
Regular Languages of Nested Words: Fixed Points,
Automata, and Synchronization

Marcelo Arenas1 Pablo Barceĺo2 Leonid Libkin 3

1 Pontificia Universidad Católica de Chile
2 Universidad de Chile

3 University of Edinburgh

Abstract. Nested words are a restriction of the class of visibly pushdown lan-
guages that provide a natural model of runs of programs with recursive procedure
calls. The usual connection between monadic second-order logic (MSO) and au-
tomata extends from words to nested words and gives us a natural notion of reg-
ular languages of nested words.
In this paper we look at some well-known aspects of regular languages – their
characterization via fixed points, deterministic and alternating automata for them,
and synchronization for defining regular relations – and extend them to nested
words. We show that mu-calculus is as expressive as MSO over finite and infinite
nested words, and the equivalence holds, more generally, for mu-calculus with
past modalities evaluated in arbitrary positions in a word,not only in the first
position. We introduce the notion of alternating automata for nested words, show
that they are as expressive as the usual automata, and also prove that Muller au-
tomata can be determinized (unlike in the case of visibly pushdown languages).
Finally we look at synchronization over nested words. We show that the usual
letter-to-letter synchronization is completely incompatible with nested words (in
the sense that even the weakest form of it leads to an undecidable formalism) and
present an alternative form of synchronization that gives us decidable notions of
regular relations.

1 Introduction

The class ofvisibly pushdown languages(VPL) has been introduced by Alur and Mad-
husudan [5] as a restriction of the class of context-free languages that subsumes all
regular properties and some non-regular properties relevant in program analysis (e.g.
stack-inspection properties and pre-post conditions). VPLs in many ways resemble reg-
ular languages: they have the same closure properties, and most natural problems re-
lated to them are decidable. The intuitive idea of VPLs is that the input alphabetΣ is
partitioned into three parts,Σc, Σr, Σi, of symbols viewed as procedure calls, returns,
and internal operations. A machine model for VPLs is a special pushdown automaton
that pushes a symbol onto the stack in a call, pops one symbol in a return, and does not
touch the stack when reading an internal symbol.

Nested words[6] replaced the implicit nesting structure of calls and returns by an
explicit relation that matches calls and returns. A nested word is thus a word extended
with a hierarchical structure on top of its linear structure. An example of such a nested
structure of matching callsci and returnsri is given below.

r1c1 c2 c3 r3 c4 r4 r2 c5 c6 r6 r5 c7 r7

Such structures naturally appear, for instance, in XML documents that are string
representations of trees using opening and closing tags [23, 8], or in software verifi-
cation of programs with stack-based control flow [4, 2]. Anested word automaton[6]
runs from left to right, similarly to a finite state automaton, but each time it encounters
a “return” position, the next state depends not only on the current state but also on the
state of the matching “call”.

A nice property of nested words and their automata is that they share logical char-
acterizations with the usual (unnested) words: the automaton model has the same ex-
pressiveness as monadic second-order logic (MSO) [5, 6]. This gives us a natural and
robust notion ofregular languagesof nested words, with the expected closure proper-
ties, decision procedures, and logical characterizations.

For finite or infinite unnested words, an alternative way of describing regularity
logically is via the modalµ-calculus (cf. [7]). That is,µ-calculus formulae evaluated in
the first position of a word define precisely the regular languages. Moreover,µ-calculus
formulae with past modalities evaluated in an arbitrary position of a word have precisely
the power of MSO formulae with one free first-order variable.As our first result, we
extend these equivalences to the case of finite and infinite nested words.

We then look at automata characterizations of VPLs and nested words. Nondeter-
ministic and deterministic automata have previously been considered [5, 6, 18], and [5]
showed that automata can be determinized in the finite case, but in the infinite case this
is impossible even for automata with a Muller acceptance condition (unlike in the case
of the usualω-words), if one considers VPLs. Then [18] introduced a different automa-
ton model and showed that it admits a determinization procedure over nested words. We
expand this in two ways. First we introduce alternation in the case of nested word au-
tomata, and prove that alternating automata can still be translated into nondeterministic
ones. Second, we refine the determinization procedure for automata from [18] to show
that over infinite nested words, every regular language is definable by a deterministic
Muller automaton. This also gives us some corollaries aboutthe structure of regular
languages of nestedω-words.

We finally turn our attention to the notion of regularrelations. Over words, one
moves from sets to relations by using letter-to-letter synchronization. That is, an au-
tomaton runs over a tuple of words viewing the tuple ofith letters of the words as a
single letter of an expanded alphabet [15]. The same approach works for trees, ranked
and unranked [11]. The notion of regular relations also leads to a notion of automatic
structures [12, 13, 10], i.e. decidable first-order structures over words in which all de-
finable relations are regular.

Here we show that, in contrast to the case of words and trees, the notion of letter-
to-letter synchronization is incompatible with nested words: the simplest extension of
nested word automata with such synchronization is undecidable. We present an alterna-
tive call-return notion of synchronization, and show that it gives us a natural concept of
regular relations over nested words.

Related workVPLs were introduced in [5] and nested words in [6]. They can be viewed
as special classes of trees (and we shall use this often in thepaper); such tree representa-
tions were introduced in [5, 6] as well. Applications in program analysis are discussed,
e.g., in [2, 4], and applications in processing tree-structured data in [23, 8].

There are several related results onµ-calculus and MSO, e.g. their equality over
infinite binary trees [20] or finite unranked trees [9] or expressive-completeness ofµ-
calculus [16]. We explain in Section 3 why we cannot derive our result from those.
Another fixed-point logicVPµ is defined in [2] to specify properties of executions of
programs. It differs from the standard versions ofµ-calculus we look at as its fixed
points are evaluated not over sets of nodes but over sets of subtrees of the program;
further, its expressiveness is known to be different from MSO [3].

Automata for VPLs and nested words were defined in [5, 6], and [5] observed that
Muller automata are not determinizable. Then [18] noticed that this is due to VPLs
having potentially arbitrarily many unmatched calls/returns, and introduced a different
automaton model (stair automata) that can be determinized.We use them to show how
to determinize Muller automata over nestedω-words. None of these papers addresses
alternating automata over nested words.

Letter-to-letter synchronization for defining regular relations is an old notion [15],
and the concept of universal automatic structures [13, 12] is based on it. Although such
automatic structures exist for both words and trees [10, 11], we show here that letter-to-
letter synchronization is incompatible with nesting structure.

Organization Basic definitions are given in Section 2. We describe MSO unary queries
via µ-calculus in Section 3. In Section 4 we study automata for nested words, define
alternating automata, and describe determinization for Muller automata. In Section 5
we look at synchronization and regular relations for nestedwords.

2 Preliminaries

Words, ω-words, and automata Let Σ be a finite alphabet. A finite wordw =
a1 . . . an in Σ∗ is represented as a logical structure〈 {1, . . . , n} , (Pa)a∈Σ , < 〉, where
< is the usual linear order on{1, . . . , n}, andPa is the set ofi’s such thatai = a. We
shall usew to refer to both the word and its logical representation. Infinite, orω-words,
are sequencesa1a2 · · · of symbols inΣ indexed by positive natural numbers, and are
represented as structures〈N+, (Pa)a∈Σ , <〉. The length ofw is denoted by|w|.

A (nondeterministic)automatonA overΣ is a tuple(Σ,Q,Q0, δ, F), whereQ is
a finite set of states,Q0 ⊆ Q is a set of initial states,F ⊆ Q is a set of final states
andδ : Q × Σ → 2Q is a transition function. For automata overω-words we shall
use either a Büchi acceptance condition (given byF ⊆ Q) or a Muller acceptance
condition (given byF ⊆ 2Q). A run of A over a wordw is a mapρ : {1, . . .} → Q
such thatρ(1) ∈ Q0 andρ(i + 1) ∈ δ(ρ(i), ai), for all i. A finite run is accepting if
ρ(|w| + 1) ∈ F . We let Inf (ρ) be the set of states that occurs infinitely often in an
infinite runρ. Thenρ is accepting for a Büchi conditionF if Inf (ρ) ∩ F 6= ∅, and it is
accepting for a Muller conditionF if Inf (ρ) ∈ F . A word is accepted iff there exists
an accepting run. Sets of (ω-)words accepted by automata are calledregular.

A is deterministicif |Q0| = 1, and|δ(q, a)| = 1 for for everya ∈ Σ andq ∈ Q.
Nondeterministic automata overω-words with Büchi and Muller conditions are equiv-
alent, and automata with Muller acceptance condition can bedeterminized, cf. [25].

Nested words A finite nested wordoverΣ is a pairw̄ = (w, η), wherew ∈ Σ∗

andη is a binarymatching relationon {1, . . . , |w|} that satisfies: (1)η(i, j) implies
i < j; (2) η(i, j) andη(i, j′) imply j = j′ andη(i, j) andη(i′, j) imply i = i′; and
(3) if η(i, j), η(i′, j′), andi < i′ then eitherj < i′ or j′ < j. A nestedω-word is
a pairw̄ = (w, η), wherew is anω-word andη is a matching onN+. We also refer
to them as infinite nested words. We represent nested words aslogical structures over
the vocabulary{(Pa)a∈Σ , <, η}, i.e. words expanded with a matching relation. For a
nested word̄w and two positionsi < j, we letw̄[i, j] be the substructure of̄w induced
by positionsℓ such thati ≤ ℓ ≤ j. A positioni of a nested word̄w is: (1) acall position
if there isj such thatη(i, j) holds; (2) areturn position if there isj such thatη(j, i)
holds; and (3) aninternal position if it is neither a call nor a return. Wheneverη(i, j)
holds we say thati is the call ofj, andj is the return ofi.

Nested word automataA nested word automaton, or NWA [6], A overΣ is defined
as a usual automaton, except thatδ is a triple(δc, δι, δr) of transition functionsδc, δι :
Q × Σ → 2Q, andδr : Q × Q × Σ → 2Q. A run of A over w̄ = (a1 · · · , η) is a
mappingρ : {1, . . .} → Q such thatρ(1) ∈ Q0 and for everyi ∈ N

+ (or i ∈ [1, |w̄|]
for finite nested words),

– if i is a call position, thenρ(i+ 1) ∈ δc(ρ(i), ai);
– if i is an internal position, thenρ(i+ 1) ∈ δι(ρ(i), ai);
– if i is a return position whose call isj, thenρ(i+ 1) ∈ δr(ρ(i), ρ(j), ai).

Büchi and Muller acceptance conditions can then be defined in exactly the same way
as for the usual automata (and are easily shown to be equivalent over nested words,
for nondeterministic automata). We refer to such automata as ω-NWAs. An NWA is
deterministic if the values of all transition functions aresingletons.

A class of nested (ω-)words accepted by an (ω-)NWA is calledregular.

Monadic second-order logic andµ-calculusMonadic second-order logic (MSO) ex-
tends first-order logic with quantification over sets. Over nested words, its vocabulary
contains predicatesPa (a ∈ Σ),< andη. A class of nested (ω-)words is regular iff it is
definable by an MSO sentence [5, 6].

Theµ-calculusover nested words, denoted byLµ, is defined by the grammar:

ϕ,ϕ′ := a | X | ϕ ∨ ϕ′ | ϕ ∧ ϕ′ | ¬ϕ | 3ϕ | 3ηϕ | µX.ϕ(X)

with X occurring positively inϕ(X), anda ∈ Σ ∪ {call, int, ret}. Given a nested
(ω-)word w̄, a positioni in w̄, and a valuationv assigning each free variableX a set of
positions ofw̄, the semantics is as follows (omitting the rules for Booleanconnectives):

– (w̄, v, i) |= int iff i is an internal position;(w̄, v, i) |= call iff i is a call position;
and(w̄, v, i) |= ret iff i is a return position.

– (w̄, v, i) |= a, for a ∈ Σ, iff i is labeleda.
– (w̄, v, i) |= X iff i ∈ v(X).
– (w̄, v, i) |= 3ϕ iff i+ 1 belongs tow̄ and(w̄, v, i+ 1) |= ϕ.

– (w̄, v, i) |= 3ηϕ iff there is anℓ such thatη(i, ℓ) holds and(w̄, v, ℓ) |= ϕ.
– (w̄, v, i) |= µX.ϕ(X) iff i is in the least fixed point of the operator defined byϕ;

in other words, ifi ∈
⋂
{P | {i′ | (w̄, v[P/X], i′) |= ϕ} ⊆ P}, wherev[P/X]

extends the valuationv with v(X) = P .

Theµ-calculus over words does not mention the modality3ηϕ.
We shall also work with thefull µ-calculus [28] (denoted byLfull

µ), which is an
extension ofLµ with thepastmodalities3−ϕ and3

−
η ϕ:

– (w̄, v, i) |= 3
−ϕ iff i > 1 and(w̄, v, i− 1) |= ϕ.

– (w̄, v, i) |= 3
−
η ϕ iff there is anℓ such thatη(ℓ, i) holds and(w̄, v, ℓ) |= ϕ.

Greatest fixed-pointsνX.ϕ(X) are definable inLµ as¬µX.¬ϕ(¬X). Using greatest
fixed-points and2ϕ (defined as¬3¬ϕ), one can push all negations to atoms inLµ

formulae. For resulting formulae, an important parameter is the alternation-depth of
least and greatest fixed-points [7]. We refer toLk

µ as the fragment ofLµ that consists of
formulae of alternation depth at mostk (e.g., the alternation-free fragment isL0

µ).

Languages and unary queriesFormulae ofLµ (without free variables) are satisfied in
positions of a nested word, and thus they give rise to classesof unary queriesthat return,
for w̄, the set{i | (w̄, i) |= ϕ}. EveryLµ formulaϕ without free variables defines a
language{w̄ | (w̄, 1) |= ϕ}. Likewise, every MSO formulaϕ(x) with one free first-
order variable defines a unary query, and every MSO sentence defines a language. In
the absence of nesting, it is known [7, 20] that a language (ofwords orω-words) is
definable by aLµ formula iff it is definable by an MSO sentence (not using relation η).

3 Mu-calculus over nested words

Since NWA generalize finite state automata, the translationfrom MSO to NWAs is
nonelementary. But just as for finite words or trees, one can find equally expressive
logical formalisms with better model-checking complexity. We show that the equiva-
lenceMSO = Lµ extends from words and trees to nested words. It applies not only in
sentences evaluated in the first position of a nested word, but more generally to unary
queries that select a set of positions. This is relevant for finite nested words viewed as
streaming XML documents: while theoretical investigations have mostly looked at the
case of sentences [23, 8], in practical application one typically needs to evaluate unary
queries (e.g. XPath) over such streams [21]. To deal with unary queries, we look atLµ

with the past, i.e.Lfull
µ , and prove that it is equivalent to MSO unary queries. That is:

Theorem 1. For finite nested words and nestedω-words,MSO andLfull
µ define the

same classes of unary queries.

As a corollary to the proof, we get

Corollary 1. The languages of nested words definable inMSO andLµ are the same.

We can tighten this for finite nested words. Let(Lfull
µ)+ be the negation-free (and

thus alternation-free) fragment ofLfull
µ that has two additional constants “first” and

“last” with their intuitive meanings: “first” holds only at the first position of a nested
word, and “last” holds at the last position. Likewise we define (Lµ)+ fromLµ.

Corollary 2. For unary queries over finite nested words,MSO = Lfull
µ = (Lfull

µ)+.
Furthermore,MSO, Lµ, and(Lµ)+ define the same languages of finite nested words.

From [14], we conclude that for every(Lfull
µ)+ formulaϕ and every finite nested

word w̄, the set{i | (w̄, i) |= ϕ} can be computed in timeO(|ϕ| · |w̄|).
We make a couple of remarks about the proof of Theorem 1. Nested words are natu-

rally translated into trees, and there is a closely related result in the literature, Niwinski’s
theorem, showing that over the full infinite binary tree, MSOandLµ, evaluated in the
root of the tree, are equally expressive [20]. Despite this,there does not seem to be any
easy adaptation of proof techniques in [20] that yields a proof of Theorem 1. Not only
do we need a stronger result for unary queries and an extension with the past modalities,
but in addition translations of infinite nested words are notcomplete binary trees.

Another natural attempt at a proof is to use the expressive-completeness result of
Janin and Walukiewicz: every bisimulation-invariant MSO property is definable inLµ

[16]. Then we could express runs of tree automata on tree encodings of nested words
by bisimulation-invariant MSO sentences, apply [16] to getan equivalentLµ formula
for trees, and translate it into anLµ formula over nested words. This sketch indeed
can be turned into a proof ofMSO = Lµ for languages of nested words, but it breaks
already for unary queries over finite nested words, where oneneeds to encode a more
complicated run of a query automaton [19], and it is even harder to adapt this argument
to infinite nested words for which we do not have an automaton model capturing unary
queries. Thus, our proof is a direct argument based on thecomposition method.

4 Automata models for nestedω-words

Nestedω-word automata Visibly pushdown automata (VPA), with both Büchi and
Muller acceptance conditions, were introduced in [5], and shown to be equivalent to
MSO, but not necessarily determinizable. The example of a VPL that cannot be ac-
cepted by a deterministic automaton [5] can use arbitrarilymany calls without matching
returns, something that cannot happen in nested words. Then[18] introduced a notion
of stair visibly pushdown automata(stair VPA) to control such unmatched calls and
showed that stair VPAs are determinizable. These models were defined for VPLs, so
we first specialize a particular class of stair VPAs [18] to nested words, thereby obtain-
ing a notion of combined nested word automata, that admit determinization. We then
use such automata to show that over nested words, for everyω-NWA (with a Büchi or a
Muller acceptance condition), there exists an equivalent deterministic Mullerω-NWA.

A combined nested word automaton(CNWA) puts together anω-word automaton
A1 with a Muller acceptance condition and a finite NWAA2. It runsA1 over all posi-
tions that are not inside a call. Every timeA1 finds a call positioni, it invokesA2 to
process the finite nested word formed by the elements betweeni and its matching return
j, and then it uses its final state to determine what state to assign toj+1, and continues
its run from positionj + 1. Formally, a CNWAA overΣ is a pair(A1,A2), where:

– A2 = (Σ,Q2, Q
0
2, δ2 = (δ2c , δ

2
ι , δ

2
r)) is an NWA without accepting states;

– A1 = (Σ∪Q2, Q1, Q
0
1, δ1,F1) is anω-word automaton over alphabetΣ∪Q2 (we

assume, of course, thatΣ andQ2 are disjoint).

Given a nestedω-word w̄ andi ≥ 1, we define the set ofexternalpositionsE(w̄) as
positionsi such that there are noj, k ≥ 1 such thatj < i ≤ k andη(j, k) holds. Note
that1 ∈ E(w̄) andE(w̄) is infinite. If i ∈ E(w̄) is not a call, theni + 1 ∈ E(w̄). If
i ∈ E(w̄) is a call withj being its matching return, then the next, afteri, element of
E(w̄) is j+1. With this, we define arun of A over a nestedω-wordw̄ = (a1a2 · · · , η)
as a mappingρ : E(w̄) → Q1 such thatρ(1) ∈ Q0

1 and for everyi ∈ E(w̄):

– if i is not a call (andi+ 1 ∈ E(w̄)), thenρ(i+ 1) ∈ δ1(ρ(i), ai);
– if i is a call with returnj (and the successor ofi in E(w̄) is j + 1), thenρ(j + 1) ∈
δ1(ρ(i), q), whereq is a state inQ2 such that there exists a runρ2 of A2 overw̄[i, j]
havingq as the last state.

A CNWA A acceptsw̄ if there is a runρ of A overw̄ such thatInf (ρ) ∈ F1. We say
that CNWAA = (A1,A2) is deterministic if bothA1 andA2 are deterministic. Then
results in [18] can be restated in this terminology as:

Proposition 1 ([18]). Over nestedω-words, CNWAs and deterministic CNWAs are
equivalent.

We show, by using standard techniques, that CNWA and MSO are equivalent, from
which the main result of this section follows:

Theorem 2. Over nestedω-words, MSO, ω-NWA and deterministicω-NWA with
Muller acceptance condition, define precisely the regular languages. Moreover, trans-
lations between these formalisms are effective.

Determinization ofω-NWAs is done by translating them into CNWAs, determiniz-
ing those (which involves a2O(n log n) Safra construction [22] and a2O(n2) determiniza-
tion procedure from [5]) and then translating back intoω-NWAs with Muller acceptance
condition. Putting these three components together, we get(note that the bound is the
same as for determinization of stair VPAs for VPLs [18]):

Corollary 3. For everyω-NWA withn states, there exists an equivalent deterministic
ω-NWA with a Muller acceptance condition and with2O(n2) states.

It is well-known that a language ofω-words is regular (accepted by a Büchi or a Muller
automaton) iff it is a finite union of languages of the formUV ω, whereU, V are regular
languages. Automata characterizations imply a similar result for nestedω-words.

Corollary 4. A language of nestedω-words is regular iff it is a finite union of languages
of the formUV ω whereU andV are regular languages of finite nested words.

A basic problem in automata theory is the nonemptiness problem: is the language ac-
cepted by an automaton nonempty? It was shown in [5], that nonemptiness, and more
generally reachability problem for visibly pushdownω-automata, is polynomial. Com-
bining this with a NLOGSPACE algorithm for nonemptiness ofω-word automata, we
get polynomial nonemptiness algorithms forω-NWA and CNWA. Further, a modifica-
tion of PTIME-hardness reduction for emptiness for context-free grammars gives us:

Corollary 5. The nonemptiness problem forω-NWA and CNWA is PTIME-complete.

It is easy to code a deterministic automaton by anL1
µ formula. Thus,

Corollary 6. Over nestedω-words,Lµ collapses toL1
µ.

Alternating automata for nested ω-words In the context of formal verification, al-
ternating automata have proved to be the key to a comprehensive automata-theoretic
framework for temporal logics [27]. With the development oftemporal logics for nested
words [4, 2, 1], it is natural to develop alternating automata for nested words, with the
hope that they can simplify the process of translating temporal logics into automata.

We now define alternating automata for both finite and infinitenested words, and
show that they are equivalent to NWAs. We note that this is in sharp contrast with the
theory of alternating automata for nested trees, where alternating automata are known
to be more expressive than nondeterministic automata [3].

First recall the definition of alternating automata for finite and infinite words. Given
a set of statesQ, let B+(Q) be the set of positive Boolean combinations of elements
fromQ. GivenX ⊆ Q andϕ ∈ B+(Q), we say thatX satisfiesϕ if the truth assignment
σX satisfiesϕ, whereσX is defined asσX(q) = 1 iff q ∈ X . Then analternating (ω-
)word automatonA is a tuple(Σ,Q,Q0, δ, F), whereQ, Q0 andF are defined as for
the case of word automata, andδ : Q×Σ → B+(Q) is a transition function.

A run of such an automaton is a labeled tree. AΣ-labeled treeT is a pair(D,λ),
whereλ : D → Σ andD is a prefix-closed subset ofN

∗ such that (1) ifx · i ∈ D and
0 ≤ j < i, thenx · j ∈ D, and (2) for everyx ∈ D, there exists a finite number of
strings of the formx · i in D (finite branching). Forx ∈ N

∗, its length is denoted by|x|.
The depth of a tree ismaxx∈D |x|.

A run of an alternating word automatonA = (Σ,Q,Q0, δ, F) overw = a1 · · · an

is a finiteQ-labeled treeT = (D,λ) of depthn such thatλ(ε) ∈ Q0 and for every
x ∈ D that has childrenx · 0, . . ., x · ℓ of lengthi, we have that{λ(x · 0), . . . , λ(x · ℓ)}
satisfiesδ(λ(x), ai). An alternating word automatonA accepts a wordw if there is a
runT = (D,λ) of A overw such thatλ(x) ∈ F for every nodex in T of lengthn. The
run of an alternatingω-word automatonA = (Σ,Q,Q0, δ, F) over anω-wordw =
a1a2 · · · is defined in exactly the same way as an infiniteQ-labeled treeT = (D,λ).
ThenA acceptsω-wordw if there is an accepting runT = (D,λ) of A overw, i.e.
every infinite branchρ of T includes infinitely many labels inF .

An alternating nested word automaton(or alternating NWA, or ANWA) is an NWA
that admits alternation in call, return, and internal transitions. Formally, an ANWAA is
a tuple(Σ,Q,Q0, δ, F), whereQ, Q0 andF are defined as for the case of alternating
word automata, andδ is a triple(δc, δι, δr) of transition functionsδc, δι : Q × Σ →
B+(Q), andδr : Q × Q × Σ → B+(Q). A run of A over w̄ = (a1 · · · an, η) is a
Q-labeled finite treeT = (D,λ) of depthn such thatλ(ε) ∈ Q0 and for everyx ∈ D
with childrenx · 0, . . ., x · ℓ, of lengthi ≤ n:

– if |x| (i.e. i−1) is a call position, then{λ(x ·0), . . . , λ(x ·ℓ)} satisfiesδc(λ(x), ai);
– if |x| is an internal position, then{λ(x · 0), . . . , λ(x · ℓ)} satisfiesδι(λ(x), ai);
– if |x| is a return position with matching callj andy is the prefix ofx with |y| =
j − 1, then{λ(x · 0), . . . , λ(x · ℓ)} satisfiesδr(λ(x), λ(y), ai).

Note that ifi− 1 is an internal position andx does not have children, thenδι(λ(x), ai)
has to be a tautology, and likewise for call and return positions. An alternating nested

word automatonA accepts a nested word̄w if there is a runT = (D,λ) of A overw̄
such thatλ(x) ∈ F for every nodex in T of lengthn.

Proposition 2. For every alternating NWA, there exists an equivalent NWA.

This can be extended to nestedω-words. An alternating nestedω-word automaton (ω-
ANWA) A is a tuple(Σ,Q,Q0, δ, F), whereQ,Q0, δ andF are defined exactly as for
ANWA. A run is defined in the same way as above, and the acceptance condition again
states that along each infinite branch, states fromF are seen infinitely often.

Theorem 3. For everyω-ANWA withn states, there exists (and can be effectively con-
structed) an equivalentω-NWA with a B̈uchi acceptance condition and2O(n4) states.

For the proof, we introduce a notion ofalternating combined nested word automaton
(ACNWA) and provide a direct translation fromω-ANWA into ACNWA. Then by using
Proposition 2 and the fact that alternatingω-word automata can be translated intoω-
word automata [27], we give a translation from ACNWA into CNWA. Theorem 3 then
follows from Proposition 1. We note that Theorem 3 provides an exponential-time al-
gorithm for checking nonemptiness of ANWAs andω-ANWAs. Since even in the finite
case the problem is as hard as universality for finite tree automata [24], we get:

Corollary 7. The nonemptiness problem for both ANWAs andω-ANWAs is EXPTIME-
complete.

5 Synchronization of nested words

Synchronization of words leads to a concept ofregular relations. It ties together (syn-
chronizes) positions in several words, and then runs an automaton over them [15]. To
be concrete, letw1, . . . , wk be words fromΣ∗. Assume that# is a letter that is not in
Σ. Letn = maxi |wi|, and let[(w1, . . . , wk)] be a word of lengthn constructed as fol-
lows. It is over the alphabet(Σ∪{#})k, and itsith letter is ak-tupleai = (ai

1, . . . , a
i
k),

where eachai
j is the ith letter ofwj if i ≤ |wj |, and# if i > |wj |. That is, we pad

words shorter thann with #’s to make them all of lengthn, and then take theith letter
of [(w1, . . . , wk)] to be the tuple of theith letters of these padded words.

Thenregulark-ary relationsoverΣ are defined as setsR ⊆ (Σ∗)k such that the set
{[(w1, . . . , wk)] | (w1, . . . , wk) ∈ R} is accepted by an automaton over the alphabet
(Σ ∪ {#})k [13, 12]. Such automata are calledletter-to-letter automata.Regular rela-
tions are closed under Boolean combinations, product, and projection. This makes it
possible to find infinite structures overΣ∗ with decidable first-order theories whose de-
finable sets are precisely the regular relations (these are universalautomatic structures,
cf. [13, 12]). The most commonly used such structure is〈Σ∗,≺, (Pa)a∈Σ, el〉, where
≺ is the prefix relation,Pa(w) is true iff the last letter ofw is a, and el(w,w′) (the
equal-length predicate) holds iff|w| = |w′| [13, 12, 10].

We now study synchronization for nested words. We show that the usual letter-to-
letter synchronization for words is completely incompatible with the nesting structure
because even the simplest nested extension of letter-to-letter automata is undecidable.

We propose a different decidable synchronization scheme for nested words that gives
us regular relations with all the expected properties.

Letter-to-letter nested word automataAssume that we havek nested words̄w1, . . . , w̄k,
and we again pad the shorter words with a special symbol# so that all of them are of
the same lengthn. Let [(w̄1, . . . , w̄k)] be such a nested word over the alphabet(Σ ∪
{#})k, and letai be itsith letter. The letter-to-letter automaton runs from left toright
on [(w̄1, . . . , w̄k)], as an NWA. The main difference with NWAs is that each position
i may now be a return position inseveralof the w̄j ’s, and thus states in several call
positions determine the next state.

That is, in ak-letter-to-letter NWAoverk-tuples of nested words, we have multiple
return transitionsδX

r : Q × Q|X| × (Σ ∪ {#})k → 2Q, indexed by nonemptyX ⊆
{1, . . . , k}. Supposei is a return position in̄wl1 , . . . , w̄lm , where1 ≤ l1 < . . . < lm ≤
k andm > 0. If j1, . . . , jm are the matching calls, i.e.ηl1(j1, i), . . . , ηlm(jm, i) hold,
thenρ(i+ 1) depends onρ(i), ai, and the states in positionsj1, . . . , jm:

ρ(i+ 1) ∈ δ{l1,...,lm}
r (ρ(i), ρ(j1), . . . , ρ(jm),ai).

For positions without returns, we have one transitionδ : Q× (Σ ∪ {#})k → 2Q.
We show that even a much simpler automaton is undecidable. Define asimplified

k-letter-to-letter NWAas ak-letter-to-letter NWA with one return transition isδr :
Q×Q× (Σ ∪ {#})k → 2Q, just as in the usual NWA. The condition on the run is as
follows: if i is a return position in words̄wl1 , . . . , w̄lm , for 1 ≤ l1 < . . . < lm ≤ k,
thenρ(i+ 1) ∈ δr(ρ(i), ρ(j1),ai), wherej1 is the call ofi in w̄l1 . In other words, we
look at the state of only one call position, corresponding tothe return with the smallest
index. For all other positions we have a single transitionδ : Q× (Σ ∪ {#})k → 2Q.

If k = 1, these are the usual NWAs. But ifk = 2, they are undecidable.

Theorem 4. The nonemptiness problem is undecidable for simplified2-letter-to-letter
NWAs (and thus fork-letter-to-letter NWAs fork > 1).

Thus, there is no hope to use even the simplest possible form of letter-to-letter syn-
chronization in nested words. As another example of such incompatibility, we show that
there are no natural decidable extensions of universal automatic structures on words to
nested words. We look at structuresM = 〈Σ∗

nw, Θ〉 (whereΣ∗
nw is the set of all fi-

nite nested words overΣ) of a vocabularyΘ. We assume thatΘ includes some basic
relations. One is a prefix relation̄w �nw w̄′ iff w̄ = w̄′[1,m] for somem ≤ |w̄′|
(so we can refer to the linear structure of nested words). Theother allows us to re-
fer to the nesting structure: we relate a prefixw̄ of w̄′ so that inw̄′, there is a call-
return edge from the last position of̄w to the last position of̄w′. That is,w̄ �η w̄′

iff w̄ = w̄′[1,m], andη(m, |w̄′|) holds inw̄′. We say thatM defines all regular lan-
guages of nested wordsif for each such languageL, there is a formulaϕL(x) such
thatL = {w̄ ∈ Σ∗

nw | M |= ϕ(w̄)}. We say thatM defines all regular relations over
wordsif for each regular relationR ⊆ (Σ∗)k, there is a formulaψR(x1, . . . , xk) such
thatM |= ψR(w̄1, . . . , w̄k)} iff (w1, . . . , wk) ∈ R (recall thatwi is a word fromΣ∗

obtained by removing the nesting structure fromw̄i).

Proposition 3. There is no structureM = 〈Σ∗
nw,�nw,�η, . . .〉 that defines all regular

languages of nested words, all regular relations over words, and has a decidable theory.

Call-return synchronizationAs the usual letter-to-letter synchronization is incompati-
ble with nested words, we propose a different,call-return synchronization. Intuitively,
instead of synchronizing positions with the same indexi in different words, we synchro-
nize positions for which the shortest paths to them (from thefirst position) are the same.
To formalize this, we use a notion of asummary pathintroduced recently in connection
with the study of LTL-like logics on nestedω-words [1]. A summary path to a position
i in a nested word̄w is the shortest path from1 to i that combines both successor and
matching edges. That is, it is a sequence1 = i0 < i1 < . . . < ik = i such that, ifil is
a call withη(il, j) andi ≥ j, thenη(il, il+1) holds, and otherwiseil+1 = il + 1. We
represent this summary path as a worda1 . . . ak over the alphabetΛ = {i, c,m}:

1. if il = il−1 + 1 andil−1 is not a call, thenal = i (path goes via an internal edge);
2. if il = il−1 + 1 andil−1 is a call, thenal = c (path goes via a call edge);
3. if η(il−1, il) holds, thenal = m (path goes via a matching edge).

If both i1 = il−1 + 1 andη(il−1, il) hold, we letal bem. The unique summary path to
positioni will be denoted byπη

w̄(i) ∈ Λ∗, and the set of all summary paths byΠη(w̄).
The label ofπη

w̄(i) is the label ofi in w̄. Note thatΠη(w̄) is closed under prefix.
The idea of thecall-return synchronizationis that now with each positioni,

we keep its summary pathsπη
w̄(i), to remember how it was reached in different

nested words. That is, a call-return synchronization of nested words w̄1, . . . , w̄k

is a pair (Πη(w̄1, . . . , w̄k), λ) where Πη(w̄1, . . . , w̄k) =
⋃

lΠ
η(w̄l), and λ :

Πη(w̄1, . . . , w̄k) → (Σ ∪ {#})k is a labeling function that labels each summary path
with its label in w̄i if it occurs in w̄i, and with# otherwise, for eachi ≤ k. This
synchronization can naturally be viewed as a tree.

As an example, consider two nested words below,w̄1 (on the left) andw̄2 (on the
right), with summary paths shown above positions.

61 2 3 4 5 6 1 2 3 4 5

ε i ic ici im imi ε i ic im imi imii

The synchronization occurs in the first and the second position, and we recursively
synchronize the calls (fromi) and what follows their returns (fromim). Intuitively, this
results in adding a dummy internal nodeici inside the call forw̄2, and adding a dummy
last internal positionimii for w̄2. Note that position 4 (i.e.ici) in w̄1 is in no way related
to position 4 (im) in w̄2, as it would have been in letter-to-letter synchronization.

We now say thatR ⊆ (Σ∗
nw)k is a regular k-ary relation of nested wordsiff there

is a tree automaton on ternary trees that accepts precisely(Πη(w̄1, . . . , w̄k), λ), for
(w̄1, . . . , w̄k) ∈ R. The following is an immediate consequence of coding tree repre-
sentations in MSO, and of the work on automatic structures over trees [11]:

Proposition 4. – Regular relations of nested words are closed under union, intersec-
tion, complementation, product, and projection.

– Regular1-ary relations of nested words are precisely the regular nested languages.
– There is a finite collectionΘ of unary and binary predicates onΣ∗

nw such that
〈Σ∗

nw, Θ〉 is a universal automatic structure for nested words, i.e. its definable rela-
tions are precisely the regular relations of nested words, and its theory is decidable.

AcknowledgmentsWe thank Rajeev Alur, Kousha Etessami, and Neil Immerman for
helpful discussions. Arenas was supported by FONDECYT grants 1050701, 7060172
and 1070732; Arenas and Barceló by grant P04-067-F from theMillennium Nucleus
Centre for Web Research; Libkin by the EC grant MEXC-CT-2005-024502, EPSRC
grant E005039, and by an NSERC grant while on leave from U. Toronto.

References

1. R. Alur, M. Arenas, P. Barceló, K. Etessami, N. Immerman,L. Libkin. First-order and
temporal logics for nested words. InLICS 2007.

2. R. Alur, S. Chaudhuri, P. Madhusudan. A fixpoint calculus for local and global program
flows. InPOPL 2006, pages 153–165.

3. R. Alur, S. Chaudhuri, P. Madhusudan. Languages of nestedtrees. InCAV 2006, 329–342.
4. R. Alur, K. Etessami and P. Madhusudan. A temporal logic ofnested calls and returns. In

TACAS’04, 467-481.
5. R. Alur and P. Madhusudan. Visibly pushdown languages. InSTOC’04, 202-211.
6. R. Alur and P. Madhusudan. Adding nesting structure to words. InDLT’06, pages 1–13.
7. A. Arnold and D. Niwinski.Rudiments ofµ-calculus. North-Holland, 2001.
8. V. Bárány, C. Löding, O. Serre. Regularity problems for visibly pushdown languages.

STACS’06, 420–431.
9. P. Barceló and L. Libkin. Temporal logics over unranked trees. InLICS’05, 31-40.

10. M. Benedikt, L. Libkin, T. Schwentick, L. Segoufin. Definable relations and first-order query
languages over strings.J. ACM50(5): 694–751, 2003.

11. M. Benedikt, L. Libkin, F. Neven. Logical definability and query languages over ranked and
unranked trees.ACM TOCL, 8(2), 2007. Extended abstract in LICS’02 and LICS’03.

12. A. Blumensath and E. Grädel. Automatic structures. InLICS’00, pages 51–62.
13. V. Bruyère, G. Hansel, C. Michaux, R. Villemaire. Logicandp-recognizable sets of integers.

Bull. Belg. Math. Soc.1 (1994), 191–238.
14. R. Cleaveland, B. Steffen. A linear-time model-checking algorithm for the alternation-free

modal mu-calculus.CAV’91, pages 48–58.
15. C. Elgot and J. Mezei. On relations defined by generalizedfinite automata.IBM J. Res. De-

velop.9 (1965), 47–68.
16. D. Janin, I. Walukiewicz. On the expressive completeness of the propositional mu-calculus

with respect to monadic second order logic.CONCUR 1996, pages 263–277.
17. C. Lautemann, T. Schwentick, D. Thérien. Logics for context-free languages.CSL’94, 205–

216.
18. C. Löding, P. Madhusudan, O. Serre. Visibly pushdown games. InFSTTCS 2004, 408–420.
19. F. Neven, Th. Schwentick. Query automata over finite trees. TCS275 (2002), 633–674.
20. D. Niwinski. Fixed points vs. infinite generation. InLICS 1988, pages 402–409.
21. F. Peng and S. Chawathe. Xpath queries on streaming data.In SIGMOD’03, pages 431–442.
22. S. Safra. On the complexity of omega-automata. InFOCS 1988, pages 319–327.
23. L. Segoufin, V. Vianu. Validating streaming XML documents. InPODS’02, pages 53–64.
24. H. Seidl. Deciding equivalence of finite tree automata.SICOMP19(3): 424-437 (1990).
25. W. Thomas. Languages, automata, and logic.Handbook of Formal Languages, Vol. 3, 1997.
26. W. Thomas. Infinite trees and automaton-definable relations overω-words.TCS103 (1992),

143–159.
27. M. Y. Vardi. An automata-theoretic approach to linear temporal logic. Banff Higher Order

Workshop 1995, pages 238-266.
28. M. Y. Vardi. Reasoning about the past with two-way automata. In ICALP 1998, 628–641.

