6] and therefore their
designs are simpler. Compared to Franklin et al. we achieve
more than 2× their throughput (taking into account that
VirtexE devices are about 30-40% slower than Virtex2) and
occupy about half the area. Compared to Clark and Schimmel
design that processes 8-bits per cycle, we achieve similar per-
formance requiring 25% fewer resources. Our design is about
30% less efficient compared to Clark and Schimmel second
design (processes 32 bits per cycle). In static pattern matching,
it is relatively straightforward to exploit parallelism and to
increase resource sharing. Notice, however, this shows that
our designs, albeit dealing with dynamic pattern matching, are
also comparable to static pattern matching solutions (unable
to deal with most RegExp).

Finally, Sidhu et al. and Moscola et al. implemented
only few regular expressions. Therefore, their results may not
be compared to designs that match complete rulesets. Even
though, our approach clearly outperforms their designs.

VI. CONCLUSIONS

This paper proposed a Regular Expression pattern matching
Engine for Snort intrusion detection system. We presented
a method to generate hardwired engines that match Perl-
compatible regular expressions. Our method uses new basic
building blocks to implement constrained repetitions and sev-
eral techniques to minimize the area cost and to improve
performance. Furthermore, we discussed our methodology and
suggested techniques to rewrite PCRE regular expressions in
order to suit hardware implementations. Concerning the entire
Snort regular expression set, our approach permits to achieve
a throughput of 2 and 2.9 Gbps using Virtex2 and Virtex4
devices, respectively. It requires 1.28 logic cells per non-Meta
character. Based on the performance efficiency metric (PEM),
our design is 10 and 3.4 × more efficient than the best related
FPGA and ASIC approaches, respectively. Even compared to
designs of the same datapath width (8-bits) that match static
patterns using regular expressions, and therefore are simpler,
our approach is 20% to 10× more efficient. Future work will
focus on researching building blocks to support additional
regular expressions constructs and on evaluating more ad-
vanced forms of resource sharing by identifying common sub-

expressions (note that currently our approach already shares
common prefixes).
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