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Abstract - Analytically constructed LDPC codes com- 
prise only a very small subset of possible codes and as a 
result LDPC codes are still, for the most part, constructed 
randomly. This paper extends the class of LDPC codes 
that can be systematically generated by presenting a con- 
struction method for regular LDPC codes based on com- 
binatorial designs known as Kirkman triple systems. We 
construct (3, p)-regular codes whose Tanner graph is free 
of 4-cycles for any integer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, and examine girth and mini- 
mum distance properties of several classes of LDPC codes 
obtained from combinatorial designs. 

I. INTRODUCTION 
Low-density parity-check (LDPC) codes were discovered 

by Gallager [ l ]  in 1962 and have recently been rediscovered 
[2], [3]. LDPC codes are designed by specifying a parity- 
check matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH to optimize the flow of information in the 
decoding process. In particular, H is chosen to be sparse so 
that the calculation of each check sum depends on few code 
word bits and the evaluation of code bit validity on few check 
sums. Using this property of LDPC codes Gallager presented 
iterative decoding algorithms whose complexity remains lin- 
ear in the block length [ 11, with performance remarkably close 
to the Shannon limit [2], [4]. Recently it has been shown that 
the encoding complexity of LDPC codes can also be linear in 
the block length [5]. 

A Tanner graph displays the relationship between codeword 
bits and parity checks and is a useful way to describe LDPC 
codes [3]. Each of the n code bits, and m parity checks in H 
are represented by a vertex in the graph. A graph edge joins 
a code bit vertex to the vertices of the parity checks that in- 
clude it. A cycle in a Tanner graph is a sequence of connected 
code bits and parity checks which start and end at the same 
vertex in the graph and contain no other vertices more than 
once. The length of the cycle is simply the number edges it 
contains and the girth of a Tanner graph is the size of its small- 
est cycle. It is known that the iterative sum-product decoding 
algorithm converges to the optimal solution provided that the 
Tanner graph of the code is free of cycles [6]. The shorter the 
cycles in the graph, the sooner the algorithm breaks down. To 
date, randomly constructed LDPC codes have largely relied on 
the sparsity of the parity-check matrix to avoid short cycles in 
the Tanner graph. 

A key idea in this paper is that cycles of length less than 
6 in the Tanner graph associated with an LDPC code can be 
systematically avoided by taking as parity-check matrices the 
incidence matrices of suitably chosen combinatorial designs. 
When the block lengths are small, good LDPC codes become 
more difficult to find using random construction methods [7]. 
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So for small block lengths in particular, an analytic construc- 
tion method that guarantees 
1. small, uniform row and column weights; and 
2. the absence of 4-cycles, 
is expected to be particularly useful. 

In this paper we present a construction based on Kirkman 
triple systems for a family of parity-check matrices having 
column weight 3, that satisfy both items 1 and 2. As our con- 
struction is based on combinatorial design theory, we present 
in Section II of this paper some background material on de- 
signs before describing some LDPC constructions. 

11. LDPC CODES FROM COMBINATORIAL DESIGNS 

A combinatorial design is an arrangement of a set P of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw 
points into b subsets, called blocks, which satisfy certain con- 
ditions. In particular a regular design is one with a constant 
y points per block and p blocks containing each point. It is 
balanced if there are exactly X blocks containing each pair 
of points. A regular balanced design is often denoted as a 
(U, b, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, y, A)-design and satisfies 'U x p = b x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy. 

Every design can be described by an b x w incidence matrix 
I where each row in I represents a block Bi of the design and 
each column a point Pj: 

The incidence matrix of a combinatorial design, or its trans- 
pose, can be used as the parity-check matrix of a binary LDPC 
code to give favorable properties to the code. Choosing ;i de- 
sign with A = l in particular, guarantees the absence of 4- 
cycles in the code. If H = IT the code will have v parity 
checks and block length equal to b. If the design is regular, H 
will have all its columns of weight y and all rows of weight p 
and is described as (y, p)-regular. As is the case for raridom 
constructions of parity-check matrices, the H constructed in 
this way are not necessarily full rank, in which case the num- 
ber of message bits in the code is k = n 

One class of combinatorial designs that have been proposed 
for generating LDPC codes are Steiner triple systems on v 
points, or (v, b, p ,  3,1)-designs [8], denoted simply as STS(v). 
These designs exist for all U = 1,3  (mod 6), and the transpose 
of their incidence matrix produces binary codes which are reg- 
ular, (with column weight 3, row weight (w 1)/2) and free 
of 4-cycles. The resulting codes (STS-LDPC codes) have w 
parity checks, block length n = v(w 1)/6, and are high rate. 

If the restriction that X = 1 is relaxed to allow X = 1 or 
0 for a given v, the block length and hence rate can be re- 
duced. A simplistic approach is to remove some columns of 
H .  However, this results in a parity-check matrix with vari- 
able row weights, in many cases as low as 1 or 0, which leads 
to performance penalties when iteratively decoded. 

rank(H). 
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Fig. 1. Block length and rate of analytically constructed LDPC codes 

The key idea presented in this paper is to use a class of de- 
signs called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKirkman triple systems (KTS) to derive regular 
LDPC codes. Kirkman triple systems are defined as there- 
solvable Steiner triple systems. That is, the blocks of a Kirk- 
man triple system can be arranged into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp groups such that the 

blocks of each group are disjoint, and each group contains 
every point precisely once. 

To construct LDPC codes, we can take any KTS and use one 
or more of its groups to make up the columns of our parity- 
check matrix. The resulting H still has Y parity-checks, col- 
umn weight 3 and no 4-cycles(as there were no 4-cycles in the 
original H and removing columns cannot add any), but can 
have any desired row weight zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp E {1 ,2 , .  . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(v 1)/2} with 
n = y .  Of course for p < 4 the code would have an imprac- 
tically small number of message bits and would not be useful. 
Kirkman triple systems exist for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw = 3 (mod 6). Construc- 
tion methods for ZI = 3q and Y = 2q + 1, q a prime power are 
given in [9]. 

rn Codes from binary Euclidean geometries (EG-LDPC), (q2 
1, q2 1, q, q, 1)-designs, and codes from binary projective ge- 
ometries(PG-LDPC), (q2+q+1 ,q2+q+1 ,q+1 ,q+1 ,1 ) -  
designs, q = 2", s any integer, have been investigated in [lo]. 
PG and EG designs produce square incidence matrices, how- 
ever previous results have established a combinatorial expres- 
sion for the rank of H and hence the rate of these codes [ l  11. 

A construction for LDPC codes using Ramanujan graphs is 
presented in [12]. The advantage of this method of construc- 
tion is that it produces (3,6)-regular codes. However these 
codes can only be constructed for block lengths n = 2(q3 q )  
where q is prime. 

As can be seen in Fig. 1, one advantage of using Kirkman 
triple systems to construct (3, p)-regular LDPC codes is the 
wealth of code rates and block lengths that are available. Note 
that Fig. 1 does not include any of the LDPC codes that could 
be created via column or row splitting [lo]. 

In addition to STS and KTS designs we examine: 

A. Girth 

A simple lower bound on the girth of an LDPC code can be 
found by considering the associated Tanner graph. Our line 
of reasoning is similar to, though extends, Lemma 1 presented 
in [12] relating the girth of codes from Ramanujan graphs to 
block length for any girth E 2 (mod 4). 

Consider a parity check matrix H = IT where I is the in- 
cidence matrix of a regular combinatorial design. Take an ar- 

bitrary bit vertex n1 which is connected to y parity-check ver- 
tices. 'Each of these is in turn connected to p 1 bit vertices 
other than n1. If any of these y(p 1) bit vertices are the same 
a 4-cycle results. Thus to avoid 4-cycles there must be 

n 2 Y ( P  1 ) + 1  

codeword bits, as no two parity-checks on n1 can share any. 
Now consider the y(p 1) bit vertices above; each is con- 

nected to a further y 1 parity-check vertices. To avoid both 
4- and 6-cycles these y(p  l ) (y 1) vertices and the y other 
parity-check vertices already connected to n1 must be distinct. 
Thus to avoid 6-cycles 

m 2 Y ( P  l)(Y 1) $7 .  

Similarly we can start with an arbitrary parity-check vertex PI, 
and the reasoning can be extended to any cycle size c to obtain 
the following relationship between the block length n needed 
to avoid a cycle of size c, and the parity-check and codeword 
bit degrees, y and p ,  respectively: 

n 2 1 + y ( p  l ) + . . . + y ( p  l)a2 
c = 0 (mod 4) 

c = 2 (mod 4), 

(1) 

(2) 

2 c  

n 2 p + p a + . . . + p a T ,  

wherea = (y l)(p 1). 
The inequality in (2), can be used to prove the following. 
Lemma I :  The girth of any STS-LDPC, EG-LDPC, or PG- 

LDPC code is 6. 
Proofi In each case, we use the appropriate design pa- 

rameters and substitute into equation (2)  for c = 6 to show that 
the inequality can not be met and 6-cycles must exist. Further, 
the existence of cycles smaller than 6 are excluded by the re- 
striction that X = 1 in each of these designs and the result 
follows. 

No such upper bound on girth can be placed on the codes de- 
rived from Kirkman triple systems, or the codes derived from 
Ramanujan graphs. These codes have constant row and col- 
umn weight as n increases and so their density decreases al- 
lowing the girth to increase with n. 

B. Minimum distance 

For regular LDPC codes whose parity-check matrix is the 
incidence matrix of a Steiner triple system, MacKay and 
Davey [8, Theorem 11 showed that the minimum distance is at 
most 10. Recall that the minimum distance of a code is equal 
to the minimum nonzero number of columns in the parity- 
check matrix for which a nontrivial linear combination sums 
to zero [13, p. 841 and it is easy to see that designs with col- 
u r n  weight 3 and X < 1 have a minimum distance of at least 
4. Further it is possible to systematically construct STS-LDPC 
codes having minimum distance at least 6. These STS designs 
are termed anti-Pasch, as they lack collections of 4 blocks em- 
ploying just 6 points called a Pasch conjigfiguration, or quadri- 
lateral. Anti-Pasch STS designs have recently been shown to 
exist for all ZI for which STS(v) exist except for Y = 7 or 13 

The minimum distance of the (3, p)-regular codes described 
abpve can only be the same or better than that of the resolv- 
able STS codes from which they are constructed (removing 

. 

~ 4 1 .  
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. BER vs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEb/No for rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA112 LDPC codes, max iterations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 500 

columns cannot reduce, but can increase, the size of the linear 
combination of columns that sum to zero). However, as yet we 
have no explicit determination of the minimum distance of the 
(3, p)-regular codes presented here. It is worth noting that re- 
solvable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(v, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb, p ,  ?, 1) designs exist for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy = {4,5, ...} and that 
these designs would result in codes with minimum distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ 5 , 6 ,  ... }. The authors are currently investigating these 
designs for use as LDPC codes. 

111. SIMULATION RESULTS USING ITERATIVE DECODING 

We employed belief propagation decoding, also known as 
sum-product decoding, as presented in [lo]. A number of ran- 
domly generated LDPC codes have been used, and where pos- 
sible we have used codes already published [15]. However, 
where there are none available we have used the best code we 
could generate using the construction method from [2]. 

Fig. 2 shows the performance of rate 1/2 KTS and randomly 
generated LDPC codes. All codes have parity-check matrices 
of approximately the same density and a maximum of 500 de- 
coding iterations have been used. 

Fig. 3 shows the performance of higher rate KTS, STS, EG 
and randomly generated LDPC codes. The rate-2/3 LDPC 
code generated from Kirkman triple systems is a (3,9)-regular 
code, the EG code is (16,16)-regular, and the randomly gen- 
erated LDPC has row weights between 7 and 12, and con- 
stant column weight 3. While all three codes have similar 
block lengths and rates, the EG code has more than fi ve times 
as many non zero entries in its parity-check matrix, resulting 
in a significant increase in computational complexity for the 
same number of decoding iterations. The two length n = 247 
codes have the same rate (0.84) and density of H .  Using the 
random construction method we were unable to eliminate 4- 
cycles from the high rate n = 247 code. This is perhaps 
the primary advantage of analytically constructed codes over 
random constructions and the reason we attribute to their im- 
proved performance. 

MacKay and Davey rejected Steiner triple systems as LDPC 
codes due to their poor minimum distance properties [8]. 
While they do have poor minimum distances our results sug- 
gest that their good girth properties for small n compensate 
for this when belief propagation decoding is used. Even more 
promising is that the (3, p)-regular codes derived from Kirk- 
man triple systems do not have the minimum distance con- 
straints of the STS codes and have the additional advantage 
that they can improve upon their good girth properties. 

Fig. 3. BER vs. Eb/No for LDPC codes, max iterations = 50 

IV. CONCLUSION 
We have presented a construction method for LDPC codes 

that produces parity-check matrices having constant column 
and row weight and girth at least 6. These (3, p)-regular codes 
can be constructed for any number, of parity-check sums m f 
3 (mod 6), and for all row weights p E { 1,2,  . . . , (m 1)/2}. 
The construction is particularly useful for codes with small 
block lengths, and high rates, for which random construction 
methods have difficulty removing4-cycles. 
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