k-REGULAR MAPPINGS OF 2^{n}-DIMENSIONAL EUCLIDEAN SPACE

MICHAEL E. CHISHOLM

Abstract

A map $f: X \rightarrow R^{n}$ is said to be k-regular if whenever x_{1}, \ldots, x_{k} are distinct points of X, then $f\left(x_{1}\right), \ldots, f\left(x_{k}\right)$ are linearly independent. Using configuration spaces and homological methods, it is shown that there does not exist a k-regular map from R^{n} into $R^{n(k-\alpha(k))+\alpha(k)-1}$ where $\alpha(k)$ denotes the number of ones in the dyadic expansion of k and n is a power of 2.

A continuous map $f: X \rightarrow R^{n}$ is said to be k-regular if whenever x_{1}, \ldots, x_{k} are distinct elements of X, then $f\left(x_{1}\right), \ldots, f\left(x_{k}\right)$ are linearly independent. The study of k-regular maps is prompted by the theory of Čebyšev approximation. The reader is referred to [12, pp. 237-242] for the relationship between these two concepts.

Results on existence and nonexistence of k-regular maps can be found in [1], [2], [4]-[7]. In [4], David Handel and Fred Cohen, using algebraic-topological methods, obtained a nonexistence theorem about k-regular mappings of the plane. The object of the present paper is to generalize their result to k-regular mappings of R^{n} where n is a power of 2 . We obtain an improvement upon the following result, for the case n a power of 2.

Theorem 1 (Boltjanskĭ̀-Ryškov-Šaškin). If a $2 k$-regular map of R^{n} into R^{n} exists, then $N \geqslant(n+1) k$.

I wish to thank David Handel for his help and advice while writing this paper and throughout my graduate study.

Theorem 2. There does not exist a k-regular map of R^{n} into $n(k-\alpha(k))+$ $\alpha(k)-1$ dimensional Euclidean space where $\alpha(k)$ denotes the number of ones in the dyadic expansion of k and n is a power of 2 .

In the proof we utilize algebraic-topological properties of the configuration space of R^{n}, denoted $F\left(R^{n}, k\right)$, is the subspace of $\left(R^{n}\right)^{k}$ consisting of ordered k-tuples of distinct points in R^{n}. The symmetric group Σ_{k} acts freely on $F\left(R^{n}, k\right)$ and orthogonally on R^{k} by permuting factors. Let $P_{n, k}$ denote the k-plane bundle $F\left(R^{n}, k\right) \times \Sigma_{\Sigma_{k}} R^{k} \rightarrow F\left(R^{n}, k\right) / \Sigma_{k}$.

Lemma 3. If n and k are powers of 2 , then $\bar{\omega}_{(n-1)(k-1)}\left(P_{n, k}\right) \neq 0$.

[^0]Proof. All homology and cohomology groups are with \mathbf{Z}_{2} coefficients. Let \bigodot_{n} denote the little n-cubes operad with associated monad C_{n} as constructed by J. P. May in [8]. By [8, Theorem 4.8], $F\left(R^{n}, k\right)$ is Σ_{k}-equivariantly homotopy equivalent to $\bigodot_{n}(k)$. So, as in [4] replace $F\left(R^{n}, k\right) / \Sigma_{k}$ by $\mathcal{C}_{n}(k) / \Sigma_{k}$ in $P_{n, k}$.

The following composition is a classifying map for $P_{n, k}$;

$$
C_{n}(k) / \Sigma_{k} \xrightarrow{\sigma_{k}} \bigodot_{\infty}(k) / \Sigma_{k} \cong B \Sigma_{k} \xrightarrow{\rho} B O(k)
$$

where ρ is induced from the regular representation $\Sigma_{k} \rightarrow O(k)$ and σ_{k} is the direct limit of $\sigma_{m, k}$ where $\sigma_{m, k}$ is given in [8, p. 31].

Let [1] denote the element of $H_{0}\left(S^{0}\right)$ determined by the nonbase point of S^{0}. By [3, §3], $H_{*}\left(C_{n} S^{0}\right)$ is given in terms of the Dyer-Lashof operations on [1].

Suppose $k=2^{r}$, then $I=\left(2^{r-1}(n-1), \ldots, 2(n-1), n-1\right)$ is an admissible sequence of degree $(n-1)(k-1)$ and excess $n-1$. By [3, §§1,4], $Q^{I}[1]$ is an element of $H_{*}\left(C_{n} S^{0}\right)$ and by filtration arguments given there it follows that $Q^{I}[1] \in H_{*}\left(\bigodot_{n}(k) / \Sigma_{k}\right)$. Since σ_{k} is the restriction of a map of \mathcal{C}_{n}-spaces, we have

$$
\sigma_{k^{*}}\left(Q^{I}[1]\right)=Q^{I}[1]
$$

Thus it suffices to show that $\left\langle\rho^{*} \bar{\omega}_{(n-1)(k-1)}, Q^{I}[1]\right\rangle \neq 0$, where \langle,$\rangle denotes$ the Kronecker index and $\bar{\omega}_{(n-1)(k-1)}$ is the $(n-1)(k-1)$-universal dual Stiefel-Whitney class.

As a first step we now show

$$
\left\langle\rho^{*} \bar{\omega}_{(n-1)(k-1)}, Q^{I}[1]\right\rangle=\left\langle\rho^{*} \omega_{k-1}^{n-1}, Q^{I}[1]\right\rangle .
$$

By [10, p. 220], $\rho^{*} \bar{\omega}_{(n-1)(k-1)}=\rho^{*}\left(\Sigma_{j} c_{j} \omega_{1}^{j_{1}} \cdots \omega_{k-1}^{j_{k-1}}\right)$ where j runs over all $\left(j_{1}, \ldots, j_{k-1}\right)$ with $j_{i} \geqslant 0, \sum_{i=1}^{k-1} i j_{i}=(n-1)(k-1)$ and $c_{j}=\left(j_{1}+\cdots+\right.$ $\left.j_{k-1}\right)!/ j_{1}!\cdots j_{k-1}!, \rho^{*} \omega_{k}=0$ since every k-plane bundle with structural group Σ_{k} admits a nowhere zero section.

Suppose $1 \leqslant i<k-1$ is odd, $k=2^{r}, u \in H^{*} B \Sigma_{k}, L=\left(s_{1}, \ldots, s_{r}\right)$ and $\psi\left(Q^{L}[1]\right)=\Sigma Q^{A}[1] \otimes Q^{B}[1]$ where ψ is the diagonal map in homology. See [9, p. 6]. Thus

$$
\left\langle\rho^{*} \omega_{i} u, Q^{L}[1]\right\rangle=\sum\left\langle\rho^{*} \omega_{i}, Q^{A}[1]\right\rangle\left\langle\rho^{*} u, Q^{B}[1]\right\rangle=0 .
$$

This follows since for each A, the length of A is r and $Q^{A}=\Sigma Q^{M}$ where each M is admissible and of the same degree and length as A, and since we may assume the degree of each A is i. Hence each A has positive excess and by [11, Theorem 4.7], $\left\langle\rho^{*} \omega_{i}, Q^{A}[1]\right\rangle=0$.

Thus

$$
\left\langle\rho^{*} \bar{\omega}_{(n-1)(k-1)}, Q^{I}[1]\right\rangle=\sum_{j}\left\langle c_{j} \rho^{*} \omega_{2}^{j_{2}} \omega_{4}^{j_{4}} \cdots \omega_{k-2}^{j_{k-3}} \omega_{k-1}^{j_{k}-1}, Q^{I}[1]\right\rangle
$$

where $j=\left(j_{2}, j_{4}, \ldots, j_{k-2}, j_{k-1}\right)$ and $2 j_{2}+4 j_{4}+\cdots+(k-2) j_{k-2}+(k$ $-1) j_{k-1}=(n-1)(k-1)$.

For such j we now show $c_{j} \equiv 0(\bmod 2)$ if $j_{k-1} \neq n-1$. Since j_{k-1} is odd, $j_{k-1}=2^{m} S-1, S$ odd. Suppose $j_{k-1} \neq n-1$. Thus j_{k-1} can be written as $2^{0}+2^{1}+\cdots+2^{m-1}+$ other distinct powers of 2 . Let $2 \leqslant i \leqslant k-2$ be even. If $j_{i} \neq 0$, then j_{i} can be written as $2^{p}+$ other distinct powers of 2 where p is minimal in this expression of j_{i}. By writing c_{j} as a product of binomial coefficients, $c_{j}=y\left(j_{i}+j_{k-1}\right)!/ j_{i}!j_{k-1}!$, for some integer y. Thus if $p<m-$ 1 , then $c_{j} \equiv 0(\bmod 2)$. We may thus assume that j_{i} is divisible by 2^{m} for i even. So we have;

$$
\begin{equation*}
2 j_{2}+\cdots+(k-2) j_{k-2}=2^{m}(k-1)\left(n^{\prime}-s\right) \tag{1}
\end{equation*}
$$

where $n^{\prime}=n / 2^{m}$ is even. Since the L.H.S. of (1) is divisible by 2^{m+1} and the R.H.S. of (1) is not divisible by 2^{m+1} we have a contradiction. Hence

$$
\left\langle\rho^{*} \bar{\omega}_{(n-1)(k-1)}, Q^{I}[1]\right\rangle=\left\langle\rho^{*} \omega_{k-1}^{n-1}, Q^{I}[1]\right\rangle
$$

We now show that $\left\langle\rho^{*} \omega_{k-1}^{m}, Q^{m J}[1]\right\rangle=1$ where $m J=\left(2^{r-1} m, \ldots, 2 m, m\right)$, $m \geqslant 1, k=2^{r}$, concluding the proof of the lemma. It is easily seen, by induction on r, that $1 J=J$ is the only admissible sequence of length r and degree $2^{r}-1$ such that $Q^{J} \neq 0$. Next, using induction and the internal Cartan formula [9, p. 6], we see that if L is an admissible sequence of length r and degree $2^{r}-1$, then $Q^{L}=0$. By [11, Theorem 4.7], the diagonal Cartan formula $\left[9\right.$, p. 6] and induction on $m,\left\langle\rho^{*} w_{k-1}^{m}, Q^{m J}[1]\right\rangle=1$.

In [4], the following result is proved.
Theorem 4 (Handel-Cohen). If a k-regular map of X into R^{N} exists, then $F(X, k) \times_{\Sigma_{k}} R^{k} \rightarrow F(X, k) / \Sigma_{k}$ admits an N - k-plane inverse.

Proof of Theorem 2. By Theorem 4, it suffices to show $\bar{\omega}_{(n-1)(k-\alpha(k))}\left(P_{n, k}\right)$ $\neq 0$. Write $k=\sum_{i=1}^{\alpha(k)} j(i)$ where $j(i)=2^{m(i)}, m(1)<m(2)<\cdots<m(\alpha(k))$. We have a map of k-plane bundles

$$
f: P_{n, j(1)} \times \cdots \times P_{n, j(\alpha(k))} \rightarrow P_{n, k}
$$

as follows: Choose pairwise disjoint open discs $E_{1}, \ldots, E_{\alpha(k)}$ in R^{n}. Then we can regard $P_{n, j(i)}$ as $F\left(E_{i}, j(i)\right) \times_{\Sigma_{j(i)}} R^{j(i)} \rightarrow F\left(E_{i}, j(i)\right) / \Sigma_{j(i)}$. Define f by

$$
\begin{aligned}
& f\left(\left(x_{1}, v_{1}\right), \ldots,\left(x_{\alpha(k)}, v_{\alpha(k)}\right)\right)=\left(x_{1}, \ldots, x_{\alpha(k)} ; v_{1}, \ldots, v_{\alpha(k)}\right) \\
&\left(x_{i}, v_{i}\right) \in F\left(E_{i}, j(i)\right) \times_{\Sigma_{f(i)}} R^{j(i)} .
\end{aligned}
$$

Thus

$$
f^{*} \bar{\omega}_{(n-1)(k-\alpha(k))}\left(P_{n, k}\right)=\bar{\omega}_{(n-1)(k-\alpha(k))}\left(P_{n, j(1)} \times \cdots \times P_{n, j(\alpha(k)))}\right)
$$

which has as a nonzero component, by Lemma 3,

$$
\bar{\omega}_{(n-1)(j(1)-1)}\left(P_{n j(1)}\right) \times \cdots \times \bar{\omega}_{(n-1)(j(\alpha(k))-1)}\left(P_{n j(\alpha(k)))}\right) .
$$

Thus $f^{*} \bar{\omega}_{(n-1)(k-\alpha(k))}\left(P_{n, k}\right) \neq 0$.

References

1. V. G. Boltjanskiì, S. S. Ryškov and Ju. A. Šaškin, On k-regular imbeddings and their application to the theory of approximation of functions, Uspehi Mat. Nauk 15 (1960), no. 6 (96), 125-132; Amer. Math. Soc. Transl. (2) 28 (1963), 211-219.
2. K. Borsuk, On the k-independent subsets of the Euclidean space and of the Hilbert space, Bull. Acad. Polan. Sci. Cl. III 5 (1957), 351-356.
3. F. R. Cohen, The homology of C_{n+1}-spaces, $n>0$, Lecture Notes in Math., vol. 533, Springer-Verlag, Berlin and New York, 1967, pp. 207-351.
4. F. R. Cohen and D. Handel, k-regular embeddings of the plane, Proc. Amer. Math. Soc. 72 (1978), 202-204.
5. D. Handel, Obstructions to 3-regular embeddings, Houston Math. J. (submitted).
6. \qquad , Some existence and non-existence theorems for k-regular maps, Fund. Math. (submitted).
7. D. Handel and J. Segal, On k-regular embeddings of spaces in Euclidean space, Fund. Math. (to appear).
8. J. P. May, The geometry of iterated loop spaces, Lecture Notes in Math., vol. 271, Springer-Verlag, Berlin and New York, 1972.
9. \qquad , The homology of E_{∞}-spaces, Lecture Notes in Math., vol. 533, Springer-Verlag, Berlin and New York, 1967, pp. 1-68.
10. J. W. Milnor and J. D. Stasheff, Characteristic classes, Ann. of Math. Studies, no. 76, Princeton Univ. Press, Princeton, N.J., 1974.
11. S. Priddy, Dyer-Lashof operations for the classifying spaces of certain matrix groups, Quart. J. Math. Oxford Ser. (3) 26 (1975), 179-193.
12. I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Springer-Verlag, Berlin and New York, 1970.

Department of Mathematics, Wayne State University, Detroit, Michigan 48202

[^0]: Received by the editors March 21, 1978.
 AMS (MOS) subject classifications (1970). Primary 55G99; Secondary 41A50.
 Key words and phrases. k-regular maps, configuration spaces, Dyer-Lashof operations, StiefelWhitney classes.

