Regular Expression Matching on Graphics Hardware for Intrusion Detection

Giorgos Vasiliadis, <u>Michalis Polychronakis</u>, Spiros Antonatos, Sotiris Ioannidis, Evangelos P. Markatos *FORTH-ICS, Greece*

Overview

- → Increase the processing throughput of network intrusion detection systems (NIDS)
- Offload pattern matching operations to the GPU
 - previous works: string searching
 - this work: Regular expression matching

Outline

- → Introduction
- → Regexp matching on the GPU
- Performance evaluation
- → Summary

Motivation

- Pattern matching accounts for up to 80% of the total
 CPU processing time in modern NIDS
- Graphics Cards
 - Easy to program
 - Powerful and ubiquitous
 - Vendors have started promoting GPUs as general-purpose computational units
- Why not using the spare cycles of the GPU to speed up NIDS operations?
 - String searching on the GPU [Jacob '06, Goyal '08, Vasiliadis '08]

Regular Expressions

- Much more flexible and expressive compared to string signatures
- → 45% of the rules in Snort v2.6 use regular expressions

 Regular expression matching is much more expensive in terms of CPU cycles than string searching

Perfect for off-loading to the GPU

Regular Expressions in Snort

- Each expression is compiled into a separate automaton
- Implemented using the PCRE library
- String searching pre-filtering to skip regex matching in the common case

```
alert tcp any any -> any 80 (content:"<OBJECT"; nocase;
pcre:"/<OBJECT\s+[^>]*type\s*=[\x22\x27]\x2f{32}/smi";)
```

Regular Expression Implementations

- → NFA (Non-deterministic Finite Automata)
 - for a given state and input byte, there may be several possible next states
 - ✓ Compact representation
 - ✓ Greedy or lazy matching, back-references (backtracking)
 - Searching can be exponentially slow (backtracking)
- → DFA (Deterministic Finite Automata)
 - for a given state and input byte, there is only one next state
 - Can consume an exponentially large amount of memory
 - Greedy matching only (no backtracking)
 - ✓ **Searching is fast O(N)** (no backtracking)

Regular Expression Matching on the GPU

- → GPU operates in a SPMD fashion
 - Ideal for creating multiple instances of finite state machines
- Regexps are compiled to DFAs at start-up
 - Run on different stream processors, operate on different data

Transferring Packets to the GPU

Packets are transferred to the GPU in batches

0 4 6 1536		
Reg.Ex. ID	Length	Payload
Reg.Ex. ID	Length	Payload
Reg.Ex. ID	Length	Payload
•	•	•
•	•	•
Reg.Ex. ID	Length	Payload

- Copies are performed using DMA, without occupying the CPU
 - Double-buffering allows for computation and communication to overlap

GeForce 9800 GX2 with 128 stream processors

Handling Reassembled TCP streams

- Need to match patterns that span multiple packets
 - 64K pseudo-packets
- Split into MTU-sized packets in consecutive rows in the buffer

thread k

thread k+1

thread k+2

thread k+3

 A thread continues searching in following rows until a final or fail state is reached

DFAs: Number of States

→ 11,775 regexps in Snort v2.6

DFAs: GPU Memory Requirements

The rest 3% is matched on the CPU using NFAs

CPU → **GPU** Packet Transfer Throughput

- Use page-locked memory to store incoming packets
- DMA allows for higher transfer throughput

GPU Raw Processing Troughput

- Storing the state machines tables into texture memory achieves better performance (due to caching)
- The cost of transferring the packets to the GPU space is not included

Snort Processing Throughput

- → LLI trace performance is reduced due to extensive TCP stream reassembly
- The single-threaded design of Snort forces us to use only one PCB (half of the card's computing power)

Snort Processing Throughput (Pure Regex)

Number of Regular Expressions

- Web-traffic only, removed all "content:" operators
- Each packet is checked against all regexps

Summary

Regex matching on the GPU is practical...

→ ...and fast!

- 16Gbit/s raw throughput (48x CPU)
- up to 800Mbit/s (8x CPU) when applied in Snort

→ Future work

- Multiple threads/Snort instances (utilize both PCBs)
- Alternative implementations (single/few DFAs, xFAs, speculation next presentation)
- Multiple graphics cards (lots of space in the box)

Regular Expression Matching on Graphics Hardware for Intrusion Detection

thank you!

Giorgos Vasiliadis, gvasil@csd.uoc.gr Michalis Polychronakis, mikepo@ics.forth.gr Spiros Antonatos, antonat@ics.forth.gr Sotiris loannidis, sotiris@ics.forth.gr Evangelos Markatos, markatos@ics.forth.gr