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Abstract

Let G be a graph and F ⊆ V (G). Then F is called an induced forest of G if 〈G〉
contains no cycle. The forest number, f(G), of G is defined by

f(G) := max{|F | : F is an induced forest of G}.

It was proved by the second author in [6] that if G is an r-regular graph of order n,
then f(G) ≤ b nr−2

2(r−1)c. It was also proved that the bound is sharp by constructing an
r-regular graph H of order n with f(H) = b nr−2

2(r−1)c.
In this paper we consider the problem of determining which r-regular graphs G of

order n have the forest number b nr−2
2(r−1)c. The problem was asked by Bau and Beineke

[1] for r = 3 and, in this particular case, it was answered by the second author in
[7]. We are able to answer the problem for all r ≥ 4. More precisely, we are able to
obtain an algorithm of finding all r-regular graphs G of order n with f(G) = b nr−2

2(r−1)c.
Furthermore, we prove that if R(rn; f = b nr−2

2(r−1)c) is the set of all r-regular graphs G
of order n with f(G) = b nr−2

2(r−1)c and G1, G2 ∈ R(rn; f = b nr−2
2(r−1)c), then there exists

a sequence of switchings σ1, σ2, . . . , σt such that for each i = 1, 2, . . . , t, Gσ1σ2...σi
1 ∈

R(rn; f = b nr−2
2(r−1)c) and Gσ1σ2...σt

1 = G2.
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