
Regular Expressions with Numerical Constraints
and Automata with Counters

Dag Hovland dag.hovland@uib.no

Department of Informatics, University of Bergen, Norway

Abstract. Regular expressions with numerical constraints are an exten-
sion of regular expressions, allowing to bound numerically the number
of times that a subexpression should be matched. Expressions in this
extension describe the same languages as the usual regular expressions,
but are exponentially more succinct.
We define a class of finite automata with counters and a deterministic
subclass of these. Deterministic finite automata with counters can rec-
ognize words in linear time. Furthermore, we describe a subclass of the
regular expressions with numerical constraints, a polynomial-time test
for this subclass, and a polynomial-time construction of deterministic
finite automata with counters from expressions in the subclass.

1 Introduction

Regular expressions with numerical constraints add the possibility to express
that a subexpression must be matched a number of times specified by a lower
and a upper limit. The Single UNIX Specification [1] requires this as a standard
part of regular expressions. In the GNU version of the UNIX program grep [2]
and in the programming language Perl they are included as standard and in
XML Schemas [3] the 1-unambiguous subclass is allowed. In GNU grep you can,
for example, write ([0-9]{1,3}\.){3}[0-9]{1,3} to match any IPv4 address
in dotted-decimal notation.

Common uses of regular expressions with numerical constraints are matching
and searching. With matching we mean the problem of deciding whether a given
word is in the language defined by the regular expression. Searching means to
decide whether one or more of the sub-strings of a given text match the regular
expression. Kilpeläinen and Tuhkanen [4] showed that for the regular expressions
with numerical constraints, matching can be done with a dynamic programming
algorithm in quadratic space and time, relative to the size of the word being
matched. Using this algorithm, one can also search in polynomial time.

However, many programs that search using regular expressions with numer-
ical constraints use algorithms with super-polynomial behaviour in the size of
the regular expression. These programs typically have as input one short regu-
lar expression and many, long, texts to be searched. It is therefore common to
construct a deterministic finite automaton (DFA) for matching or searching, as
a DFA can be used to search in time linear in the length of the text, although

a quadratic algorithm is usually preferred, as it is faster in most practical cases.
The known algorithms for constructing a DFA from a given regular expression
with numerical constraints use super-polynomial space.

As an example, consider an experiment lasting 100 hours, where we need
to record the moments at which some (unspecified) events take place. We will
use one string to describe each 100-hour experiment. For each hour when there
is an event, the hour is given, followed by “h”, followed by a string describing
the events occurring that hour. This string is formatted in the following way:
for each minute when there is an event, the minute is given, followed by “m”,
followed by the second and “s” for each second at which there was an event
during that minute. If there were, e.g., a total of three events during one experi-
ment, at 3:12:22, 3:12:43 and 20:45:01, then the string describing the experiment
is 3h12m22s43s20h45m1s. For testing the strings we decide to use the regular
expression ((0 + · · ·+ 9)1..2h((1 + · · ·+ 5)0..1(0 + · · ·+ 9)m((1 + · · ·+ 5)0..1(0 +
· · · + 9)s)1..60)1..60)0..100 by executing the command in Fig. 1 (See next section
for syntax and semantics of the regular expressions). However, this command
turns out to use over 2 gigabytes of memory1, independent of the length of the
text.

grep -E "([0-9]{1,2}h([1-5]?[0-9]m([1-5]?[0-9]s){1,60}){1,60}){0,100}"

Fig. 1. Example execution of grep

An algorithm for the matching problem will be called a fast-matcher, if there
is a constant c such that the algorithm runs in time O(|r|c · |w|) (where r is the
regular expression and w is the word to be matched). There exists a fast-matcher
for the usual regular expressions without numerical constraints. The algorithm
constructs a non-deterministic finite automaton (NFA) recognizing the regular
expression, and runs the NFA on the word by maintaining the set of reachable
states. The latter set is limited by the size of the NFA, and the number of steps
is exactly the length of the word. Construction of an NFA recognizing a regular
expression is possible in polynomial time. Brüggemann-Klein [5] describes a dif-
ferent fast-matcher for a subset of the regular expressions, called 1-unambiguous
regular expressions. Their algorithm constructs in polynomial time a determin-
istic finite automaton from a 1-unambiguous regular expression. However, no
polynomial-time construction is known for 1-unambiguous regular expressions
with numerical constraints.

In this article we describe finite automata with counters, and a fast-matcher
for a subset of the regular expressions with numerical constraints, called counter-
1-unambiguous regular expressions. The algorithm works by constructing deter-
ministic finite automata with counters from these expressions. The construction

1 Measurements done with procps version 3.2.7 running GNU grep version 2.5.3 com-
piled with GNU cc version 4.1.2 on a machine with four 2,0 GHz 32-bit CPU running
CentOS-5.2 with Linux 2.6.18 and GNU C library version 2.5.

can also be used to test in polynomial time whether a regular expression with
numerical constraints is counter-1-unambiguous. The algorithm has been imple-
mented2 in C in a manner inspired by grep. The command in Fig. 1 executed
with our implementation on the same machine uses less memory by three orders
of magnitude.

The next section describes the regular expressions with numerical constraints,
the languages they denote, and the 1-unambiguous regular expressions. Section 3
describes the finite automata with counters and shows an example of such an
automaton. Section 4 shows how to construct a finite automaton with coun-
ters from a regular expression, and defines the counter-1-unambiguous regular
expressions. The article ends with a section on related work and a conclusion.

2 Regular Expressions with Numerical Constraints

Fix an alphabet Σ and let N = {1, 2, . . .} be the positive integers and N/1 =
{2, 3, 4, ...} ∪ {∞}.
Definition 1. [6,7] Given an alphabet Σ, RΣ is the set of (non-empty) regular
expressions with numerical constraints over Σ, defined in the following manner:

RΣ ::= RΣ +RΣ |RΣ · RΣ |R
N..N/1

Σ |Σ | ε

We disallow expressions of the form rn..m where n > m. We will use the abbre-
viations rn for rn..n, r0..u for ε+ r1..u, rn.. for rn..∞, r+ for r1.., and r∗ for r0...
Intuitively, rn.. means that subexpression r must be matched n or more times,
while rn..m means that r must be matched at least n and at most m times. In
this paper, “regular expression” will mean regular expressions with numerical
constraints.

The set of symbols from the alphabet occurring in a regular expression r,
is denoted sym(r). We lift concatenation of words to sets of words, such that
if L1, L2 ⊆ Σ∗, then L1 · L2 = {w1 · w2 |w1 ∈ L1 ∧ w2 ∈ L2}. Moreover,
ε denotes the empty word of zero length, such that for all w ∈ Σ∗, ε · w =
w·ε = w. Further, we allow non-negative integers as exponents meaning repeated
concatenation, such that for any L ⊆ Σ∗, we have Ln = Ln−1 · L for n > 0 and
L0 = {ε}. For convenience, we recall in Definition 2 the language denoted by a
regular expression, and extend it to numerical constraints. Since we will compare
arbitrary members of N and N/1 below, we define that i <∞ for all i ∈ N.
Definition 2 (Language). The language L(r) denoted by a regular expression
r ∈ RΣ, is defined in the following inductive way:

L(r1 + r2) = L(r1) ∪ L(r2)
L(r1 · r2) = L(r1) · L(r2)
L(rn..m) =

⋃
n≤i≤m L(r)i

for a ∈ Σ ∪ {ε}, L(a) = {a}

Some examples of regular expressions and their languages are: L((a+b)0..2) =
{ε, a, b, aa, ab, ba, bb} and L((a2b)2) = {aabaab}.
2 Available from http://www.ii.uib.no/~dagh/fac

http://www.ii.uib.no/~dagh/fac

2.1 Term Trees and Positions

Given a regular expression r, we follow Terese [8] and define the term tree of
r as the tree where the root is labelled with the main operator (choice, con-
catenation or numerical constraint) and the subtrees are the term trees of the
subexpression(s) combined by the operator. If a ∈ Σ ∪ {ε} the term tree is a
single root-node with a as label.

We use 〈n1, . . . , nk〉, a possibly empty sequence of natural numbers, to denote
a position in a term tree. We let p, q, including subscripted variants, be variables
for such possibly empty sequences of natural numbers. The position of the root is
〈〉. If r = r1 ·r2 or r = r1+r2, and n1 ∈ {1, 2}, the position 〈n1, . . . , nk〉 in r is the
position 〈n2, . . . , nk〉 in the subtree of child n1, that is, in the term tree of rn1 . If
r = r1

l..u, the position 〈1, n2, . . . , nk〉 in r is the position 〈n2, . . . , nk〉 in r1, and
〈2〉 and 〈3〉 are the positions of the nodes containing the lower and upper limits l
and u, respectively. For two positions p = 〈m1, . . . ,mk〉 and q = 〈n1, . . . , nl〉, the
notation p�q will be used for the concatenated position 〈m1, . . . ,mk, n1, . . . , nl〉.
For a position p in r we will denote the subexpression rooted at this position by
r|p. Note that r|〈〉 = r. Let pos(r) be the set of positions in r.

Note that for r ∈ RΣ , p ∈ pos(r), and q ∈ pos(r|p), we have r|p�q = r|p|q.
This can be shown by induction on r|p (see, e.g., Terese [8]).

The concept of marked expressions will be important in this article. It has
been used by Kilpeläinen & Tuhkanen [7] and by Brüggemann-Klein & Wood [9],
but the definition given here is somewhat different.

Definition 3 (Marked Expressions). If r ∈ RΣ is a regular expression,
µ(r) ∈ Rpos(r) is the marked expression, that is, the expression where every
instance of any symbol from Σ is substituted with its position in the expression.

It follows that if p ∈ sym(µ(r)), then r|p ∈ sym(r). Note that, e.g., µ(b) = µ(a) =
〈〉, which shows that marking is not injective.

Example 1. As an example, consider Σ = {a, b, c} and r = (a2 + bc)3..5. Then
µ(r) = (〈1, 1, 1〉2 + 〈1, 2, 1〉 · 〈1, 2, 2〉)3..5. The term trees of r and µ(r) are shown
in Fig. 2.

..

3 5+

.. ·

a 2 2 b c

�
��

PPPP

���
HHH

���
HH ���

HH

..

3 5+

.. ·

〈1, 1, 1〉 2 2 〈1, 2, 1〉 〈1, 2, 2〉

�
��
H
HH

���
HHH

�� HH
�
��
H
H

Fig. 2. Term trees for (a2 + bc)3..5 and µ((a2 + bc)3..5)

2.2 1-unambiguous Regular Expressions

Definition 4. [5,9] A regular expression r is 1-unambiguous if for any two
upv, uqw ∈ L(µ(r)), where p, q ∈ sym(µ(r)) and u, v, w ∈ sym(µ(r))∗ such that
r|p = r|q, we have p = q.

Examples of 1-unambiguous regular expressions are (a1..2)1..2 and b∗a(b∗a)∗,
while (ε+ a)a and (a+ b)∗a are not 1-unambiguous. The languages denoted by
1-unambiguous regular expressions without numerical constraints will be called
1-unambiguous regular languages. Brüggemann-Klein & Wood [9] showed that
there exist regular languages that are not 1-unambiguous regular languages, e.g.
L((a + b)∗(ac + bd)). However, it is easy to modify a searching algorithm to
search backwards, and the reverse of (a+b)∗(ac+bd), namely (ca+db)(a+b)∗ is
1-unambiguous. There are of course also expressions like (a+b)∗(ac+bd)(c+d)∗,
which denotes a 1-ambiguous language, read both backwards and forwards.

3 Finite Automata with Counters

3.1 Counter States and Update Instructions

We define counter states, which will be used to keep track of the number of times
subexpressions with numerical constraints have been matched. Let C be the set of
positions of subexpressions we need to keep track of. Let the mapping γ : C 7→ N
denote a counter state. Let γ1 be the counter state that maps all members
of the domain to 1. We define an update instruction ψ as a partial mapping
from C to {inc, res} (inc for increment, res for reset). Update instructions ψ
define mappings fψ between counter states in the following way: If ψ(p) = inc,
then fψ(γ)(p) = γ(p) + 1, if ψ(p) = res then fψ(γ)(p) = 1, and otherwise
fψ(γ)(p) = γ(p). Furthermore, we define the counter-conditions min and max,
which map each member of C to lower and upper limits, respectively, such that
min(p) ≤ max(p) for all p ∈ C.

Definition 5 (Satisfaction of Update Instructions). We define a satis-
faction relation between update instructions, counter states and the two counter-
conditions. Given min : C 7→ N, max : C 7→ N/1, γ : C 7→ N and ψ : C 7→ {inc, res},
then (γ,min,max) |= ψ holds if and only if the following holds for all p in the do-
main of ψ: whenever ψ(p) = inc, then γ(p) < max(p), and whenever ψ(p) = res,
then γ(p) ≥ min(p).

The intuition of Definition 5 is that the value of a counter state can only be
increased if the value is smaller than the maximum allowed value, while a value
can only be reset if it is at least as large as the minimum value.

Example 2. Assume C = {p1, p2}, min(p1) = max(p1) = 2, min(p2) = 1, max(p2)
= ∞ and γ = {p1 7→ 2, p2 7→ 1}, and let ψ1 = {p1 7→ inc}, ψ2 = {p1 7→
res, p2 7→ inc} and ψ3 = {p1 7→ res, p2 7→ res}. Then fψ1(γ) = {p1 7→ 3, p2 7→ 1},
fψ2(γ) = {p1 7→ 1, p2 7→ 2} and fψ3(γ) = {p1 7→ 1, p2 7→ 1}. Furthermore,
(γ,min,max) |= ψ2 and (γ,min,max) |= ψ3 hold, while it does not hold that
(γ,min,max) |= ψ1.

3.2 Overlapping Update Instructions

Given mappings max and min, two update instructions are called overlapping, if
there is a counter state that satisfies both of the update instructions.

Definition 6 (Overlapping Update Instructions). Given mappings max
and min, update instructions ψ1 and ψ2 are overlapping, if and only if there
is a counter state γ, such that both (γ,min,max) |= ψ1 and (γ,min,max) |= ψ2

hold.

Whether two update instructions are overlapping can be decided in linear time,
relative to the size of C, by the algorithm presented in the following proposition.

Proposition 1. Given mappings max and min, two update instructions are over-
lapping if and only if: for every p that is mapped to different values by the two
update instructions, it must hold that min(p) < max(p).

Proof. The proof is by treating the two parts of “if and only if” separately. First
assume that for every p which is mapped to different values by the two update
instructions, it holds that min(p) < max(p). We must show that the update in-
structions are overlapping. A counter state γ satisfying both update instructions
can be constructed as follows: For each member p of C, if p is mapped to res
by at least one of the update instructions, then let γ(p) = min(p), otherwise let
γ(p) = 1. For the second part, that is, the “only if”-part of the proposition, as-
sume the update instructions are overlapping. Thus there is at least one counter
state γ which satisfies both update instructions ψ1 and ψ2. Now, for every p
such that ψ1(p) = inc and ψ2(p) = res, we get that min(p) ≤ γ(p) < max(p) from
Definition 5, such that min(p) < max(p). The opposite case where ψ1(p) = res
and ψ2(p) = inc follows by symmetry. ut

Recall Example 2. ψ1 and ψ2 are not overlapping, while ψ3 is overlapping with
ψ2. The counter state satisfying both ψ2 and ψ3 constructed as in the argument
above is γ. ψ1 and ψ3 are not overlapping.

3.3 Finite Automata with Counters

Definition 7 (Finite Automata with Counters). A Finite Automaton with
Counters (FAC) is a tuple (Σ,Q, C,A, Φ,min,max, qI ,F). The members of the
tuple are summarized in Table 1 and described below:

– Σ is a finite, non-empty set (the alphabet).
– Q and C are finite sets of states and counters, respectively.
– qI ∈ Q is the initial state.
– A : Q 7→ Σ maps each non-initial state to the letter which is matched when

entering the state.
– Φ maps each state to a set of pairs. The latter pairs consist of a state and

an update instruction.

Φ : Q 7→ ℘(Q× (C 7→ {res, inc})) .

Table 1. The members of the tuple describing an FAC

Symbol Short description Formally

Σ Alphabet Finite set
Q States Finite set
C Counters Finite set
A Matching letter Q 7→ Σ
Φ Transitions Q 7→ ℘(Q× (C 7→ {res, inc}))
min Counter minimum C 7→ N
max Counter maximum C 7→ N/1
qI Initial state qI ∈ Q
F Final configurations Q 7→ ℘(C) ∪ {⊥}

– min : C 7→ N and max : C 7→ N/1 are the counter-conditions.
– F : Q 7→ ℘(C) ∪ {⊥} describes the final configurations (See Definition 8).

The symbol ⊥ is used to indicate that a configuration is not final.

Running or executing an FAC is defined in terms of transitions between config-
urations. The configurations of an FAC are pairs, where the first element is a
member of Q, and the second element is a counter state.

Definition 8 (Configuration of an FAC). A configuration of an FAC is a
pair (q, γ), where q ∈ Q is the current state and γ : C 7→ N is the counter state.
A configuration (q, γ) is final, if F(q) 6= ⊥, and for all c ∈ F(q), (γ,min,max) |=
{c 7→ res}. Thus, F(q) specifies which counters should be “resettable”.

Intuitively, the first member of each of the pairs mapped to by Φ, is the state
that can be entered, and the second member describes the changes to the current
counter state of the automaton in this step. Thus, Φ and A together describe
the possible transitions of the automaton. This is formalized as the transition
function δ.

Definition 9 (Transition Function of an FAC). For an FAC (Σ,Q, C, A,
Φ, min, max, qI ,F), the transition function δ is defined for any configuration
(q, γ) and letter l by

δ((q, γ), l) = {(p, fψ(γ)) | A(p) = l ∧ (p, ψ) ∈ Φ(q) ∧ (γ,min,max) |= ψ}.

Definition 10 (Deterministic FAC). An FAC (Σ,Q, C,A, Φ,min,max, qI ,F)
is deterministic if and only if |δ((q, γ), l)| ≤ 1 for all q ∈ Q, l ∈ Σ and γ : C 7→ N.

Deciding whether an FAC is deterministic can be done in polynomial time as
follows: For each state p, for each two different (p1, ψ1), (p2, ψ2) both in Φ(p),
assure that either A(p1) 6= A(p2) or, otherwise, that ψ1 and ψ2 are not overlap-
ping. That this test is sound and complete follows by the definition of δ and the
properties of overlapping update instructions.

3.4 Word Recognition

Given a word as input, an FAC can either accept or reject this. A deterministic
FAC recognizes a word by treating letters in the word one by one. It starts in the
initial configuration (qI , γ1). An FAC in configuration (q, γ), with letter l ∈ Σ
next in the word, will reject the word if δ((q, γ), l) is empty. Otherwise it enters
the unique configuration (q′, γ′) ∈ δ((q, γ), l). If the whole word has been read,
a deterministic FAC accepts the word if and only if it is in a final configuration.
The subset of Σ∗ consisting of words being accepted by an FAC A is denoted
L(A).

Example 3. Let Σ = {a, b, c}, Q = {qI , 〈1, 1, 1〉, 〈1, 2, 1〉, 〈1, 2, 2〉} and C =
{〈〉, 〈1, 1〉}. Figure 3 illustrates a deterministic FAC (Σ,Q, C,A, Φ,min,max, qI ,F)
which recognizes L((a2 + bc)3..5). The sequence of configurations of this FAC
while recognizing aabcaa is :

(qI , γ1)
(〈1, 1, 1〉, {〈〉 7→ 1, 〈1, 1〉 7→ 1})
(〈1, 1, 1〉, {〈〉 7→ 1, 〈1, 1〉 7→ 2})
(〈1, 2, 1〉, {〈〉 7→ 2, 〈1, 1〉 7→ 1})
(〈1, 2, 2〉, {〈〉 7→ 2, 〈1, 1〉 7→ 1})
(〈1, 1, 1〉, {〈〉 7→ 3, 〈1, 1〉 7→ 1})
(〈1, 1, 1〉, {〈〉 7→ 3, 〈1, 1〉 7→ 2})

The last configuration is final, since min(〈〉) ≤ 3 and min(〈1, 1〉) ≤ 2.

Fig. 3. Illustration of FAC recognizing L((a2 + bc)3..5). Every state is depicted
as a rectangle separated in two by a line. The name of the state is in the upper
part of the rectangle, and the values of F and A are in the lower part. Every
member of φ is shown as an arrow, annotated with the corresponding update
instruction. C, min and max are shown on the right hand side.

Proposition 2 (Linear-Time Recognition). For any textual representation
of FACs, and for any deterministic FAC A = (Σ, Q, C, A, Φ, min, max, qI , F),
if σ(A) is the size of the textual representation of A, then for any word w ∈ Σ∗,
the FAC A can in time O(|w|σ(A)2) decide whether w is rejected or accepted.

Proof. The FAC makes no more than |w| steps in the recognition, and at each
step, there can be no more than max{|Φ(q)| | q ∈ Q} outgoing edges, and for
each of these we might have to check the counter state γ against no more than
|C| constraints. Testing whether the last configuration is accepting, takes time
O(|C| ·max{|F(q)| | q ∈ Q}). Thus we get the result, as |C|, max{|F(q)| | q ∈ Q}
and max{|Φ(q)| | q ∈ Q} are all O(σ(A)).

3.5 Searching with FACs

We formalize the problems called matching and searching as the binary predi-
cates m, s ⊆ RΣ × Σ∗, defined as follows: m(r, w) ⇔ w ∈ L(r) and s(r, w) ⇔
∃u, v, v′ : (w = u · v · v′ ∧ v ∈ L(r)). A deterministic FAC recognizing L(r) can
decide m(r, w) in time linear in |w|. If the alphabet (Σ) is fixed, we can solve
s(r, w) in time linear in the length of w by solving m(Σ∗ · r ·Σ∗), where Σ here
denotes the disjunction of all the letters. In practical cases, though, the size of
Σ can be prohibitively large. Another option is therefore to decide s(r, w) by
using O(|w|2) executions of an algorithm for m. A deterministic FAC can also
decide in linear time the prefix problem. The latter is also formalized as a binary
predicate, namely p ⊆ RΣ ×Σ∗, where p(r, w) ⇔ ∃u, v : (w = u · v∧u ∈ L(r)).
O(|w|) executions of an algorithm for p is sufficient to decide s. Thus, determin-
istic FACs can be used to search in time quadratic in the length of the text. The
last approach is similar to that used in GNU grep.

4 Constructing Finite Automata with Counters

Following Brüggemann-Klein & Wood [9] and Glushkov [10], we define three
mappings, first, last, and follow. They will be used below in an alternative defini-
tion of the language denoted by a regular expression, and will be central in the
construction of FACs from regular expressions. first takes a regular expression
as parameter and returns the set of positions that could be matching the first
letter in a word in the language of the regular expression. Similarly, the map-
ping last takes a regular expression as parameter and returns the set of positions
that could be matching the last letter in a word in the language of the regular
expression.

follow takes a regular expression and a position in the expression as parame-
ters, and returns a set of pairs (p, ψ). Assume the position given as argument to
follow is used to match a letter in a word in the language of the regular expres-
sion. If follow returns a set containing (p, ψ), then p is a position in the regular
expression which could match the next letter in the word, and ψ is the update
instructions, describing what changes must be done to the counters in the step
to p from the position given as the second argument.

Before we can define first, last and follow, we need some auxiliary definitions.

Definition 11 (Concatenating Positions with Update Instructions and
Sets of Positions).

– For p ∈ N∗ and S ⊆ N∗, let p� S = {p� q | q ∈ S}
– For p ∈ N∗ and ψ : (N∗ 7→ {res, inc}), let p�ψ = {p�q 7→ ψ(q) | q ∈ dom(ψ)}.
– For S ⊆ N∗ × (N∗ 7→ {inc, res}) let p� S = {(p� q, p� ψ) | (q, ψ) ∈ S}.

Definition 12 (Subposition). We use the notation p ≤ q for p a prefix or
subposition of q, that is, p ≤ q ⇔ ∃p1 : q = p� p1.

Definition 13. Let r ∈ RΣ and q ∈ pos(r).

1. Let C(r) ⊆ pos(r) be the positions of all subexpressions of r that are of the
form rn..m1 , and that are not of the form r+1 . Expressed formally,

C(r) = {q ∈ pos(r) | ∃n ∈ N,m ∈ N/1, r1 ∈ RΣ : r|q = rn..m1 6= r+1 }.

2. Let C(r, q) ⊆ C(r) be the set of positions in C(r) above q, that is, C(r, q) =
{p ∈ C(r) | p ≤ q}.

In the sequel we need to express the set of regular expressions whose language
contains the empty word. The set of nullable expressions, NΣ , is therefore defined
as follows:

Definition 14 (Nullable Expressions). Given an alphabet Σ, the set of nul-
lable expressions, NΣ, is defined in the following inductive manner

NΣ ::= NΣ ·NΣ |NΣ +RΣ |RΣ + NΣ |N
N..N/1

Σ | ε

We can prove that NΣ = {r ∈ RΣ | ε ∈ L(r)} by induction on r.
We will define inductively first : RΣ 7→ ℘(N∗) (Table 2), last : RΣ 7→ ℘(N∗)

(Table 2) and follow : (RΣ × N∗) 7→ ℘(N∗ × (N∗ 7→ {res, inc})) (Table 3).
first and last map from an expression r to a subset of sym(µ(r)), such that
first(r) = {p ∈ sym(µ(r)) | ∃w ∈ sym(µ(r))∗ : pw ∈ L(µ(r))} and last(r) = {p ∈
sym(µ(r)) | ∃w ∈ sym(µ(r))∗ : wp ∈ L(µ(r))}. follow maps an expression r and a
position q ∈ pos(r) to a set of pairs of the form (p, ψ), where p ∈ sym(µ(r)) and
ψ : C(r) 7→ {inc, res}.

Recall the example expression r = (a2 + bc)3..5 from Example 1. We get
first(r) = {〈1, 1, 1〉, 〈1, 2, 1〉}, last(r) = {〈1, 1, 1〉, 〈1, 2, 2〉}, and follow is shown in
Table 4.

4.1 Basic Properties

The following lemma basically summarizes that first, last and follow have the
intended properties.

Lemma 1. For all regular expressions r ∈ RΣ and all positions q ∈ sym(µ(r)):

Table 2. first : RΣ 7→ ℘(N∗) and last : RΣ 7→ ℘(N∗)

first(ε) = last(ε) = ∅, r ∈ Σ ⇒ first(r) = last(r) = {〈〉}
r = r1 + r2 ⇒
first(r) = (〈1〉 � first(r1)) ∪ (〈2〉 � first(r2))
∧ last(r) = (〈1〉 � last(r1)) ∪ (〈2〉 � last(r2))

r = r1 · r2 ∧ r1 ∈ NΣ ⇒ first(r) = (〈1〉 � first(r1)) ∪ (〈2〉 � first(r2))
r = r1 · r2 ∧ r2 ∈ NΣ ⇒ last(r) = (〈1〉 � last(r1)) ∪ (〈2〉 � last(r2))

r = r1 · r2 ∧ r1 6∈ NΣ ⇒ first(r) = 〈1〉 � first(r1)
r = r1 · r2 ∧ r2 6∈ NΣ ⇒ last(r) = 〈2〉 � last(r2)

r = rn..m1 ⇒ first(r) = 〈1〉 � first(r1) ∧ last(r) = 〈1〉 � last(r1)

Table 3. follow : (RΣ × N∗) 7→ ℘(N∗ × (N∗ 7→ {res, inc}))

r ∈ Σ ⇒ follow(r, 〈〉) = ∅
r = r1 + r2 ⇒

`
follow(r, 〈1〉 � q) = 〈1〉 � follow(r1, q)

´
∧
`

follow(r, 〈2〉 � q) = 〈2〉 � follow(r2, q)
´

r = r1 · r2 ⇒ follow(r, 〈2〉 � q) = 〈2〉 � follow(r2, q)

r = r1 · r2 ∧ q ∈ last(r1) ⇒
follow(r, 〈1〉 � q) = 〈1〉 � follow(r1, q)∪
{(q1, {〈1〉 � p1 7→ res | p1 ∈ C(r1, q)}) | q1 ∈ 〈2〉 � first(r2)}
r = r1 · r2 ∧ q 6∈ last(r1) ⇒ follow(r, 〈1〉 � q) = 〈1〉 � follow(r1, q)

r = r+1 ∧ q ∈ last(r1) ⇒ follow(r, 〈1〉 � q) =
〈1〉 � follow(r1, q) ∪

˘`
q1, {〈1〉 � p1 7→ res | p1 ∈ C(r1, q)}

´
q1 ∈ 〈1〉 � first(r1)

¯
r = rn..m1 ∧ q ∈ last(r1) ∧ (n,m) 6= (1,∞) ⇒
follow(r, 〈1〉 � q) = 〈1〉 � follow(r1, q)∪˘`
q1, {〈〉 7→ inc} ∪ {〈1〉 � p1 7→ res | p1 ∈ C(r1, q)}

´
q1 ∈ 〈1〉 � first(r1)

¯
r = rn..m1 ∧ q 6∈ last(r1) ⇒ follow(r, 〈1〉 � q) = 〈1〉 � follow(r1, q)

Table 4. The mapping follow for r = (a2 + bc)3..5

follow(r, 〈1, 1, 1〉) =

8<:
(〈1, 1, 1〉, {〈1, 1〉 7→ inc}),
(〈1, 1, 1〉, {〈1, 1〉 7→ res, 〈〉 7→ inc}),
(〈1, 2, 1〉, {〈1, 1〉 7→ res, 〈〉 7→ inc})

9=;
follow(r, 〈1, 2, 1〉) = {(〈1, 2, 2〉, {})}
follow(r, 〈1, 2, 2〉) = {(〈1, 1, 1〉, {〈〉 7→ inc}), (〈1, 2, 1〉, {〈〉 7→ inc})}

1. first(r) = {p ∈ sym(µ(r)) | ∃w ∈ sym(µ(r))∗ : pw ∈ L(µ(r))}
2. last(r) = {p ∈ sym(µ(r)) | ∃w ∈ sym(µ(r))∗ : wp ∈ L(µ(r))}
3. follow(r, q) is well-defined.
4. ∀(p, ψ) ∈ follow(r, q) : ∃u, v ∈ sym(µ(r))∗ : uqpv ∈ L(µ(r))
5. ∀(p, ψ) ∈ follow(r, q) : ∀q′ ∈ C(r) :

q′ 6∈ dom(ψ)⇒ (q′ 6∈ C(r, q) ∨ (∃u, v ∈ sym(µ(r)|q′)∗ : uqpv ∈ L(µ(r)|q′)))
∧ ψ(q′) = inc⇒ (q ∈ q′ � last(r|q′) ∧ p ∈ q′ � first(r|q′))
∧ ψ(q′) = res⇔ (q ∈ q′ � last(r|q′) ∧ q′ 6∈ C(r, p))

All items can be proved by induction on r, using the preceding items. The proofs
are omitted for space considerations.

Theorem 1 (Polynomial Runtime). For all regular expressions r ∈ RΣ and
all positions q ∈ sym(µ(r)):

1. Computing first(r) and last(r) takes time O(|r|).
2. Computing follow(r, q) for all q, takes time O(|r|3).

Proof. 1. For part 1 note first that |first(r)| = O(|r|) and |last(r)| = O(|r|)
follows from parts 1 and 2 of Lemma 1. We will assume that union of sets
can be done in linear time, and that prefixing a number to a position (as in
〈1〉 � p) can be done in constant time. We can then show that the run-time
is O(|r|) by induction on r.

2. For part 2, start with computing first and last for all subexpressions of r. This
takes time O(|r|3). Computing follow(r, q) will then mean a linear number
of calls to follow, each of which takes maximally O(|r|2) time in addition to
the recursive call to follow. ut

4.2 Counter-1-unambiguity

We can now define the right unambiguity we need for constructing determinis-
tic automata. Counter-1-unambiguous regular expressions are introduced in this
section. Section 4.3 describes how a deterministic FAC can be constructed in
polynomial time from such expressions. However, the construction of FACs can
be applied to regular expressions in a larger class, namely, the regular expressions
in constraint normal form. The construction of an FAC from an expression in
this class can also be done in polynomial time, but the FAC might not be deter-
ministic. An expression is in constraint normal form if, for every subexpression
of the form rn..m, r is not nullable.

Definition 15. A regular expression r is in constraint normal form if and only
if there is no subexpression of r of the form rn..m1 where r1 ∈ NΣ.

For example, (a∗a)2..3 is in constraint normal form, while (a∗)2..3 is not.
Given a regular expression r, let mappings min : C(r) 7→ N and max : C(r) 7→

N/1 be such that min(q) = r|q�〈2〉 and max(q) = r|q�〈3〉, and define a binary re-
lation ' between the pairs sym(µ(r))×(C 7→ {inc, res}), where (q2, ψ2) ' (q1, ψ1)
if and only if r|q2 = r|q1 and ψ1 and ψ2 are overlapping update instructions (as
according to Definition 6).

Definition 16 (Counter-1-unambiguity). A regular expression r in constraint
normal form is counter-1-unambiguous, if ∀p, q ∈ first(r) : r|p = r|q ⇒ p = q
and ∀q ∈ sym(µ(r)) : ∀(q2, ψ2), (q1, ψ1) ∈ follow(r, q) : (q2, ψ2) ' (q1, ψ1) ⇒
(q2, ψ2) = (q1, ψ1).

The regular expressions used as examples in Sect. 1 are counter-1-unambiguous.
Examples of expressions that are not counter-1-unambiguous are (a1..2)1..2, (a∗a)2..3

and (a1..2 + b)1..2, while (a + b)1..4 is counter-1-unambiguous. For some of the
expressions that are not counter-1-unambiguous, we can multiply the numerical
constraints to possibly get counter-1-unambiguous expressions. In general, for
regular expressions of the form (rl1..u1)l2..u2 , if l2 ≥ l1−1

u1−l1 , then L(rl1·l2..u1·u2) =
L((rl1..u1)l2..u2). For example, L((a1..2)1..2) = L(a1..4).

4.3 Constructing FACs

Fig. 4. Some proper-
ties of the construc-
tion of FACs.

Given a regular expression r and the mappings first, last
and follow as defined above, we construct the FAC(r),
an FAC (Σ,Q,C(r),A, Φ,min,max, qI ,F), where Q =
sym(µ(r)) ∪ {qI} and where min and max are as above.
∀q ∈ sym(µ(r)), let A(q) = r|q and Φ(q) = follow(r, q).
Let Φ(qI) = {(q,∅) | q ∈ first(r)}.

The initial configuration is final if and only if r is
nullable. For the other configurations, two conditions
must be met: the position the current state represents
must be in last(r), and the numerical constraints con-
taining this position must be satisfied. Thus, the map-
ping F is defined as follows. Let first F ′ = {p 7→
C(r, p) | p ∈ last(r)} ∪ {q 7→ ⊥ | q ∈ sym(µ(r))− last(r)}.
If r ∈ NΣ , then let F = F ′ ∪ {qI 7→ ∅}, and otherwise
let F = F ′ ∪ {qI 7→ ⊥}.

Figure 4 illustrates some properties of this algo-
rithm. The result of applying this algorithm to r =
(a2 + bc)3..5 from Example 1 is the FAC in Example 3.

4.4 Equivalence of L(r) and L′(r)

We will now define L′(r), which is the language recognized by the FAC con-
structed from r as described above.

Definition 17 (L′(r)). For r ∈ RΣ, L′(r) is the subset of Σ∗, such that ε ∈
L′(r) iff r ∈ NΣ and for all w ∈ L′(r) where n = |w| > 0, there exist p1, . . . , pn ∈
sym(µ(r)), and if n > 1 there are also ψ2, . . . , ψn ∈ (C(r) 7→ {inc, res}), such that
all of the following five items hold:

1. r|p1 · · · r|pn
= w.

2. p1 ∈ first(r).
3. pn ∈ last(r).

4. If n > 1, then ∀i ∈ {1, . . . , n− 1} : (pi+1, ψi+1) ∈ follow(r, pi).
5. ∀i ∈ {1, . . . , n} : (fψi

(· · · fψ1(γ1) · · ·),min,max) |= ψi+1, where ψ1 = ∅,
ψn+1 = {p 7→ res | p ∈ C(r, pn)}.

Theorem 2. If r ∈ RΣ is in constraint normal form, then L(r) = L′(r).

The proof is by induction on r and uses the definitions of L′(r) and L(r) and
the facts in Lemma 1. The proof is omitted for space considerations.

5 Related Work and Conclusion

5.1 Related Work

The inspiration for Finite Automata with Counters comes, of course, from fi-
nite automata as defined, e.g., by Hopcroft & Ullman [11], by Kleene [12] or by
Glushkov [10]. Kilpeläinen & Tuhkanen [4,7,13], and Gelade et al. [6] also inves-
tigated properties of the regular expressions with counters, and give algorithms
for membership, and definitions of automata classes for regular expressions with
numerical constraints. Tuhkanen & Kilpeläinen’s counter automata seem to han-
dle a larger class of expressions than FACs, but they are not defined formally,
only by examples. The technical report referred to in the paper was never fin-
ished (personal communication). Tuhkanen & Kilpeläinen’s counter automata
also differ from FACs in the way iterations are kept track of, with extra states,
called “levels”.

Colazzo, Ghelli & Sartiani describe in [14] an algorithm for linear-time mem-
bership in a subclass of regular expressions called collision-free. The collision-free
regular expressions have at most one occurrence of each symbol from Σ, and the
counters (and the Kleene star) can only be applied directly to letters or disjunc-
tions of letters. The latter class is smaller than, and included in, the class of
counter-1-unambiguous regular expressions. The main focus of Colazzo, Ghelli
& Sartiani is on the extension of regular expressions used in XML Schemas. This
extension includes interleaving, which is not covered by the algorithm presented
here.

A class of tree automata with counting are described by Zilio & Lugiez [15].
Our approach also has similarities to the tagged automata found in Laurikari [16].
The results by Brüggemann-Klein & Wood in [5,9,17] concerning 1-unambiguous
regular expressions, are in some ways what the current article attempts to extend
to the regular expressions with counters.

5.2 Conclusion

We have defined Finite Automata with Counters (FAC), and a translation from
the regular expressions with numerical constraints to these automata. We de-
fined constraint normal form, a subset of the regular expressions with numerical
constraints, for which the translation to FACs can be done in polynomial time.
Further we defined counter-1-unambiguous regular expressions, a subset of the

regular expressions of constraint normal form, and for which the FAC resulting
from the translation is deterministic. The deterministic FAC can recognize the
language of the given regular expression in time linear in the size of word to
be tested. Testing whether an FAC is deterministic can be done in polynomial
time.

References

1. The Open Group: The Open Group Base Specifications Issue 6, IEEE Std 1003.1.
2 edn. (1997)

2. GNU: GNU grep manual.
3. Fallside, D.C.: XML Schema part 0: Primer, W3C recommendation. Technical

report, World Wide Web Consortium (W3C) (2001)
4. Kilpeläinen, P., Tuhkanen, R.: Regular expressions with numerical occurrence

indicators - preliminary results. In Kilpeläinen, P., Päivinen, N., eds.: SPLST,
University of Kuopio, Department of Computer Science (2003) 163–173

5. Brüggemann-Klein, A.: Regular expressions into finite automata. Theoretical
Computer Science 120(2) (1993) 197–213

6. Gelade, W., Martens, W., Neven, F.: Optimizing schema languages for XML:
Numerical constraints and interleaving. In Schwentick, T., Suciu, D., eds.: Pro-
ceedings of ICDT. Volume 4353 of Lecture Notes in Computer Science., Springer
(2007) 269–283

7. Kilpeläinen, P., Tuhkanen, R.: One-unambiguity of regular expressions with nu-
meric occurrence indicators. Information and Computation 205(6) (2007) 890–916

8. Bezem, M., Klop, J.W., de Vrijer, R., eds.: Term Rewriting Systems. Cambridge
University Press (2003)

9. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Informa-
tion and Computation 140(2) (1998) 229–253

10. Glushkov, V.M.: The abstract theory of automata. Russian Mathematical Surveys
16(5) (1961) 1–53

11. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

12. Kleene, S.C.: Representation of events in nerve sets and finite automata. Automata
Studies (1956) 3–41

13. Kilpeläinen, P., Tuhkanen, R.: Towards efficient implementation of XML schema
content models. In Munson, E.V., Vion-Dury, J.Y., eds.: ACM Symposium on
Document Engineering, ACM (2004) 239–241

14. Ghelli, G., Colazzo, D., Sartiani, C.: Linear time membership in a class of regular
expressions with interleaving and counting. In Shanahan, J.G., Amer-Yahia, S.,
Manolescu, I., Zhang, Y., Evans, D.A., Kolcz, A., Choi, K.S., Chowdhury, A., eds.:
CIKM, ACM (2008) 389–398

15. Dal-Zilio, S., Lugiez, D.: Xml schema, tree logic and sheaves automata. In Nieuwen-
huis, R., ed.: RTA. Volume 2706 of Lecture Notes in Computer Science., Springer
(2003) 246–263

16. Laurikari, V.: NFAs with tagged transitions, their conversion to deterministic
automata and application to regular expressions. In: SPIRE. (2000) 181–187

17. Brüggemann-Klein, A.: Regular expressions into finite automata. In Simon, I.,
ed.: LATIN. Volume 583 of Lecture Notes in Computer Science., Springer (1992)
87–98

A Copyright

M. Leucker and C. Morgan (Eds.) : ICTAC 2009, LNCS 5684, pp. 231-245, 2009.
http://www.springerlink.com/content/u756g285g3x6h630. c© Springer-Verlag
Berlin Heidelberg 2009.

http://www.springerlink.com/content/u756g285g3x6h630

	Dag Hovland dag.hovland@uib.no

