
1mikepo@ics.forth.gr

Regular Expression Matching on Graphics
Hardware for Intrusion Detection

Giorgos

Vasiliadis, Michalis Polychronakis, Spiros

Antonatos,
Sotiris Ioannidis, Evangelos P. Markatos
FORTH-ICS, Greece

RAID’09, 25 September 2009

2mikepo@ics.forth.gr

Overview

Increase the processing throughput of network
intrusion detection systems (NIDS)

Offload pattern matching operations to the GPU
previous works: string searching

this work: Regular expression matching

3mikepo@ics.forth.gr

Outline

Introduction

Regexp matching on the GPU

Performance evaluation

Summary

4mikepo@ics.forth.gr

Motivation

Pattern matching accounts for up to 80% of the total
CPU processing time in modern NIDS

Graphics Cards
Easy to program

Powerful and ubiquitous

Vendors have started promoting GPUs as
general-purpose computational units

Why not using the spare cycles of the GPU to speed up NIDS
operations?

String searching on the GPU [Jacob ’06, Goyal ’08, Vasiliadis ’08]

5mikepo@ics.forth.gr

Regular Expressions

Much more flexible and expressive compared to string
signatures

45% of the rules in Snort v2.6 use regular expressions

alert tcp

$EXTERNAL_NET any ‐> $HOME_NET 10202:10203 (msg:"CA

license GCR overflow attempt"; flow:to_server,established;

content:"GCR

NETWORK<"; depth:12; offset:3; nocase;

pcre:"/^\S{65}|\S+\s+\S{65}|\S+\s+\S+\s+\S{65}/Ri";

sid:3520;)

Regular expression matching is much more expensive in
terms of CPU cycles than string searching

Perfect for off-loading to the GPU

6mikepo@ics.forth.gr

Regular Expressions in Snort

Each expression is compiled into a separate automaton

Implemented using the PCRE library

String searching pre-filtering to skip regex matching in the common case

alert tcp any any ‐> any 80

(content:"<OBJECT"; nocase;

 pcre:"/<OBJECT\s+[^>]*type\s*=[\x22\x27]\x2f{32}/smi";)

7mikepo@ics.forth.gr

Regular Expression Implementations

NFA (Non-deterministic Finite Automata)
for a given state and input byte,

there may be several possible next states

Compact representation

Greedy or lazy matching, back-references (backtracking)

Searching can be exponentially slow (backtracking)

DFA (Deterministic Finite Automata)
for a given

state and input byte,

there is only one next state

Can consume an exponentially large amount of memory

Greedy matching only (no backtracking)

Searching is fast – O(N) (no backtracking)

8mikepo@ics.forth.gr

Regular Expression Matching on the GPU

GPU operates in a SPMD fashion
Ideal for creating multiple instances of finite state machines

Regexps are compiled to DFAs at start-up
Run on different stream processors, operate on different data

9mikepo@ics.forth.gr

Transferring Packets to the GPU

Packets are transferred to the GPU in batches

Copies are performed using DMA, without
occupying the CPU

Double-buffering allows for computation and
communication to overlap

10mikepo@ics.forth.gr

GeForce

9800 GX2 with 128 stream processors

11mikepo@ics.forth.gr

Handling Reassembled TCP streams

Need to match
patterns that span
multiple packets

64K pseudo-packets

Split into MTU-sized
packets in consecutive
rows in the buffer

A thread continues searching in following rows until a
final or fail state is reached

12mikepo@ics.forth.gr

DFAs: Number of States

97%

of Snort’s regexps

have

less that 5000

states

11,775 regexps in Snort v2.6

13mikepo@ics.forth.gr

DFAs: GPU Memory Requirements

97%

of the DFAs

fit

in less than 200 MB

The rest 3% is matched on the CPU using NFAs

14mikepo@ics.forth.gr

CPU GPU Packet Transfer Throughput

Use page-locked memory to store incoming packets

DMA allows for higher transfer throughput

Virtual Memory Page-locked Memory

15mikepo@ics.forth.gr

GPU Raw Processing Troughput

Storing the state machines tables into texture memory achieves better
performance (due to caching)

The cost of transferring the packets to the GPU space is not included

16Gbit/s (48x CPU)

16mikepo@ics.forth.gr

Snort Processing Throughput

LLI trace performance is reduced due to extensive TCP stream reassembly

The single-threaded design of Snort forces us to use only one PCB (half of the
card’s computing power)

17mikepo@ics.forth.gr

Snort Processing Throughput (Pure Regex)

Web-traffic only, removed all “content:” operators

Each packet is checked against all regexps

18mikepo@ics.forth.gr

Summary

Regex matching on the GPU is practical…

…and fast!
16Gbit/s raw throughput (48x CPU)

up to 800Mbit/s (8x CPU) when applied in Snort

Future work
Multiple threads/Snort instances (utilize both PCBs)

Alternative implementations (single/few DFAs, xFAs,
speculation – next presentation)

Multiple graphics cards (lots of space in the box)

19mikepo@ics.forth.gr

Regular Expression Matching on Graphics
Hardware for Intrusion Detection

thank you!

Giorgos

Vasiliadis, gvasil@csd.uoc.gr
Michalis Polychronakis, mikepo@ics.forth.gr
Spiros

Antonatos, antonat@ics.forth.gr
Sotiris Ioannidis, sotiris@ics.forth.gr
Evangelos Markatos, markatos@ics.forth.gr

	Slide Number 1
	Overview
	Outline
	Motivation
	Regular Expressions
	Regular Expressions in Snort
	Regular Expression Implementations
	Regular Expression Matching on the GPU
	Transferring Packets to the GPU
	GeForce 9800 GX2 with 128 stream processors
	Handling Reassembled TCP streams
	DFAs: Number of States
	DFAs: GPU Memory Requirements
	CPU  GPU Packet Transfer Throughput
	GPU Raw Processing Troughput
	Snort Processing Throughput
	Snort Processing Throughput (Pure Regex)
	Summary
	Slide Number 19

