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Regular Inversion of the Divergence Operator with
Dirichlet Boundary Conditions on a Polygon*

DOUGLAS N. ARNOLD - L. RIDGWAY SCOTT - MICHAEL VOGELIUS

Echanges Annexes

1. - Introduction

The constraint of incompressibility arises in many problems of physical
interest. In its simplest form this constraint is modelled by the partial differential
equation

where U could be, for example, the velocity field in the Navier-Stokes equations
or the displacement field in the equations of incompressible elasticity and ii is

the spatial domain. Often in the analysis of such problems the inhomogeneous
equation

is introduced and the question of the existence of regular solutions to this

equation arises. If no boundary conditions are imposed, then it is easy to see

that solutions to (1.1) may be found which are as regular as the regularity of f
permits. That is, if f belongs to the Sobolev space for some s &#x3E; 0 and

1 ~ p  oo then there exists a solution U in WP8 + 1 (11). To show this it suffices

to define U .--- grad u where u E W§+2 (fl) is a solution of Poisson’s equation
Au = f. Note that there exist such regular solutions of Poisson’s equation even
on a domain whose boundary is assumed no more regular that Lipschitz, since
we can always extend f to a smoothly bounded domain and solve a regular
boundary value problem for Poisson’s equation (such as the Dirichlet problem)
on the larger domain.

* This research was partially supported by NSF grant DMS-86-01489 (DNA), NSF grant
DMS-86-13352 (LRS), ONR contract N00014-85-K-0169 (MV), and the Sloan Foundation

(MV). Each of the authors was in residence and further supported by the Institute for

Mathematics and its Applications for part of the time this research was being performed.
Pervenuto alla Redazione 1’8 Maggio 1987.
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The existence of regular solutions to ( 1.1 ) with specified boundary values

is more subtle. An obvious necessary condition for the existence of such a
solution is that

If fl is a smoothly bounded planar domain, Wpl (0), g E 

for s &#x3E; 0 with s - 1/p nonintegral, and (1.3) holds, then a simple construction
of a solution U of (1.1), (1.2) in is possible. For example, consider
the case g = 0 and suppose fl is simply connected. First let u E be
a solution to Poisson’s equation as above. Then the normal derivative aulaw
and the tangential derivative are in W;+1-1/p(aO) with J = 0 .

an

We can thus find w E such that

or, equivalently,

(By curl w we mean the vectorfield (awlay, Setting U == grad u +
curl w gives the desired solution.

If aii is not sufficiently smooth, then this argument fails and the existence
of is far from obvious. In this paper we consider the case of polygonal 11
with sides denoted by Fn. Returning to the general case, we show that if f

belongs to glrn belongs to each n, and f and

g satisfy (1.3) and some further necessary compatibility conditions, then (1.1)
admits a WP6+1 solution U satisfying the boundary condition (1.2). Somewhat
surprisingly, the compatibility conditions required for s = 2, one condition per
vertex in addition to (1.3), are sufficient for all higher s. These results have

already been applied in [2], [6], and [8].

2. - Preliminaries

We will introduce a variety of function spaces allied to the Sobolev spaces.
For the convenience of the reader we list here our notation for each one and

the equation number nearest the definition.
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Throughout the letter C is used to denote a generic constant, not necessarily
the same from one occurrence to the next. For 0 ç domain with Lipschitz
boundary (as defined, for example, in [3, Definition 1.2.1.1]), and f E 
we define the usual Sobolev norms for 1  p  oo 0:

(Here Is] denotes the greatest integer not exceeding s.) The spaces W8 (Q) and
o 

_ 

P

W;(11) are defined to be the closures of and respectively,
relative to these norms.

There exists a bounded linear extension operator from into 

(even if the boundary is only Lipschitz). Cf. [3, Theorem 1.4.3.1 ]. For s &#x3E; 1/p
the functions in have well-defined traces on afl. If s &#x3E; 1, then

~~ E = 0 on We denote by the

subspace of W; (0) consisting of elements whose integral is zero. For details
and more information regarding Sobolev spaces, we refer the reader to [ 1 ], [3],
[7], and, for the case p = 2, to [5].

We shall also require the Sobolev norms for functions defined on Lipschitz
curves in &#x26;~, in particular for an open subset, r, of the boundary of a

polygon. For a Lipschitz curve, the norms 11 - may be defined for

0  s  1, 1  p  oo, via charts. Moreover, for 1/p  s  1, the trace

operator maps boundedly onto Wp’-’Ip(,90). See [3, Theorem 1.~ .1.2] .
(The norms 11 &#x3E; 1, are not well-defined unless r is more regular).

We recall some properties of these spaces when the domain of definition
is a broken line segment. (Cf. [4] or [3, Lemma 1.5.1.8]). Suppose r1 and F2
are line segments in :l2 intersecting at a common endpoint, z, and let f be a
function on r == r 1 u F. Then for 1  p  oo and 0  s  1 / p, f E W§ (F) if

and only if

Moreover, the norm

is equivalent to the norm. For 1 i p  s  ~, f ~ wp., (r) if and only if
(2.2) holds and f is continuous at z. (Note that (2.2) implies the continuity of
f everywhere else in view of the Sobolev imbedding theorem). In this case
too we have equivalence of norms. The cases = 1/p is more involved. Let

°1 denote the unit direction along ri pointing toward z, and let Q2 denote the
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unit direction along r2 pointing away from z. Then f E if and onlyif (2.2) holds and 
p (F) if and only

where E is a positive number not exceeding the lengths of r1 or r 2. In this
case

defines a norm equivalent to ) ) f ) ) i /p , p , r .
If Fi and P2 are collinear, so F is a line segment, one can easily extend

these results to determine when f belongs to W,’(17) for s &#x3E; 1. Namely, if
s - 1/p is not an integer, then if and only if (2.2) holds and the
tangential derivatives are continuous at z for 0  l~  s - In this case.
(2.3) is an equivalent norm on w., (r). If s - 1 /p is an integer, it is required in
addition that IpL (f(s-1/p))  oc and + I$ ( f 1 8 - 1 /P l ) ] I /P
is an equivalent norm on Wsp(L) 

8 s.p.L.2is an equivalent norm on (r) - 
WP2/pWe close this section with two lemmas concerning the space 

on a sector. Let Sa =  r  1,0  8  a}, rx --
 r  1~, and r2 = {(~0)~0  r  1}. Then :---

r- U r 2 u ( 0, 0 ) is the linear part of the boundary of S, . By ,u we denote the
trace of the function u on r 0.

LEMMA 2.1. Let a E (0, 2 7r). Then the trace operator "’/ maps 
continuously into 

PROOF. For p &#x3E; 2 this lemma follows immediately from the trace theorem
quoted earlier ([3, Theorem 1.5.1.2]) since then s = 2/p  1. For 1  p  2 we

first show that 1 maps continuously into W~; -1 /p ( r a 1, 2/p  t  

Indeed, if u c and since t &#x3E; 2/p, i u is
also continuous at the origin. As t-llp  1, this implies that 
Furthermore, we know that 1 maps continuously into The
conclusion of the lemma now follows by interpolation. 1 D

1 The fractional order spaces may also be defined by real interpolation between
two consecutive integer orders. This is the approach used in [1, Ch. 7], where the specific
interpolation process is defined. The equivalence with the definition given here is shown in [1,
Theorem 7.48]. Similarly the spaces wp ( I ) for an interval 7 may be defined by real interpolation
between integer orders. The same holds for the spaces w p I (r 1) for because these are

defined by pulling back the spaces W~ (1) via Lipschitz charts. Since i t 2 it is possible to
interpolate between and wp ( sa ) and since possible to interpolate
between and Choosing the interpolation index appropriately we get
that 1 maps continuously into 
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REMARKS. ( 1 ) If a varies in a compact subinterval of (0,27r), then the
distance between points x1 e 1~ and X2 E Fg is equivalent to the sum of

the distances of x 1 and x2 to the origin, uniformly in Q. Consequently, the

equivalence of the norm in (2.4) and the norm is uniform in a. It is

then easy to see that there is a single constant which bounds the norm of the
trace operator between the spaces and 

(2) Using a partition of unity, we can easily extend Lemma 2.1 to show that the
trace operator maps continuously into ~p ~p ( r~ S~ ) for any polygonal
domain n.

The next lemma relates the decay of the trace of a function near

the vertex to the decay of the function itself.

LEMMA 2.2. Let (0,2?r). Then there exists a constant C such that

and

for all 

PROOF. Suppose 0 lies between o:/2 and 01.. Then 0 is bounded away from

0 and 21r, and so we may find a constant C depending on a but not on 6 for
which

Moreover by Lemma 2.1, there is a single constant C such that

holds for all such 0. Thus

Integration over 0 in (a/2, a) gives (2.5).

, 

2 Either of the two inegrals entering in (2.5) and (2.6) may be infinite. In that case the

inequalities imply that they both are infinite.
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To prove (2.6) it suffices to show that

where D is the unit disc, since we can always extend a function in J
to one in Wp ~p ( IJ ) . Considering the trace of u on r n and applying Lemma 2.1.
we see that

Let 6 e Applying the lemma again, we get

where we may choose C independent of 0. Consequently,

Similarly for 0 C ~0, ~c/~~ U 137r/2, 21r], we may consider the trace of u on the
boundary of the sector formed by the negative x-axis and the ray emanating
from the origin with angle 0 and use (2.8) to conclude (2.9). Integration of
(2.9) with respect to 8 E (0,2?r) gives (2.7). D

3. - The main theorem. Homogeneous Boundary Conditions

Let fl denote a (bounded and simply-connected) polygonal domain in the
plane. Denote by z;, j = 1, 2, ... , N, the vertices of 11 listed in order as 9fl is
traversed counterclockwise, and by Fj the open line segment connecting to

zj (we interpret the subscripts on z and F modulo N). We explicitly assume that
the magnitude of the angle formed by rj and at zj lies strictly between 0
and 27r, i.e., we exclude domains with slits. We also denote by v the outward-
pointing unit vector normal to Q which is defined on and by

vj its constant value on Similarly a and refer to the counterclockwise
tangent vector.

Suppose that U E satisfies ( 1.1 ) and vanishes on an. Then, of

course, f f = 0. In addition, 0 on rj and = 0 on 
n
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For s &#x3E; 2/p the Sobolev imbedding theorem implies that both the directional
derivatives are continuous on fi, so they both vanish at
z;. Since the vectors and aj+i are linearly independent, it follows that f =
div U vanishes at zj. Define

This space is normed by the restriction of the Wp norm except if s = 2 / p in
which case we take the norm to be

We have just seen that for s ~ 0, s ~ 2/p,

This is also true if s -- 2/p, as we now demonstrate. For any § E 0
0

W p ~ ~ ~ the tangential derivative vanishes on every edge. In light of (2.6)
it follows that

Since rr ;ind are linearly independent,

The inclusion (3.2) follows by application of this result componentwise to U.
The next theorem is our main result for homogeneous boundary conditions.

It shows that in fact equality holds in (3.2) and that the divergence operator
admits a bounded right inverse which does not depend on s or p.

THEOREM 3.1. Let 1  p  0. If p ~ 2 suppose that s - 
Then there exists a bounded linear map
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such that f for all f E The operator L may be chosen
independently of s and p.3 

p

REMARK. We conjecture that the hypothesis that s -1/ p fJ. Z is unnecessary
for all p, not just p = 2. However this hypothesis is necessary for certain trace
results we use in our proof. See the remark to Theorem ~.1.

Several ingredients of the proof of this theorem will be developed in the
next three sections. These ingredients assembled, the proof of Theorem 3.1
becomes very short. It is given in the last section of this paper. The analogue
of Theorem 3.1 for the case of inhomogeneous boundary conditions is also true.
This result is stated as Theorem 7.1.

4. - A result concerning traces on a line

In the case of a smooth boundary, the construction of a solution of (1.1)
vanishing on an as sketched in Section 1 was based on the existence of a

function w whose curl coincides with the negative gradient of another function
u on the boundary. In extending this construction to the case of a polygon,
we need to know what vectorfields may arise on a polygonal boundary as the
traces of curls or gradients. The main results of section 6, Theorem 6.2 and
Corollary 6.3, provide the answer. In deriving them, we need a collection of
other trace theorems, starting with those of this section regarding traces of a
function of two variables on a line. Let S(R) denote the Schwartz space, i.e.,
the space of C°° functions of one variable, all of whose derivatives decrease
faster than any polynomial at infinity, and let S’ R ) denote its dual.

Let denote the subset of consisting of vectors ha-
- - - _.,. ’B.

ving at most a finite number of non-zero entries. Given subspaces Vj 
m

0  j  m, we view the Cartesian product fl Vj naturally as a subspace of~ 

j=O

by setting all entries with index greater than rn to zero.

3 More precisely, there is a linear operator

such that for each s and p..c maps W;(O) boundedly into 
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THEOREM 4.1. Let sand p denote real numbers such that 1  p  oo,
s ~ 1/p. If p :,R~- 2 assume that s - lip f/. Z. Then the trace map

maps W;(R2) boundedly onto provided j  s - lip. Moreover,
there is a tnap -- 

such that, if with m  s - 1/p, then

and

REMARKS. (1) Henceforth we avoid the case s - 1/p integral if p # 2,
since in this case, the range of the trace operator is a Besov space which does
not coincide with any Sobolev space. Cf. [I, Chapter 7].
(2) It follows from the theorem that, if v = ~(/o, ,/~~0, ) with

then the trace

as a function in provided m  k  s --- 1 / p. By the Sobolev
imbedding theorem,

(in the pointwise sense) provided m  k and j + k  s - 2/p.
PROOF. The asserted properties of the trace operators 1~ are standard, cf.

[3] and [7]. Since we require a fixed extension operator independent of
s, we include a detailed derivation of this part of the result. Our construction
extends that given in [7]. Let S be a function in S (R ) which satisfies

Such a function exists, as is easily seen using the Fourier transform, F. These
conditions translate to choosing (Cl) = 1 and (0) = 0 for i = 1, 2, ~ ~ ~.
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Since 7 is an isomorphism on 5 (~~ ~ , we can choose S E S (R) with these
properties as follows: let X E C~(3.) be any function that is identically one in
a neighbourhood of the origin, and set ~’ = 7-’X. Now we define

where is any function that is identically one in a

neighborhood of the origin. Note that only a finite number of terms in (4.2)
are non-zero because we are assuming that ) It is

3=0

easy to verify that v has the asserted traces. The boundedness of Ex from
m

n Wps-j-1/p(R) to Wps(R2) follows from the following result. 0
j=0 

LEMMA 4.2. Let j be a nonnegative integer, S E S (R.), x E Co ~~ ) , and
f c COOO Define

Then, for any real s, p with 1  p  oo and s &#x3E; j -~-- 1/p, with s - 1/p if
2, there holds

The constant C depends on X, S, s, and p but not on f.

PROOF. Let I-

For any positive integers l~ &#x3E; j, there are coefficients co, cj and a function

Skj E S ~~ ) such that
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Similarly, for positive integers k  j, there exists a function E S ~~ ) such
that

That is, for any integers k and j,

Differentiating with respect to x, we get

with some function E S (R). Combining these formulas, we have for any
multi-index a that

where Sa E 5 ~~ ) . Leibniz’ rule then gives

for some Xa{j 
Now for S’ E S (~ ) , f E Co- and any real y, Young’s inequality gives

In view of (4.3) and (4.4) the case of integer s reduces to proving that if

S E S ~ ~~ ~ , then
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To show this, set

From H61der’s inequality, we find

Fubini’s Theorem thus yields

which is the desired estimate (4.5). This establishes the theorem for integer s.
Interpolation between consecutive integers then gives the theorem for all real
s &#x3E; j + 1.

To complete the proof, we now consider the case j + 1/p  s  i + 1. In
view of (4.3) and (4.4), it suffices to show that for I a = j we have

Because of (4.3) this reduces to showing that for S E S(R), f E C0oo (P,), and
g defined by

we have
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provided that 1/p  s  1. To show this, we estimate:

Thus

A simple change of variables yields

Thus to verify (4.6) it is sufficient to show that

A simple computation gives

because

Therefore
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This establishes the lemma, and thus the theorem, under the assumption that
Ij E The theorem now follows for all fj by a density argument. 0

REMARK. For

5. - Traces on intersecting half-lines

Theorem 4.1 concerns the traces of a W~ function on a line. Using a
simple argument involving a partition of unity and local coordinates it is easy
to extend it to cover traces on smooth curves. Since we are interested its

polygons, however, we will need a result analogous to Theorem 4.1 for traces
on two intersecting line segments. To state this result, we require some notation.
By a + we denote the set of positive real numbers. Let

For m a nonnegative integer and s &#x3E; m + 1/p define ~ ~ to be the space of
pairs of (m + 1)-tuples

satisfying

Note that (5.3) only applies if s - 2/p is integral. The space X~ is a Banach
space with the norm II ( ~ f ~ ~ , ~ given by
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if s - 2/p is not an integer, and

if r = 8 - 21 p is an integer.
THEOREM 5.1. Let m be a nonnegative integer and s and p real numbers

with 1  p  00 and s &#x3E; rn -t- 1/p. If p :~4 2 suppose that s - Then the
trace map

maps Wp (R2) boundedly onto and admits a bounded right inverse

The operator ’L is independent of sand p.
PROOF. Our proof is similar to that of [3, Theorem 1.5.2.4]. First of all, we

show that the operator defined in (5.4) maps into X~. Let u e Wp {~2 ~ ,
and set

By the Sobolev imbedding theorem ak+julaxkayi is continuous on &#x26;.2 for

J~ + j  8 - 2/p, so (5.2) holds. If s = m + 2/p and k -f- j = m, then we apply
Lemma 2.1 to to infer (5.3). Now we define, in several steps, the
operator Let ex denote the extension operator in Theorem 4.1. Let R’:
denote the vector of m + 1 restrictions

Let ey and denote the corresponding operators with the x and y variables
reversed, i.e., , n....."

" 
-

First extend each fj and gj as functions in with an extension that
is independent of s and p. (Cf. [9, Chapter 17] or [10, Chapter 6]). Explicitly
we take the extension of fj given by
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and similarly for gj. Here A is chosen to be bounded, smooth for t &#x3E; 0, rapidly
decreasing at infinity, and satisfying

For example, we can take A (t) = R (tl/2) where R E is an odd function
that satisfies

In particular, we can take 1R(ç) = i(sinhç)X(ç) where X is any even function
in that is identically one in a neighbourhood of the origin and 7 is the
Fourier transform.

Let f (resp. g) denote the vector of extensions of the boundary data (fj)
on the x-axis (resp. (g;) on the y-axis). Define

Note that = f because RmxEx is the identity operator. Also

Define

If m  k and k -f- j  s - 2/p, then (0) = 0 since (4.1 ) implies

m and k + j  x - 2 /p then
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which is zero in view of (5.2). Also, if k = 8 - j - 2/p, then

where we have used Lemma 2.1 in the third inequality. Thus, the function hj
which agrees with hj on R+ and vanishes for y  0 belongs to 
and satisfies 

The function w = ~~ ( ~o , ... , satisfies

for j = 0, ... , m. Finally we set f~ ( ( f; ) , (g~)~ _ ~ with (see (5.5))

Note that the last term insures that

j ~ p ~ ... , rt~. C~

for
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6. - Extension to general domains. Traces of curls and gradients

We now extend Theorem 5.1 from the case of a single comer to a

polygonal domain. For simplicity of notation, and since this is all we need to

prove our main theorem, we consider only the cases m = 0 and m = 1. We
use the notation of section 3 for a polygonal domain. If f and g are functions
defined on r n and respectively, we set

where E = -

For s &#x3E; 1/p we define to be the space of N-tuples

satisfying

for n - 1,..., N. The space is a Banach space with the norm

given by where

For s &#x3E; 1 + 1/p we define to be the space of N-tuples of pairs

satisfying
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for n = 1, ... , ~V. The space is a Banach space with the norm

given by ( Bi + B2)’/~’ where

and

THEOREM 6.1. Let s and p denote real numbers such that 1  p  oc,

s &#x3E; 1 / p. If p 0 2 assume that s - lip ft Z. Then the trace map

maps boundedly onto and admits a bounded right inverse

If in addition s &#x3E; 1-I- 1/p, then the trace map

maps boundedly onto X;p(an), and admits a bounded right inverse

Both the operators and ~~ are independent of sand p.
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PROOF. We can cover an with a finite collection of open sets such that
each set in this collection may be mapped by an invertible affine map onto
the square (-1, 1) x (-1, 1) in such a way that the intersection of the set with
fl is mapped onto one of the following sets: (-1, 1~ x (0, 1), (0, 1) x (0, 1)~
or (-1, 1~ x (-l,l)B[0,lj x (0, 1~. In light of Theorem 5.1 and the extension
theorem for Sobolev spaces, a simple partition of unity argument gives the
present result. 0

We can now characterize the traces of curls of Wp functions. Let

(s &#x3E; 1+1/p) denote the subspace of N-tuples of vector-valued functions

satisfying

This space is normed in the usual way.

THEOREM 6.2. Let s and p denote real numbers such that 1  p  oo ~

s &#x3E; 1 -f- lip. If 2 assume that s - 1/p V Z. Then the operator

maps boundedl y onto Z;(an), and admits a bounded right inverse ’curl
which is independent of 8 and p.

PROOF. That the operator in (6.12) maps u into follows from the

continuity and trace properties of curl ~c and Given (Wn) we
define ’curl ( (~n ) ) as follows. For z E an let

(the integral taken counterclockwise along r) and set
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It is easy to verify that implies E We set

We conclude this section by showing that the trace of the gradient of
a function is also in as long as the function satisfies some

A

necessary compatibility conditions. Namely we define the subspace of

W; (0) for s &#x3E; 2 as follows. For s  2 + 2/p,

for s &#x3E; 2 ~- 2 /,~,

and for s == 2 + 2/p,

~
The Banach norm is the restriction of the Wsp norm except if

s = 2 + 2/p, in which case

COROLLARY 6.3. If s &#x3E; 2, then the operator

maps boundedly into 

PROOF. It suffices to verify conditions (6.7)-(6.11) for 1j; == grad u,

~~(H). The first condition holds since J’ ~ 0 ~~(0)~ =
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Condition (6.9) follows from the continuity of grad u on Q if s &#x3E; 1 + 2 / p,
and similarly (6.8) follows from the inclusion of (grad u) Ir in if
s = 1 + 2 / p . To verify (6.10) and (6.11 ), we note that (grad u) . v = au lav, 5o

If s &#x3E; 2 + 2/p, then = 0 by definition, so (6.11) holds. If s = 2 + 2/p~
then

For the last inequality we have used Lemma 2.1. The estimate (6.10) now
follows immediately in light of Lemma 2.2. 0

7. - Proof of the main result. Inhomogeneous boundary conditions

We now prove Theorem 3.1. Given f E W8 (Q) for some 1  p  ~

and s &#x3E; 0, with s - 1/p nonintegral in the case p 1= 2, extend f boundedly
to an open disc containing a and define u as the solution to Au = f which

Â
vanishes on the boundary of the disk. Then u E W’+ p 2 (0) and ) p ’ ’ " "w)

In light of Corollary 6.3 and Theorem 6.2, we may define
and thus we have curl w = -grad u on an

 . Setting = grad u + curl w gives the
W,, + 2 (0)

desired operator. This completes the proof.
Let us consider the case of inhomogeneous boundary data. For s &#x3E; 1~p

we set
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so g E means that with gn

satisfying the conditions given by (6.2). For s &#x3E; 0 we define Vp8 (0) to be the

space consisting of those pairs

for which

It is not difficult to see that a necessary condition for the existence of

U E ~~rVp + 1 ( fl ) ]  satisfying

is that (I, g) E The following theorem shows that this condition is also
sufficient and that the problem (7.5) admits a bounded right inverse which does
not depend on s or p.

THEOREM 7.1. Let 1  p  oo, s &#x3E; o. If p ~ 2 suppose that s - 
Then there exists a bounded linear map

such that for any the function U : = K ( f , g~ solves (7.5). The

operator K may be chosen independent of s and p. 
’

For (f , g) E ~ p 9 t ~ , ) the function V E 

V = g on an. Indeed, this follows from Theorem 6.1 since g e 
The conditions (7.2)-(7.4) have been chosen precisely to guarantee that

Therefore the operator

has the desired properties. 0
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