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Abstract. In this paper we describe a regular expression pattern matching approach for reconfigurable

hardware. Following a Non-deterministic Finite Automata direction, we introduce three new basic building

blocks to support constraint repetitions syntaxes more efficiently than previous works. In addition, a number of

optimization techniques are employed to reduce the area cost of the designs and maximize performance. Our

design methodology is supported by a tool that automatically generates the circuitry for the given regular

expressions and outputs Hardware Description Language representations ready for logic synthesis. The proposed

approach is evaluated on network Intrusion Detection Systems (IDS). Recent IDS use regular expressions to

represent hazardous packet payload contents. They require high-speed packet processing providing a

challenging case study for pattern matching using regular expressions. We use a number of IDS rulesets to

show that our approach scales well as the number of regular expressions increases, and present a step-by-step

optimization to survey the benefits of our techniques. The synthesis tool described in this study is used to

generate hardware engines to match 300 to 1,500 IDS regular expressions using only 10–45 K logic cells and

achieving throughput of 1.6–2.2 and 2.4–3.2 Gbps on Virtex2 and Virtex4 devices, respectively. Concerning the

throughput per area required per matching non-Meta character, our hardware engines are 10–20� more efficient

than previous Field Programmable Gate Array approaches. Furthermore, the generated designs have comparable

area requirements to current application-specific integrated circuit solutions.

Keywords: regular expression, pattern matching, reconfigurable hardware, network security

1. Introduction

Many applications in several fields, such as biomed-

ical, data mining, and network processing, employ

regular expressions to describe search patterns.

Biomedical applications use regular expressions for

biosequence search [1–3], i.e., in DNA matching,
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protein matching or genomes search. The exponen-

tial growth of their biosequence databases greedily

imposes high-performance demands. Networking

systems also need high-speed regular expression

pattern matching for content-based packet processing

[4, 5]. For example, regular expressions are used in

network security [e.g., intrusion detection systems

(IDS)], to describe known attack patterns [17] or in

traffic management and routing where packets are

classified and processed upon their content. In many

cases, such as the above, regular expression pattern

matching needs to support high processing through-

put at the lowest possible hardware cost.

When performance is critical, software platforms

may not be able to provide efficient regular expres-

sion implementations. It is a fact that they can be

more than an order of magnitude slower than

hardware implementations, their performance does

not scale well as the number of regular expressions

increases and their memory requirements may be

substantially large [4–7]. Reconfigurable systems

[e.g., Field Programmable Gate Arrays (FPGAs)]

may provide an efficient solution for high speed

regular expression pattern matching. FPGAs can

operate at hardware speed and exploit parallelism.

Moreover, they provide the required flexibility to

change the regular expression ruleset implementation

on demand. As the size of the regular expressions set

grows, conventional CPU performance may deterio-

rate appreciably compared to an FPGA-based ap-

proach. Consequently, FPGAs offer an excellent

implementation platform for regular expression

pattern matching. Architectures such as the Molen

[8] or the ones described in Compton and Hauck [9]

can be followed to best exploit the advantages of

reconfigurable hardware.

Given an input string T½1::n�which uses a finite set

of symbols
P

(alphabet) and a regular expression R

of the same alphabet which describes a set of strings

SðRÞ � P �, then matching the regular expression R

is to determine whether T 2 SðRÞ . For decades,

significant effort has been put on implementing regular

expressions in software. The Non-deterministic Finite

Automata (NFA) approaches have limited perfor-

mance in software due to their multiple active states.

Consequently, Deterministic Finite Automata (DFA)

are usually adopted. DFAs allow only one active state

at a time, suit better the sequential nature of General

Purpose Processors and achieve higher performance.

However, DFAs suffer from state explosion [10],

especially when regular expressions contain wildcards

(F._, F?_, F+_, F*_), character classes or constraint

repetitions. A theoretical worst case study shows that

a single regular expression of length n can be

expressed as a DFA of up to OðPnÞ states (whereP
is the alphabet, i.e., 28 symbols for the extended

ASCII code), while an NFA representation would

require only OðnÞ states [11]. Several studies manage

to increase the performance of DFAs in software and

reduce the required number of states [4–7]. However,

this is not always possible and usually compromises

the accuracy of the implementations (i.e., ignoring

overlapping matches).

Alternatively, regular expressions can be imple-

mented in hardware. A variety of solutions have

been proposed and implemented in technologies that

range from Programmable Logic Arrays [12, 13] to

FPGAs [14]. In the past, some basic blocks have

been introduced to implement Wildcards, Union and

Concatenation regular expression operators in recon-

figurable hardware [15], however, more complicated

regular expression syntaxes are not efficiently sup-

ported. For example, in order to implement con-

straint repetitions, the same circuit has to be repeated

for a number of times equal to the number of

repetitions. When a DFA approach is chosen, a

substantially larger number of states is required

compared to NFA solutions. As a consequence

DFA designs result in inefficient designs in terms

of area (logic and/or memory). On the other hand,

when implemented properly, NFAs can be more

compact and area efficient; hardware is inherently

concurrent, and therefore can be suitable for NFA

implementations.

In this paper we present an NFA-based approach

to match multiple regular expressions in reconfig-

urable hardware. We apply and evaluate our ap-

proach in IDS rulesets. The main contributions of

this work are the following:

& We introduce three new basic building blocks for

constraint repetition operators, which are able to

detect all overlapping matches. These blocks

handle regular expressions repetitions that require

a single cycle to match. When combined with

previous research in NFA-based hardware imple-

mentations, efficient designs can be achieved.

& Theoretical proofs are presented to show that two

of the constraint repetition blocks can be simpli-

fied without affecting their functionality.
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& To improve the efficiency of the designs, we insert

a pre-processing optimization stage. The extracted

regular expressions are modified to suit our

hardware implementation. Syntax features that only

facilitate software implementations are discarded

while others are replaced by equivalent ones (i.e.,

conditional branches, lookahead statements).

& We employ several techniques to reduce the area

requirements of our designs, such as regular

expressions prefix sharing, pre-decoding, central-

ized static pattern matching and character classes

blocks, etc. Furthermore, we take advantage of the

Xilinx SRL16 shift registers to store multiple

states using fewer FPGA resources.

& A methodology is introduced to automatically

generate the regular expression pattern matching

engines from the IDS rulesets. We show how a

hierarchical representation of the regular expres-

sions is used to facilitate the automatic Very High-

level Design Language (VHDL) generation using

basic building blocks. A tool that outputs the

VHDL circuit description of the design has been

developed.

& We are able to generate efficient regular expres-

sion engines, in terms of area and performance,

outperforming previous FPGA-based approaches.

Our designs match over 1,500 regular expressions

and support 1.6–3.2 Gbps throughput requiring a

few tens of thousand logic cells (LCs). Finally, the

area requirements are comparable with DFA-

based application-specific integrated circuit

(ASIC) implementations which suffer however

from state explosion.

The remainder of this paper is organized as

follows. In Section 2 we briefly discuss IDS

characteristics and their Perl-compatible regular

expression syntax (PCRE) [16], while in Section 3

we survey previous work on hardware regular

expression pattern matching. Section 4 describes

the top-level approach of our regular expression

engines, the basic building blocks and the techniques

employed to reduce area and increase performance.

Section 5 presents the methodology followed to

automatically generate VHDL code describing the

regular expression hardware engine for a given set of

regular expressions. In Sections 6 and 7, we present

the implementation results of our designs and

compare them with related work. Finally, Section

8 draws some conclusions and suggests future work.

2. Intrusion Detection & PCREs

High speed and always-on network access is becom-

ing commonplace around the world, creating a

demand for increased network security. Network

IDS such as Snort [17] and Bleeding Edge [18] are

currently the most efficient solution for network

security [19]. Instead of only checking the header of

each incoming packet, IDS also scan the payload of

the packets to detect suspicious contents. In the past

years, many researchers have worked on reconfig-

urable hardware solutions for IDS focusing mostly

on the payload scan, which turns out to be the most

computationally intensive task [20]. Numerous tech-

niques for reconfigurable IDS static pattern matching

have been proposed [14, 21–26]. Many of them

employ regular expressions to represent the static

search patterns, implementing either NFAs or DFAs

[21–23]. However, recent network IDS use more

extensively regular expressions instead of static

patterns to represent more efficiently hazardous

packet payload contents. These regular expressions

attack descriptions need to be matched at high-speed

against incoming traffic.

Regular expressions, and especially their complex

features such as constraint repetitions, may create a

significant bottleneck for IDS performance. Table 1

illustrates the recent increase of regular expressions

in Snort [17, 27] and Bleeding Edge [18] IDS

rulesets along with the static patterns included in

these sets. Additionally, the exact number of con-

straint repetitions is reported for each ruleset.

Constraint repetitions are operators which indicate a

sub-expression to be matched repeatedly for a

defined number of repetitions (Exactly, AtLeast,

and Between quantifiers, e.g., af10g , af10; g ,

af10; 12g). IDS rulesets include a significant number

of regular expressions and constraint repetitions

which continuously increases. For example, in May

2003 only 65 regular expressions were used, in April

2006 increased to more than 500 and within the year

tripled exceeding 1,500. It is expected that the

number of regular expressions in the IDS rulesets

will continue to increase since new attack descrip-

tions are constantly added to the rulesets. Based on

the data present at the moment, the number of

regular expressions seems to increase faster than

the static patterns in Snort v2.4. Within 2006, static

patterns increased 2.2� and regular expressions 3�.

Figure 1 illustrates the number of repetitions and the

Regular Expression Matching in Reconfigurable Hardware 101



number of appearances of the most common con-

straint repetitions (Exactly{N} and AtLeast{N,}) for

the Snort v2.4 ruleset (Oct. 2006 version). Such

operations appear tens or even hundreds of times

having up to a thousand repetitions, which indicates

current IDS regular expressions complexity. On

average, one constraint repetition per two regular

expressions exists in Snort 2.4. Converting them to

DFAs would result in thousands of states, which

would require a significant number of hardware

resources for encoding. Consequently, dedicated

blocks for these operations would substantially

reduce the cost of the IDS regular expression

implementations.

Snort and Bleeding Edge IDS adopted the PCRE

syntax [16]. For example, alert tcp any� >
(pcre:B/^PASSns* nn=smi^;) is a Snort rule, it

detects any packet containing a payload string which

matches the B=^PASSns � nn=smi^ regular expres-

sion. Apart from the well known features of the strict

definition of regular expressions, PCRE is extended

with new operations such as flags and constraint

Table 1. Regular expressions and static patterns used in Snort and Bleeding Edge rulesets.

Rulesets #Static patterns

#Regular expressions

Total
Constraint repetitions

#Exactly #Atleast #Between

Snort 2.4 (Jan. 2007) 3,432 1,615 274 495 11

Snort 2.4 (Dec. 2006) 3,377 1,589 273 495 10

Snort 2.4 (Nov. 2006) 3,391 1,616 271 495 10

Snort 2.4 (Oct. 2006) 3,248 1,504 265 478 11

Snort 2.4 (Apr. 2006) 1,537 509 209 470 2

Snort 2.3 (Mar. 2005) 2,188 301 124 464 1

Snort 2.2 (July 2004) 1,042 157 85 22 1

Snort 2.1 (Feb 2004) 942 104 52 19 0

Snort 1.9 (May 2003) 909 65 46 1 0

Bleeding (Dec. 2006) 968 318 47 7 17

Bleeding (Nov. 2006) 968 317 48 7 17

Bleeding (Oct. 2006) 934 310 43 7 17
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Figure 1. Distribution of two of the most commonly used constraint repetitions in Snort IDS, type Exactly and AtLeast. Results are for the

Snort v2.4 Oct. 2006 version.
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repetitions. Table 2 describes the PCRE basic syntax

supported by our regular expression pattern matching

engines. There are two types of features that are

supported. The first ones are directly mapped to

hardware building blocks (wildcards, union, concatena-

tion, constraint repetitions, and character classes) and are

explained in more detail in Section 4. The second type is

supported by replacing them during a pre-processing

stage with equivalent expressions that suit our hardware

implementations (backslash to escape meta-characters,

dollar, flags, etc.). The PCRE syntax not currently

supported is related to some anchors (nA, nZ, nz), word
boundaries (nb, nB), differences between Greedy and

Lazy quantifiers (we report both matches), and a

Bcontinue from the previous match^ command (nG).
Since current Snort and Bleeding Edge rulesets do not

Table 2. Snort-PCRE basic syntax currently supported by our approach.

Feature Description

a All ASCII characters, excluding meta-characters, match a single instance of themselves

[n^$.|?*+() Meta-characters. Each one has a special meaning

. Matches any character except Fnew line_

n? Backslash escapes meta-characters, returning them to their literal meaning

[abc] Character class. Matches one character inside the brackets. In this case, equivalent to (a|b|c)

[a-fA-F0-9] Character class with range

[^abc] Negated character class. Matches every character except each non-Meta character inside brackets

RegExp* Kleene Star. Matches zero or more times the regular expression

RegExp+ Plus. Matches one or more times the regular expression

RegExp? Question. Matches zero or one times the regular expression

RegExp{N} Exactly. Matches N times the regular expression

RegExp{N, } AtLeast. Matches N times or more the regular expression

RegExp{N,M} Between. Matches between N and M times the regular expression

nxFF Matches the ASCII character with the numerical value indicated by the hexadecimal number FF

n000 Matches the ASCII character with the numerical value indicated by the octal number 000

nd, nw and ns PCRE Shorthand character classes matching digits 0–9, word characters (letters and digits) and

whitespace, respectively

nn, nr and nt Match an LF character, CR character and a tab character, respectively

(RegExp) Groups regular expressions, so operators can be applied

RegExp1RegExp2 Concatenation. Regular Expression 1, followed by Regular Expression 2

RegExp1 j RegExp2 Union. Regular Expression 1 or Regular Expression 2

^RegExp Matches Regular Expression 1 only if at the beginning of the string

RegExp$ Dollar. Matches Regular Expression only if at the end of the string

(?=RegExp), (?!RegExp),

(?<=text), (?<!text)

Lookaround. Without consuming characters, stops the matching if the RegExp inside does not match

(?(?=RegExp) then jelse) Conditional. If the lookahead succeeds, continues the matching with the Bthen^ RegExp. If not, with

the Belse^ RegExp

n1, n2. . . nN Backreferences. Have the same value as the text matched by the corresponding pair of capturing

parethesis, from 1st through Nth

Flags Description

i Regular Expression becomes case insensitive

s Dot matches all characters, including newline

m ^ and $ match after and before newlines
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use these features, our synthesis tool is able to generate

designs matching all the regular expressions of the IDS

rulesets.

3. Related Work

In 1959, Rabin and Scott introduced the NFAs and

the concept of non-determinism [28], showing that

NFAs can be simulated by (potentially much larger)

DFAs in which each DFA state corresponds to a set

of NFA states. McNaughton and Yamada [29] and

Thompson [30] described two of the first methods to

convert regular expressions into NFAs. Thompson

encodes the selection of state transitions with explicit

choice nodes and unlabeled arrows (� -transitions).
On the other hand, McNaughton and Yamada,

avoided unlabeled arrows and allowed instead NFA

states to have multiple outgoing arrows with the same

label. Their method can be easier directly mapped in

hardware, since each transition Bconsumes^ an in-

coming character and the number of states is reduced.

Matching Regular Expressions in hardware has been

widely studied in the past. In 1979, Mukhopadhyay

proposed the basic blocks for Concatenation, Kleene-

star and Union operators [15]. In 1982, Floyd and

Ullman discussed the implementation of NFAs in

Programmable Logic Arrays [12], proposing among

other aspects a hierarchical implementation described

by the McNaughton–Yamada algorithm [29]. Foster,

described some regular expressions modifications to

avoid latch formation in regular expressions imple-

mentation [31]; for example, two kleene-stars when

put in sequence can form an extraneous latch that

causes incorrect operation.

More recently, reconfigurable hardware proved to

be beneficial for regular expression matching.

FPGAs can provide hardware speed, high degree of

parallelism and the flexibility to modify the func-

tionality of a design on demand. Consequently,

FPGA devices may offer a high-speed regular

expressions pattern matching of large sets and permit

to modify and update the hardware engines accord-

ing to the IDS ruleset.

Several NFA implementations have been proposed

for reconfigurable hardware. In 1999, Sidhu and

Prasanna presented NFA-based implementations of

regular expressions in FPGAs [14] and used the basic

blocks of [15] for Concatenation, Kleene-star and

Union operators. Hutchings et al: used NFAs to

represent all the Snort static patterns into a single

regular expression, requiring substantially lower area

[21]. Clark and Schimmel used pre-decoding to share

the character comparators of their NFA implementa-

tions and thus reducing even more hardware resour-

ces [23, 32]. Lin et al: saved area resources of their

NFA designs by sharing parts of the regular

expressions [33]. Finally, Moscola et al: in [34]

attempted to combine previous NFA approaches [14,

23] with a Bpre-decoding^ static pattern matching

technique [24, 35].

Despite the fact that FPGAs are suitable for NFAs,

several researchers followed a DFA direction. Moscola

et al: used DFAs to match static patterns, since they

discovered that static patterns can be represented in

DFAs of practically OðnÞ states [22]. More recently,

Baker et al: described a microcontroller DFA imple-

mentation in FPGA for matching IDS regular expres-

sions [36]. Their design updates its ruleset by only

changing the memory contents. IDS regular expres-

sions are converted to DFAs in order to be ported into

the proposed microcontroller.

Brodie et al: proposed an ASIC implementation of

regular expressions in [37]. They converted the IDS

patterns and regular expressions into DFAs and

implemented them in high-speed FSM structures

specially designed for regular expression matching.

Their architecture uses memories to store transition

and indirection tables and therefore the regular

expressions can be modified by changing the

contents of the memory blocks.

In summary, some researchers use DFAs to

evaluate regular expressions resulting in designs

with significant area/memory requirements [22, 36,

37]. The rest employ NFAs, however, they do not

solve the problem of constraint repetitions and

consequently, as Sutton notes in [38], need to repeat

the same circuit in order to support them (i.e., fully

unrolling the constraint repetitions). This work

attempts to circumvent disadvantages and bottle-

necks of previous approaches and also shows a

methodology to automatically generate regular ex-

pression hardware engines. Such methodology has

been implemented in a synthesis tool and can be

applied to large sets of regular expressions.

4. Regular Expressions Engine

In this section, our regular expression engine is

described. We exploit reconfigurable hardware and

generate specialized circuitry for any given set of
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regular expressions. Figure 2 depicts the top-level

diagram of the proposed regular expressions pattern

matching engine. The incoming data (one byte per

cycle) feed a centralized ASCII decoder 8-to-256

bits. The output of the decoder provides a single wire

per character to the regular expression modules. This

way, each character is matched only once and all the

regular expression modules receive the output lines

from the decoder. For each regular expression there

is a separate module. Regular expressions with

common prefixes share the same prefix sub-module.

The static sub-patterns (more than one character

long) included in each regular expression are

matched separately in a Decoded CAM (DCAM)

static pattern matching module described in our

previous work [24]. Similarly, the character classes

(union of several characters e.g., ðajbÞ ) are also

implemented separately and share their results

among the regular expression modules. Both static

pattern matching and character class modules are fed

from the ASCII decoder. Each regular expression

module outputs a match for the corresponding

regular expression and subsequently, all the matches

are encoded on a priority encoder described in

Sourdis et al: [39].

4.1. Basic NFA Blocks

The proposed design is based on building blocks that

implement basic regular expression syntax features.

Figure 3 illustrates a generic view of a basic building

block. It consists of an output o and one or many

(e.g., in the Union block) inputs i (input tokens). The

decoded characters, pattern matching and character

classes signals can be considered as input tokens.

Table 3 depicts the list of all the supported blocks

along with a brief description. For Kleene-star (*),

Union (j ) and Concatenation we use the blocks

described by Mukhopadhyay [15]. Extending upon

them we implement blocks for Caret, Dollar, Dot,

Question-mark, Plus, etc. Three new blocks are

introduced and described below to implement con-

straint repetitions (Exactly, AtLeast, and Between).

Concerning the constraint repetition blocks, our

implementation minimizes the number of required

resources, when compared to previous DFA and

NFA approaches [21–23, 33, 37, 38]. In the previous

approaches, the constraint repetition blocks have to

be fully unrolled, and thus require significant amount

of hardware resources.

We should further note that our designs detect all

overlapping matches, which is not the case for

previous DFA approaches [22, 33, 37]. To exemplify

overlapping matches consider the following: given

the regular expression Bððad?jbÞ þ bcdÞjdðbbÞ?^ and

the input stream Badbbcb^, the following overlapping

matches should be detected Bd^, Bdbb" and Badbbcb^.

Exactly Block This block (e.g., afNg) will report a
match for each N successive Fa _ symbols. The

a

bInput String
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Figure 2. Block diagram of our Regular Expression Engines.
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Figure 3. Generic description of a basic building block.
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Exactly block afNg is actually the concatenation of

N characters Fa_ and can be defined as follows:

a Nf g ¼
" for N ¼ 0

a for N ¼ 1

aa::a; n times for N > 1

8<
: ð1Þ

Figure 4a depicts the circuit that matches a single

character a; it is a logical AND between the input i

and the match of character a feeding a flip-flop (FF).

This circuit can be reduced to a single FF having

i as an input and the a as a reset. Applying the

concatenation for N a_s results in a sequence of FFs

as depicted in Fig. 4b. The correctness of this circuit

can be proven by induction, however, is also given

by the definition of the concatenation function and

therefore omitted from this paper. The sequence of

FFs to implement afNg is actually a true FIFO with

a reset (flush) pin, and can be designed for FPGA-

based platforms as depicted in Fig. 4c.

The proposed Exactly block (Fig. 4c) has the

following functionality. When a token i is received in

the input, the exactly block forwards it after N matches.

The input token enters the shift register if there is a

Table 3. The basic building blocks of our Regular Expression Engine.

Block Description Non Meta character count

Character Matches a single character, based on the design of single character described in

Mukhopadhyay [15]

1

Union Union operator of the regular expressions ri, as described in Mukhopadhyay [15] The non meta chars of the

Regular Expressions ri

Concatenation Concatenation operator of the regular expressions ri, as described in Mukhopadhyay

[15]

The non meta chars of the

Regular Expressions ri

Pattern Matches a string of characters. It has an interface for the DCAM Module. The input

token has to be delayed for N cycles through an SRL16 in order to be correctly

aligned with the output of the static pattern matching module

pattern length

Dollar ($) Validates the match if in the end of the packet/string. Based on the Character Block

[15]

0

Dot Matches any character except the new line. Based on the Character Block [15] the input

character is the Bnewline^ (nn) character inverted
1

Caret (^ ) Starts a match every time a packet/string arrives. Based on the Character Block [15],

the input character is the Bbeginning of packet^ character

0

Character

Class

Matches a set of characters. Based on the Character Block [15], the input character is

one of the outputs of character class module. The character class module ORs the

characters included in a character class

1

RegexBlock Encapsulates hardware blocks that implement regular expressions or sub-blocks of

regular expressions

# of non MetaChars of the

RegExpr

Question (?) r?, One or zero times the regular expression r, based on the design of Kleene-star (r�)
described in Mukhopadhyay [15]. The incoming OR gate (to the FF) has to be

removed, consequently, the input token (i) goes directly to the FF

# of non MetaChars of the

RegExpr r

Plus (+) rþ, One or more times the regular expression r, based on the design of Kleene-star (r�)
described in Mukhopadhyay [15]. The outgoing OR gate has to be removed,

consequently, the output token (o) is the output of the FF, instead of the output of the

second OR gate

# of non MetaChars of the

RegExpr r

Kleene (*) r�, Zero or more times the regular expression r, as described in Mukhopadhyay [15] # of non MetaChars of the

RegExpr r

Exactly rfNg, Matches r exactly N times. Constraint Repetition for single characters and sets of

characters. Described in Section 4.1

# of non MetaChars of the

repeated RegExpr r

AtLeast rfN; g, Matches r at least N times. Constraint Repetition for single characters and sets

of characters. Described in Section 4.1

# of non MetaChars of the

repeated RegExpr r

Between rfN;Mg, Matches r between N and M times. Constraint Repetition for single characters

and sets of characters. Described in Section 4.1

# of non MetaChars of the

repeated RegExpr r
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match of the Fa _ character (otherwise the register is

reset). The shift register (successive FFs and SRL16

resources) is N bits long and one bit wide. The token is

shifted for N cycles if there is nomismatch. In case of

a mismatch, the shift register must be reset. Each

SRL16 (16 bits long) is implemented in a single LUT

and does not have a reset pin. Therefore, a mechanism

is required to reset the contents of the shift register.

To do so, FFs are inserted between the SRL16s. The

first FF is reset whenever a mismatch occurs. The rest

of the FFs are reset for 16 cycles in order to erase the

contents of their previous SRL16. When the shift

register is shorter than 17 bits (N < 17) then the reset

of the second FF lasts N � 1 cycles. We use a 4-bit

counter in order to reset the FFs for 16 cycles. It is

noteworthy that a new token can be immediately

processed in the cycle after a reset, since the first FF

and SRL16 continue to shift their contents. The block

can keep track of all incoming tokens and therefore

supports overlapping matches. The exactly block has

an area cost OðNÞ . However, the use of SRL16

minimizes the actual resources, since an SRL16 and a

FF can be mapped on a single logic cell (LC). The

implementation cost in terms of LCs is relatively low,

for example, the regular expression af1000g requires

only 63 LCs.

AtLeast block In this block (e.g., afN; g) continu-
ous matches will be reported for each N or more

successive Fa_ symbols. When a token is received,

the block should output a token after N matches and

the output should remain active until the first

mismatch. The AtLeast block can be defined as:

a N;f g ¼
[1
k¼N

a kf g ð2Þ

We prove next that the output of the AtLeast block is

affected only by the first input token after the last reset,

while subsequent tokens can be ignored. Consequently,

we can implement this block with a single counter

controlled by the first token received after a reset (Fig. 5).

The counter counts up to N and remains at value N

activating the output until a mismatch.

Theorem 1 The output of the AtLeast block
afN; g ¼

[1
k¼N

afkg depends on only the first still active

o i

a RST

i

a

oFF FF i

a RST RST

o

RST

FF FF FF

FFi o
SRL16

a

FF FF

4 Bit 
Counter

SRL16

o

RST Reset for
16 or N cycles 

a b

c

Figure 4. The Exactly block: afNg. a a{1} = a. b a {N} = aa...a, n times. c The proposed Exactly block: afNg. Successive FFs and SRL16s

with a reset mechanism.

i

a

o
log2N Bit
Counter

RST

Count N

Figure 5. The AtLeast block: afN; g.

Regular Expression Matching in Reconfigurable Hardware 107



input token (received after the last mismatch). Any

subsequent input token does not affect the output of

the block.

Proof Let ilast be the last token received at time

t ¼ 0, then the output of the AtLeast block for this

token is:

AtLeast ilastð Þ ¼ S1
k¼N

a kf g ð3Þ

Let also ifirst be the first token (still processed, not

reset) received at time �t < 0. Then the remaining

AtLeast output for ifirst is:

AtLeast ifirst
� � ¼

S1
k¼N�t a kf g for N > t

S1
k¼0 a kf g for N � t:

8<
: ð4Þ

However, AtLeastðilastÞ � AtLeastðifirstÞ and there-

fore ilast can be ignored. Í
Hence, the AtLeast block can be implemented

using a single counter controlled by the first input

token after a reset. The counter keeps track of the

number of matches (up to N) and its implementation

cost is Oðlog2NÞ . About 70% of the constraint

repetitions in Snort v2.4 are of this kind. Therefore,

the above implementation substantially reduces the

area requirements of the hardware engines.

Between block The Between block (e.g., afN;Mg),
matches N to M successive matches of Fa_, its formal

definition is the following:

a N;Mf g ¼
[M
k¼N

a kf g ð5Þ

Let us first define a block a 0;Nf g ¼ SN
k¼0

a kf g
which has an active output from the time an input

token is received up to N matches. We prove next

that the output of the af0;Ng block is affected by

only the last input token, while previous tokens can

be ignored. Consequently, this block can be imple-

mented by a single counter which resets at every

mismatch, starts counting from F0_ every time a new

input token i arrives, counts up to N and then resets.

Theorem 2 The output of the block af0;Ng ¼
[N
k¼0

afkg
depends on only the last still active input token

(received after the last mismatch). Any previous

input token does not affect the output of the block.

Proof Let ilast be the last token received at time

t ¼ 0, then the output of the af0;Ng block for this

token is:

a 0;Nf g ilastð Þ ¼
[N
k¼0

a kf g ð6Þ

Let also iprev be any previous token still active

received at time �t < 0, then the remaining output

tokens of the af0;Ng block for iprev is:

a 0;Nf g iprev
� � ¼ SN�t

k¼0 a kf g for N > t

; N � t

�
ð7Þ

However, af0;NgðiprevÞ � af0;NgðilastÞ and there-

fore iprev can be ignored. Í
The Between block afN;Mg can be considered as

the concatenation of an exactly block afNg and a

block such the one described above af0;M � Ng:

a N;Mf g ¼
[M
k¼N

a kf g ¼ a Nf g
[M�N

k¼0

a kf g ð8Þ

As depicted in Fig. 6, the proposed design for the

Between block is actually afNgaf0;M � Ng . The
functionality of the Between block is the following.

The incoming token enters the shift register (length

N) which can be reset (flushed) by a mismatch. After

N simultaneous matches, the shift register outputs F1_

a

Start Counting
M-N o

Output Ò1Ó 
for (M-N) 
matches

i

RST

N

RST

log2(M-N) Bit 
Counter

Figure 6. The Between block: afN;Mg = afNgaf0;M � Ng.
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and the counter is enabled. The counter (counts up to

M � N) outputs F1_ for M � N simultaneous matches.

Furthermore, it is reset and starts counting from F0_
whenever it is enabled by the shift register, even if it

has already started counting for a previous token. In

case of an intermediate mismatch, the counter is

reset. It could be assumed that the af0;M � Ng
block and a second counter (replacing the afNg )
would be sufficient to implement this block without

the use of the shift register. However, this is not

possible since the intermediate tokens would be lost

and therefore other (overlapping) matches would be

missed. Consequently, the implementation cost of

the between block is OðN þ log2ðM � NÞÞ, and like

the exactly block the FPGA area cost is not high due

to the use of SRL16s.

The above constraint repetition blocks support

repetitions of only a single character or a character

class. They do not support repetitions of expressions

that require more than one cycle to match (e.g.,

ðabÞf10g ), especially when the length of the

expression between the parenthesis is unknown or

not constant (e.g., ððcaÞ � jbÞf10g, (ðabjbÞf10gÞ). In
these cases, the expressions are unrolled. To our

advantage however is the fact that more than 95% of

the constraint repetitions included in Snort v2.4 and

Bleeding Edge IDS regular expressions are of a

single character or character class. The rest 5% are

repetitions of regular expressions that require multi-

ple and possibly variable number of cycles to match.

These cases are implemented via unrolling the

constraint repetitions.

Detecting overlapping matches may not be useful

when a basic building block is at the end of a regular

expression or forms one on its own. In that case the first

match is enough to match the regular expression. Then,

the shift registers of the Exactly and Between block can

be reduced to a counter. On the contrary, when a basic

block is placed in a larger regular expression, the first

match may not lead to the match of the entire regular

expression, while another overlapping match may do.

There are cases where detecting the last match would

be sufficient. For example, in the regular expression

r ¼ af3gbc , only the last match of af3g block can

result in a match of r , (i.e., given an input string

aaaaaabc ). However, detecting only the last match

without keeping track of all input tokens is not

straightforward.

We describe next an implementation example of the

regular expression bþ½^nn�f2g illustrated in Fig. 7.

The above regular expression detects one or more Fb_
characters followed by two characters that are not

Bnewelines ^. The module consists of a Plus block

(upper-left), a character block (down-left), and an

exactly{2} block (on the right). Consider an input

string Bbba n n^. In the first clock cycle the input Fi_
will be high, and the first Fb_ will be accepted. Hence,
the first FF will be activated. At the second cycle the

second Fb_ will keep the first FF high, and activate the

second FF. At the third cycle, an Fa_ arrives, the first

FF goes low, while the other two FFs are high and the

module outputs a match for the input string Bbba^.
Then, an Bnn ^ character arrives, which resets the

exactly block, and therefore a second match for the

input string Fba n n^ will not occur.

4.2. Reducing Area

We apply several techniques to reduce the area

cost of our designs. Apart from the centralized

ASCII decoder, first introduced by Clark and

Schimmel [23], we perform the following optimi-

zations. As mentioned in the previous subsection,

we employ the SRL16 modules to implement single

bit shift registers and store multiple NFA states.

Additionally, we share all the common prefixes;

that is, regular expressions with a common prefix

share the output of the same prefix sub-module.

Static patterns and character classes are also

implemented separately in order to share their

results among the RegExp modules. The above

optimizations, excluding the use of SRL16, save

more than 30% of the total FPGA resources for the

Snort v2.4 ruleset. Next, each optimization is

discussed in more detail.

Xilinx SRL16 Usually, the states of the NFA are

stored in FFs, each FF representing a single state. An

area efficient solution to store multiple states is to

Not \n

FF FF o

FF

i

b

[^\n]{2}b+

Figure 7. An implementation for the regular expression

bþ½^nn�f2g.
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configure Xilix LUTs as shift registers (SRL16s).

Many basic blocks, such as constraint repetitions,

need to store a large number of states, which can also

be implemented by shift registers. These shift

registers are true FIFOs, and consequently, can be

implemented with SRL16s which require a single LC

to store 17 states (a single LUT plus a FF). This

extensive use of SRL16s, to efficiently represent a

great number of states, is one of the main optimiza-

tions to reduce the area of our designs.

Prefix Sharing In some rulesets (e.g., Snort v2.4) a

large number of regular expressions have common

prefixes. Consequently, these prefixes can be shared

as depicted in Fig. 2. Without any additional

hardware the common prefixes are implemented

separately, as complete regular expressions, and their

outputs provide an input to the suffixes of the

corresponding regular expressions.

Sharing of Character Classes Character Classes are

widely used in Snort ruleset. Each character class is a

Union of several characters. We implement these

blocks separately and share their outputs in order to

reduce the area cost. As an example, note that there

are more than 8,000 character class cases in the Snort

2.4 Oct_06 regular expressions, which are reduced to

about 62 unique cases.

Sharing of Static Patterns Similarly to the character

classes, this work considers a static pattern matching

module to match static patterns included in the

regular expression set. We use our previously

proposed technique DCAM [24] and share the

outputs of the module. DCAM pre-decodes incoming

characters, aligns (shifts) the decoded data and

ANDs them to produce the match signal for each

pattern. Resource sharing is due to the centralized

ASCII decoder and the shared shift registers. The

sub-patterns are matched using DCAM because it

can be integrated more efficiently with the rest of the

Regular Expression Engine compared to other more

area efficient solutions such as Sourdis et al. [25]. As

an example, note that the Snort v2.4 Oct_06 regular

expressions include more than 2,000 unique static

sub-patterns of 35,000 characters in total, and

therefore, a large amount of resources is saved.

4.3. Increase Performance

Two techniques have been employed to improve the

performance of the regular expression engines

proposed in this paper. The first one keeps the fan-

out of certain modules low, while the second one

pipelines (when possible) combinational logic. More

precisely, like in our previous work [40], this study

considers fan-out trees to transfer the outputs of the

decoder, the static pattern matching (DCAM) and the

character class blocks to the regular expression

modules. In doing so, the delays of the above

connections are reduced at the cost of a few registers.

Second, modules such as the decoder, the DCAM

and the character class are pipelined. Pipelining the

above modules is based on the observation that the

minimum amount of logic in each pipeline stage can

fit in a 4-input LUT and its corresponding register.

This decision was made based on the structure of

Xilinx LCs (for device families before Virtex5). The

area overhead of this pipeline is zero since each LC

used for combinational logic includes a FF. Finally,

the output of the pipelined modules is correctly

aligned with the rest of the design.

5. Synthesis Methodology

In this section we describe the methodology followed to

generate regular expression hardware engines from

PCRE regular expressions. The methodology is sup-

portedby a toolwhichgenerates hardware engines based

on the basic blocks previously presented. Figure 8 illus-

trates the steps used for synthesis and testing of the

regular expression hardware engines. Concerning the

hardware synthesis of the regular expressions, the tool

uses a syntax tree-based approach to generate the

structure of the hardware engines. That structure uses

building blocks to implement the regular expression

primitives. A structural-register transfer level (RTL)

VHDL code with components described in behavioral-

RTL VHDL is generated and logic synthesis, map-

ping, place and routing are then performed to create

the bitstreams able to program the target FPGA.

First, the regular expressions are extracted from the

rulesets. Then, an automatic pre-processing step

rewrites regular expressions in order to discard any

software related features (conditionals-lookahead) and

to change other features (back references) to suit

hardware implementation. For example, a conditional-

lookahead statement chooses, between multiple regular
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expressions suffixes, a single one that should be

followed, based on the condition. The hardware

implementations consider all the multiple suffixes and

discard the conditional statement. A back-reference

stores the stringmatched by a sub-RegExp and uses it in

a subsequent part of the RegExp. For example, the

expression ðajbÞn1 has a back reference on ðajbÞ
which is, e.g., the character awhen incoming character

a matches the expression ðajbÞ . Consequently, the
expression ðajbÞn1 can be matched by the input strings

aa or bb , but not by ab . In our implementation we

replace the back-references with the sub-RegExp they

refer to (e.g., ðajbÞn1 becomes ðajbÞðajbÞ). This way
our designs will notmiss any matches compared to the

PCRE-software implementation, however, may output

some extra matches (e.g., ðajbÞn1 will match the input

string ab ). A more consistent representation of the

back-references is planned for future work. Finally, the

flags included in regular expressions are considered, in

order to change (if necessary) the functionality of

some blocks [flags such as case (in)sensitive, multi-

line, DOT includes nn , etc.]. After rewriting, each

regular expression is transformed into a list of tokens

(in this case with the same meaning used by lexical

analysis), and the sequences of tokens are bound to

Bbasic building blocks^ which can be automatically

mapped to hardwired modules. At this level, the tool

can perform a number of optimizations. For example,

fully unrolling of certain constraint repetitions (i.e.,

non single character and non single character classes)

is done at this level. Some rules are applied to enable

full unrolling of some expressions (e.g., fully unrolling

of Between blocks when fn;mg; 0 � n � 2 and 1 �
m � 3Þ. These rules are based on the fact that until a

certain value of repetitions it is better – area and

performance wise – to fully unroll the constraint

repetition. The following are examples of rewritten

regular expressions. Note that the following rewritten

rules are applied for m > 3 since for lower values of m

the regular expression is fully-unrolled:

R 0;mf g ) RR?ð Þ R 3;mf gjð Þ?
R 1;mf g ) RR? R 3;mf gjð Þ
R 2;mf g ) RRð Þ? R 3;mf gjð Þ

Performing multiple passes, the tool creates a

hierarchical structure of each regular expression in

order to generate the VHDL descriptions for the

hardware blocks. Figure 9 illustrates an example of a

hierarchical decomposition of the regular expression

B^CEL n s½^nn�f100; g ^. First, the tool parses the

regular expression, creates the regular expression

hierarchy and identifies the basic building blocks

(upper part of Fig. 9). Then, the parser gathers the

information needed for its block. For the example of

Fig. 9, that is, the characters of the character classes

and the repeated expression, and the number of

repetitions for the AtLeast block are detected.

CARET PATTERN
CHAR
CLASS

QUANTIFIER

ATLEAST

CHAR
CLASS(N)

\s

{100,}

[^ \n]

CARET PATTERN
CHAR
CLASS

ATLEAST
CHAR

CLASS(N)

^ CEL

^ CEL

\s {100,}[^\n ]

Figure 9. Example of a hierarchical decomposition.
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Figure 8. Proposed methodology for generating regular expres-

sions pattern matching designs.
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Subsequently, the generation of the VHDL repre-

sentation is straightforward. A bottom-up approach is

used to construct each regular expression module

based on the hierarchy extracted by the tool.

After the VHDL generation, the functionality of the

design is automatically tested. Based on the regular

expression set, the tool generates input strings

covering a subset of possible matches. There is at

least one random string that matches each regular

expression. These input strings are used by the

hardware implementations and by a software regular

expression implementation. As shown in Fig. 8, the

hardware implementations are tested by comparing

their outputs with the results of the software regular

expressions engine.

The compilation of current IDS regular expression

sets into VHDL hardware descriptions requires a few

tens of seconds, while the logic synthesis, mapping

and place & route of the design takes a few hours

when the time and area constraints are tight. Looser

implementation constraints would lead to shorter

implementation time. Table 4 shows the time

required in each stage for generating the regular

expression hardware engines of Snort and Bleeding

rulesets of Oct_06. Snort contains about 5� more

regular expressions and therefore requires longer

time. The generation of the VHDL code for Snort

was completed in 22 s, while the synthesis, map and

P&R required about 4 h in total. Compared to Snort,

the Bleeding ruleset is substantially smaller. Our tool

required 9 s to generate the VHDL code, and less

than 45 min for the subsequent steps. We can

observe that the time required for the VHDL

generation is negligible compared to the time

required for the other stages (from RTL synthesis

to the bitstreams ready to be downloaded to an

FPGA device). Moreover, the VHDL generation

scales better than the subsequent implementation

stages as the regular expression set grows. For 5�

more regular expressions the compilation time

increases only 2.5� , synthesis 29� , and map and

P&R about 5.5�.

6. Evaluation

In this section, we present the evaluation of our

regular expression pattern matching designs. The

designs have been implemented in Xilinx Virtex2

and Virtex4 devices. The performance is measured in

terms of operating frequency and throughput (post

place & route results), and FPGA area cost in terms of

required LUTs, FFs and LCs. The size and density of

the regular expressions sets is evaluated counting their

number of non-Meta characters. Meta characters are

the ones that have a special meaning/function in the

regular expression, the rest are non-Meta characters.

Table 3 presents the number of Non-Meta characters

for each basic building block. For example, a

character class ½A� Z� or a constraint repetition

af100g counts as one non-Meta character. This might

not be the most indicative metric to measure the size

of a regular expression, however, it provides an

estimate of the regular expressions sets and enables

us to compare against related approaches.

We first evaluate the area cost of the proposed

constraint repetition blocks. Then, we show the area

reduction and the performance increase achieved by the

proposed techniques, offering a step-by-step optimiza-

tion flow. Finally, we present the detailed results of our

designs when all optimizations are enabled. For evalu-

ation purposes the regular expressions included in three

different IDS rulesets are considered. Namely, the Snort

v2.4 of April 2006 and October 2006 [17], and Bleeding

Edge of October 2006 [18]. Snort v2.4 of April 2006

contains 509 unique regular expressions of 19,580 non-

Meta characters in total, while the October version is

more than 3� larger having 1,504 regular expressions

Table 4. Generation and implementation times for Snort and Bleeding rulesets of Oct._06.

Rulesets # RegExprs

HDL generation time

(hh:mm:ss)

Synthesis time

(hh:mm:ss)

Map time

(hh:mm:ss)

Place & route time

(hh:mm:ss)

Snort 2.4 Oct.

2006

1,504 00:00:22 00:57:54 02:24:47 01:30:47

Bleeding Oct.

2006

310 00:00:09 00:01:55 00:26:56 00:16:49

HDL = Hardware Description Language
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and 69,127 non-Meta characters. The Bleeding edge

ruleset uses relatively fewer regular expressions (310)

of 13,441 non-Meta characters in total. Table 1

includes the main characteristics of these rulesets.

Constraint Repetitions Area Requirements Figure

10 illustrates the area requirements of the three

proposed constraint repetition blocks for different

number of repetitions. The exactly block afNg for 10
repetitions (i.e., N ¼10) needs 5 LCs, for N ¼1,000 it

uses 63 LCs, and for 10,000 repetitions needs 593

LCs. Although the Exactly block has OðNÞ area

requirements, the actual cost is only N
17
LCs plus a 4-

bit counter. The Virtex5 SRL32s would reduce the

area cost to N
33
, while an embedded reset pin in the

SRLs would save the 4-bit counter cost. The AtLeast

block afN; g scales better as the number of

repetitions increases due to its Oðlog2NÞ area cost.

For 1,000 and 10,000 repetitions the AtLeast block

needs only 22 and 41 LCs respectively. Finally, a

Between block afN;Mg of N ¼1,000 and M ¼2,000
requires 85 LCs, and for N ¼10,000 and M ¼20,000
needs 634 LCs.

Advantages of our Regular Expressions Optimizations

Next, we show a progressive area and performance

improvement applying different optimizations (see

Fig. 11). The designs have been implemented in a

single device (Virtex2-8000-5) in order to perform a

fair comparison. The above device is the largest of

the Virtex2, however, its speed grade (j5) is lower

than other devices of the same family. The lower

speed grade and the absence of area constraints is the

reason why the results in Fig. 11 are slightly different

than the best final results depicted next in Table 5.

For the three sets of regular expressions included in

the IDS rulesets mentioned above, three major

optimizations are enabled one-by-one. The reference

design used to evaluate this proposal is the Sidhu and

Prasanna approach [14] combined with the character

pre-decoding technique of [23, 24]. We were able to

implement a design for the reference approach only

for the Bleeding edge ruleset. In that case, the

number of constraint repetitions is relatively small

to fit the design in a single FPGA device. For the rest

of the rulesets we only measure the required states

needed when unrolling the constraint repetitions

operators. The first optimization is to use the

constraint repetition blocks previously described in

this paper. Subsequently, the prefix sharing optimi-

zation is enabled in order to reduce the required area.

Finally, the centralized modules which implement the

character classes and match the static patterns are

included.

In Bleeding edge IDS ruleset the reference design

requires 2.5� more area than the design using the

constraint repetition blocks. As depicted in Fig. 11a,

that is about 17,000 more FFs which correspond to the

number of states required when unrolling the con-

straint repetition expressions. The Exactly and Be-

tween blocks store about 15,000 states in about 900

LCs exploiting SRL16s. Prefix sharing did not reduce

the area requirements, due to the small number of

regular expressions implemented. When dedicated

pattern matching and character classes modules are

added then 25% of the area is saved and the maximum

clock frequency is improved by 50%. The last design

has 3� less area and more than twice the performance

compared to the reference one.

Figure 11b illustrates the equivalent results for Snort

v2.4 of April 2006. This set of regular expressions

contains about 700 constraint repetitions that correspond

to 470 K states when unrolled. Consequently, a

reference design would need to store about 470 K states

more than the one that exploits our constraint repetitions

building blocks. Given that about 440 K of these states

are due to the AtLeast block (afN; g ) which we

implement with an area cost of Oðlog2NÞ , the area

savings of the proposed building blocks are increased.

We need shift registers only in the Exactly and

Between blocks which store about 30 K of states in

2,000 LCs using SRL16. When prefix sharing is
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applied additionally to the constraint repetition blocks,

a 15% area reduction is achieved, while the centralized

modules for pattern matching and character classes add

another 15% area improvement and a 50% increase in

performance. The fully optimized design compared to

the one which uses only the constraint repetitions

building blocks requires about 1=3 less FPGA

resources and achieves about 50% higher frequency.

Figure 11c depicts the area and performance gain

when applying the optimizations in the largest regular
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expressions set used Snort v2.4 of October 2006. The

overall number of states required for the � 750

constraint repetitions when unrolled is about 480 K,

and 440 K of them due to the AtLeast module. In

practice, that is the number of extra states required

when the constraint repetitions blocks are not used. The

37 Kbits of storage needed for the Exactly and

Between blocks are implemented in about 2,200 LCs.

Prefix sharing further reduces area about 15% without

significant performance gain. A fully optimized design,

using centralized static pattern matching and character

classes saves 15% more area and achieves twice the

previous maximum operating frequency.

Although the number of required FFs is reduced

when a new optimization is enabled, this is not the

case for the utilized LUTs. Designs that match the

static patterns in a separate module require more

LUTs than before. Without this optimization static

patterns are matched character-by-character as

depicted in Fig. 4a. More precisely, the ASCII

decoder provides the decoded value of each charac-

ter, the input token is registered and the inverted

decoded character is used for the reset of the FF.

This way only a few LUTs are required however a

significant amount of FFs are used. On the contrary,

using a centralized module to match the patterns

(DCAM [24]) uses shared SRL16s (each imple-

mented in a LUT) to shift the decoded characters

reducing the required FFs and increasing the number

of LUTs.

Table 5. Comparison between our RegExp Engines and other regular expression approaches.

Description

RegExp/

Static

Patternsa
Input

bits/cycle Device

Throughput

(Gbps) LCsb
LCs/

char MEM # Non-Meta PEM

Our RegExp Eng.

BleedingEdge Oct_06

RegExp 8 Virtex2 2.19 10,698 0.80 0 13,441 2.75

Virtex4 3.26 4.10

Our RegExp Eng.

Snort Apr_06 [42]

Virtex2 2.00 25,074 1.28 0 19,580 1.56

Virtex4 2.90 2.27

Our RegExp Eng.

Snort Oct_06

Virtex2 1.60 45,586 0.66 0 69,127 2.43

Virtex4 2.42 3.68

Lin et al: [33] NFA

sharing sub-RegExp

RegExp 8 VirtexE-

2000

N/Ac 13,734 0.66 0 20,914 N/Ac

Baker et al: [36] DFA �

-controllers

RegExp 8 Virtex4-

100

1.4 N/A 2.56 6 Mb 16,715 0.22

Sidhu et al: [14] NFAs RegExp 8 Virtex-

100

0.46 1,920 66 0 29 0.01

Brodie et al: [37] DFAs RegExp 32 Virtex2 4.0 860 N/A 96 Kb per engined N/Ad

ASIC 16.0 N/A N/A 27 Mb 11,126 N/Ad

Hutchings et al: [21]

NFAs

Static

Patterns

8 VirtexE-

2000

0.4 40,232 2.52 0 16,028 0.16

Clark et al: [23]

Decoded NFAs

Static

Patterns

8 Virtex2-

8000

2.0 29,281 1.70 0 17,537 1.19

32 7.0 54,890 3.1 0 2.26

Moscola et al: [22]

DFAs

Static

Patterns

32 VirtexE-

2000

1.18 8,134 19.4 0 420 0.06

aWe denoted as BRegExp^ the designs that match PCRE Snort regular expressions, and BStatic patterns^ the ones that match IDS (Snort)

static patterns by converting them into regular expressions.
bTwo LCs form one Slice. We calculate the number of LCs required for a design according to the next equation: Logic Cells ¼ 2 � Slices,

where slices is the reported number of used slices of the Xilinx ISE tool. The above hold true for device families before Virtex5.
cThere are no performance results (frequency-throughput) for this design.
dThe authors provide the logic and memory cost per Engine. They need 287 engines to match 315 PCRE-Snort regular expressions. Their

complete ASIC design matching the 315 regular expressions (11,126 characters) would require about 247,000 LCs and 27 Mbits of memory if it

could be implemented in a Virtex2. In a 65 nm technology it is estimated that their module would have a density of 204 characters per mm2.
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In general, our approach results in significant area

savings and performance improvements. The dedicated

constraint repetition blocks substantially reduce the

overall number of states required. The low area

requirements of the AtLeast block is especially suitable

for IDS regular expressions where the AtLeast state-

ments correspond to over 90% of the number of

constraint repetitions states (when constraint repeti-

tions are unrolled). The prefix sharing optimization

leads to a further�15% area reduction. Moreover, the

static pattern matching and character classes modules

decrease area another � 15% and improve the

maximum operating frequency by 1.5–2�.

Implementation Results We further present the

detailed results of the fully optimized designs

implemented in the fastest Virtex2 and Virtex4

devices for the three IDS rulesets. The first part of

Table 5 depicts the area cost and the performance

results of our designs. More precisely, we report the

required LUTs, FFs, LCs and LCs per matching non-

meta character, and the maximum processing

throughput for each design. It is noteworthy that all

designs process a single byte per clock cycle.

Matching the 310 regular expressions of Bleeding

Edge ruleset results in about 2.2 and 3.2 Gbps

throughput in Virtex2 and Virtex4 devices, respec-

tively. Less than 11,000 LCs are required which

translates to 0.8 LCs per non-Meta character. The

Snort v2.4 ruleset of April 2006 includes over 500

regular expressions and a great number of constraint

repetitions. Consequently, it requires 2.5� more LCs

and about 1.28 LCs per non-Meta character. The

generated design can support 2 and 2.9 Gbps

throughput in Virtex2 and Virtex4 devices, respec-

tively. Although the largest Snort ruleset of Oct_2006
includes 3�more regular expressions, the number of

constraint repetitions has increased only 7%. There-

fore, the generated design needs only 0.66 LCs per

character and a total of 45,586 LCs. Note that the

overall size of the circuit causes a performance

reduction. The maximum throughput achieved is 1.6

Gbps in a Virtex2-4000 and 2.4 Gbps in a Virtex4-

60. In general, the number of constraint repetitions in

the ruleset and in particular the area consuming ones

[Exactly OðNÞ and Between blocks OðN þ log2ðM �
NÞÞ] affect the required resources and the number of

LCs per character. For example, both Snort rulesets

have similar number of constraint repetitions al-

though the recent one (Oct_06) matches 3� more

regular expressions. Hence, the area cost (LC/

nMchar) of Snort Oct_06 is substantially lower (half)

than the one of Snort Apr_06. Finally, and as

aforementioned, as the design becomes larger the

maximum processing throughput decreases. Snort

Oct_06 designs maintain about 75% of the bleeding

edge designs performance having a ruleset about 5�
larger. Consequently, performance scales relatively

well as the ruleset grows, while the area resources

per matching character are not significantly affected.

Partitioning the designs into smaller blocks similarly

to Sourdis and Pnevmatikatos [24], can alleviate

performance decrease at the cost however of extra

resources. Our preliminary results of partitioned

designs show that a 30% performance improvement

can be achieved at the cost of 10% increase in

resources.

7. Comparison

Next we attempt a fair comparison with previously

reported research on software and hardware regular

expression matching approaches.

Recent state of the art software-based solutions

offer limited performance and have scalability prob-

lems as the regular expression set grows. More

precisely, when matching 70–220 regular expres-

sions a NFA approach supports 1–56 Mbps through-

put (Yu et al: [4]). To provide a faster solution Yu

et al: propose a DFA solution and rewrite the regular

expressions at hand as follows: eliminate closure

operands (*, +, ?), e.g., nsþ ) ns , reduce the

repetitions of constraint repetition operators, e.g.,

½A� Z�fjþg ) ½A� Z�fj; kg , and do not detect

overlapping matches. Hence the accuracy of their

implementation is compromised. Their DFA ap-

proach requires several Mbytes of memory for only

a few tens of regular expressions and achieves 0.6–

1.6 Gbps throughput depending on the regular

expression set and the input data [4]. Compared to

our approach, NFA software approaches support

about 40� lower throughput, while DFA software

solutions when matching a 10� smaller set achieve

20–65% of our performance.

Next we present a detailed comparison with hard-

ware regular expression matching approaches. Table 5

contains performance and area results of the most

efficient hardware regular expression approaches. In
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order to compare in terms of area with designs that

utilize memory, the memory area cost is measured

based on the fact that 12 bytes of memory occupy

area similar to a LC [41]. Finally, we evaluate our

schemes and compare them with the related research,

using a Performance Efficiency Metric (PEM), which

takes into account both performance and area cost,

described in the following equation:

PEM ¼ Performance

Area Cost
¼ Throughput

LogicCellsþMEMbytes
12

Non�Meta Characters

ð9Þ

Such a metric is commonly used to evaluate the

efficiency of FPGA-based static pattern matching

designs, e.g., [23, 25, 26, 35]. In the case of regular

expressions, the metric differs in the way the non-

meta characters are counted. As shown in Table 3,

we count the Non-Meta characters of a regular

expression set as proposed in Hutchings et al: [21].
We follow a conservative approach, which ignores

the number of characters in character classes and the

range values in constraint repetitions. Although this

approach may hide some of the regular expressions

complexity, it enables us to compare against previ-

ous works. Finally, the memory requirements of a

design should be taken into account. The metric of

Sproull et al: gives a close estimate of the FPGA

area occupied by the memory blocks [41].

Our designs achieve up to 2.5� higher throughput

compared to designs that process the same number of

incoming bits per cycle and require the lowest area

cost. More precisely, compared to Lin et al: [33], our
design requires the same or up to 2�more resources.

Their design needs 0.66 LC per character, while our

designs occupy 0.66 to 1.28 LC per character.

Unfortunately, Lin et al: do not report any perfor-

mance results focusing only on minimizing the

hardware resources and therefore we cannot measure

their overall efficiency. Baker et al: implemented

multiple DFA microcontrollers, which are updated

by changing the contents of their memories instead

of reconfiguring the FPGA device [36]. Due to this

design decision, their module requires about 5–10�
more resources than our engines taking into account

their memory requirements. Furthermore, they sup-

port about half the throughput compared to our

solution and have a 10–20� lower efficiency.

Brodie et al: implemented DFAs using FSM-based

engines aiming at ASIC implementations [37]. Due to

their high area cost their entire design cannot be

prototyped in current FPGA devices. A single engine

of Brodie et al: that matches approximately a single

regular expression has been prototyped in a Virtex2

device. It achieves 4 Gbps (2� vs. our design),

processing 4 bytes per cycle. A single engine requires

860 LCs and 96 Kbits memory. Their complete design

matches 315 Snort-PCRE regular expressions and has

a density of 204 chars/mm2 in a 65 nm technology.

Assuming the same technology, we synthesized our

largest design in a Virtex5 (65 nm ) device. We

adjusted only the SRL16s into Virtex5 SRL32s and

not our pipeline which is tailored for 4-input LUTs

and not the Virtex5 6-input LUTs. Our design

matches more than 1,500 regular expressions

(69,000 non-meta characters), occupies less than 2=3
of a Virtex5LX-110 (729 mm2) which leads to a 142

chars/mm2 density. Consequently, our approach has

comparable area requirements, while we would

support roughly 4–5� lower throughput. Despite the

lower performance results compared to the above

ASIC implementation, there are several advantages to

oppose. Brodie et al: implementation suffers from the

DFA drawbacks such as lack of support to over-

lapping matches and state explosion. For instance, in

case an IDS regular expression when converted to a

DFA requires more states than can be stored in the

available memory per engine, then this regular

expression cannot be implemented. In addition, the

implementation and fabrication of an ASIC is sub-

stantially more expensive than an FPGA-based solu-

tion. Therefore, reconfigurable hardware is an

attractive solution for regular expression pattern

matching providing higher accuracy, fast time to

market and low cost.

Clark et al: and Hutchings et al: match only static

patterns transformed into regular expressions [21, 23]

and therefore their designs are simpler. Compared to

Hutchings et al: we achieve more than 2� their

throughput (taking into account that VirtexE devices

are about 30–40% slower than Virtex2) and occupy

less than half the area. Compared to Clark and

Schimmel design that processes 8-bits per cycle, we

achieve similar performance requiring 25–50% fewer

resources. Our designs have similar efficiency (based

on the PEM) compared to Clark and Schimmel

second design which processes 32 bits per cycle. In

static pattern matching, it is relatively straightforward

to exploit parallelism and to increase resource sharing.

Notice however, this shows that our designs, albeit

dealing with dynamic pattern matching, are also
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comparable to static pattern matching solutions

(unable to deal with most regular expressions).

Finally, Sidhu et al: and Moscola et al: imple-

mented only few regular expressions. Therefore, their

results may not be compared to designs that match

complete rulesets, although, the approach presented in

this paper clearly outperforms their designs.

8. Conclusions

In this paper we presented techniques for FPGA-based

regular expression pattern matching. We described a

method to automatically generate hardwired engines

that match PCRE. We introduced three new basic

building blocks to implement constraint repetitions and

proved that two of them can be simplified without

affecting their functionality. Moreover, a number of

techniques were employed to minimize the area cost

and improve performance. Large regular expressions

IDS rulesets were employed to validate the proposed

approach. Furthermore, we discussed our methodology

and suggested techniques to rewrite PCRE regular

expressions in order to suit hardware implementations.

Concerning the entire Snort and Bleeding Edge regular

expression IDS rulesets, our automatically generated

designs achieve a throughput of 1.6–2.2 and 2.4–3.2

Gbps in Virtex2 and Virtex4 devices, respectively. The

generated hardware engines require 0.66–1.28 LCs per

non-Meta character. Based on the PEM, our designs are

10–20� more efficient than the best related FPGA

approaches. Even compared to designs that match

static patterns using regular expressions, and therefore

are simpler, our approach has similar and up to 10�
better efficiency. In addition, the proposed NFA-based

designs have comparable area costs with current

ASIC DFA-based approaches. Future work will focus

on a more general solution for constraint repetitions,

back-references support and more advanced resource

sharing techniques.
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