
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

January 2005

Regular Expression Types for XML Regular Expression Types for XML

Haruo Hosoya
Kyoto University

Jerome Vouillon
CNRS

Benjamin C. Pierce
University of Pennsylvania, bcpierce@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_papers

Recommended Citation Recommended Citation
Haruo Hosoya, Jerome Vouillon, and Benjamin C. Pierce, "Regular Expression Types for XML", . January
2005.

Copyright ACM, 2005. This is the author's version of the work. It is posted here by permission of ACM for your
personal use. Not for redistribution. The definitive version was published in ACM Transactions on Programming
Languages and Systems, Volume 27, Issue 1, January 2005, pages 46-90.
Publisher URL: http://doi.acm.org/10.1145/1053468.1053470

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_papers/82
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_papers
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_papers/82
mailto:repository@pobox.upenn.edu

Regular Expression Types for XML Regular Expression Types for XML

Abstract Abstract
We propose regular expression types as a foundation for statically typed XML processing languages.
Regular expression types, like most schema languages for XML, introduce regular expression notations
such as repetition (*), alternation (|), etc., to describe XML documents. The novelty of our type system is a
semantic presentation of subtyping, as inclusion between the sets of documents denoted by two types.
We give several examples illustrating the usefulness of this form of subtyping in XML processing.

The decision problem for the subtype relation reduces to the inclusion problem between tree automata,
which is known to be EXPTIME-complete. To avoid this high complexity in typical cases, we develop a
practical algorithm that, unlike classical algorithms based on determinization of tree automata, checks
the inclusion relation by a top-down traversal of the original type expressions. The main advantage of this
algorithm is that it can exploit the property that type expressions being compared often share portions of
their representations. Our algorithm is a variant of Aiken and Murphy's set-inclusion constraint solver, to
which are added several new implementation techniques, correctness proofs, and preliminary
performance measurements on some small programs in the domain of typed XML processing.

Keywords Keywords
programming languages, language constructs and features, data types and structures, languages, theory,
type systems, XML, subtyping

Comments Comments
Copyright ACM, 2005. This is the author's version of the work. It is posted here by permission of ACM for
your personal use. Not for redistribution. The definitive version was published in ACM Transactions on
Programming Languages and Systems, Volume 27, Issue 1, January 2005, pages 46-90.
Publisher URL: http://doi.acm.org/10.1145/1053468.1053470

This journal article is available at ScholarlyCommons: https://repository.upenn.edu/cis_papers/82

https://repository.upenn.edu/cis_papers/82

Regular Expression Types for XML

HARUO HOSOYA

Kyoto University

hahosoya@kurims.kyoto-u.ac.jp

JÉRÔME VOUILLON

CNRS and Denis Diderot University

Jerome.Vouillon@pps.jussieu.fr

and

BENJAMIN C. PIERCE

University of Pennsylvania

bcpierce@cis.upenn.edu

We propose regular expression types as a foundation for statically typed XML processing lan-
guages. Regular expression types, like most schema languages for XML, introduce regular ex-
pression notations such as repetition (*), alternation (|), etc., to describe XML documents. The
novelty of our type system is a semantic presentation of subtyping, as inclusion between the sets
of documents denoted by two types. We give several examples illustrating the usefulness of this
form of subtyping in XML processing.

The decision problem for the subtype relation reduces to the inclusion problem between tree
automata, which is known to be exptime-complete. To avoid this high complexity in typical cases,
we develop a practical algorithm that, unlike classical algorithms based on determinization of tree
automata, checks the inclusion relation by a top-down traversal of the original type expressions.
The main advantage of this algorithm is that it can exploit the property that type expressions
being compared often share portions of their representations. Our algorithm is a variant of Aiken
and Murphy’s set-inclusion constraint solver, to which are added several new implementation tech-
niques, correctness proofs, and preliminary performance measurements on some small programs
in the domain of typed XML processing.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs
and Features—data types and structures

General Terms: Languages, Theory

Additional Key Words and Phrases: Type systems, XML, subtyping

Authors’ address: H. Hosoya, Research Institute for Mathematical Sciences, Kyoto University
Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606–8502, Japan. J. Vouillon, PPS, Université
Denis Diderot, Case 7014, 2 Place Jussieu, F-75251 PARIS Cedex 05, France. B. C. Pierce,
Department of Computer and Information Science, University of Pennsylvania, 200 South 33rd
St., Philadelphia, PA 19104, USA.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 1999 ACM 0164-0925/99/0100-0111 $00.75

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages 1–??.

2 · Haruo Hosoya et al.

1. INTRODUCTION

XML [Bray et al. 2000] is an emerging standard format for tree-structured data.
One of the reasons for its popularity is the existence of a number of schema lan-
guages, including DTDs [Bray et al. 2000], XML-Schema [Fallside 2001], DSD [Klar-
lund et al. 2000], and RELAX [Murata 2001], that can be used to define “types”
(or “schemas”) describing structural constraints on data and thereby improve the
safety of data processing and exchange.

However, the use of types in mainstream XML processing technology is often
limited to checking only data, not programs. Typically, an XML processing program
first reads an XML document and checks that it conforms to a given type using a
validating parser. The program then uses either a generic tree manipulation library
such as DOM [DOM 2001] or a dedicated XML language such as XSLT [Clark 1999]
or XML-QL [Deutsch et al. 1998]. Since these tools make no systematic connection
between the program and the types of the documents it manipulates, they provide
no compile-time guarantee that the documents produced by the program will always
conform to an intended type.

In this article, we propose regular expression types as a foundation for statically
typed processing of XML documents. Regular expression types capture (and gen-
eralize) the regular expression notations (*, ?, |, etc.) commonly found in schema
languages for XML, and support a natural semantic notion of subtyping.

We have used regular expression types in the design of a domain-specific language
called XDuce (“transduce”) for XML processing [Hosoya and Pierce 2000; 2001]. In
the present article, however, our focus is on the structure of the types themselves,
their role in describing transformations on XML documents, and the algorithmic
problems they pose. Interested readers are invited to visit the XDuce home page

http://xduce.sourceforge.net

for more information on the language as a whole.

As a simple example of regular expression types, consider the definitions

type Addrbook = addrbook[Person*]

type Person = person[Name,Email*,Tel?]

type Name = name[String]

type Email = email[String]

type Tel = tel[String]

corresponding to the following set of DTD declarations:

<!ELEMENT addrbook person*>

<!ELEMENT person (name,email*,tel?)>

<!ELEMENT name #PCDATA>

<!ELEMENT email #PCDATA>

<!ELEMENT tel #PCDATA>

Type constructors of the form label[...] classify tree nodes with the tag label

(i.e., XML structures of the form <label>...</label>). Thus, the inhabitants
of the types Name, Email, and Tel are all strings with an appropriate identifying
label. Types may also involve the regular expression operators * (repetition) and ?

(optional occurrence), as well as | (alternation). Thus, the type Addrbook describes

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Regular Exression Types for XML · 3

a label addrbook whose content is zero or more repetitions of subtrees of type
Person. Likewise, the type Person describes a label person whose content is
a Name subtree, zero or more Email subtrees, and an optional Tel subtree. An
instance of the type Addrbook is the following XML document:

<addrbook>

<person> <name> Haruo Hosoya </name>

<email> hahosoya@upenn </email>

<email> haruo@u-tokyo </email> </person>

<person> <name> Jerome Vouillon </name>

<email> vouillon@upenn </email>

<tel> 123-456-789 </tel> </person>

</addrbook>

We define subtyping between regular expression types in a semantic fashion. A
type, in general, denotes a set of documents; subtyping is simply inclusion be-
tween the sets denoted by two types. For instance, consider again the Person type
definition from above

type Person = person[Name,Email*,Tel?]

and the following variant:

type Person2 = person[(Name | Email | Tel)*]

Elements of the Person type can have one name, zero or more emails, and zero or
one tels in this order, while the Person2 type allows any number of such nodes
in any order. Therefore Person2 describes strictly more documents, which implies
that Person is a subtype of Person2. Such subtype inclusions can be quite useful in
programming. For example, suppose that we originally have a value of type Person.
The above inclusion allows us to process this value using code that does not care
about the ordering among the name, email, and tel nodes. (Such a situation might
arise, for example, if we want to display the child nodes in a linear format, where
we would naturally write a single loop over the sequence of child nodes with a case
branch for each tag.)

Note that if we replaced Person with a more conventional type

person(name(string) × email(string) list × tel(string) option)

(using sum, product, and ML-like list and option types, plus unary covariant con-
structors person, name, email, and tel) and Person2, analogously, with

person((name(string) + email(string) + tel(string)) list)

the conventional subtyping of sum and product types would not yield the inclusion
above. In general, the subtype relation obtained from our definition is quite a bit
more permissive than conventional subtyping. We give some further examples in
Section 2.

Regular expression types exactly correspond to tree automata [Comon et al.
1999]—a finite-state machine model for accepting trees. It is easy to construct,
from a given type, a tree automaton that accepts just the set of trees denoted by
the type (Appendix A). Therefore the subtyping problem can be reduced to the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

4 · Haruo Hosoya et al.

inclusion problem between tree automata, which is known to be decidable. Unfor-
tunately, in the worst case, this problem is exptime-complete [Seidl 1990].

To address this high complexity, we develop an algorithm that runs efficiently
for the cases that we expect to encounter most often in programming with regular
expression types. Instead of beginning from classical algorithms for testing tree
automata inclusion [Comon et al. 1999], which work by (expensively) transforming
their input automata to other completely separate automata before testing their
properties, we take Aiken and Murphy’s algorithm [Aiken and Murphy 1991] as
the starting point. Like standard subtyping algorithms for other type systems, this
algorithm works top-down—that is, a given pair of types, we check matching of the
top-most type constructors, proceed to the subcomponents of the types, and repeat
the same check recursively. The main advantage of this top-down algorithm is that
it enables many simple optimizations. In particular, we can exploit reflexivity
(T <: T) in order to decide subtype relations by looking at only a part of the whole
input type expressions.

Our additions to the work of Aiken and Murphy are fourfold. First, we give
proofs of soundness, completeness, and termination for (a reformulation of) their
algorithm. Second, we give a detailed, intuitive explanation of the key step in the
algorithm involving “untagged” union types, which was not presented well in their
original paper. Third, we incorporate several useful implementation techniques,
including (1) sharing type expressions as much as possible by using a representation
that exploits equivalence between types, and (2) caching intermediate results of the
subtyping algorithm by using a functional data structure (for which the operations
do not destructively update the data). We describe these techniques in detail in
Section 5. Fourth, we describe some preliminary experiments with our algorithm
(as implemented in the prototype XDuce interpreter), confirming its practicality
on several small examples. (Aiken and Murphy’s algorithm also addresses a more
general problem: set-constraint solving. See Section 7 for further discussion of the
relationship between their algorithm and ours.)

The contributions of this article can be summarized as follows:

—We motivate the use of regular expression types and set-inclusion-based subtyping
for the domain of XML processing.

—We formalize the connection of regular expression types to tree automata.

—We develop a practical subtyping algorithm, present it in detail (along with an
intuitive explanation of its key ideas), and give soundness, completeness, and
termination proofs.

—We describe several implementation techniques for the subtyping algorithm and
present preliminary measurements of their practical effects.

The article is organized as follows. In the next section, we give some examples
of programming with regular expression types. In Section 3, we describe the con-
nection of regular expression types to tree automata and give a precise definition of
subtyping. In Section 4, we present our subtyping algorithm and prove its correct-
ness. Section 5 describes our implementation techniques, and Section 6 presents the
results of our preliminary experiments. We survey related work in Section 7 and

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Regular Exression Types for XML · 5

conclude in Section 8. Appendix A presents an algorithm for translating regular
expression types to tree automata, with its proof of correctness.

2. REGULAR EXPRESSION TYPES

We begin with a series of examples illustrating the application of regular expression
types and subtyping to XML processing.

2.1 Values

Each type in our language denotes a set of sequences. Types like String and
tel[String] denote singleton sequences; the type Tel* denotes sequences formed
by repeating the singleton sequence Tel any finite number of times. So each element
of the type person[Tel*] is a singleton sequence labeled with person, containing
an arbitrary-length sequence of Tels. If S and T are types, then the type S,T

denotes all the sequences formed by concatenating a sequence from S and a sequence
from T. The comma operator is associative: the types (Name,Tel*),Addr and
Name,(Tel*,Addr) have exactly the same elements. As the unit element for the
comma operator, we have the empty sequence type, written (). Thus, Name,() and
(),Name are equivalent to Name.

2.2 Subtyping

The subtype relation between two types is simply inclusion between the sets of
sequences that they denote. (See Section 3.1 for the formal definition.)

To illustrate the subtype relation, let us show the sequence of steps involved
in verifying that the XML document given in the introduction actually has type
Addrbook. First, from the intuition that ? means “optional,” we expect the follow-
ing inclusions:

Name,Addr <: Name,Addr,Tel?

Name,Addr,Tel <: Name,Addr,Tel?

Notice that each right hand side describes a larger set of sequences than the left
hand side. Similarly, * means “zero or more,” so in particular it can be three:

T,T,T <: T*

Wrapping both sides of the first two inclusions with the label person and combining
these with the third, we obtain:

person[Name,Addr],

person[Name,Addr,Tel],

person[Name,Addr]

<: (person[Name,Addr,Tel?])*.

Finally, enclosing both sides with the addrbook constructor, we obtain

addrbook[

person[Name,Addr],

person[Name,Addr,Tel],

person[Name,Addr]]

<: addrbook[(person[Name,Addr,Tel?])*]

= Addrbook.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

6 · Haruo Hosoya et al.

Since the XML document given in the introduction trivially has the type on the
left hand side, it has also the type on the right hand side.

2.3 Recursion

As in many type systems, we support recursive types for describing arbitrarily
nested structures. Consider the following definitions.

type Fld = Rcd*

type Rcd = name[String], folder[Fld]

| name[String], url[String], (good[] | broken[])

The mutually recursive types Fld (“folder”) and Rcd (“record”) define a simple
template for storing structured lists of bookmarks, such as might be found in a web
browser: a folder is a list of records, while a record is either a named folder or a
named URL plus either a good or a broken tag indicating whether or not the link
is broken.

We can write another pair of types

type GoodFld = GoodRcd*

type GoodRcd = name[String], folder[GoodFld]

| name[String], url[String], good[]

which are identical to Fld and Rcd except that links are all good. Intuitively, we
expect that GoodFld should be a subtype of Fld because GoodFld allows fewer
possibilities than Fld. Our type system validates this inclusion.

2.4 Regular Expression Types as Derived Forms

We have seen a rich variety of type constructors, but some of them can actually
be derived as combinations of a smaller set of other constructors—concatenation,
labeling, alternation, empty sequence, and recursive definition. For example, the
optional type T? can be rewritten as T|(), using an alternation type (a.k.a. union

type) and the empty sequence.
Other regular expression operators are also definable. T+, standing for one or

more repetitions of T, can be rewritten as (T,T*). Furthermore, T* itself can also
be derived using recursion. That is, T* is equal to a type name X defined by the
following equation:

type X = T,X | ()

Note the similarity to the definition of list as a datatype in ML.

2.5 Subtagging

In XML processing, we sometimes encounter situations where we have to handle a
large number of labels and it is convenient to organize them in a hierarchy, in the
style of object-oriented languages. This leads us to support a notion of “subtagging”
in our type system, allowing subtyping between types with different labels. This
feature goes beyond the expressive power of DTDs, but a similar mechanism called
“substitution groups” can be found in XML-Schema [Fallside 2001, Section 4.6].

The subtagging relation is a reflexive and transitive relation on labels. We declare
subtagging explicitly with a set of global subtag forms. For example, the following
declares that the tags i (italic) and b (bold) are subtags of fontstyle:

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Regular Exression Types for XML · 7

subtag i <: fontstyle

subtag b <: fontstyle

In the presence of these declarations, we have the subtype relations

i[T] <: fontstyle[T]

b[T] <: fontstyle[T]

for all T. These relations allow us to collapse two case branches for i and b into
one for fontstyle, when both branches behave the same. This use of subtagging
is similar to the common technique in object-oriented programming of defining an
abstract class fontstyle with subclasses i and b.

Subtagging is also useful for other purposes. Our type system provides the special
label ~, denoting “any label.” That is, for every label l, we have the following built-
in subtagging relation:

subtag l <: ~

Thus, the type ~[T] describes any labeled structure whose contents belong to type
T. The label ~, in turn, can be used to define a completely generic type Any as
follows (assuming the base types in our language are String, Int, and Float):

type Any = (~[Any] | String | Int | Float)*

That is, the values described by Any consist of zero or more repetitions of arbitrary
labels (containing Any) and base types.

2.6 Pattern Matching

Regular expression types can enhance the pattern matching mechanisms found in
mainstream functional languages. For example, in XDuce we can write the following
pattern match:

person[Name,Addr]*, (val x as person[Name,Addr,Tel]), Person*

-> (* do some stuff *)

| val y as person[Name,Addr]*

-> (* do other stuff *)

A pattern of the form (val x as T) matches any value of type T and binds the
variable x to this value. In this example, the first case matches values containing at
least one person with tel. In this case, the variable x is bound to the first person
with a tel. The second case matches values containing no person with tel.

Notice that the first pattern—person[Name,Addr]*—in the first case matches
a variable length sequence, something that is beyond the power of ML pattern
matching. This makes standard techniques for exhaustiveness checking somewhat
difficult to apply to such patterns. Fortunately, we can use subtyping for checking
exhaustiveness of pattern matches. We assume that the type for the input value
to the pattern match is available from the context. (In XDuce, this is ensured by
type annotations on function headers.) In the example, suppose that the type of
the input value is Person*. In order to show exhaustiveness of the pattern match
with respect to this type, it is sufficient to show that every value of type Person*

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

8 · Haruo Hosoya et al.

is accepted by the pattern. This leads to the following subtyping check

Person* <: (person[Name,Addr]*,

person[Name,Addr,Tel],

Person*)

| person[Name,Addr]*

where the right hand side is calculated by taking the union of the types of the two
pattern clauses. A more thorough study on regular expression pattern matching and
various static checking methods for it (including redundancy checks, type inference
for pattern variables, and ambiguity checks) can be found in our separate papers
[Hosoya and Pierce 2001; Hosoya 2003].

2.7 Semistructured Data

One of the main application domains for XML is storing and transmitting databases.
Since this flexible representation allows smooth evolution of database schemas and
integration of databases with different schemas, it is often called a semistruc-

tured format in the database community. This view is especially useful for wrap-
per/mediator systems for the Web that integrate multiple independent data sources,
which may themselves occasionally evolve. In this section, we present some different
scenarios of database evolution and integration and show how our regular expression
types ensure static safety in a flexible and robust way.

Suppose that we begin with the following XML database A

<addrbook>

<person>

<name>Haruo Hosoya</name>

<addr>Tokyo</addr>

</person>

<person>

<name>Jerome Vouillon</name>

<addr>Paris</addr>

<tel>123-456-789</tel>

</person>

</addrbook>

belonging to the type Addrbook, defined as follows:

type Addrbook = addrbook[Person*]

type Person = person[Name,Addr,Tel?]

Now, suppose we upgrade this database so that some person records can contain
arbitrarily many tels. This process involves changes to types, databases, and
programs. We change the types as follows:

type Person = person[Name,Addr,Tel*]

Notice that the new content type (Name,Addr,Tel*) of person is a supertype of
the old type (Name,Addr,Tel?) and therefore the type Addrbook of the whole
database becomes bigger as well. This means that our database, which had the
old type, still conforms to the new type, without the need of restructuring. After
adding some tel fields to our database, we arrive at the following database B:

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Regular Exression Types for XML · 9

<addrbook>

<person>

<name>Haruo Hosoya</name>

<addr>Tokyo</addr>

<tel>111-222-333</tel>

</person>

<person>

<name>Jerome Vouillon</name>

<addr>Paris</addr>

<tel>123-456-789</tel>

<tel>999-888-777</tel>

</person>

</addrbook>

At each step in this process, the type of the database is Addrbook. The database
can therefore smoothly evolve while preserving the robustness provided by type
safety.

Upgrading the programs that operate on our database can be slightly trickier.
Since the new type is a supertype of the old type rather than a subtype, all functions
that output the old type can be treated as yielding the new type instead. On the
other hand, functions that input the old type have to be modified so as to handle the
additional cases. Some programmers may be happy with this, since the type system
helps in isolating the part of the program requiring updates. Other programmers
may feel that the types are preventing “forward compatibility” of old programs.
For example, if we are interested in extracting specifically the Name field, then our
program should work for the new database just as well as the old. But this sort of
forward compatibility can easily be achieved, at the cost of writing the original pro-
gram in a slightly more refined way: we maintain the convention that functions on
persons should actually be able to handle inputs of type (Name,Addr,Tel?,Any),
simply ignoring the additional fields at the end. Now if, when the database’s type
is evolved, new fields are always added at the end, these old programs will work
and typecheck without change.

XML also makes database integration easier than more structured formats such
as relational databases. Again, regular expression types help ensure the type safety
of integration steps. For example, consider integrating the previous database B

with another database C with a slightly different type from B’s:

type Addrbook2 = addrbook[Person2*]

type Person2 = person[Name,Addr,Email*]

type Email = email[String]

Data integration again involves changes to types, databases, and programs. We
integrate databases by constructing a tree whose root has the label addrbook and
whose content is the concatenation of the contents of the two databases. The
natural type of this merged database is:

type Addrbook = addrbook[Person*,Person2*]

Suppose that we want to write a program to scan the whole sequence and extract
the names of all the persons. For writing such a program, the above type of the
database is rather inconvenient, since it involves two occurrences of repetition,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

10 · Haruo Hosoya et al.

naturally leading to two separate loops for scanning the whole sequence. Obviously,
it is better to roll these two loops into one. To do this, we can use a subtype inclusion
that forgets the fact that all the Persons come before the Person2s:

Person*,Person2* <: (Person|Person2)*

Now we have one repetition, each of whose elements has either type Person or
else type Person2, leading naturally to a one-loop scan. However, we can do better:
each step of the natural scan over this type involves two very similar cases, both of
which just extract the Name field. We can use one more subtype inclusion (actually
an equivalence, hence written =, using the fact that alternation distributes over
labels and concatenations) to rewrite the type so that the common structure is
exposed:

person[Name,Addr,Tel*] | person[Name,Addr,Email*]

= person[(Name,Addr,Tel*) | (Name,Addr,Email*)]

= person[Name,Addr,(Tel*|Email*)]

After all this rewriting, the type AddrBook is now expressed in a form that leads
naturally to scanning the Name fields with a single compact loop:

addrbook[person[Name,Addr,(Tel*|Email*)]*]

These distributive laws illustrate the flexibility of regular expression types. Note
that the validity of these laws depends on the fact that our alternation operation
is interpreted as an untagged, set-theoretic union—in contrast to the “tagged” sum
types found in languages such as ML and Haskell.

3. DEFINITIONS

It will be useful to distinguish two forms of types: external and internal. The
external form is one that the user actually reads and writes; all the examples in
the previous sections are in this form. Internally, however, our subtyping algorithm
uses the simpler internal representation to streamline both the implementation and
its accompanying correctness proofs.

In this section, we define the syntax and semantics of each form as well as the
subtype relations for each. For brevity, we omit base values (strings, numbers, etc.)
and their types from our formalization; they are easily added.

3.1 External Form

We assume a countably infinite set of labels, ranged over by l. Values are defined
as follows.

v ::= l1[v],..,ln[v] (n ≥ 0)

We write () for the empty sequence and v,w for the concatenation of sequences v
and w.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Regular Exression Types for XML · 11

We assume a countably infinite set of type names, ranged over by X. Type
expressions are then defined as follows.

T ::= () empty sequence
X type variable
l[T] label
T,T concatenation
T|T union
∅ empty set

The bindings of type variables are given by a single, global set E of type definitions
of the following form.

type X = T

The body of each definition may mention any of the defined variables (in particular,
definitions may be recursive). We regard E as a mapping from type variables to
their bodies. The regular expression operators *, +, and ? are derived forms as
described in Section 2.4. We write dom(E) for the set of defined variables.

We assume a global subtagging relation, a reflexive and transitive relation on
labels, written ≺.

As we have defined them so far, types correspond to arbitrary context-free
grammars—for example, we can write definitions like:

type X = a[],X,b[] | ()

Since the decision problem for inclusion between context free languages is undecid-
able [Hopcroft and Ullman 1979, Theorem 8.12], we need to impose an additional
restriction to reduce the power of the system so that types correspond to regular
tree languages. Deciding whether an arbitrary context-free grammar is regular is
also undecidable [Hopcroft and Ullman 1979, Theorem 8.12], so we adopt a sim-
ple syntactic condition, called well-formedness, that ensures regularity. Intuitively,
well-formedness allows unguarded (i.e., not enclosed by a label) recursive uses of
variables, but restricts them to tail positions. For example, we allow the following
type definitions:

type X = a[],Y

type Y = b[],X | ()

Formally, we define well-formedness in terms of a set of “non-tail variables” and an
auxiliary set of “top-level variables.” The set toplevel (T) of top-level variables of a
type T is the smallest set satisfying the following equations:

toplevel (X) = {X} ∪ toplevel (E(X))
toplevel (T) = ∅ if T = ∅, (), or l[T′]
toplevel (T|U) = toplevel (T) ∪ toplevel (U)
toplevel (T,U) = toplevel (T) ∪ toplevel (U)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

12 · Haruo Hosoya et al.

Likewise, the set nontail (T) of non-tail variables of a type T is the smallest set
satisfying the following equations:

nontail(X) = nontail(E(X))
nontail(T) = ∅ if T = ∅, (), or l[T′]
nontail(T|U) = nontail(T) ∪ nontail(U)
nontail(T,U) = toplevel (T) ∪ nontail(U)

Now, the set E of type definitions is said to be well-formed if

X 6∈ nontail(E(X)) for all X ∈ dom(E).

From now on, we assume that a well-formed set E of type definitions is given once
and for all.

The semantics of external types is given by the denotation function [[T]], which is
defined as the least solution of the following set of equations1:

[[∅]] = ∅
[[()]] = {()}
[[X]] = [[E(X)]]
[[l[T]]] = {l′[v] | l′ ≺ l ∧ v ∈ [[T]]}
[[T,U]] = {v,w | v ∈ [[T]] ∧ w ∈ [[U]]}
[[T | U]] = [[T]] ∪ [[U]]

These rules are straightforward except that a labeled type with label l denotes not
only values with label l but also those with labels l′ smaller than l in the sense of
subtagging.

Subtyping is defined semantically: two internal types are in the subtype relation
iff their denotations are in the subset relation:

S <: T iff [[S]] ⊆ [[T]].

3.2 Internal Form

In the external form, values are arbitrary-arity trees (i.e., each node can have an
arbitrary number of children); in the internal form, we consider only binary trees.2

The labels l in the internal form are the same as labels in the external form.
Internal (binary) tree values (or just trees) are defined as follows.

t ::= ε leaf
l(t, t) label

There is a straightforward isomorphism between binary trees and sequences of
arbitrary-arity trees. The leaf value ε corresponds to the empty sequence, while
l(t, t′) corresponds to a sequence whose head is labeled l, with t corresponding to

1A somewhat peculiar property of this type system is that one can define a type that is not
syntactically ∅ but denotes the empty set, by using a “non-terminating” recursive type:

type X = a[X]

2Here, we consider automata accepting binary trees as the internal form of types. An alternative
would be to use a more direct formalism, called hedge automata [Murata 2000], which accept
arbitrary-arity trees.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Regular Exression Types for XML · 13

the content of l and t′ to the remainder of the sequence. For example, from the
arbitrary-arity tree

person[name[], addr[]]

we can read off the binary tree

person(name(ε, addr(ε, ε)), ε),

and vice versa.
To define the internal form of types, we begin as before by assuming a countably

infinite set of (internal) type states, ranged over by X . A (binary) tree automaton

M is a finite mapping from type states to (internal) type expressions, where a type
expression T is a set of either leaves ε or labels l(X, X). For convenience, we use
the following syntax for internal types.

T ::= ∅ empty set
ε leaf
T | T union
l(X, X) label

(Note that, in the internal form, type states can be used only under labels and
labels cannot be nested.) We write St(T) as the set of states appearing in T and
St(M) as

⋃

X∈dom(M) St(M(X)). We write card(T) for the cardinality of the set

T .
There is an exact correspondence between external and internal types (i.e., for

any external type, there is an equivalent internal type, and vice versa)[BCP: Do
you mean “external types modulo associativity” or something like that?
I.e., wouldn’t the distinct external types (S|T)|U and S|(T|U) correspond
to the same internal type?], following the same intuition as for values. For ←−
example, the external type person[name[], addr[]*] corresponds to the internal
type person(X1, X0) where the states X1 and X0 are defined by the automaton M

as follows.

M(X0) = ε

M(X1) = name(X0, X2)
M(X2) = addr(X0, X2) | ε

The formal translation from external types to internal types is presented in full in
Appendix A.

An internal type denotes a set of tree values. When St(M) ⊆ dom(M), the
denotation function [[T]]M is defined as the least solution of the following set of
equations:

[[ε]]M = {ε}
[[l(X, X ′)]]M = {l′(t, t′) | l′ ≺ l ∧ t ∈ [[M(X)]]M ∧ t′ ∈ [[M(X ′)]]M}
[[T | T ′]]M = [[T]]M ∪ [[T ′]]M
[[∅]]M = ∅

In the remainder of the article, we assume that a single tree automaton M is
given once and for all and shared among all types. From now on we write simply
[[T]] to mean [[T]]M .

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

14 · Haruo Hosoya et al.

Just as we did for the external form, we define subtyping between internal types
as inclusion between the sets of trees denoted by the types.

T <: T ′ iff [[T]] ⊆ [[T ′]].

Since types are now represented as tree automata, the subtyping problem can be
reduced to the inclusion problem of regular tree languages.

3.2.1 Theorem [Complexity of Subtyping]: The decision problem for the (in-
ternal) subtype relation is exptime-complete.

Proof. We use Seidl’s result of exptime-completeness of tree automata inclu-
sion [Seidl 1990]. Our formulation is different from his only in that we have sub-
tagging. exptime-hardness of our problem is trivial since any instance of Seidl’s
problem is an instance of ours (with no subtagging). For the other direction, we
can transform our form of tree automata to his by a polynomial-time reduction.
Let L be the set of labels appearing in the two given tree automata and n be
the number of labeled types appearing in them. We transform each labeled type

l(X, X ′) to
∣

∣

∣{l′(X, X ′) | l′ ∈ L ∧ l′ ≺ l}. Comparing the resulting automata with

no subtagging is equivalent to comparing the original automata with subtagging.
The transformation increases the number of labeled types by O(|L|n).

Although the worst-case complexity is quite high, the subtyping algorithm pre-
sented below appears to behave satisfactorily on practical examples.

4. SUBTYPING ALGORITHM

This section develops an algorithm for deciding the subtyping relation that is tuned
to the domain of typed XML processing, and gives proofs of soundness, complete-
ness, and termination.

4.1 Highlights

There is a classical algorithm for checking inclusion between tree automata. Given
two automata M and M ′, it works as follows:

(1) Take the complement M ′ of M ′, by constructing a deterministic automaton
from (the nondeterministic automaton) M ′ using a subset construction (where
each state of the new automaton corresponds to a subset of the states of the
original automaton), and then exchanging final and non-final states.

(2) Take the intersection of M and M ′ using a product construction.

(3) Test the emptiness of the result.

(See [Comon et al. 1999] for the details of each technique.) In an early implemen-
tation of XDuce, we actually used this algorithm. The problem quickly became
apparent: the tree automata constructions that it uses will always realize any po-
tential exponential blowup in the types involved. This is wasteful, since it is seldom
necessary to explore all the states of the automata—in practice, most of the inputs
to the subtype checker involve types with a large degree of sharing. For example,
consider the inclusion from Section 2.7.

Person*,Person2* <: (Person|Person2)*

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Regular Exression Types for XML · 15

Since this inclusion holds whatever (and however big) the types Person and Person2

may be, we should be able to check it without looking into their definitions.
In order to exploit this observation, we adopt, as a starting point, Aiken and

Murphy’s algorithm [Aiken and Murphy 1991]. Their algorithm works in a top-down
manner—starting with a pair of types and, at each step, comparing the top-most
type constructors and continuing recursively with corresponding subcomponents
until we reach leaves that require only trivial checks. The main advantage of this
top-down algorithm is that it enables numerous optimizations. In particular, we
can use reflexivity (e.g., Person <: Person in the above example) to cut off large
parts of the search. Also, we can cache intermediate results and use them for later
comparisons.

This sort of top-down checking is quite standard in subtyping algorithms for
conventional type systems. The differences from those algorithms arise from the
presence of “untagged” union types in our setting, where two components of a union
may have the same outermost label (unlike “tagged” or “disjoint” sum types, as
in ML, where all components are required to have distinct tags). For example,
we allow types like l(R1, S1) | l(R2, S2).

3 To see the difficulties that this raises,
suppose we want to check the following inclusion:

l(T, U) <: l(R1, S1) | l(R2, S2)

What subgoals should we generate? The first rule we might try is the following:

(Weak-Rec)

l(T, U) <: l(R1, S1) or l(T, U) <: l(R2, S2)

l(T, U) <: l(R1, S1) | l(R2, S2)

However, this rule is too weak. For example, if T = R1 | R2 and U = S, then
neither premise holds, although we do have l((R1 | R2), S) <: l(R1, S) | l(R2, S).

To avoid this counterexample, we might try first distributing all unions over
labels. For example, to verify l((R1 | R2), S) <: l(R1, S) | l(R2, S), we could
transform the left-hand side to l(R1, S) | l(R2, S) and then check whether each
clause on the left appears on the right. However, this approach does not work for
recursive types, where we would apply distributivity infinitely.

Fortunately, we can overcome the difficulty by reorganizing the clauses, using a
simple set-theoretic observation. Let us consider a slightly more general case

l(T, U) <: l(R1, S1) | l(R2, S2) | l(R3, S3)

and consider a series of transformations of this relation. (This discussion can be
further generalized to cases where the subtype relation to check has an arbitrary
number of clauses on the right-hand side.) First, in general, two arguments to a
labeled type l(R, S) can be seen as a cross product R×S, which in turn is equal to
(R×T)∩(T ×S), where the maximal type T denotes the set of all trees. Therefore
the right-hand side of the subtype relation can be rewritten as follows.

(l(R1, T) ∩ l(T , S1)) | (l(R2, T) ∩ l(T , S2)) | (l(R1, T) ∩ l(T , S1))

3We use the internal form of types from now on. Also, we use in examples an informal notation
that allows nested labels.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

16 · Haruo Hosoya et al.

Using distributivity of intersections over unions, we can turn this disjunctive form
to the following conjunctive form.

(l(R1, T) | l(R2, T) | l(R3, T)) ∩
(l(T , S1) | l(R2, T) | l(R3, T)) ∩
(l(R1, T) | l(T , S2) | l(R3, T)) ∩
(l(T , S1) | l(T , S2) | l(R3, T)) ∩
(l(R1, T) | l(R2, T) | l(T , S3)) ∩
. . .

In each clause of the conjunctive form, if one argument Ri to l appears, then the
other argument Si does not appear, and vice versa. Therefore each clause can be
rewritten as

(

∣

∣

∣

i∈I
l(Ri, T)

)

|

(

∣

∣

∣

i∈I
l(T , Si)

)

,

where I is a subset of {1, 2, 3} and I is {1, 2, 3} \ I. Since the whole conjunctive
form above is the intersection of such formulas for all subsets I of {1, 2, 3}, the
original subtype relation reduces to checking, for each I, that

l(T, U) <:

(

∣

∣

∣

i∈I
l(Ri, T)

)

|

(

∣

∣

∣

i∈I
l(T , Si)

)

,

or equivalently that

l(T, U) <: l(
∣

∣

∣

i∈I
Ri, T) | l(T ,

∣

∣

∣

i∈I
Si).

Write RI for
∣

∣

∣

i∈I
Ri and SI for

∣

∣

∣

i∈I
Si.

Now, since each labeled type on the right has type T as one of its arguments,
the situation becomes easier than the beginning: it suffices to test

T <: RI or U <: SI .

To see why, suppose l(T, U) <: l(RI , T) | l(T , SI) but T 6<: RI and U 6<: SI . We
can find trees t ∈ T \ RI and u ∈ U \ SI . This means that l(t, u) ∈ l(T, U) but
neither l(t, u) ∈ l(RI , T) nor l(t, u) ∈ l(T , SI), which contradicts the assumption.
(The other direction—if T <: RI or U <: SI , then l(T, U) <: l(RI , T) | l(T , SI)—is
obvious.)

Our subtyping algorithm is based on these intuitions. In addition, we incorporate
several implementation techniques to further improve the efficiency. First, to make
effective use of reflexivity checks, we recognize semantically equal types as often as
possible and ensure that their representations are physically shared (i.e., we use a
form of “hash consing” for types). Second, the subtyping algorithm may backtrack
when checking the above formula “T <: RI or U <: SI”; since, as we will see
in Section 5.1, this requires reverting the cache that records intermediate results
of subtype checking, we use functional data structures to represent the cache so
as to make the reverting quick. Other implementation techniques capture some
common special cases for untagged union types to avoid exploring an exponential
number of subgoals (which is in general incurred by considering all the subsets
I). In the following section, we describe the core of the algorithm, postponing the
optimizations to Section 5.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Regular Exression Types for XML · 17

4.2 Algorithm

The subtyping algorithm is expressed by two judgments, Π ` T <: U ⇒ Π′ and
Π `† T <: U ⇒ Π′, where Π is a set of pairs of types of the form R <: S,
called “assumptions.” Both judgments should be read: “assuming that all relations
R <: S in Π hold, the algorithm verifies T <: U and yields, in the output set Π′,
both the old pairs in Π and the new pairs T ′ <: U ′ that have been checked in the
process.” At each step of the subtyping algorithm, we add the given pair of types
to the assumption set. Later on, when we encounter the same pair, we immediately
return “yes,” thus ensuring termination. Of course, we have to be careful not to
check the assumption set immediately after storing the given pair, which would
incorrectly establish subtyping between any pair of types. This is why we have
two different judgments: we switch from one to the other immediately after adding
a pair and switch back whenever it is safe. The accumulated assumptions are
eventually returned in the output set Π′, which is propagated as the input to other
subtype checks, avoiding repeated checks of the same pair. Furthermore, these
pairs are reused not only in the process of checking a single inclusion, but all the
way through the typechecking of the whole program, thus serving as a cache of
all verified subtype relations. (Related discussions of assumptions can be found in
[Amadio and Cardelli 1993; Brandt and Henglein 1998; Gapeyev et al. 2000].)

We now give the rules to define the above two judgments. If the pair T <: U of in-
put types is already in the set Π of assumptions, we immediately succeed (rule Hyp).
Otherwise, we add the pair to this set and switch judgements (rule Assum).

(Hyp)

(T <: U) ∈ Π

Π ` T <: U ⇒ Π

(Assum)

(T <: U) 6∈ Π

Π; T <: U `† T <: U ⇒ Π′

Π ` T <: U ⇒ Π′

These two rules are for ensuring termination as well as avoidance of repeated checks
of the same pair. In Assum, we switch from the judgment of the form Π ` T <:

U ⇒ Π′ to Π `† T <: U ⇒ Π′, preventing the incorrect application of the rule Hyp
immediately following Assum. We keep using the judgment Π `† T <: U ⇒ Π′ in
the subsequent rules, and switch back to the judgment Π ` T <: U ⇒ Π′ in the last
rule Rec below.

The remaining rules depend on the shapes of the input types. The first three
handle the cases where the left-hand side is either an empty set type, a union type,
or a leaf type.

(Empty)

Π `† ∅ <: T ⇒ Π
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

18 · Haruo Hosoya et al.

(Split)

card(T) < card(T | T ′) card(T ′) < card(T | T ′)

Π `† T <: U ⇒ Π′ Π′ `† T ′ <: U ⇒ Π′′

Π `† T | T ′ <: U ⇒ Π′′

(Leaf)

Π `† ε <: ε | T ⇒ Π

If the left-hand side is an empty set type, we simply return since the relation clearly
holds (rule Empty). If the left-hand side is the union of two types T and T ′, we
generate two subgoals for these types (rule Split). The intuition behind this rule
is the set-theoretic fact that T ∪T ′ ⊆ U iff T ⊆ U and T ′ ⊆ U . The side conditions
card(T) < card(T | T ′) and card(T ′) < card(T | T ′) ensure that the algorithm
makes progress.

If the left-hand side is a leaf type, we check that the right-hand side also contains
a leaf type (rule Leaf). The algorithm can fail only at this rule.

In the remaining cases, the left-hand side is a singleton labeled type.

(Prune)

l′(U, U ′) 6∈ R l 6≺ l′ Π `† l(T, T ′) <: R⇒ Π′

Π `† l(T, T ′) <: l′(U, U ′) | R⇒ Π′

(Prune-Leaf)

ε 6∈ R Π `† l(T, T ′) <: R⇒ Π′

Π `† l(T, T ′) <: ε | R⇒ Π′

(Rec)

for all 1 ≤ j ≤ n, l ≺ lj ,
for all 1 ≤ i ≤ 2n, either

Πi−1 `M(X) <:
∣

∣

∣

j∈In

i

M(Yj)⇒ Πi or Πi−1 `M(X ′) <:
∣

∣

∣

j∈In

i

M(Y ′
j)⇒ Πi

Π0 `† l(X, X ′) <: l1(Y1, Y
′
1) | . . . | ln(Yn, Y ′

n)⇒ Π2n

The rules Prune and Prune-Leaf remove from the right hand side a leaf type
ε and all types with labels l′ that are not greater than l. The side conditions
l′(U, U ′) 6∈ R and ε 6∈ R guarantees that the algorithm proceeds with smaller
types. The rule Rec handles the other cases—i.e., where the right-hand side is the
(possibly empty) union of types lj(Yj , Y

′
j), with all labels lj greater than the label

l—using the intuition explained in Section 4.1. We index the subsets of {1, . . . , n} in
some arbitrary order from In

1 to In
2n . We write In

i for the complement {1, . . . , n}\In
i .

For each index i, we prove that either M(X) is a subtype of the union
∣

∣

∣

j∈In

i

M(Yj),

or M(X ′) is a subtype of the union
∣

∣

∣

j∈In

i

M(Y ′
j).

Figure 1 shows a proof-tree-like diagram that arises when we use the algorithm
to check the subtype relation X <: Y , where we assume X and Y are defined in

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Regular Exression Types for XML · 19

Leaf

Π `†
ε <: ε | l(Y, ε) ⇒ Π

0

B

B

B

B

B

B

B

B

B

B

B

B

@

Hyp

Π ` X <: Y ⇒ Π

or

fail

Π ` ε <: ∅

1

C

C

C

C

C

C

C

C

C

C

C

C

A

and

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

fail

.

.

.

Π ` X <: ∅

or

Leaf

Π ` ε <: ε ⇒ Π

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Π `†
l(X, ε) <: l(Y, ε) ⇒ Π

Π `†
l(X, ε) <: ε | l(Y, ε) ⇒ Π

Π `†
ε | l(X, ε) <: ε | l(Y, ε) ⇒ Π

∅ ` X <: Y ⇒ Π

Fig. 1. Example of the subtyping algorithm

the global tree automaton as follows:

M(X) = ε | l(X, ε)
M(Y) = ε | l(Y, ε)

In the figure, we write Π for {X <: Y }. Notice that when X <: Y is checked for the
second time, Hyp is used; thus the check terminates. Also, checking Π `† l(X, ε) <:

l(Y, ε) generates a complex form of premises, some of which fail; thus the check
involves backtracking

Intuitively, we can check that the algorithm terminates by reasoning as follows.
The process from Empty to Prune-Leaf obviously terminates because the car-
dinalities of the types always decrease. In Rec, observe that X , X ′, Y1, . . . , Yn,
Y ′

1 , . . . , Y ′
n are always states of the tree automata of the input types. Since the set

of such states is finite, the set of unions of such states, for which Rec generates
subgoals, is also finite. Assump keeps track of all such unions of states that the
algorithm encounters, and Hyp ensures termination. This argument is formalized
in the next section.

4.3 Proofs

Before arguing the correctness of the algorithm, we need to clarify one subtlety in
its definition. The rules in Section 4 can be viewed in two ways: as a “success”
relation Π ` T <: U ⇒ Π′ and as a subtyping algorithm (which we call Sub

in this subsection). The former is the relation that is defined by induction on
the structure of the internal types using the given rules, whereas the latter is the
algorithm that takes an assumption set Π and two internal types T and U as
inputs, successively applies the rules in a bottom-up way, and returns another
assumption set Π′ as an output. Making this distinction is critical, particularly for
discussing the algorithm’s termination. When the relation Π ` T <: U ⇒ Π′ holds,
then there is a proof tree validating this relation, and this tree corresponds to one

possible execution path of the algorithm on the inputs Π, T , and U . However,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

20 · Haruo Hosoya et al.

since the algorithm is nondeterministic, there could be other execution paths for
the same inputs. Therefore the relation Π ` T <: U ⇒ Π′ does not by itself imply
termination.

In addition to the above two concepts, we will need to define a “failure” relation
Π ` T <: U ⇒ ⊥. The proof trees for this relation correspond to execution paths
that lead the algorithm to a failure. We will use induction on these proof trees in
the completeness proof below. We cannot just use the negation Π 6` T <: U ⇒ Π′

of the success relation, since this statement just means that there is no (finite)
proof tree validating the success relation, leaving open the possibility that there
are only “infinite proof trees”—i.e., that the algorithm diverges no matter what set
of nondeterministic choices it makes.

Formally, the structure of the definitions and proofs is as follows. We first define
(a) the subtyping algorithm, (b) the success relation, and (c) the failure relation.
(The first two have already been defined and the last is coming soon.) Then, we
prove that

(1) the algorithm always terminates, and its execution path corresponds to a proof
tree in either the success relation or the failure relation (termination),

(2) the success relation implies the subtype relation (soundness), and

(3) the failure relation implies the negation of the subtype relation (completeness).

We start with some definitions used in the soundness proof. We first define the
height of tree values as follows:

h(ε) = 1
h(l(t, t′)) = 1 + max(h(t), h(t′))

We write [[T]]n for {t ∈ [[T]] | h(t) ≤ n}. The sets [[T]]n can be characterized by the
following equations:

[[T]]0 = ∅
[[∅]]n+1 = ∅
[[ε]]n+1 = {ε}

[[l(X, X ′)]]n+1 = {l′(t, t′) | l′ ≺ l ∧ t ∈ [[M(X)]]n ∧ t′ ∈ [[M(X ′)]]n}
[[T | T ′]]n+1 = [[T]]n+1 ∪ [[T ′]]n+1

We also define a family of subtype relations:

T <:n T ′ iff [[T]]n ⊆ [[T ′]]n

The following properties clearly hold:

—If T <:n T ′ for all n, then T <: T ′.

—If T <: T ′, then T <:n T ′ for all n.

—T <:0 T ′ for all types T and T ′.

We define Π to be n-consistent if T <:n U for all (T <: U) ∈ Π and consistent if Π
is n-consistent for all n (that is, T <: U for all (T <: U) ∈ Π).

The proof of soundness uses the following lemma in the case of Rec.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Regular Exression Types for XML · 21

4.3.1 Lemma: Let m be a natural number and Ai, Bi be sets (1 ≤ i ≤ m). Define

Im = {1, . . . , m}

Cm =
⋃

i∈Im

Ai ×Bi

Dm =
⋂

I⊆Im

(
⋃

j∈I

Aj × T) ∪ (
⋃

j∈Im\I

T ×Bj).

Then, we have Cm = Dm for all m.

Proof. By mathematical induction on m.

Case: m = 0

Cm = Dm = ∅.

Case: m ≥ 1

First, Dm can be transformed as follows:

Dm =
⋂

I⊆Im−1

(
⋃

j∈I

Aj × T) ∪ (
⋃

j∈Im−1\I

T ×Bj) ∪ (T ×Bm)

∩
⋂

I⊆Im−1

(
⋃

j∈I

Aj × T) ∪ (Am × T) ∪ (
⋃

j∈Im−1\I

T ×Bj)

=

⋂

I⊆Im−1

(
⋃

j∈I

Aj × T) ∪ (
⋃

j∈Im−1\I

T ×Bj)

 ∪ ((T ×Bm) ∩ (Am × T))

=

⋂

I⊆Im−1

(
⋃

j∈I

Aj × T) ∪ (
⋃

j∈Im−1\I

T ×Bj)

 ∪ (Am ×Bm)

By using the induction hypothesis, the above formula equals to Cm−1∪(Am×Bm) =
Cm.

4.3.2 Theorem [Soundness]: If Π ` T <: U ⇒ Π′ and Π is consistent, then
T <: U and Π′ is consistent.

Proof. We prove stronger statements:

—Suppose Π ` T <: U ⇒ Π′. For all n, if Π is n-consistent, then T <:n U and Π′

is n-consistent.

—Suppose Π `† T <: U ⇒ Π′. For all n, if Π is n-consistent, then T <:n+1 U and
Π′ is n-consistent.

Then the assumption ` T <: U ⇒ Π′ entails that T <:n U and Π′ is n-consistent
for all n, which imply the result.

The proof proceeds by simultaneous induction on derivations of Π ` T <: U ⇒ Π′

and Π `† T <: U ⇒ Π′. (We elide the side conditions involving sizes in some of the
rules, since they are irrelevant here.)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

22 · Haruo Hosoya et al.

Case Hyp:

(T <: U) ∈ Π

Π ` T <: U ⇒ Π

Immediate.

Case Assum:

(T <: U) 6∈ Π

Π; T <: U `† T <: U ⇒ Π′

Π ` T <: U ⇒ Π′

Suppose that Π is n-consistent. We must show that (Π; T <: U) is also n-consistent.
From this, T <:n U will follow immediately and we can obtain the n-consistence of
Π′ using the the induction hypothesis.

We trivially have T <:0 U . Also, since Π is n-consistent, we can easily show that
Π is also i-consistent for all 0 ≤ i ≤ n. Furthermore, by the induction hypothesis,
for all 0 ≤ i ≤ n, if (Π; T <: U) is i-consistent, then T <:i+1 U . By an inner
induction on i, it follows that (Π;T <: U) is i-consistent for all 0 ≤ i ≤ n, and in
particular for i = n.

Case Split:

card(T) < card(T | T ′) card(T ′) < card(T | T ′)

Π `† T <: U ⇒ Π′ Π′ `† T ′ <: U ⇒ Π′′

Π `† T | T ′ <: U ⇒ Π′′

Suppose Π is n-consistent. Using the induction hypothesis on the first premise, we
find that T <:n+1 U and Π′ is n-consistent. Further using the induction hypothesis
on the second premise, we obtain T ′ <:n+1 U , together with the n-consistency of
Π′′.

It remains to prove that T | T ′ <:n+1 U , that is, [[T]]n+1 ∪ [[T ′]]n+1 ⊆ [[U]]n+1.
This holds because, from T <:n+1 U and T ′ <:n+1 U , we have [[T]]n+1 ⊆ [[U]]n+1

and [[T ′]]n+1 ⊆ [[U]]n+1.

Case Empty:

Π `† ∅ <: T ⇒ Π

[[∅]]n+1 = ∅ ⊆ [[T]]n+1 for any T and n.

Case Leaf:

Π `† ε <: ε | T ⇒ Π

[[ε]]n+1 = {ε} ⊆ {ε} ∪ [[T]]n+1 = [[ε | T]]n+1, for any T and n.

Case Prune:

l′(U, U ′) 6∈ R l 6≺ l′ Π `† l(T, T ′) <: R⇒ Π′

Π `† l(T, T ′) <: l′(U, U ′) | R ⇒ Π′

Suppose that Π is n-consistent. By the induction hypothesis, l(T, T ′) <:n+1 R and
Π′ is n-consistent. Therefore [[l(T, T ′)]]n+1 ⊆ [[R]]n+1. The result follows from this
and [[R]]n+1 ⊆ [[R]]n+1 ∪ [[l′(U, U ′)]]n+1 = [[l′(U, U ′) | R]]n+1.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Regular Exression Types for XML · 23

Case Prune-Leaf:

ε 6∈ R Π `† l(T, T ′) <: R⇒ Π′

Π `† l(T, T ′) <: ε | R⇒ Π′

Similar.

Case Rec:

For all 1 ≤ j ≤ m, l ≺ lj
for all 1 ≤ i ≤ 2n, either

Πi−1 `M(X) <:
∣

∣

∣

j∈In

i

M(Yj)⇒ Πi or Πi−1 `M(X ′) <:
∣

∣

∣

j∈In

i

M(Y ′
j)⇒ Πi

Π0 `
† l(X, X ′) <: l1(Y1, Y

′
1) | . . . | lm(Ym, Y ′

m)⇒ Π2m

Let T = M(X), T ′ = M(X ′), Uj = M(Yj), and U ′
j = M(Y ′

j). Suppose that Π is n-
consistent. By assumption, Π0 is n-consistent. By successive uses of the induction

hypotheses, for all 1 ≤ i ≤ 2m, we have either T <:n

∣

∣

∣

j∈Im

i

Uj or T ′ <:n

∣

∣

∣

j∈Im

i

U ′
j ,

where Πi is n-consistent. We must show that

l(X, X ′) <:n+1 l1(Y1, Y
′
1) | . . . | lm(Ym, Y ′

m)

that is,

[[l(X, X ′)]]n+1 ⊆ [[l1(Y1, Y
′
1)]]n+1 ∪ . . . ∪ [[lm(Ym, Y ′

m)]]n+1.

For each j, since l ≺ lj , we have

[[l(Yj , Y
′
j)]]

n+1
= {l′(t, t′) | l′ ≺ l ∧ t ∈ [[Uj]]n ∧ t′ ∈ [[U ′

j]]n}

⊆ {l′(t, t′) | l′ ≺ lj ∧ t ∈ [[Uj]]n ∧ t′ ∈ [[U ′
j]]n}

⊆ [[lj(Yj , Y
′
j)]]

n+1
.

It is therefore sufficient to prove that

[[l(X, X ′)]]n+1 ⊆ [[l(Y1, Y
′
1)]]n+1 ∪ . . . ∪ [[l(Ym, Y ′

m)]]n+1.

Notice that, by definition, we have

[[l(X, X ′)]]n+1 = {l′(t, t′) | l′ ≺ l ∧ t ∈ [[T]]n ∧ t′ ∈ [[T ′]]n}

and this set is isomorphic to {l′ | l′ ≺ l} × [[T]]n × [[T ′]]n; similarly, [[l(Yi, Y
′
i)]]n+1 is

isomorphic to {l′ | l′ ≺ l} × [[Ui]]n × [[U ′
i]]n. Thus, the inclusion relation that we are

working on proving can be rewritten as follows:

{l′ | l′ ≺ l} × [[T]]n × [[T ′]]n ⊆
⋃

1≤j≤m

({l′ | l′ ≺ l} × [[Uj]]n × [[U ′
j]]n)

Since the label part {l′ | l′ ≺ l} of the products can be cancelled on both sides, we
only consider the other parts. Hence,

[[T]]n × [[T ′]]n ⊆
⋃

1≤j≤m

([[Uj]]n × [[U ′
j]]n).

Since [[Uj]]n × [[U ′
j]]n = ([[Uj]]m × T) ∩ (T × [[U ′

j]]n), where T is the set of all trees,
this inclusion is equivalent to

[[T]]n × [[T ′]]n ⊆
⋃

1≤j≤m

(([[Uj]]n × T) ∩ (T × [[U ′
j]]n))

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

24 · Haruo Hosoya et al.

which is in turn equivalent to

[[T]]n × [[T ′]]n ⊆
⋂

1≤i≤2m(
⋃

j∈Im

i

([[Uj]]n × T) ∪
⋃

j∈Im

i

(T × [[U ′
j]]n))

using Lemma 4.3.1. What we need to show is now that for all 1 ≤ i ≤ 2n,

[[T]]n × [[T ′]]n ⊆
⋃

j∈Im

i

([[Uj]]n × T) ∪
⋃

j∈Im

i

(T × [[U ′
j]]n).

This follows, for each i, from one of the following inclusions:

[[T]]n ⊆
⋃

j∈Im

i

[[Uj]]n
or [[T ′]]n ⊆

⋃

j∈Im

i

[[U ′
j]]n

Each of these, in turn, follows from the definition of one of the inclusions

T <:n

∣

∣

∣

j∈Im

i

Uj

or T ′ <:n

∣

∣

∣

j∈Im

i

U ′
j ,

which we derived above using the induction hypotheses.

We next proceed to the proof of termination, where we show that the algorithm
always terminates and yields a successful derivation of subtype judgment or fails.
We first define the failure relation Π ` T <: U ⇒ ⊥, read “under assumption Π,
the algorithm fails to prove T <: U .” The relation is defined by the following set of
rules.

(N-Assum)

(T <: U) 6∈ Π

Π; T <: U `† T <: U ⇒ ⊥

Π ` T <: U ⇒ ⊥

(N-Split1)

card(T) < card(T | T ′)

Π `† T <: U ⇒ ⊥

Π `† T | T ′ <: U ⇒ ⊥

(N-Split2)

card(T) < card(T | T ′) card(T ′) < card(T | T ′)

Π `† T <: U ⇒ Π′ Π′ `† T ′ <: U ⇒ ⊥

Π `† T | T ′ <: U ⇒ ⊥

(N-Leaf)

ε 6∈ T

Π `† ε <: T ⇒ ⊥

(N-Prune)

l′(U, U ′) 6∈ R l 6≺ l′ Π `† l(T, T ′) <: R⇒ ⊥

Π `† l(T, T ′) <: l′(U, U ′) | R⇒ ⊥

(N-Prune-Leaf)

ε 6∈ R Π `† l(T, T ′) <: R⇒ ⊥

Π `† l(T, T ′) <: ε | R⇒ ⊥

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Regular Exression Types for XML · 25

(N-Rec)

For all 1 ≤ j ≤ n, l ≺ lj
For some 1 ≤ k ≤ 2m, for all 1 ≤ i ≤ k − 1,

Πi−1 `M(X) <:
∣

∣

∣

j∈Im

i

M(Yj)⇒ Πi or Πi−1 `M(X ′) <:
∣

∣

∣

j∈Im

i

M(Y ′
j)⇒ Πi

and both

Πk−1 `M(X) <:
∣

∣

∣

j∈Im

k

M(Yj)⇒ ⊥ and Πk−1 `M(X ′) <:
∣

∣

∣

j∈Im

k

M(Y ′
j)⇒ ⊥

Π0 `† l(X, X ′) <: l1(Y1, Y
′
1) | . . . | ln(Ym, Y ′

m)⇒ ⊥

Note that each rule corresponds to the “negation” of a rule in the success relation
Π ` T <: U ⇒ Π′. N-Split1 corresponds to the case where the first premise of
Split fails and N-Split2 corresponds to the case where the first premise of Split
succeeds but the second fails. (The asymmetry here arises because the result set of
the first premise is used in the second premise.) Similarly, N-Rec corresponds to
the case where either premise of Rec succeeds up to the (k − 1)-th iteration and
both premises fail at the kth iteration.

Now, the termination property can be summarized and proved as follows.

4.3.3 Theorem [Termination]: For all Π, T , and U , the algorithm Sub termi-
nates and derives either Π ` T <: U ⇒ Π′ for some Π′ or else Π ` T <: U ⇒ ⊥.

Proof. We prove instead the following statement (from which the one above
follows directly): for all Π, T , and U , the algorithm Sub terminates and derives
either Π `† T <: U ⇒ Π′ for some Π′ ⊇ Π or else Π `† T <: U ⇒ ⊥.

Let X be the set of states in the global automaton. The statement can be proved
by induction on the lexicographic order of (|X | ·2|X |−|Π|, card(T)+card(U)). The
crucial observations are that the rules Split, Prune, and Prune-Leaf always
decrease card(T) + card(U), and that the rule Rec is always followed either by
Hyp, which immediately terminates, or by Assum, which increases Π. Since an
element of Π is always a pair of the body of a state and the union of the bodies of
some states, the size of Π is bounded by |X | · 2|X |.

Finally, we prove the completeness property.

4.3.4 Theorem [Completeness]: If T <: U , then, for all Π, there is some Π′

such that Π ` T <: U ⇒ Π′.

Proof. We prove a stronger statement: If T <: U , then Π ` T <: U ⇒ Π′

and Π `† T <: U ⇒ Π′. We show this by contradiction, that is, if T <: U but
Π 6` T <: U ⇒ Π′ or Π 6`† T <: U ⇒ Π′, then there is a tree t ∈ [[T]] \ [[U]],
contradicting T <: U .

Since the termination property (Theorem 4.3.3) ensures that Π 6` T <: U ⇒ Π′

implies Π ` T <: U ⇒ ⊥, and Π 6`† T <: U ⇒ Π′ implies Π `† T <: U ⇒ ⊥, then
we prove the statement in the last paragraph by induction on the height of this
“failure” proof tree.

Case N-Assum:

(T <: U) 6∈ Π

Π; T <: U `† T <: U ⇒ ⊥

Π ` T <: U ⇒ ⊥
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

26 · Haruo Hosoya et al.

The result follows by the induction hypothesis.

Case N-Split1:

card(T) < card(T | T ′)

Π `† T <: U ⇒ ⊥

Π `† T | T ′ <: U ⇒ ⊥

By the induction hypothesis, there is t ∈ [[T]] \ [[U]], from which the result follows.

Case N-Split2:

card(T) < card(T | T ′) card(T ′) < card(T | T ′)

Π `† T <: U ⇒ Π′ Π′ `† T ′ <: U ⇒ ⊥

Π `† T | T ′ <: U ⇒ ⊥

By the induction hypothesis, there is t ∈ [[T ′]] \ [[U]], from which the result follows.

Case N-Leaf:

ε 6∈ T

Π `† ε <: T ⇒ ⊥

The result follows from ε 6∈ [[T]] and therefore ε ∈ [[ε]] \ [[T]].

Case N-Prune:

l′(U, U ′) 6∈ R l 6≺ l′ Π `† l(T, T ′) <: R⇒ ⊥

Π `† l(T, T ′) <: l′(U, U ′) | R⇒ ⊥

By the induction hypothesis, there is t ∈ [[l(T, T ′)]] such that t 6∈ [[R]]. By definition,
t = k(t1, t2) for some k ≺ l and t1 and t2 with t1 ∈ [[T]] and t2 ∈ [[T ′]]. This implies
that t′ = l(t1, t2) ∈ [[l(T, T ′)]] and t′ 6∈ [[R]]. Since l 6≺ l′, we also have t′ 6∈ [[l′(U, U ′)]].
Therefore t′ 6∈ [[l′(U, U ′) | R]].

Case N-Prune-Leaf:

ε 6∈ R Π `† l(T, T ′) <: R⇒ ⊥

Π `† l(T, T ′) <: ε | R⇒ ⊥

The result can be proved similarly to the previous case.

Case N-Rec:

For all 1 ≤ j ≤ n, l ≺ lj
For some 1 ≤ k ≤ 2m, for all 1 ≤ i ≤ k − 1,

Πi−1 `M(X) <:
∣

∣

∣

j∈Im

i

M(Yj)⇒ Πi or Πi−1 `M(X ′) <:
∣

∣

∣

j∈Im

i

M(Y ′
j)⇒ Πi

and both

Πk−1 `M(X) <:
∣

∣

∣

j∈Im

k

M(Yj)⇒ ⊥ and Πk−1 `M(X ′) <:
∣

∣

∣

j∈Im

k

M(Y ′
j)⇒ ⊥

Π0 `† l(X, X ′) <: l1(Y1, Y
′
1) | . . . | ln(Ym, Y ′

m)⇒ ⊥

Let T = M(X), T ′ = M(X ′), Uj = M(Yj), and U ′
j = M(Y ′

j). By the induction
hypothesis, there are

—t ∈ [[T]] such that t 6∈ [[
∣

∣

∣

j∈In

i

Uj]] =
⋃

j∈In

i

[[Uj]], and

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Regular Exression Types for XML · 27

—t′ ∈ [[T ′]] such that t′ 6∈ [[
∣

∣

∣

j∈In

i

U ′
j]] =

⋃

j∈In

i

[[U ′
j]].

Then we have l(t, t′) ∈ [[l(X, X ′)]]. Suppose we had l(t, t′) ∈ [[l1(Y1, Y
′
1) | . . . | ln(Yn, Y ′

n)]].
Then there would be some j such that l(t, t′) ∈ [[lj(Yj , Y

′
j)]], which implies t ∈ [[Uj]]

and t′ ∈ [[U ′
j]]. This contradicts either t 6∈

⋃

j∈In

i

[[Uj]] or t′ 6∈
⋃

j∈In

i

[[U ′
j]].

5. IMPLEMENTATION

Our subtype checker implementation embodies the rules in the previous section,
plus a number of optimizations specialized to the subtyping problems that arise in
practice in the domain of typed XML processing. This section describes several of
these techniques. They are categorized into low-level, representational techniques
and higher-level heuristics inspired by set-theoretic observations.

5.1 Low-level Techniques

In order for the subtyping algorithm to be able to exploit fast reflexivity checks
(as mentioned in 4.1), it is crucial to share the physical representations of internal
types as much as possible. To this end, we recognize some semantically equal
external types and translate them to the same internal type. The equalities that
we exploit are commutativity, associativity, and idempotency of the union operator,
and associativity of the concatenation operator. In order to make the recognition
of equal types quick, we represent external types in such a way that equal types are
structurally equal. We represent the union of types as a set of types, with nested
unions flattened; thus, ((R|S)|(T|U)) and (U|(S|(T|R))) can be recognized as
equal, for example. Since we use only union and equality for the operations on such
sets, a suitable representation is a sorted list, which allows us to perform these two
operations in linear time. (We sort the types in the list by their hash values, which
are computed from the structures of the types.) We represent the concatenation
of types simply by a list of types, with nested concatenations flattened and the
empty sequence removed; thus, (((R,()),S),(T,U)) and (R,(S,(T,U))) can be
recognized as equal, for example. To further improve the speed of equality tests,
we use hash consing, which associates each type expression with its integer hash
value, so that equality can be quickly checked in most cases by comparing their
hash values. (An alternative approach to hash consing might be to use multiset

discrimination [Cai and Paige 1995], but we have not tried this yet.)
In the internal form of types, we use cyclic structures to represent recursion. Com-

pared to explicit use of recursion variables and table lookups, this representation
not only makes the dereferencing slightly faster, but simplifies the implementation.

We need to be a little careful about the representation of the sets of assumptions
Π described in Section 4.2. A hash table might initially appear to be a suitable
representation, but it is not. To see why, recall that in Rec, we have the premises
“T <: . . . or T ′ <:” Suppose that the first premise fails. Then we try the second
premise, to which we need to pass the original set of assumptions. However, if we
represent the set of assumptions by a hash table, then the hash table available after
the first premise may contain some assumptions that have been added during the
processing of the first premise. Since those assumptions may be wrong, we have to
remove them from the hash table. Or, we could copy the whole table before trying
the first premise. Either would be very expensive. Instead, we use a functional

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

28 · Haruo Hosoya et al.

representation of sets. Since the required operations here are insertion and mem-
bership testing (unlike the unions of types described above), we use balanced binary

trees. Operations for balanced binary trees take logarithmic time in the size of the
set, as opposed to constant time for hash tables. We have not examined this factor,
but we believe that this is negligible in practice since the number of assumptions
stored is usually not large (less than 500 in our test cases, as shown in Section 6).

5.2 High-level Techniques

5.2.1 Literal equality. In the implementation of a subtype checker for any type
system, the most trivial optimization is, before going deeply into the structures,
checking if the given types are literally equal (we use a physical equality check in the
implementation). In the presence of union types, this can be slightly generalized,
using the fact that T <: T | U . In our implementation, we use the following rule

(Triv)

Π ` U <: T | R⇒ Π′

Π ` T | U <: T | R⇒ Π′

which can be seen as a combination of Split and T <: T | U . (We try this rule
before Hyp.) (Notice that this rule simply takes the difference between two sets of
types. Since we represent the union of types as a sorted list, the difference can be
calculated by a linear scan.)

5.2.2 Empty type elimination. In this optimization (which we call Emp), before
starting the subtyping algorithm, we perform a preprocessing step that eliminates
all the types denoting the empty set. Since the subtyping algorithm can now
assume that any type it encounters is not empty, some tests can be short cut. For
example, two subgoals of the form T <: ∅ in the rule Rec need not be generated.
In particular, in the special case of Rec where the right hand side is just a single
labeled type—l(T, U) <: l′(R, S)—we only need to check T <: R and U <: S with
l ≺ l′, which involves no backtracking at all.

The preprocessing of empty type elimination can be highly tuned. In theory,
identifying and eliminating empty states can be performed in linear time [Comon
et al. 1999]. However, we use a simpler but potentially quadratic algorithm, which
seems to perform well enough in practice. (See Section 6.) We have not compared
these two algorithms yet.

5.2.3 Merging labeled types. In order to make the previous optimization more ef-
fective, we merge types on the right hand side when either the first or second
arguments are the same:

(Merge1)

Π `† l(T, U) <: l′(R, (S | E))⇒ Π′ l ≺ l′

Π `† l(T, U) <: l′(R, S) | l′(R, E)⇒ Π′

(Merge2)

Π `† l(T, U) <: l′((R | S), E)⇒ Π′ l ≺ l′

Π `† l(T, U) <: l′(R, E) | l′(S, E)⇒ Π′

(We try these rules before Single.) In our experience, the first case is more common
than the second case. This is because, in the external form of types, labels of the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Regular Exression Types for XML · 29

same name often have the same content type. (When we “import” existing DTDs
and interpret them as regular expression types, labels of the same name are even
required to have the same content type.) Therefore we check Merge1 first and
then Merge2.

5.2.4 Default case. If the type on the right hand side in Rec has the form U |
R1 | . . . | Rn and U is larger than any Ri, then we only need to compare the left
hand side with this largest type U :

(Super)

1 ≤ i ≤ n Πi `† Ri <: U ⇒ Πi+1

Πn+1 `† T <: U ⇒ Π′

Π1 `† T <: U | R1 | . . . | Rn ⇒ Π′

(We try this rule before Rec after Merge1/2.) This typically happens when the
programmer writes a “default” case in a pattern match, which is given a type (e.g.
Any) that covers all the other cases.

In principle, this optimization can generate, in the course of searching for the
largest type, so many subgoals that the cost surpasses the gain. However, we have
not found such a situation in practice so far (see Section 6). This is probably
because most of the cases are handled by the previous optimizations, and because
the general rule Rec (which we would have to use if not using Super) is often more
expensive.

5.2.5 Type Any. Although the type Any can be encoded using the special label
~ as described in Section 2.5, it is useful to represent Any as a special state in the
internal form, so that we can use the following rule:

(Any)

Π `† T <: Any⇒ Π

(We try this rule before Split.) Any is used quite heavily in our programs, es-
pecially when we do not want to specify precise types in patterns. Without this
optimization, we would have to traverse the whole structure of the left hand side
type T , where every step just compares a subphrase of T with Any.

Using these heuristics together, almost all uses of the rule Rec are eliminated in
our example programs (see the following section).

6. PRELIMINARY EXPERIMENTS

We have incorporated the subtyping algorithm described above in a prototype im-
plementation of the XDuce language. XDuce is a simple first-order functional
language; a typical program consists of a collection of type declarations and recur-
sive functions that use pattern matching to analyze input values. XDuce can parse
external DTDs, interpreting them as regular expression type declarations. Some of
our applications use this feature to incorporate fairly large DTDs from real-world
XML applications.

In this section, we present the results of some preliminary performance mea-
surements of our implementation. In the experiments, we are interested in (1) the
wall-clock time that our algorithm takes to typecheck various application programs
(subtype checks consume most of this time), and (2) the separate effects of each

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

30 · Haruo Hosoya et al.

of lines subtyping time (sec) subtype alg. internals

Application XDuce DTD total main states assumptions
Bookmarks 310 1197 0.48 0.018 756 133

Diff 355 — 0.039 0.014 276 165
Html2Latex

(strict)
307 989 0.58 0.22 783 345

Html2Latex
(transitional)

312 1197 0.88 0.36 946 433

Html2Latex
(frameset)

323 1226 0.87 0.34 975 454

Table I. Applications and Measurement Results

high-level optimization. The platform for our experiment was a Sun Enterprise
3000 (250MHz UltraSPARC) running SunOS 5.7.

Our test suite consists of three small applications written in XDuce:

Bookmarks. Takes as input a Netscape bookmarks file of type Bookmarks, which
is a small subset of the type HTML. It extracts a particular folder named “Public,”
adds a table of contents at the front, and inserts links between the contents and
the body. The type of the result is the full HTML type.

Html2Latex. Takes an HTML file (of type HTML) and converts it into LaTeX (a
value of type String) by interpreting some of the markup commands.

Diff. Implements Chawathe’s “tree diff” algorithm [Chawathe 1999]. It takes a
pair of XML files of type Xml, which is the type of all XML documents, and returns
a tree with annotations indicating whether each subtree has been retained, inserted,
deleted, or changed between the two inputs.

The HTML type (more precisely, XHTML, which is an XML implementation of HTML)
is currently one of the largest schemas that are in real use. This makes it an excel-
lent benchmark case for our implementation. There are actually three versions of
XHTML: XHTML-strict, XHTML-transitional, and XHTML-frameset; accordingly,
our Html2Latex application comes in three versions. The first is smallest and the
third is slightly larger than the second.

The first group of columns in Table I shows the number of lines in XDuce code
(counting functions and types written in XDuce syntax, but not external DTDs),
and the number of lines in external DTDs (if used). The difference between the
three versions of Html2Latex is mainly in the number of lines of DTDs. The column
“total” in the table shows the total time spent by the subtyping algorithm during
the type checking of the whole program. It includes conversion from the external
form to the internal form (INT), empty type elimination (EMP), and the main
subtyping algorithm (SUB). The optimizations are all turned on for this table. The
column “main” shows the time spent by the main algorithm SUB. The table gives
two more columns: “states” and “assumptions.” The “states” column indicates
the number of states of the internal form stored in the system, and the “assumps”
indicates the number of pairs stored in the set of assumptions.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Regular Exression Types for XML · 31

As the table indicates, the speed of type checking is acceptable for these applica-
tions. In particular, it takes less than one second to type check programs involving
the full HTML type. Also, the space consumed by the subtyping algorithm indicated
by the number of assumptions is relatively small, despite its potential of blow-up.

���������

�

�
�
	

�
	

�

�
�
	

�

�
�
	

�
�
�
�

�
�
�

�
��
�

�
�
�
�
��

�
�
�
�
�
�

�
�
�
�
�

�
�
�

��

!
"
#
!
$%

�

	

�

	

��

�	

��

�	

�

	

	�

&'(

)*+

,-�

'.)(

/011

2

2
3
24

2
3
25

2
3
26

2
3
27

2
3
8

2
3
84

2
3
85

2
3
86

9
:
9
;

;
<
=

>
?@
A

<
;
?
B
;C

<
;
?
B
;
D

E
F
=
;
?

G
9
H

IJ
K
L
M
NO

2

P2

822

8P2

422

4P2

Q22

RST

UVW

XYZ

S/UT

[\]̂_̀a\bcd\eafgh\hifâj

k

l

_

m

n

o

p

q

r

s

t
u
t
v

v
w
x

y
z{
|

w
v
z
}
v~

w
v
z
}
v
�

�
�
x
v
z

�
t
�

��
�
�
�
��

k

lk

_k

mk

nk

ok

���

���

���

����

Fig. 2. The Effects of High-level Optimizations

Notice that for the applications that we use, the ratio of the “main” column
to the “total” column is relatively small, even though subtyping takes exponential
time in the worst case. This ratio would not be so small if we did not use any of
our high-level optimizations, as we will discuss next.

We ran a further set of measurements to evaluate the effects of each high-level
optimization. The measurement strategy is as follows. We start with a subtype

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

32 · Haruo Hosoya et al.

checker that implements the set of rules in Section 4.2 and the low-level techniques
described in Section 5.1 (None). We then turn on the high-level optimizations
one by one and measure the performance. We add high-level optimizations in this
order: Emp, Triv, Merge1, Merge2, Super and Any.

The graphs in Figure 2 show how the behavior of our algorithm varies as we
add each optimization. We only consider the “transitional” version of Html2Latex
since the graphs look alike for other versions. Each graph provides two kinds of
information. The first is given by bars indicating the transition of the time spent by
the algorithm. Each bar in the graphs has three components corresponding to each
phase of the subtyping procedure. We are mainly interested in SUB. The others
are only presented so as to show the ratio of SUB in the total time. The times,
except for SUB, should not depend on the optimization switches but one can see
noises in the graphs (especially in Diff). We suspect that this is due to garbage
collection since this occurs consistently over several runs (we have not confirmed
this by any further experiment). The second piece of information is given by a line
indicating the number of times the rule Rec is used (NDET). (For None and
Emp, these numbers are sometimes too big to fit on the graph.)

We first notice that Emp and Triv are always effective. (For Diff, unfortunately,
the total time becomes bigger with Merge1 because of the “GC noise.”) Any is
effective in Bookmarks. The effects of Merge1 and Merge2 are unclear in these
graphs.

The number of times the rule Rec is used almost always decreases each time
an optimization is added; by using all the optimizations, this rule can almost be
avoided. However, even though Rec rule is usually avoided, the savings in wall-
clock time is less. This indicates that, in some cases, the cost of the optimization
and that of blindly using Rec rule may be comparable.

Also, notice that the cost of empty type elimination (Emp) is very low.
The experimental results indicate that the efficiency of our subtyping algorithm is

quite acceptable in our small applications. In particular, it is quite encouraging that
it works well even in the applications using XHTML. This is a big step forward
from our earliest version of XDuce, which used a naive text-book algorithm for
tree automata inclusion (which is mentioned in the beginning of Section 4.1) and
which performed terribly on such programs. However, in order to conclude that
the present algorithm is adequate for a wide range of programs, benchmarks using
much bigger applications would be required.

7. RELATED WORK

Static typing of programs for XML processing has been approached from several
different angles. One popular idea is to embed a type system for XML in an
existing typed language. The advantage is that we can enjoy not only static type
safety, but also all the other features provided by the host language. The cost is
that XML values and their corresponding schemas must somehow be “injected”
into the value and type spaces of the host language; this usually involves adding
more layers of tagging than were present in the original XML documents, which
inhibits subtyping. The lack of subtyping (or availability of only restricted forms
of subtyping) is not a serious problem for simple traversal of tree structures; it
becomes a stumbling block, though, in tasks like the “database integration” that

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Regular Exression Types for XML · 33

we discussed in Section 2.7, where ordering-forgetting subtyping and distributivity
were critically needed.

A recent example of the embedding approach is Wallace and Runciman’s proposal
to use Haskell as a host language [Wallace and Runciman 1999] for XML processing.
The only thing they add to Haskell is a mapping from DTDs into Haskell datatypes.
This allows their programs to make use of other mechanisms standard in functional
programming languages, such as higher-order functions, parametric polymorphism,
and pattern matching. However, they do not have any notion of subtyping. A
difference in the other direction is that our type system does not currently support
higher-order functions or parametric polymorphism. (We are working on both of
these extensions, but they are nontrivial.)

Meijer and Shields propose the typed functional language XMλ for XML process-
ing [Meijer and Shields 1999; Shields and Meijer 2001]. Although their type system
stems from Haskell’s, they attain additional flexibility required in XML processing
by incorporating, instead of subtyping, extensible records and variants based on
row polymorphism.

The query language YAT [Cluet and Siméon 1998] has a type system similar to
regular expression types. They also provide a notion of subtyping that can make
programs flexible against changes of types. However, their subtyping is somewhat
weaker than ours: they can handle the first example (“database evolution”) in
Section 2.7, but since their subtyping lacks distributive laws, they cannot treat the
second example (“database integration”) given in the same section.

Since its initial publication, our work on regular expression types has influenced
proposals by other researchers. In particular, Fernandez, Siméon, and Wadler pro-
pose XML Query Algebra for the basis of XML query processing and optimization,
and they use our regular expression types in their type system and our subtyping
algorithm in their implementation [Fernández et al.].

Milo, Suciu, and Vianu have studied a typechecking problem for their general
framework called k-pebble tree transducers, which can capture a wide range of
query languages for XML [Milo et al. 2000]. The types there are based on tree
automata and conceptually identical to regular expression types. Papakonstanti-
nou and Vianu present a typechecking algorithm for their query language loto-ql,
where the algorithm uses extensions to DTDs [Papakonstantinou and Vianu 2000].
One of their extensions is equivalent to tree automata.

Although schema languages for XML do not treat static verification of programs,
the type structures in these languages and regular expression types are worth dis-
cussing. Since schema languages are too many to enumerate, we consider the follow-
ing representative ones: DTD [Bray et al. 2000], XML-Schema [Fallside 2001], DSD
(Document Structure Description) [Klarlund et al. 2000], RELAX [Murata 2001],
TREX [Clark 2001], RELAX NG [Clark and Murata 2001], and SOX (Schema for
Object-Oriented XML) [Davidson et al. 1999]. As our regular expression types do,
all of these use regular expressions or similar mechanisms for describing sequences.
Both our regular expression types and RELAX (and its relatives TREX and RE-
LAX NG) are equivalent to tree automata (more precisely, nondeterministic tree
automata; see [Comon et al. 1999] for a detailed classification of tree automata),
and therefore these have the same expressiveness. The other schema languages are
more restrictive. Some of the above schema languages consider subtyping. XML-

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

34 · Haruo Hosoya et al.

Schema has a “restriction” subtyping (which yields a subtype by decreasing the
number of choices in an existing type), and both XML-Schema and SOX have an
“extension” subtyping (which yields a subtype by adding new fields to the tail,
similarly to inheritance in object-oriented languages). Both forms of subtyping are
subsumed by ours. Kuper and Siméon define a schema language similar to regu-
lar expression types; they provide a subtype relation that is weaker than ours but
allows efficient storage layout for XML databases [Kuper and Siméon 2001].

Several researchers have developed type systems for query languages for tree-like
data that are similar to XML except that they have no ordering among children
nodes (some of the formalisms also allow cycles). Their unorderedness makes these
type systems quite different from those for XML. In the type system studied by
Buneman, Davidson, Fernandez, and Suciu [Buneman et al. 1997], types are graph
structures and their conformance and subtype relations are defined in terms of graph
simulation (which is weaker than the inclusion relation). The query language Lorel
uses a somewhat similar type system called DataGuide [Goldman and Widom 1997].

Our investigation of regular expression types was originally motivated by an
observation by Buneman and Pierce [Buneman and Pierce 1998] that untagged
union types correspond naturally to forms of variation found in semistructured
databases. The difference from the present work is that they study unordered
record types instead of ordered sequences and do not treat recursive types.

Our subtyping algorithm can be seen as an extension to subtyping algorithms
for conventional type systems. In particular, the technique used in our algorithm
for keeping track of a set of “assumptions” to detect termination (Section 4.2) can
be found in many subtyping algorithms for simple recursive types [Amadio and
Cardelli 1993; Brandt and Henglein 1998; Gapeyev et al. 2000]. The ingredient
that is rarely found in classical algorithms is the complex rule shown Section 4.2
for the “untagged” union type operator.

As we discussed above, our subtyping algorithm can be viewed as a variant of
Aiken and Murphy’s algorithm [Aiken and Murphy 1991]. They actually treat
a more general problem called set-constraint solving. In their setting, types can
contain free variables and the goal is to obtain a substitution for the variables that
satisfies the given set-constraints, if they are satisfiable. In our setting, on the other
hand, types do not contain free variables and the goal is to know only whether the
constraints are satisfiable. Thus, we can solve our subtyping problem by using
their algorithm and removing the rules related to free variables. They do not,
however, prove correctness in their paper—in particular, they have no completeness
proof since their algorithm is indeed incomplete. (Incompleteness means that the
algorithm may answer “no” even if the constraints are solvable.) What we have
proved is that their algorithm is actually complete if we restrict types to contain
no free variables.

In their framework for refinement types for ML, Freeman and Pfenning adopt
regular tree languages to express more precise types than ML datatypes and use
tests for inclusion between tree automata in type checking [Freeman and Pfenning
1991]. Davies addresses the efficiency issue of the inclusion test in this context
[Davies 2000].

Damm [Damm 1994] considers a type system with union, intersection, and re-
cursive types where the subtype relation is defined in a semantic way. He presents

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Regular Exression Types for XML · 35

a decision procedure for subtype checking that first encodes types into regular tree
expressions and then uses existing set-constraint solving algorithms. Furthermore,
he treats higher-order functions, which we have not handled yet. On the other
hand, he does not address the efficiency of the subtyping algorithm.

8. CONCLUSIONS

We have proposed regular expression types for XML processing, arguing that set-
inclusion-based subtyping and subtagging yield useful expressive power in this do-
main. We developed an algorithm for subtyping that can exploit sharing among
type expressions, giving soundness, completeness, and termination proofs. By incor-
porating several optimization techniques, our algorithm runs at acceptable speeds
on several applications involving fairly large types, such as the complete DTD for
HTML documents.

Our work on type systems for XML processing has just begun. In the future,
we hope to incorporate other standard features from functional programming, such
as higher-order functions and parametric polymorphism. The combination of these
features with regular expression types raises some difficult problems. For func-
tion types, our current approach—define subtyping by inclusion of the semantics of
types and reduce it to the decidability of tree automata inclusion—does not easily
extend simply because functions are not trees. (Some achievements in this direction
have recently been reported by the CDuce team [Frisch et al. 2002].) Also for poly-
morphism, our current scheme needs to be substantially extended since usual tree
automata do not have any concept corresponding to “type variables.” A promising
direction might be to incorporate ideas from tree set automata [Gilleron et al. 1999],
though we have not gone far.

APPENDIX

A. TRANSLATION OF TYPES

This section presents an algorithm for translating from the external to the internal
form of types and proves its soundness, completeness, and termination. (A related
algorithm can be found in [Hornung 1996]).

A.1 Algorithm

We first show the translation of values, which is straightforward.

ts(()) = ε

ts(l[v1],v2) = l(ts(v1), ts(v2))

We now consider the translation of types. Let us first illustrate it by an example.
Consider the following external type:

a[]*, d[]

By expanding the abbreviation a[]*, this type is equivalent to (X, d[]) where:

type X = (a[], X) | ()

Now, we want to compute the internal type corresponding to (X, d[]). For this,
we transform it in such a way that all head labels are revealed. We first expand X

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

36 · Haruo Hosoya et al.

to its definition and then use distributivity of the union operator, associativity of
the concatenation operator, and neutrality of the empty sequence4:

(X, d[])

=⇒ (((a[], X) | ()), d[])

=⇒ (((a[], X), d[]) | ((), d[]))

=⇒ ((a[], (X, d[])) | d[])

Since the head labels a and d are revealed now, this type can be translated to an
internal type:

a(X0, X1) | d(X0, X0)

Since the content of a and both the content and the remainder of d are all the empty
sequence, we can share the internal types corresponding to these by translating them
all as the single state X0 and associating it with ε:

M(X0) = ε

The remainder of a, i.e., the type (X, d[]), is translated as the state X1. To asso-
ciate with this state, we need an internal type corresponding to (X, d[]). By trans-
forming it exactly in the same way as above, we obtain ((a[], (X, d[])) | d[]).
This type is then translated to the internal type a(X0, X1) | d(X0, X0). Here, note
that we can reuse the states X0 and X1 since we have already translated the empty
sequence to X0 and the type (X, d[]) to X1. Thus, we obtain

M(X1) = a(X0, X1) | d(X0, X0).

Before presenting the general translation algorithm, it is convenient to make a
small restriction on the syntax of types. In the given type definitions, we make sure
that all recursive uses of type names must be preceded by non-nullable type, where
a nullable type is one whose denotation contains the empty sequence. For example,
both of the type definitions of X and Y in the following are rejected.

type X = X

type Y = a[]*,Y | ()

Semantically, these type definitions make sense since we can interpret X to be the
the empty set and Y to be the set of sequences of zero or more a[]s. Nonetheless,
we reject such type definitions, since handling these would make our formulation
complicated, while these have no practical interest. (There are more straightforward
ways of writing both the empty set type and the type of sequences of zero or more
a[]s.)

Formally, we define a function nohead that takes a type and a set of type names
and answers true if and only if all recursive uses of type names in the type are

4This technique of revealing head labels is similar to derivatives [Brzozowski 1964], which are
often used in construction of string automata from regular expressions.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Regular Exression Types for XML · 37

preceded by non-nullable types:

nohead(∅)σ = true

nohead(())σ = true

nohead(l[T])σ = true

nohead(T1|T2)σ = nohead(T1)σ ∧ nohead(T2)σ

nohead(X)σ =

{

nohead(E(X))(σ ∪ {X}) (X 6∈ σ)
false otherwise

nohead(∅,T)σ = true

nohead((),T)σ = nohead(T)σ
nohead(l[T1],T2)σ = true

nohead((T1,T2),T3)σ = nohead(T1,(T2,T3))σ
nohead((T1|T2),T3)σ = nohead(T1,T2)σ ∧ nohead(T1,T3)σ

nohead(X,T)σ =

{

nohead(E(X), T)(σ ∪ {X}) (X 6∈ σ)
false otherwise

Then, we require:

nohead(E(X))∅ = true ∀X ∈ dom(E)

The main translation procedure takes an external type T0 and a set E of type
definitions, and computes an internal type T0 and a tree automaton M . The pro-
cedure works by double loops where the outer loop constructs the automaton and
the inner loop computes an internal type expression, which will be associated with
a state in the automaton. Each state corresponds to an external type expression
from which the internal type associated with the state is computed; to make this
correspondance explicit, we write each state in the form XT.

The translation function ts (“the inner loop”) takes an external type and returns
an internal type. The rules below define the function ts .

ts(∅) = ∅ Tr-Emp1
ts(()) = ε Tr-Eps1

ts(l[T]) = l(XT, X()) Tr-Lab1
ts(T1|T2) = ts(T1) | ts(T2) Tr-Or1

ts(X) = ts(E(X)) Tr-Nm1
ts(∅,T) = ∅ Tr-Emp2

ts((),T) = ts(T) Tr-Eps2
ts(l[T1],T2) = l(XT1 , XT2) Tr-Lab2

ts((T1,T2),T3) = ts(T1,(T2,T3)) Tr-Assoc
ts((T1|T2),T3) = ts(T1,T3) | ts(T2,T3) Tr-Or2

ts(X,T) = ts(E(X), T) Tr-Nm2

These rules simply generalize the operations that we have seen in the example.
Rule Tr-Assoc uses associativity and rule Tr-Or2 uses distributivity. Also, rule
Tr-Eps2 uses the neutrality of (). Rules Tr-Nm1 and Tr-Nm2 unfold the type
name X to their definitions. (Since the syntactic restriction described above ensures
that any type name never recurs without non-nullable types in front, rules Tr-Nm1
and Tr-Nm2 never unfold the same type name more than once. This ensures that
the function ts terminates.) By using all these rules, the head of a sequence is
eventually revealed, and turned (by rules Tr-Lab1 and Tr-Lab2) into an internal

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

38 · Haruo Hosoya et al.

label type whose “car” state corresponds to the content type of the label and whose
“cdr” state corresponds to the remainder of the sequence. The empty sequence is
turned into the leaf transition (by rules Tr-Eps1 and Tr-Lab2).

The outer loop proceeds as follows. The translation begins with setting M to the
empty automaton and computing T0 from T0 by using the above function ts. The
resulting internal type T0 may contain some states that are not yet in the domain
of M . For each such state XT, we calculate an internal type T from the external
type T by the ts function and add the mapping XT 7→ T to M . We repeat this
process until the states appearing in T0 and M are all in the domain of M . Thus,
the result of the whole translation satisfies the following.

T0 = ts(T0)
M(XT) = ts(T) ∀XT ∈ dom(M)

dom(M) ⊇ St(T0) ∪ St(M).

A.1.1 Theorem [Soundness and Completeness]: Suppose that a given tree
automaton M satisfies M(XT) = ts(T) for all XT ∈ dom(M) and dom(M) ⊇ St(M).
If ts(v) = t and ts(T) = T , then v ∈ [[T]] implies t ∈ [[T]] and vice versa.

Proof. By lexicographic induction on the pair of the height h(t) of the tree t

and the size of the derivation of ts(T) = T , with the case analysis on the rule used
in the derivation.

A.2 Termination

In a classical algorithm dealing with recursive types, the type expressions encoun-
tered by the algorithm are always subphrases of the original type expression. By
using the fact that such subphrases are finite in number, termination of such an
algorithm can easily be proved. However, the types encountered by our translation
algorithm are not necessarily subphrases of the original type, since thealgorithm
may restructure types from their original form. For example, consider the following
type definitions:

type X = a[],X | ()

type Y = X,b[]

Let us see the steps involved in the translation of the type Y. We first unfold Y,
which yields (X,b[]). The next step unfolds X, and yields (a[],X | ()),b[].
Note that this type does not appear in the above type definitions. (But note that
this type is the concatenation of some subphrases appearing there.) Nonetheless,
the number of types encountered by the algorithm is finite. Let us continue the
translation. We expand the type (a[],X | ()),b[] by distributivity, and then
proceed to each of the clauses ((a[],X),b[]) and ((),b[]). The second clause
ends up with b[]. On the other hand, the first clause transforms to (a[],(X,b[]))

by associativity and finally leads to (X,b[]). Since we have already seen this type,
we can stop here. (Notice that the type name X was once unfolded before, but X

was followed by the same type b[] at that unfolding as it is now. This is ensured
by the well-formedness of the type definitions, which restricts unguarded, recursive
uses of type names to be in tail positions.)

For our proof of termination, we devise a special transition system where each
transition represents the fact that, if the algorithm encounters the first type expres-

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Regular Exression Types for XML · 39

sion in one step, then it will encounter the second in a later step. We concentrate
on what the algorithm encounters and abstract away what it returns. The reason is
that outputs of the translation are never used by the translation itself and therefore
termination only depends on inputs to the translation.

The terms over which the transition function is defined are type expressions
augmented with several kinds of information that were hidden in the description of
the algorithm. First, we separate concatenations introduced by the algorithm from
those already in the original type definitions, writing the former with semicolons.
Second, we associate each type with a list of type names that records a history
of which type names have been unfolded before the algorithm gets to this type.
Formally, a type sequence K (i.e., a term to transit) has the form T1

τ1 ; . . . ; Tn
τn ,

where each type is superscripted with a name list of the form X1; . . . ; Xm. We write
· for the empty type sequence and ∅ for the empty name list. Intuitively, a type
sequence of the form T1

τ1 ; . . . ; Tn
τn corresponds to the type (T1,(..,Tn)). In each

name list τi, the first name was unfolded most recently. The empty type sequence
· corresponds to the empty sequence type. We write τ ⊇ τ ′ when τ = τ ′′; τ ′ for
some τ ′′. Also, we write X ∈ τ when X is an element of τ .

We now define the transition relation of the form K1 ⇒ K2, read “if the algo-
rithm encounters the type corresponding to K1, then it also encounters the type
corresponding to K2.” The transition relation is the smallest relation including the
following rules.

∅; K ⇒ ·
()τ ; K ⇒ K

Yτ ; K ⇒ E(Y)(Y;τ); K

l[T]τ ; K ⇒ T∅

l[T]τ ; K ⇒ K

(T1,T2)
τ ; K ⇒ T1

τ ; T2
τ ; K

(T1|T2)
τ ; K ⇒ T1

τ ; K
(T1|T2)

τ ; K ⇒ T2
τ ; K

In the first rule (corresponding to the algorithm rules Tr-Emp1 and Tr-Emp2), if
we encounter a sequence beginning with the empty sequence, then we also encounter
the sequence obtained by removing the empty sequence. Likewise in the second rule
(corresponding to the algorithm rules Tr-Nm1 and Tr-Nm2), if we encounter a
sequence beginning with a type name, then we also encounter a sequence obtained
by unfolding the type name. (Note that we record the unfolded type name in the
type name list.) Further, in the combination of the third and the fourth rules
(corresponding to Tr-Lab1 and Tr-Lab2), if we encounter a sequence beginning
with a label, then we also encounter both its content and its remainder. (For the
content, we reset the type name list to the empty, since, when we get to the content
T, we freshly consider the transitions from this.) The other rules are analogous.

Our goal is then to show that the set of type sequences reachable from the starting
type sequence is finite. The key observation in the proof is that the transition
function defined as above preserves the invariant that all Tis in a type sequence
T1

τ1 ; . . . ; Tn
τn appear in different places in the original type definitions; the type

sequences satisfying this invariant are finite in number. To see why this is so, let
us consider the above example again. We start with the type sequence Y∅ and

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

40 · Haruo Hosoya et al.

transitions go as follows.

Y∅ ⇒ (X,b[])Y ⇒ XY; b[]Y ⇒ ((a[],X)|())X;Y; b[]Y

The last type sequence then branches into two chains of transitions: first

⇒ (a[],X)X;Y; b[]Y ⇒ a[]X;Y; XX;Y; b[]Y ⇒ XX;Y; b[]Y

⇒ ((a[],X)|())X;X;Y; b[]Y

(since the last type sequence here is the same as the beginning of the chain, con-
tinuing the transition will only yield the same type sequences, modulo differences
in type name lists.), and second

⇒ ()X;Y; b[]Y ⇒ b[]Y.

Notice that each type sequence appearing in all the above transitions is a sequence
of types from different places in the original type definitions.

In order to prove the above-mentioned invariant, we will also need several other
invariants. First, a type appearing earlier in any type sequence has an equal or
longer type name list than any other type appearing later (since unfolding occurs
only in the first type in the sequence). Second, in any type sequence, only the
right-most type that has X in its type name list may contain X in tail positions;
any other type with X in its type name list cannot contain X at all. Third, in order
for induction to work, the condition “appearing different places” has to be slightly
strengthened: each type in the type sequence must not be a subphrase of any other
type in the sequence “in the same level.”

To formalize these invariants, we make a few notational preparations. First, we
assume that a unique id is implicitly added to each type expression appearing in
the given type definitions or the type T0 that we want to translate, and that type
expressions referred to by the same metavariable name always have the same id.
We define the same-level subphrase relation, written v, as the smallest reflexive
and transitive relation including the following:

T1 v (T1,T2)

T2 v (T1,T2)

T1 v (T1|T2)

T2 v (T1|T2)

We write ΣX for the all unguarded (not enclosed by a label) subphrases in the body
of X, that is, {T | T v E(X)}. Also, we write Σ for all the subphrases (including
guarded ones) appearing in the type definitions E and the type T0; we write Σ∅ for
all the guarded subphrases in the type definitions, that is, Σ \

⋃

X∈dom(E) ΣX.

All the properties of type sequences that we have discussed can be summarized
by the following definition of invariants.

A.2.1 Definition [Invariants]: Let K = T1
τ1 ; . . . ; Tn

τn . We call the following
the invariants for K.

(1) Ti ∈ Σ∅ if τi = ∅, and Ti ∈ ΣY if τi = Y; τ ′
i .

(2) τ1 ⊇ . . . ⊇ τn

(3) For all X, if X ∈ τm and X 6∈ τm+1 (or m = n), then X 6∈ nontail (Tm) and
X 6∈ toplevel (Ti) for all 1 ≤ i < m.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Regular Exression Types for XML · 41

(4) Ti 6v Tj for all i 6= j.

Here, nontail(T) is the set of non-tail variables of a type T and toplevel (T) is the set
of top-level variables of a type T. The definitions of these are given in Section 3.1.

The main theorem is that transition preserves the invariants for type sequences.

A.2.2 Theorem: If K satisfies the invariants and K ⇒ K ′, then K ′ satisfies the
invariants.

Since Σ is finite, condition 4 ensures that the set of type sequences that satisfy the
invariants is finite. Furthermore, we begin the translation with a singleton sequence
T0

∅, which trivially satisfies the invariants. Therefore the theorem implies that the
translation terminates.

Proof of Theorem A.2.2: Conditions 1 and 2 can easily be checked; the others
require a little more work. Let us begin with condition 3.

Case: ()τ ; K ⇒ K

or l[T]τ ; K ⇒ K

Condition 3 for the lhs immediately implies condition 3 for the rhs.

Case: l[T]τ ; K ⇒ T∅

The result holds trivially, since there is no X that satisfies the condition.

Case: Yτ ; K ⇒ E(Y)(Y;τ); K

Let τ0 = Y; τ and K = U1
τ1 ; . . . ; Un

τn . From condition 2, we have two cases on X.

Subcase: X ∈ τ0 X 6∈ τ1

or n = 0

If X 6= Y, then we have X 6∈ nontail(Y) from condition 3 for the lhs. Therefore
X 6∈ nontail(E(Y)) by the definition of nontail . If X = Y, then, from well-formedness
of E, we immediately obtain Y 6∈ nontail(E(Y)).

Subcase: X ∈ τm X 6∈ τm+1 1 ≤ m ≤ n

or n = m

If X 6= Y, then we have X 6∈ toplevel (Y) from condition 3 for the lhs. Therefore
X 6∈ toplevel (E(Y)) by the definition of toplevel . If X = Y, then condition 3 requires
Y 6∈ toplevel (Y). But this is impossible from the definition of toplevel .

Case: (T1,T2)
τ ; K ⇒ T1

τ ; T2
τ ; K

Let K = U1
τ1 ; . . . ; Un

τn . From condition 2, we have two cases on X.

Subcase: X ∈ τ0 X 6∈ τ1

or n = 0

Since X 6∈ nontail((T1,T2)) from condition 3 for the lhs, X 6∈ toplevel (T1) and
X 6∈ nontail(T2) follow by the definitions of nontail and toplevel .

Subcase: X ∈ τm X 6∈ τm+1 1 ≤ m ≤ n

or n = m

Conditions X 6∈ nontail(Um) and X 6∈ toplevel (Ui) for 1 ≤ i < m immediately hold.
Since X 6∈ toplevel ((T1,T2)) from condition 3 for the lhs, conditions X 6∈ toplevel (T1)
and X 6∈ toplevel (T2) follow from the definition of toplevel .

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

42 · Haruo Hosoya et al.

Case: (T1|T2)
τ ; K ⇒ T1

τ ; K
or (T1|T2)

τ ; K ⇒ T2
τ ; K

Similar to the previous case.
Finally, we prove condition 4. All the cases are obvious except for

Yτ ; K ⇒ E(Y)(Y;τ); K.

Let K = U1
τ1 ; . . . ; Un

τn . The case Y 6∈ τi with i ≥ 1 never happens, because
otherwise, condition 3 would require Y 6∈ toplevel (Y), which is impossible from the
definition of toplevel . Therefore the result follows from condition 1. �

REFERENCES

Aiken, A. and Murphy, B. R. 1991. Implementing regular tree expressions. In Proceedings of
Functional Programming and Computer Architecture, J. Hughes, Ed. Lecture Notes in Com-
puter Science, vol. 523. Springer-Verlag.

Amadio, R. M. and Cardelli, L. 1993. Subtyping recursive types. ACM Transactions on Pro-
gramming Languages and Systems 15, 4, 575–631. Preliminary version in POPL ’91 (pp. 104–
118); also DEC Systems Research Center Research Report number 62, August 1990.

Brandt, M. and Henglein, F. 1998. Coinductive axiomatization of recursive type equality and
subtyping. Fundamenta Informaticae 33, 309–338.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., and Maler, E. 2000. Extensible markup
language (XMLTM). http://www.w3.org/XML/.

Brzozowski, J. A. 1964. Derivatives of regular expressions. Journal of the ACM 11, 4 (Oct.),
481–494.

Buneman, P., Davidson, S., Fernandez, M., and Suciu, D. 1997. Adding structure to unstruc-
tured data. In International Conference on Database Theory. Springer LNCS 1, 336–351.

Buneman, P. and Pierce, B. 1998. Union types for semistructured data. In Internet Programming
Languages. Lecture Notes in Computer Science, vol. 1686. Springer-Verlag. Proceedings of the
International Database Programming Languages Workshop.

Cai, J. and Paige, R. 1995. Using multiset discrimination to solve language processing problems
without hashing. Theoretical Computer Science 145, 1–2, 189–228.

Chawathe, S. S. 1999. Comparing hierarchical data in external memory. In Proceedings of the
Twenty-fifth International Conference on Very Large Data Bases. Edinburgh, Scotland, U.K.,
90–101.

Clark, J. 1999. XSL Transformations (XSLT). http://www.w3.org/TR/xslt.

Clark, J. 2001. TREX: Tree Regular Expressions for XML. http://www.thaiopensource.com/

trex/.

Clark, J. and Murata, M. 2001. RELAX NG. http://www.relaxng.org.

Cluet, S. and Siméon, J. 1998. Using YAT to build a web server. In Intl. Workshop on the Web
and Databases (WebDB).

Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., and Tommasi,
M. 1999. Tree automata techniques and applications. Draft book; available electronically on
http://www.grappa.univ-lille3.fr/tata.

Damm, F. M. 1994. Subtyping with union types, intersection types and recursive types. In
Theoretical Aspects of Computer Software, M. Hagiya and J. C. Mitchell, Eds. Lecture Notes
in Computer Science, vol. 789. Springer-Verlag, 687–706.

Davidson, A., Fuchs, M., Hedin, M., Jain, M., Koistinen, J., Lloyd, C., Maloney, M., and
Schwarzhof, K. 1999. Schema for object-oriented xml. http://www.w3.org/TR/NOTE-SOX/.

Davies, R. 2000. Tree automata inclusion. Personal communication.

Deutsch, A., Fernandez, M., Florescu, D., Levy, A., and Suciu, D. 1998. XML-QL: A Query
Language for XML. http://www.w3.org/TR/NOTE-xml-ql.

DOM 2001. Document object model (DOM). http://www.w3.org/DOM/.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Regular Exression Types for XML · 43

Fallside, D. C. 2001. XML Schema Part 0: Primer, W3C Recommendation. http://www.w3.org/

TR/xmlschema-0/.

Fernández, M., Siméon, J., and Wadler, P. An algebra for XML query. http://

www.cs.bell-labs.com/~wadler/topics/xml.html#xalgebra .

Freeman, T. and Pfenning, F. 1991. Refinement types for ML. In Proceedings of the SIGPLAN
’91 Symposium on Language Design and Implementation, Toronto, Ontario. ACM Press.

Frisch, A., Castagna, G., and Benzaken, V. 2002. Semantic subtyping. In Seventeenth Annual
IEEE Symposium on Logic In Computer Science.

Gapeyev, V., Levin, M., and Pierce, B. 2000. Recursive subtyping revealed. In Proceedings of
the International Conference on Functional Programming (ICFP). 221–232.

Gilleron, R., Tison, S., and Tommasi, M. 1999. Set constraints and automata. Information

and Computation 149, 1, 1–41.

Goldman, R. and Widom, J. 1997. Dataguides: Enabling query formulation and optimization in
semistructured databases. In VLDB’97, Proceedings of 23rd International Conference on Very
Large Data Bases, M. Jarke, M. J. Carey, K. R. Dittrich, F. H. Lochovsky, P. Loucopoulos,
and M. A. Jeusfeld, Eds. Morgan Kaufmann, 436–445.

Hopcroft, J. E. and Ullman, J. D. 1979. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley.

Hornung, T. 1996. Labelled trees and their recognition. In Publ. Math. Debrecen. Number 3–4
in 48. 309–316.

Hosoya, H. 2003. Regular expression pattern matching — a simpler design. Tech. Rep. 1397,
RIMS, Kyoto University.

Hosoya, H. and Pierce, B. C. 2000. XDuce: A typed XML processing language (prelimi-
nary report). In Proceedings of Third International Workshop on the Web and Databases
(WebDB2000). Lecture Notes in Computer Science, vol. 1997. 226–244.

Hosoya, H. and Pierce, B. C. 2001. Regular expression pattern matching for XML. In The
25th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
67–80.

Klarlund, N., Møller, A., and Schwartzbach, M. I. 2000. DSD: A schema language for XML.
http://www.brics.dk/DSD/.

Kuper, G. M. and Siméon, J. 2001. Subsumption for XML types. In International Conference
on Database Theory (ICDT’2001). London.

Meijer, E. and Shields, M. 1999. XMλ: A functional programming language for constructing
and manipulating XML documents. Submitted to USENIX 2000 Technical Conference.

Milo, T., Suciu, D., and Vianu, V. 2000. Typechecking for XML transformers. In Proceedings
of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems. ACM, 11–22.

Murata, M. 2000. Hedge automata: a formal model for XML schemata. http://www.xml.gr.jp/
relax/hedge nice.html.

Murata, M. 2001. RELAX (REgular LAnguage description for XML). http://www.xml.gr.jp/

relax/.

Papakonstantinou, Y. and Vianu, V. 2000. DTD Inference for Views of XML Data. In Pro-
ceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems. Dallas, Texas, 35–46.

Seidl, H. 1990. Deciding equivalence of finite tree automata. SIAM Journal of Computing 19, 3
(June), 424–437.

Shields, M. and Meijer, E. 2001. Type-indexed rows. In The 25th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. London.

Wallace, M. and Runciman, C. 1999. Haskell and XML: Generic combinators or type-based
translation? In Proceedings of the Fourth ACM SIGPLAN International Conference on Func-
tional Programming (ICFP‘99). ACM Sigplan Notices, vol. 34-9. ACM Press, N.Y., 148–159.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

44 · Haruo Hosoya et al.

ACKNOWLEDGMENTS

Our main collaborators in the XDuce project are Peter Buneman and Phil Wadler.
We have also learned a great deal from discussions with Nils Klarlund and Volker
Renneberg, with the DB Group and the PL Club at Penn, and with members of
Professor Yonezawa’s group at Tokyo. Comments from the ICFP referees helped
improve the presentation significantly.

This work was supported by the Japan Society for the Promotion of Science
(Hosoya), the University of Pennsylvania’s Institute for Research in Cognitive Sci-
ence (Vouillon), and the National Science Foundation under NSF Career grant
CCR-9701826 (Pierce).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

	Regular Expression Types for XML
	Recommended Citation

	Regular Expression Types for XML
	Abstract
	Keywords
	Comments

	main.dvi

