Regular generalized fuzzy b-separation axioms in fuzzy topology

Varsha Joshi^{*} Jenifer J.Karnel[†]

Abstract

Regular generalized fuzzy b-closure and regular generalized fuzzy binterior are stated and their characteristics are examined, also Regular generalized fuzzy b $-\tau_i$ separation axioms have been introduced and their interrelations are examined. The characterization of regular generalized fuzzy b –separation axioms are analyzed.

Keywords: rgfbCS; rgfbOS; rgfbCl; rgfbInt; rgfbT₀; rgfbT₁; rgfbT₂; rgfbT₂ $\frac{1}{2}$ and fuzzy topological spaces X (in short fts).

2020 AMS subject classification: 54A40

^{*} Mathematics Department, SDM College of Engineering & Technology, Dharwad-580 003. Karnataka, India.E-mail: varshajoshi2012@gmail.com

^{*} Mathematics Department, SDM College of Engineering & Technology, Dharwad-580 003. Karnataka, India.E-mail: jeniferjk17@gmail.com

[†]Received on January 12th, 2021. Accepted on May 12th, 2021. Published on June 30th, 2021. doi: 10.23755/rm.v40i1.624. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors.This paper is published under the CC-BY licence agreement.

1. Introduction

The fundamental theory of fuzzy sets were introduced by Zadeh [16] and Chang [9] studied the theory of fuzzy topology. After this Ghanim.et.al [10] introduced separation axioms, regular spaces and fuzzy normal spaces in fuzzy topology. The theory of regular generalized fuzzy b-closed set (open set) presented by Jenifer et. al [11]. In this study we define rgfb-closure, rgfb-interior and rgfb-separation axioms and their implications are proved. Effectiveness nature of the various concepts of fuzzy separation ideas are carried out. Characterizations are obtained.

2. Preliminary

 (X_1, τ) , (X_2, σ) (or simply X_1, X_2) states fuzzy topological spaces(in short, fts) in this article.

Definition 2.1[1, 3]: In fts X_1 , α be fuzzy set.

- (i) If $\alpha = \text{IntCl}(\alpha)$ then α is fuzzy regular open(precisely, frOS).
- (ii) If $\alpha = \text{ClInt}(\alpha)$ then α is fuzzy regular closed (precisely, frCS).
- (iii) If $\alpha \leq (\text{IntCl}\alpha) \lor (\text{CIInt}\alpha)$ then α is f b-open set (precisely, fbOS).
- (iv) If $\alpha \ge (IntCl\alpha) \land (ClInt\alpha)$ then α is f b-closed set (precisely, fbCS).

Remark 2.2 [1]: In a fuzzy topological space X, The following implication holds good

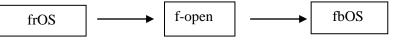


Figure1. Interrelations between some fuzzy open sets

Definition 2.3[3]: Let α be a fuzzy set in a fts X₁. Then, (i) bCl(α) = \wedge { β : β is a fbCS(X₁), $\geq \alpha$ }. (ii) bInt(α) = \vee { λ : λ is a fbOS(X₁), $\leq \alpha$ }.

Definition 2.4[11]: In a fts X₁, if bCl(α) $\leq \beta$, at any time when $\alpha \leq \beta$, then fuzzy set α is named as regular generalized fuzzy b-closed (rgfbCS). Where β is fr- open.

Remark 2.5[11]: In a fts X₁, if 1- α is rgfbCS(X₁) then fuzzy set α is rgfbOS.

Definition 2.6[11]: In a fts X₁, if bInt(α) $\geq \beta$, at any time when $\alpha \geq \beta$, then fuzzy set α is named as regular generalized fuzzy b-open (rgfbOS). Where β is fr-closed.

Definition 2.7[13]: Let (X_1, τ) , (X_2, σ) be two fuzzy topological spaces. Let f: $X_1 \rightarrow X_2$ be mapping,

- (i) if $f^{1}(\alpha)$ is rgfbCS(X₁), for each closed fuzzy set α in X₂, then f is said to be regular generalized fuzzy b-continuous (briefly, rgfb-continuous).
- (ii) if $f^{I}(\alpha)$ is open fuzzy in X₁, for each rgfbOS α in X₂, then *f* is called strongly rgfb-continuous.
- (iii) if $f^{1}(\alpha)$ is rgfbCS in X₁, for each rgfbCS α in X₂, then f is called rgfb-irresolute.

Definition 2.8[10]: X₁ is a fts which is named as

- (i) fuzzy $T_0(\text{in short, } fT_0)$ if and only if for each pair of fuzzy singletons p_1 and p_2 with various supports there occurs open fuzzy set *U* such that either $p_1 \le U \le 1$ p_2 or $p_2 \le U \le 1$ - p_1 .
- (ii) fuzzy T₁(in short fT₁)if and only if for each pair of fuzzy singletons p_1 and p_2 with various supports, there occurs open fuzzy sets U and V such that $p_1 \le U \le 1$ p_2 and $p_2 \le V \le 1$ p_1 .
- (iii) fuzzy T₂(in short, fT₂) or f-Hausdorff if and only if for each pair of fuzzy singletons p_1 and p_2 with various supports ,there occurs open fuzzy sets U and V such that $p_1 \le U \le 1 - p_2$, $p_2 \le V \le 1 - p_1$ and $U \le 1 - V_1$
- (iv) fuzzy $T_{2\frac{1}{2}}$ (in short, $fT_{2\frac{1}{2}}$) or f-Urysohn if and only if for each pair of fuzzy singletons p_1 and p_2 with various supports, there occurs open fuzzy sets U and V such that $p_1 \le U \le 1 p_2$, $p_2 \le V \le 1 p_1$ and $clU \le 1 cl V_1$.

3. Regular generalized fuzzy b-closure (rgfbCl) and Regular generalized fuzzy b-Interior (rgfbInt)

Definition 3.1:The regular generalized fuzzy b-closure is denoted and defined by, rgfbCl (α) = Λ { λ : λ is a rgfbCS(X_1), $\geq \alpha$ }. Where α be a fuzzy set in fts X_1 .

Theorem 3.2:Let X_1 be fts, then the properties that follows are occurs for rgfbCl of a set

- i. rgfbCl(0) = 0
- ii. rgfbCl(1) = 1
- iii. rgfbCl(α) is rgfbCS in X₁
- iv. rgfbCl[rgfbCl(α)] = rgfbCl(α)

Definition 3.3:Let α and β be fuzzy sets in fuzzy topological space X₁. Then regular generalized fuzzy b-closure of $(\alpha \vee \beta)$ and regular generalized fuzzy b-closure of $(\alpha \wedge \beta)$ are denoted and defined as follows

- i. rgfbCl ($\alpha V \beta$) = \land { λ : λ is a rgfbCS(X₁), where $\lambda \ge (\alpha V \beta)$ }
- ii. rgfbCl ($\alpha \land \beta$) = \land { λ : λ is a rgfbCS(X₁), where $\lambda \ge (\alpha \land \beta)$ }

Theorem 3.4: Let α and β be fuzzy sets in fts X₁, then the following relations occurs

i. $\operatorname{rgfbCl}(\alpha) \vee \operatorname{rgfbCl}(\beta) \leq \operatorname{rgfbCl}(\alpha \vee \beta)$ ii. $\operatorname{rgfbCl}(\alpha) \wedge \operatorname{rgfbCl}(\beta) \geq \operatorname{rgfbCl}(\alpha \wedge \beta)$ **Proof:** (i) We know that $\alpha \leq (\alpha \vee \beta)$ or $\beta \leq (\alpha \vee \beta)$ $\Rightarrow \operatorname{rgfbCl}(\alpha) \leq \operatorname{rgfbCl}(\alpha \vee \beta)$ or $\operatorname{rgfbCl}(\beta) \leq \operatorname{rgfbCl}(\alpha \vee \beta)$ Hence, $\operatorname{rgfbCl}(\alpha) \vee \operatorname{rgfbCl}(\beta) \leq \operatorname{rgfbCl}(\alpha \vee \beta)$. (ii) We know that $\alpha \geq (\alpha \wedge \beta)$ or $\beta \geq (\alpha \wedge \beta)$ $\Rightarrow \operatorname{rgfbCl}(\alpha) \geq \operatorname{rgfbCl}(\alpha \wedge \beta)$ orrgfbCl $(\beta) \geq \operatorname{rgfbCl}(\alpha \wedge \beta)$ Hence, $\operatorname{rgfbCl}(\alpha) \wedge \operatorname{rgfbCl}(\beta) \geq \operatorname{rgfbCl}(\alpha \wedge \beta)$.

Theorem 3.5: α is rgfbCS in a fts X₁, if and only if $\alpha = \operatorname{rgfbCl}(\alpha)$. **Proof:** Suppose α is rgfbCS. Since $\alpha \leq \alpha$ and $\alpha \in \{\beta; \beta \text{ is rgfbCS}(X_1)$ and $\alpha \leq \beta\}$, α is the smallest and contained in β , therefore $\alpha = \Lambda\{\beta; \beta \text{ is rgfbCS}(X_1)$ and $\alpha \leq \beta\} = \operatorname{rgfbCl}(\alpha)$. Hence, $\alpha = \operatorname{rgfbCl}(\alpha)$. On the other hand, Suppose $\alpha = \operatorname{rgfbCl}(\alpha)$, then $\alpha = \Lambda\{\beta; \beta \text{ is rgfbCS}, \alpha \leq \beta\} \Rightarrow \alpha \in \Lambda\{\beta; \beta \text{ is rgfbOS}, \alpha \leq \beta\}$. Hence, α is rgfbCS.

Definition 3.6: The regular generalized fuzzy b-interior is denoted and defined by, rgfbInt(α) = V { δ : δ is a rgfbOS(X₁), $\leq \alpha$ }. Where α be a fuzzy set in fts X₁.

Theorem 3.7: Let X_1 be fts, then the properties that follows are occurs for rgfbInt of a set

- i. rgfbInt(0) = 0
- ii. rgfbInt(1) = 1
- iii. rgfbInt(α) is rgfbOS in X₁
- iv. rgfbInt[rgfbInt(α)] = rgfbInt(α).

Definition 3.8: Let α and β are fuzzy sets in fts X₁. Then regular generalized fuzzy b-interior of $(\alpha \lor \beta)$ and regular generalized fuzzy b-interior of $(\alpha \land \beta)$ are denoted and defined as follows

i. rgfbInt ($\alpha V \beta$) = V { δ : δ is a rgfbOS(X₁), where $\delta \leq (\alpha V \beta)$ }.

ii. rgfbInt($\alpha \land \beta$) = V { $\delta: \delta$ is a rgfbOS(X₁), where $\delta \leq (\alpha \land \beta$)}.

Theorem 3.9:Let α and β are fuzzy sets in fts X₁, then the following relations occurs

i. $\operatorname{rgfbInt}(\alpha) \vee \operatorname{rgfbInt}(\beta) \leq \operatorname{rgfbInt}(\alpha \vee \beta)$ ii. $\operatorname{rgfbInt}(\alpha) \wedge \operatorname{rgfbInt}(\beta) \geq \operatorname{rgfbInt}(\alpha \wedge \beta)$ **Proof:** (i) We know that, $\alpha \leq (\alpha \vee \beta)$ or $\beta \leq (\alpha \vee \beta)$ $\Rightarrow \operatorname{rgfbInt}(\alpha) \leq \operatorname{rgfbInt}(\alpha \vee \beta)$ or $\operatorname{rgfbInt}(\beta) \leq \operatorname{rgfbInt}(\alpha \vee \beta)$ Hence, $\operatorname{rgfbInt}(\alpha) \vee \operatorname{rgfbInt}(\beta) \leq \operatorname{rgfbInt}(\alpha \vee \beta)$. (ii) We know that $\alpha \geq (\alpha \wedge \beta)$ or $\beta \geq (\alpha \wedge \beta)$ $\Rightarrow \operatorname{rgfbInt}(\alpha) \geq \operatorname{rgfbInt}(\alpha \wedge \beta)$ or $\operatorname{rgfbInt}(\beta) \geq \operatorname{rgfbInt}(\alpha \wedge \beta)$ Hence, $\operatorname{rgfbInt}(\alpha) \wedge \operatorname{rgfbInt}(\beta) \geq \operatorname{rgfbInt}(\alpha \wedge \beta)$.

Theorem 3.10: Let X₁ be fts, α is rgfbOS if and only if α =rgfbInt(α). **Proof:** Suppose α is rgfbOS. Since $\alpha \le \alpha$, $\alpha \in \{\delta: \delta \text{ is rgfbOS and } \delta \le \alpha\}$ Since biggest α contains δ . Therefore, $\alpha = V\{\delta: \delta \text{ is rgfbOS } \delta \le \alpha\} = rgfbInt(\alpha)$. Hence, α =rgfbInt(α).

On the other hand, Suppose $\alpha = \operatorname{rgfbInt} (\alpha)$. Then, $\alpha = V\{\delta: \delta \text{ is rgfbOS}, \delta \leq \alpha\} \Rightarrow \alpha \in V\{\delta: \delta \text{ is rgfbOS} \delta \leq \alpha\}$. Hence, α is rgfbOS.

Theorem 3.11: Let α be a fuzzy set in a fts X₁, in that case following relations holds good

i. rgfbInt(1- α) = 1-rgfbCl(α)

ii. rgfbCl(1- α) = 1- rgfbInt(α)

Proof: (i) Let α be a fuzzy set in fts X₁. Then we have

rgfbCl (α) = Λ { λ : λ is a rgfbCS(X₁), $\geq \alpha$ }. Where α be a fuzzy set in fts X₁.

1-rgfbCl (α) = 1- Λ { λ : λ is a rgfbCS(X₁), $\geq \alpha$ }. = V { $l - \lambda$: λ is a rgfbCS(X₁), $\geq \alpha$ }. = V{ $l - \lambda$: $l - \lambda$ is a rgfbOS(X₁), $\leq 1 - \alpha$ }. = rgfbInt (1- α) Hence, 1-rgfbCl(α) = rgfbInt (1- α).

(ii) Let α be a fuzzy set in fts X₁. Then we have rgfbInt(α) = V { $\delta: \delta$ is a rgfbOS(X₁), $\leq \alpha$ }. Where α be a fuzzy set in fts X₁. 1-rgfbInt (α) = 1-V { $\delta : \delta \le \alpha$ and δ is rgfbOS (X₁)} = Λ {1- $\delta : \delta \le \alpha$ and δ is rgfbOS(X₁)} = Λ {1- $\delta : 1-\alpha \le 1-\delta$ and 1- δ is rgfbCS(X₁)} = rgfbCl (1- α) Hence 1-rgfbInt (α) = rgfbCl (1- α).

4. rgfb-separation axioms

Definition 4.1:A fts is known as rgfbT₀, that is regular generalized fuzzy bT₀, iff for each pair of fuzzy singletons q_1 and q_2 with various supports, there occurs rgfbOS δ such that either $q_1 \leq \delta \leq 1 - q_2$ or $q_2 \leq \delta \leq 1 - q_1$.

Theorem 4.2: A fts is rgfbT₀,that is regular generalized fuzzy bT_0 , if and only if rgfbCl of crisp fuzzy singletons q_1 and q_2 with various supports are different.

Proof: To prove the necessary condition: Let a fuzzy topological space be rgfbT₀ and two crisp fuzzy singletons be $q_1 \& q_2$ with various supports $x_1 \& x_2$ respectively i.e. $x_1 \neq x_2$. Since fts is rgfbT₀, there exist a rgfbOS δ such that, $q_1 \leq \delta \leq 1$ - $q_2 \Rightarrow q_2 \leq 1$ - δ , but $q_2 \leq$ rgfbCl(q_2) ≤ 1 - δ , where $q_1 \leq$ rgfbCl(q_2) $\Rightarrow q_1 \leq 1$ - δ where 1- δ is rgfbCS. But, $q_1 \leq$ rgfbCl(q_1). This shows that, rgfbCl(q_1) \neq rgfbCl(q_2).

To prove the sufficiency: Let $p_1 \& p_2$ be fuzzy singletons with various supports $x_1 \& x_2$ respectively, $q_1 \& q_2$ be crisp fuzzy singletons such that $q_1(x_1)=1$, $q_2(x_2)=1$. But, $q_1 \leq \operatorname{rgfbCl}(q_1) \Rightarrow 1\operatorname{rgfbCl}(q_1) \leq 1\operatorname{-}q_1 \leq 1\operatorname{-}p_1$. As each crisp fuzzy singleton is rgfbCS, 1- rgfbCl(q_1) is rgfbOS and $p_2 \leq 1\operatorname{-}rgfbCl(q_1) \leq 1\operatorname{-}p_1$. This proves, fts is rgfbT₀ space.

Definition 4.3: A fts is known as rgfbT₁,that is regular generalized fuzzy bT₁, iff for each pair of fuzzy singletons $q_1 \& q_2$ with various supports $x_1 \& x_2$ respectively, there occurs rgfbOSs $\delta_1 \& \delta_2$ such that, $q_1 \le \delta_1 \le 1$ - q_2 and $q_2 \le \delta_2 \le 1$ - q_1 .

Theorem 4.4: A fts is rgfbT₁, that is regular generalized fuzzy bT_1 , if and only if each crisp fuzzy singleton is rgfbCS.

Proof: To prove the necessary condition: Let $rgfbT_1$ be fts and crisp fuzzy singleton with supports x_0 be q_0 . There occurs, $rgfbOSs \delta_1$ and δ_2 for any fuzzy singleton q with supports $x \ (\neq x_0)$, such that, $q_0 \le \delta_1 \le 1$ - q and $q \le \delta_2 \le 1$ - q_0 . Since, it includes each fuzzy set as the collection of fuzzy singletons. So that, $1-q_0 = \bigvee_{q \le 1-q_0} q = 0$. Thus, $1-q_0$ is rgfbOS. This shows that, q_0 (crisp fuzzy singleton) is rgfbCS.

To prove the sufficiency: Assume p_1 and p_2 be pair of fuzzy singletons with various supports $x_1 \& x_2$. Further on fuzzy singletons with various supports $x_1 \& x_2$ be $q_1 \& q_2$, such that $q_1(x_1) = 1$ and $q_2(x_2)=1$. As each crisp fuzzy singleton is rgfbCS, the fuzzy sets $1-q_1 \& 1-q_2$ are rgfbOSs such that, $p_1 \le 1-q_1 \le 1-p_2$ and $p_2 \le 1-q_2 \le 1-p_1$. This proves, fts is rgfbT₁ space.

Remark 4.5: In a fts X_1 , each rgfb T_1 space is rgfb T_0 space. **Proof:** It follows the above definition. The opposite of this theorem is in correct. This is shown as follows –

Example 4.6:Let $X_1 = \{a, b\}, p_1 = \{(a,0), (b,1)\}$ and $p_2 = \{(a,0.4), (b,0)\}$ are fuzzy singletons. U= $\{(a, 0.5), (b, 1)\}$ be rgfbOS. Let $\tau = \{0, p_1, p_2, U, 1\}$. The space is rgfbT₀ and it is not rgfbT₁.

Definition 4.7: A fts is known as rgfbT₂, that is regular generalized fuzzy bT₂ or rgfb-Hausdorff iff, for each pair of fuzzy singletons $q_1 \& q_2$ with various supports $x_1 \& x_2$ respectively, there occurs, rgfbOS $\delta_1 \& \delta_2$ such that, $q_1 \le \delta_1 \le 1$ - q_2 , $q_2 \le \delta_2 \le 1$ - q_1 and $\delta_1 \le 1$ - δ_2 .

Theorem 4.8: A fts is known as rgfbT₂, that is regular generalized fuzzy bT₂ or rgfb-Hausdorff if and only if for each pair of fuzzy singletons $q_1 \& q_2$ with various supports $x_1 \& x_2$ respectively, there occurs an rgfbOS δ_1 such that, $q_1 \le \delta_1 \le \text{rgfbCl } \delta_1 \le 1 - q_2$.

Proof: To prove the necessary condition: Let rgfbT₁ be fts and fuzzy singletons q₁ & q₂ with various supports .Let $\delta_1 \& \delta_2$ be rgfbOS such that, q₁ $\leq \delta_1 \leq 1-q_2$, q₂ $\leq \delta_2 \leq 1-q_1$ and $\delta_1 \leq 1-\delta_2$ where $1-\delta_2$ is rgfbCS. We have by definition, rgfbCl(δ_1)=/ {($1-\delta_2$) : ($1-\delta_2$) rgfbCS} where $\delta_1 \leq 1-\delta_2$.Also rgfbCl(δ_1) $\geq \delta_1$.This shows that, q₁ $\leq \delta_1 \leq$ rgfbCl(δ_1) $\leq 1-\delta_2 \leq 1-q_2 \Rightarrow q_1 \leq \delta_1 \leq$ rgfbCl(δ_1) $\leq 1-q_2$.

To prove the sufficiency: Assume q_1 and q_2 are pair of fuzzy singletons with various supports and δ_1 be rgfbOS. Since, $q_1 \le \delta_1 \le \text{rgfbCl}(\delta_1) \le 1$ - $q_2 \Rightarrow q_1 \le \delta_1 \le 1$ - q_2 . Also $q_1 \le \text{rgfbCl}(\delta_1) \le 1$ - $q_2 \Rightarrow q_2 \le 1$ - rgfbCl $(\delta_1) \le 1$ - q_1 . This shows that, 1- rgfbCl (δ_1) is rgfbOS. Also rgfbCl $(\delta_1) \le 1$ - rgfbCl (δ_2) . This proves that, fts is rgfbT₂ space.

Remark 4.9: In a fts X_1 , each rgfb T_2 space is rgfb T_1 space. Proof: It follows the above definition.

The opposite of this theorem is in correct. This is shown as follows -

Example 4.10: Let $X_1 = \{a, b\}$. $q_1 = \{(a, 0.2), (b, 0)\}$ and $q_2 = \{(a, 0), (b, 0.4)\}$ are fuzzy singletons, $O_1 = \{(a, 0.3), (b, 0.4)\}$ and $O_2 = \{(a, 0.8), (b, 0.7)\}$ are rgfbOS .Let $\tau = \{0, p_1, p_2, O_1, O_2, 1\}$. The space is rgfbT₁ and it's not rgfbT₂.

Definition 4.11: A fts is known as $rgfbT_{2\frac{1}{2}}$, that is regular generalized fuzzy $bT_{2\frac{1}{2}}$ or rgfb-Urysohn iff for each pair of fuzzy singletons $q_1 \& q_2$ with various supports $x_1 \& x_2$ respectively, there occurs, rgfbOSs $\delta_1 \& \delta_2$ such that, $q_1 \le \delta_1 \le 1$ - q_2 , $q_2 \le \delta_2 \le 1$ - q_1 and rgfbCl (δ_1) ≤ 1 -rgfbCl (δ_2).

Remark 4.12: In a fts X₁, each rgfbT₂ $\frac{1}{2}$ space is rgfbT₂ space. **Proof:** It follows from the above definition. The opposite of this theorem is in correct. This is shown as follows –

Example 4.13: Let $X_1 = \{a, b\}$. $q_1 = \{(a, 0.1), (b, 0)\}$ and $q_2 = \{(a, 0), (b, 0.3)\}$ are fuzzy singletons, $O_1 = \{(a, 0.2), (b, 0.3)\}$ and $O_2 = \{(a, 0.7), (b, 0.5)\}$ are rgfbOSs. Let $\tau = \{0, p_1, p_2, O_1, O_2, 1\}$. The space is rgfbT₂ and it's not rgfbT₂ $\frac{1}{2}$.

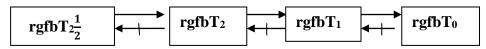


Figure2. From the above definition and examples one can notice that the above chains of implication.

Theorem 4.14: An injective function $f: X_1 \to X_2$ is rgfb-continuous, and X_2 is fT₀, then X₁ is rgfbT₀.

Proof: Assume $\alpha \& \beta$ be fuzzy singletons in X₁ with various support then $f(\alpha) \& f(\beta)$ belongs to X₂, As f is injective and $f(\alpha) \neq f(\beta)$. As X₂ is fT₀, there occurs, a open set O in X₂ such that, $f(\alpha) \leq 0 \leq 1 - f(\beta)$ or $f(\beta) \leq 0 \leq 1 - f(\alpha)$, $\Rightarrow \alpha \leq f^{-1}(0) \leq 1 - \beta$ or $\beta \leq f^{-1}(0) \leq 1 - \alpha$. Since, $f: X_1 \rightarrow X_2$ is rgfb-continuous, $f^{-1}(0)$ is rgfbOS in X₁. This shows that, X₁ is rgfbT₀-space[4.1].

Theorem 4.15: An injective function $f: X_1 \rightarrow X_2$ is rgfb-irresolute, and X_2 is rgfbT₀, then X_1 is rgfbT₀.

Proof: Assume $\alpha \& \beta$ be fuzzy singletons in X₁ with various support. As f is injective $f(\alpha) \& f(\beta)$ belongs to X₂ and $f(\alpha) \neq f(\beta)$. As, X₂ is rgfbT₀, there occurs rgfbOS O in X₂ so that $f(\alpha) \le 0 \le 1 - f(\beta)$ or $f(\beta) \le 0 \le 1 - f(\alpha) \Rightarrow \alpha \le f^{-1}(0) \le 1 - \beta$ or $\beta \le f^{-1}(0) \le 1 - \alpha$. As, f is rgfb-irresolute $f^{-1}(0)$ is rgfbOS(X₁). This shows that, X₁ is rgfbT₀ space[4.1].

Theorem 4.16:An injective function $f: X_1 \rightarrow X_2$ is strongly rgfb-continuous, and X_2 is rgfbT₀, then X_1 is fT₀.

Proof: Assume $\alpha \& \beta$ be fuzzy singletons in X₁ with various support. Since f is injective $f(\alpha) \& f(\beta)$ belongs to X₂ and $f(\alpha) \neq f(\beta)$. As, X₂ is rgfbT₀, there occurs rgfbOS O in X₂ so that, $f(\alpha) \leq 0 \leq 1 - f(\beta)$ or $f(\beta) \leq 0 \leq 1 - f(\alpha)$, $\Rightarrow \alpha \leq f^{-1}(0) \leq 1 - \beta$ or $\beta \leq f^{-1}(0) \leq 1 - \alpha$. Since, f is strongly rgfb-continuous, $f^{-1}(0)$ is fuzzy-open in X₁. This shows that, X₁ is fT₀-space[2.8].

Theorem 4.17: An injective function $f: X_1 \rightarrow X_2$ is rgfb-continuous, and X_2 is fT₁, then X₁ is rgfbT₁.

Proof: Assume α and β be fuzzy singletons in X₁ with various supports. $f(\alpha)$ and $f(\beta)$ belongs to X₂, Since, f is injective. As, X₂ is fT₁ space hence, by the statement there occurs fuzzy-open sets O₁ & O₂ in X₂ such that, $f(\alpha) \le O_1 \le 1 - f(\beta)$ and $f(\beta) \le O_2 \le 1 - f(\alpha) \Rightarrow \alpha \le f^{-1}(O_1) \le 1 - \beta$ and $\beta \le f^{-1}(O_2) \le 1 - \alpha$.

Since, f is rgfb-continuous $f^{-1}(O_1)$ and $f^{-1}(O_2)$ are rgfb-open in X₁. This shows that, X₁ is rgfbT₁ space[4.3].

Theorem 4.18: An injective function $f: X_1 \to X_2$ is rgfb-irresolute, and X_2 is rgfbT₁, then X_1 is rgfbT₁.

Proof: Assume $\alpha \& \beta$ be fuzzy singletons in with various supports. Since f is injective, $f(\alpha) \& f(\beta)$ belongs to X₂. As X₂ is rgfbT₁, there occurs two rgfbOS O₁& O₂ in X₂ so that $f(\alpha) \le O_1 \le 1 - f(\beta)$ and $f(\beta) \le O_2 \le 1 - f(\alpha) \Rightarrow \alpha \le f^{-1}(O_1) \le 1 - \beta$ and $\beta \le f^{-1}(O_2) \le 1 - \alpha$. Since, f is rgfb-irresolute, then $f^{-1}(O_1)$ and $f^{-1}(O_2)$ are rgfbOS(X₁). This shows that, X₁ is rgfbT₁ space[4.3].

Theorem 4.19: If $f : X_1 \to X_2$ is strongly rgfb-continuous and X_2 is rgfbT₁, then X_1 is fT₁.

Proof: Assume $\alpha \& \beta$ be fuzzy singletons in X₁ with various supports. Since, f is injective, $f(\alpha) \& f(\beta)$ belong to X₂. As, X₂ is rgfbT₁, there occurs two rgfbOSs O₁ and O₂ in X₂ so that, $f(\alpha) \le O_1 \le 1 - f(\beta)$ and $f(\beta) \le O_2 \le 1 - f(\alpha) \Rightarrow \alpha \le f^{-1}(O_1) \le 1 - \beta$ and $\beta \le f^{-1}(O_2) \le 1 - \alpha$. Since, f is strongly rgfb-continuous, therefore $f^{-1}(O_1) \& f^{-1}(O_2)$ are fuzzy-open in X₁. This shows that, X₁ is fT₁ space[2.8].

Theorem 4.20: An injective function $f : X_1 \rightarrow X_2$ is rgfb-continuous, and X_2 is fT₂, then X₁ is rgfbT₂.

Proof: Assume $\alpha \& \beta$ be fuzzy singletons in X₁ with various supports. Since, f is injective, so $f(\alpha) \& f(\beta)$ belongs to X₂ and $f(\alpha) \neq (\beta)$. Since, X₂ is fT₂, therefore there occurs open fuzzy set O in X₂ so that, $f(\alpha) \le 0 \le$

Cl(0) ≤ 1 − f(β) ⇒ α ≤ f⁻¹(0) ≤ f⁻¹[Cl(0)] ≤ 1 − β . Since, f is rgfbcontinuous f⁻¹(0) is rgfbCS(X₁). Hence, α ≤ f⁻¹(0) ≤ f⁻¹[Cl(0)] ≤ f⁻¹[rgfbCl(0)] ≤ rgfbCl[f⁻¹[(0)] ≤ 1 − β . That is, α ≤ f⁻¹(0) ≤ rgfbCl[f⁻¹[(0)] ≤ 1 − β . This shows that, X₁ is rgfbT₂[4.7].

Theorem 4.21: An injective function $f: X_1 \rightarrow X_2$ is rgfb-irresolute, and X_2 is rgfbT₂. Then, X_1 is rgfbT₂. **Proof:** Obvious.

Theorem 4.22: An injective function $f: X_1 \rightarrow X_2$ is strongly rgfb-continuous, and X_2 is rgfbT₂. Then, X_1 is fT₂. **Proof:** Obvious.

Theorem 4.23: An injective function $f: X_1 \to X_2$ is rgfb-continuous, and X_2 is $fT_2\frac{1}{2}$. Then, X_1 is $rgfbT_2\frac{1}{2}$.

Proof: Assume $\alpha \& \beta$ be fuzzy singletons in X₁ with various supports. Since, f is injective, then $f(\alpha)$ and $f(\beta)$ belongs to X₂ and $f(\alpha) \neq f(\beta)$. Since, X₂ is $fT_{2\frac{1}{2}}$, then there occurs open fuzzy sets O₁ and O₂ in X₂ such that, $f(\alpha) \leq O_1 \leq 1 - f(\beta)$, $f(\beta) \leq O_2 \leq 1 - f(\alpha)$ and $ClO_1 \leq 1 - ClO_2 \Rightarrow \alpha \leq f^{-1}(O_1) \leq 1 - \beta, \beta \leq f^{-1}(O_2) \leq 1 - \alpha$ and $Clf^{-1}(O_1) \leq 1 - Clf^{-1}(O_2)$. Since, f is rgfb-continuous $f^{-1}(O_1)$ and $f^{-1}(O_2)$ are rgfbOS(X₁). $Cl(f^{-1}(O_1)) \leq rgfbCl(f^{-1}(O_1))$ and $1 - Cl(f^{-1}(O_2)) \leq 1 - rgfbCl(f^{-1}(O_2))$. Hence, $rgfbCl(f^{-1}(O_1)) \leq 1 - rgfbCl(f^{-1}(O_2))$. This shows that, X₁ is $rgfbT_{2\frac{1}{2}}[4.11]$.

Acknowledgements

The authors are grateful to principal of SDMCET, Dharwad and management SDM society for their support.

Regular generalized fuzzy b-separation axioms in fuzzy topology

References

[1] Azad,K. (1981). Fuzzy semi-continuity, Fuzzy Almost continuity and Fuzzy weakly continuity. Journal of Mathematics Analysis and Application,82, pp.14-32.

[2] Balasubramaniam,G. and Sundaram. (1997). Some generalization of fuzzy continuous functions. Fuzzy Sets and Systems , 86(1), pp. 93-100.

[3] Benchalli, S. and Karnel, J. (2010).On fuzzy b-open sets in fuzzy topological spaces.

Journal of Computer and Mathematical Sciences, 1(2), pp.103-273.

[4] Benchalli, S. and Karnel, J. (2010). Fuzzy b-Neighborhoods' and Fuzzy b-Functions in fuzzy topological spaces. Journal of Computer and Mathematical Sciences,1(6), pp.696-701.

[5] Benchalli, S. and Karnel, J. (2011). On fbg-closed sets and fb-seperation Axioms in fuzzy topological spaces. International Mathematical Forum, 6(51),pp.2547-2559.

[6] Benchalli, S. and Karnel, J. (2011). On fgb-continuous maps in fuzzy topological spaces. International Journal of Computer Applications, 19(1), pp. 24-29.

[7] Benchalli, S. and Karnel, J. (2011). On weaker and stronger forms of fuzzy b-irresolute maps in fuzzy topological spaces. International Journal of Mathematical Analysis, 5(39),pp.1933-1941.

[8] Benchalli, S. and Karnel, J. (2012). On some new-irresolute and closed maps in fuzzy topological spaces. International Journal of Mathematical Analysis,6(29),pp.1443-1452.

[9] Chang, C. (1968). Fuzzy topological spaces. Journal of Mathematical Analysis and Application, 24, pp. 182-190.

[10] Ghanim, M., Kerre, E. and Mashhour, A. (1984). Separation axioms, subspaces and sums in fuzzy topology. Journal of Mathematical Analysis and Application, 102, pp. 189-202.

[11] Karnel, J. and Joshi, V. (2019). Regular generalized fuzzy b-closed sets in fuzzy topological spaces. Journal of Emerging Technologies and Innovative Research, 6(6), pp. 85-86.

[12] Karnel, J. and Joshi, V. (2019). New forms of irresolute maps in fuzzy topology. International Journal of Advance and Innovative Research, 6(2), pp. 161-164.

[13] Karnel, J. and Joshi, V. (2021). Regular generalized fuzzy b-continuous function in fuzzy topology. (Communicated).

[14] Jin Han Park and JK Park.(1998). On regular generalized closed fuzzy sets and generalizations of fuzzy continuous functions in fuzzy topological spaces, Indian Journal of Pure and Applied Mathematics, 34(7),pp.1013-1024.
[15] Thiruchelvi, M. and Gnanmbal Ilango.(2016). On fuzzy generalized semi preregular continuous functions in fuzzy topological spaces. International Journal of Pure and Applied Mathematics, 106(6),pp.75-83.

[16] Zadeh, L. (1965). Fuzzy sets, Information and Control,8, pp.338-353.