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Abstract. In this paper we prove that in any non-trivial real analytic family
of quasiquadratic maps, almost any map is either regular (i.e., it has an
attracting cycle) or stochastic (i.e., it has an absolutely continuous invariant
measure). To this end we show that the space of analytic maps is foliated
by codimension-one analytic submanifolds, “hybrid classes”. This allows
us to transfer the regular or stochastic property of the quadratic family to
any non-trivial real analytic family.
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1. Introduction

In this paper we will consider the dynamics of unimodal maps of an inter-
val I , i.e., smooth endomorphisms of I with a unique critical point that will
be assumed to be quadratic. The simplest and most famous example of this
kind is given by the real quadratic family:

Qλ : [0, 1] → [0, 1], Qλ(x) = λx(1 − x),

where λ is a real parameter between 1 and 4. An 1976 article by R. May
[May] had a big impact on the scientific community by demonstrating that
this simple mathematical model exhibits a very interesting and complex
dynamical behavior.

The interest in this special family grew further when Milnor and Thurston
[MT] showed the qualitative universality of this family: any unimodal map
has essentially the same dynamics as some quadratic map Qλ . This statement
becomes particularly complete if we restrict ourselves to maps with negative
Schwarzian derivative: any such map is topologically conjugate to some
quadratic map, as was shown by Guckenheimer and Misiurewicz in late
1970’s. This suggests that a typical one parameter family { ft} of unimodal
maps should have a similar qualitative dynamical evolution as the quadratic
family. Discovery of Feigenbaum, Coullet and Tresser (made approximately
at the same time) of quantitative universality of the quadratic family raised
its significance even further.

In this paper we will describe a picture of an appropriate space of real
analytic unimodal maps, which will give a justification for the special role
of the quadratic family. We will use it to transfer some important dynam-
ical properties from the quadratic family to any non-trivial real analytic
family of quasiquadratic maps (a class which includes maps with negative
Schwarzian derivative, see §2.8 for the precise definition).

A unimodal map is called regular if its critical point belongs to the basin
of a hyperbolic periodic attractor and all its periodic orbits are hyperbolic. It
is called stochastic if it has an invariant measure absolutely continuous with
respect to the Lebesgue measure. Given a smooth one-parameter family { ft}
of unimodal maps, we refer to a parameter t as regular or stochastic if the
corresponding map ft is such. The set of regular parameter values is always
open. The set of stochastic parameter values has positive Lebesgue measure
for an open set of families containing the quadratic family [J,BC]. In fact,
in the case of the quadratic family {Qλ} much more is known:

• The set of regular parameter values λ is open and dense in the quadratic
family [L4,GS2].

• The set of stochastic parameter values λ has full Lebesgue measure in
the complement of the regular parameters [L7].

The former result was extended by Kozlovski [K1] to any non-trivial
real analytic family { ft} of real analytic unimodal maps: For an open and
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dense set of parameter values t in such a family, the map ft has a finite
number of periodic attractors whose basin has full Lebesgue measure. One
of our main theorems, Theorem B, extends the latter result to all non-trivial
real analytic families { ft} of unimodal maps with negative Schwarzian
derivative: In such a family the map ft is either regular or stochastic for
a set of parameter values t of full Lebesgue measure. Note that this result
fits nicely to the general program of studying attractors in finite parameter
families of dynamical systems (in all dimensions) formulated by Palis [Pa].

Let us now describe the picture which allows us to transfer the results
from the quadratic family to other families of quasiquadratic maps. We con-
sider an appropriate Banach space B of real analytic quasiquadratic maps
of an interval and describe its partition into topological classes (i.e., the
classes of topologically conjugate maps). One of our main results, Theo-
rem A, states that each topological class is either an open set (in the regular
case) or a codimension-one Banach submanifold. Different codimension-
one classes fit together nicely giving a lamination structure in a neigh-
borhood of any map that does not have a parabolic periodic point. This
lamination is transversally quasisymmetric.

Any non-trivial real analytic one parameter family { ft } ⊂ B is transverse
to this lamination except possibly on a closed countable set of parameter
values. Moreover, the quadratic family {Qλ} is a global transversal to this
lamination. Thus, the bifurcation locus of the quadratic family (i.e., the com-
plement of the set of regular parameters) has a universal quasisymmetric
structure: outside a closed countable set of parameters, the bifurcation locus
in any non-trivial real analytic family { ft} ⊂ B is locally quasisymmetri-
cally equivalent to that in the quadratic family. However, since quasisym-
metric maps are not necessarily absolutely continuous, measure-theoretical
applications of this result involve some extra work.

If we had the lamination structure in a neighborhood of parabolic maps
as well, we would have a stronger result: the set of tangencies would be
discrete. This would also imply the following conjecture. There is a C∞

open and dense set of analytic families { ft} ⊂ B which are transverse to all
topological classes and satisfy the following property: for any nearby fam-
ily {gt} there is a quasisymmetric homeomorphism φ between the parameter
intervals such that ft is quasisymmetrically conjugate to gφ(t).

Problem 1.1. Is it true that codimension-one topological classes form a lam-
ination in the space of quasiquadratic maps (near parabolic maps as well)?1

Though this paper is concerned with real unimodal maps, it is mostly
based on the complex methods. The complex tools which are particularly
important for us are the theory of holomorphic motions and the Pullback
Argument, especially, its infinitesimal version introduced in this paper. It
allows us to carry out an infinitesimal analysis of topological classes of
unimodal maps which yields the above lamination structure.

1 One can show that this fails without the quasiquadratic assumption.
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After describing the dynamical and analytic background (§2), we state
the main results of the paper (§3.1) and then give an outline of the main
ideas of the proofs (§3.2). We encourage the reader to read this part first
before plunging into the ocean of technical details. The structure of the rest
of the paper containing the proofs of the main results should be clear from
the Table of Contents.

Remark 1.1. We would like to draw the reader’s attention to §A.6 of Ap-
pendix A which implies a short proof of Yoccoz’s Rigidity Theorem.

Further development: The main results of this paper are still valid with-
out the negative Schwarzian derivative assumption, see [Av].

The regular or stochastic dichotomy in families of unimodal maps has
been recently refined, giving a better statistical description of the dynamics
of typical stochastic parameters: they satisfy the “Collet-Eckmann con-
dition”, among other nice properties. Those results, first obtained in the
context of the quadratic family ([AM1]), were generalized in [AM2], [Av]
to non-trivial analytic families using results and methods of this paper, and
then to generic smooth families.

The lamination constructed in this paper fails to be absolutely continuous
in a rather dramatic way, see [AM3].

Acknowledgements. We are grateful to A. Douady and M. Yampolsky for helpful discussions
and suggestions, and to the referee for many detailed comments. We are also thankful to
SUNY at Stony Brook, IMPA, the Clay Institute, and the University of Toronto for their kind
hospitality. This work has been partially supported by the PRONEX Project on Dynamical
Systems, FAPERJ Grant E-26/151.462/99, CNPq Grant 460110/00-4, and the NSF grant
DMS-9803242.

2. Preliminaries

2.1. General terminology and notations. As usual,N = {1, 2, . . . } stands
for the set of natural numbers; R stands for the real line; C stands for the
complex plane, and C = C ∪ {∞} stands for the Riemann sphere.

Let Dr(x) = {z ∈ C : |z − x| < r}, Dr = Dr(0), and let D = D1.
X or cl X denotes the closure of a set X; int X denotes its interior.
U ⋐ V means that U is compactly contained in V , i.e., U is a compact

set contained in V .
For an open set U ⊂ C and a point z ∈ U , let U(z) stand for the

connected component of U containing z.
For two sets X and Y in C, let

dist(X, Y ) = inf
x∈X, y∈Y

|x − y|.

If S is a hyperbolic Riemann surface, we consider the hyperbolic metric
distS in it and for X, Y ⊂ S we define

distS(X, Y ) = inf
x,y

distS(x, y)
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and
distS(X, Y ) = max{sup

x∈X

distS(x, Y ), sup
y∈Y

distS(y, X)},

which is the standard Hausdorff distance.
We will reserve notation I for the interval [−1, 1]. For a > 0 let

Ωa = {z ∈ C : dist(z, I ) < a}.

A topological disk is a simply connected domain in C; a Jordan disk is
a topological disk bounded by a Jordan curve;

a topological annulus is a doubly connected domain in C.
The Lebesgue measure of a set X ⊂ R will be denoted by |X|; notation

meas(X) will be reserved for the planar Lebesgue measure of a set X ⊂ C.
A set X ⊂ C is called R-symmetric if it is invariant under the conjugacy

z �→ z. A function, or vector field, or differential defined on anR-symmetric
set will be called R-symmetric if it commutes with the conjugacy. A set X
is called 0-symmetric if it is invariant under the 0-symmetry z �→ −z.

For a bounded function, or a vector field, or a differential, ‖ · ‖∞ will
denote its sup-norm.

Given a bounded open set V ⊂ C, let BV be the Banach space of
holomorphic functions f : V → Cwhich are continuous up to the boundary
endowed with the sup-norm.

The tangent space to a manifold M at a point x is denoted by Tx M.

Given a map f : X → X on some metric space X, f n will denote its
iterates, n = 0, 1, 2, . . . .

For x ∈ X, orb(x) ≡ orb f (x) = { f nx}∞
n=0 will denote the forward orbit

or trajectory of x.
We will also use this notation for partially defined maps so that orb f (x)

consists of those points f n(x) which are well defined.
ω(x) ≡ ω f (x) is the limit set of orb(x):

ω(x) =

∞
⋂

n=0

orb( f n(x)).

A point x is called recurrent if x ∈ ω(x).
A point x is called fixed if f(x) = x; it is called periodic if f n(x) = x

for some n ∈ N; the smallest n ∈ N with this property is called the period
of x; The orbit of a periodic point is also called a cycle.

id stands for the identity map, id(x) ≡ x.

Given a set Y ⊂ X, the first return map to Y is defined as follows: For
y ∈ Y , let F(y) = f l(y)(y), where l = l(y) ∈ N is the first moment when
f l(y) ∈ Y . Such a moment may or may not exist, so that the first return
map is only partially defined on Y . Somewhat abusing notations we will
still write F : Y → Y .
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The first landing map L : X → Y is defined as follows: For x ∈ X, let
L(x) = f l(x)(x), where l = l(x) ∈ N ∪ {0} is the first moment such that
f l(x) ∈ Y . (Note that L|Y = id.) Again, this map is only partially defined
on X.

Let X ⊂ X ′ and Y ⊂ Y ′. Two maps f : X → X ′ and g : Y → Y ′

are called topologically conjugate or topologically equivalent if there is
a homeomorphism h : X ′ → Y ′ such that h(X) = Y and

h( f(z)) = g(h(z)), z ∈ X.(2.1)

Classes of topologically conjugate maps are called topological classes.
We will also say that h is equivariant (with respect to the actions of f

and g). This terminology will also be used in the case when h is only
partially defined. Then it means that (2.1) is satisfied whenever it makes
sense.

Given a diffeomorphism φ : J → J ′ between two real intervals, its
distortion or non-linearity is defined as

sup
x,y∈J

log
|Dφ(x)|

|Dφ(y)|
.

Its Schwarzian derivative is given by the formula:

Sφ =
D3φ

Dφ
−

3

2

(

D2φ

Dφ

)2

.

The condition of negative Schwarzian derivative plays an important role in
one-dimensional dynamics. This condition is preserved under composition.

Let U ⊂ C be a bounded open set. We say that a holomorphic function
f : U → C belongs to class A1(U) if f and its derivative f ′ admit a con-
tinuous extension to the closure U. We will use the same notations f and f ′

for the extensions. We supply A1(U) with the seminorm

‖ f ‖1 = max
z∈U

| f ′(z)|.(2.2)

If f ∈ A1(U), f |U is a homeomorphism onto its image and f ′ does not
vanish on U , we say that f |U is a diffeomorphism (onto the image).

Remark 2.1. Notice that if U is a bounded connected open set then ‖ · ‖1
is a Banach norm in the subspace Λz ⊂ A1(U) of functions vanishing at
a given point z ∈ U .
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2.2. Hyperbolic metric. A domain D ⊂ C is called hyperbolic if its uni-
versal covering is conformally equivalent to the unit disc. This happens if and
only ifC\ D consists of at least two points. Hyperbolic domains possess the
hyperbolic (or Poincaré) metric ρD of constant negative curvature. This met-
ric is obtained by pushing down the Poincaré metric dρD = |dz|/(1 − |z|2)|
from the unit disc D.

In the case of a simply connected hyperbolic domain D (“conformal
disk”), dρD = pD(z)|dz| is the pull-back of the ρD by the Riemann mapping
D → D. In this case the density pD(z) is comparable with dist(z, ∂D)−1:

1

4
dist(z, ∂D)−1 ≤ pD(z) ≤ dist(z, ∂D)−1.

The main virtue of the hyperbolic metric is that it is contracted under
holomorphic maps (Schwarz Lemma) and hence is conformally invariant.

Consider an open interval J ⊂ R. A special role in the complex dynamics
of real maps belongs to the slit plane CJ = C \ (R \ J) endowed with
the hyperbolic metric. By symmetry, J is a hyperbolic geodesic in CJ .
Let us consider hyperbolic r-neighborhoods consisting of points z ∈ CJ

whose hyperbolic distance to J is at most r. It is easy to see that such
a neighborhood is the union of two symmetric disk sectors based on J .
For φ ∈ (0, π), let Dφ(J) denote such a neighborhood whose boundary
curve meets J at angle φ. (One can easily work out the explicit relation
between r and φ.) Note that for φ = π/2 we obtain the round disk with
diameter J .

2.3. Quasiconformal maps and Beltrami differentials. We assume that
the reader is familiar with the basic theory of quasiconformal maps (see,
e.g., [A,LV]). The goal of this section is to fix terminology and notations,
and to state a few basic facts particularly important for this paper.

A homeomorphism h : U → V between two open sets U, V ⊂ C,
is called a quasiconformal map, or briefly a qc map, if it has locally in-
tegrable distributional derivatives ∂h, ∂h, and |∂h/∂h| ≤ k < 1 almost
everywhere. As this local definition is conformally invariant, one can define
qc homeomorphisms between Riemann surfaces.

One can associate to a qc map an analytic object called the Beltrami
differential of h,

µ =
∂h

∂h

dz

dz
,

with ‖µ‖∞ < 1. (We will identify the Beltrami differential of a map h :

C → C with the function ∂h/∂h.) The corresponding geometric object is
a measurable family of infinitesimal ellipses (defined up to dilatation), pull-
backs by Dh of the field of infinitesimal circles. The eccentricities of these
ellipses are ruled by |µ|, and are uniformly bounded almost everywhere,
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while the orientation of the ellipses is ruled by the arg µ. The dilatation

Dil(h) =
1 + ‖µ‖∞

1 − ‖µ‖∞

of h is the essential supremum of the eccentricities of these ellipses. A qc
map h is called K -qc if Dil(h) ≤ K .

Weyl’s Lemma. A 1-qc map is holomorphic.

One of the most remarkable facts of analysis is that any Beltrami dif-
ferential with ‖µ‖∞ < 1 (or rather a measurable field of ellipses with
essentially bounded eccentricities) is locally generated by a qc map, unique
up to post-composition with a conformal map. Thus, such a Beltrami differ-
ential on a Riemann surface S induces a conformal structure quasiconfor-
mally equivalent to the original structure of S. Together with the Riemann
Mapping Theorem this leads to the following result:

Measurable Riemann Mapping Theorem. Let µ be a Beltrami differential
on C with ‖µ‖∞ < 1. Then there is a qc map h : C→ C which solves the

Beltrami equation: ∂h/∂h = µ. This solution is unique if it is normalized to

fix three points in C. The normalized solution hµ depends holomorphically2

on µ.

A map f : U → V between domains in C is called quasiregular if it is
a composition of a holomorphic map and a qc homeomorphism. Beltrami
differentials can be naturally pulled back by quasiregular maps µ �→ f ∗µ.
A Beltrami differential (defined on an open set containing U ∪ V ) is called
f -invariant if f ∗µ = µ a.e. in U .

Assume that a quasiregular map f : U → V admits an invariant Beltrami
differential µ defined on C. Let us solve the Beltrami equation

∂hλ

∂hλ

= λµ, |λ| < a ≡
1

‖µ‖∞

,

by means of qc maps hλ : C→ C fixing two given points. Then the maps
fλ = hλ ◦ f ◦ h−1

λ preserve the standard conformal structure and hence
are holomorphic (by Weyl’s Lemma). The dependence of fλ on λ is also
holomorphic (that is, the map (λ, z) �→ fλ(z), |λ| < a, z ∈ hλ(U) is
holomorphic). This family of maps is called the Beltrami disk through f in
the direction of µ. If we restrict λ to the real interval (−a, a), we obtain the
Beltrami path through f in the direction of µ.

One more fundamental property of qc maps exploited in this paper is
compactness:

2 The space of Beltrami differentials is the unit ball in the complex Banach space L∞(C),
and thus it is endowed with the natural complex structure. Holomorphic dependence of hµ

on µ is understood in the pointwise sense: for any z ∈ C, µ �→ hµ(z) is holomorphic.
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First Compactness Lemma. The space of K-qc maps h : C → C fixing
two points is compact in the uniform topology on the Riemann sphere.

A useful consequence is the following:

Lemma 2.1. Let S ⊂ C be a hyperbolic domain, and let H : S → S be a
K-qc map homotopic to the identity rel the boundary. Then distS(x, H(x)) ≤
C(K ), x ∈ S, where C(K ) → 0 as K → 1.

Proof. If S = D, then the situation can be normalized so that x = 0, and the
statement follows from the First Compactness Lemma. In general, cover S
by the unit disk and lift H to a qc homeomorphism of D homotopic to id rel
boundary (see Theorem 2.2 of [EM]). ⊓⊔

Let L : R+ → R+. A map h : X → Y between two metric spaces is
called a L-quasi-isometry if for any ε > 0,

dist(h(x), h(y)) ≤ max{L(ε) dist(x, y), ε}, x, y ∈ X.

Quasiconformal maps are quasi-isometries with respect to the hyperbolic
metric:

Lemma 2.2. For every K ≥ 1 there exists L K : R+ → R
+ such that if

h : S → S̃ is a K-qc map between two hyperbolic Riemann surfaces then
h is a L K quasi-isometry in the hyperbolic metric. Furthermore, for every
ε > 0, limK→1 L K (ε) = 1.

Proof. Lifting H to the universal covering, we reduce the situation to the
case when S = D. Again, the conclusion follows from compactness argu-
ment. ⊓⊔

Lemma 2.3. Given M > m > 0, there is a constant δ with the following

property. Let S, S̃ ⊂ C be hyperbolic Riemann surfaces and h1, h2 : S → S̃
be (1 + δ)-qc maps homotopic rel boundary. Let X and Y be subsets of S.
If distS(X, Y ) > M then distS̃(h1(X), h2(Y )) > m.

Proof. Let L = L1+δ(m) be the quasi-isometric constant for h−1
2 (see

Lemma 2.2). Let H = h−1
2 ◦ h1. Assume there is a point x ∈ X such that

distS̃(h1(x), h2(Y )) ≤ m. Applying h−1
2 we conclude that distS(H(x), Y ) ≤

max{Lm, m} < (M + m)/2, provided δ is sufficiently small. Hence
distS(H(x), x) > (M − m)/2, which for sufficiently small δ contradicts
Lemma 2.1. ⊓⊔

A qc map h : C→ C will be called normalized if it fixes points −2 and
2 (this gives a little bit of space for the dynamical interval [−1, 1]). We will
use the notation µh for the Beltrami differential of the qc map h.

A homeomorphism h : X → h(X) ⊂ C of a closed set X ⊂ C will be
called quasiconformal if it admits a qc extension to C.
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If X is a measurable set and h : X → C is a homeomorphism which
admits qc extensions h1 and h2 to neighborhoods of X, it is easy to see that
µh1 |X = µh2 |X up to sets of zero Lebesgue measure. This allows us to
define the dilatation of h, Dil(h) as the essential supremum over X of the
eccentricities of the corresponding ellipses field (or 0 if meas X = 0).

A quasidisk (or quasiarc) is the image of D (or [−1, 1]) by a qc map
of C.

2.4. Quasisymmetric maps. A homeomorphism f : R → R is called
quasisymmetric (briefly: “qs”) if there exists a constant κ ≥ 1 such that for
any h > 0 and any x ∈ R we have

1

κ
≤

f(x + h) − f(x)

f(x) − f(x − h)
≤ κ.

The dilatation Dil( f ) of a qs map is defined as the smallest such κ.
A map f is called κ-qs if Dil( f ) ≤ κ.

Qs maps are important because of their relation to qc maps:

Theorem 2.4 (Ahlfors-Beurling). Let F : C → C be a K-qc homeomor-
phism preserving the real line. Then the restriction f |R is κ(K )-qs. Vice
versa, any κ-qs homeomorphism f : R→ R admits a K(κ)-qc extension to
the complex plane.

Quasisymmetric maps fixing 0 and 1 are Hölder continuous with an
absolute constant and an exponent depending only on the dilatation. Since
the dilatation is invariant under compositions with affine maps, we obtain:

Lemma 2.5. Let f : R → R be a κ-qs homeomorphism. Then there
exist constants C > 0 and δ > 0 such that for any two nested intervals
J ⊂ T ⊂ R we have:

| f(J)|

| f(T )|
≤ C

(

|J|

|T |

)δ

.

A map f on a set X ⊂ R is called quasisymmetric if f extends to a qs
map of R.

2.5. Holomorphic motions and codimension-one laminations. Given
a domain V in a complex Banach space E with a base point ∗ and a set
X∗ ⊂ C, a holomorphic motion of X∗ over V is a family of injections
hλ : X∗ → C, λ ∈ V, such that h∗ = id and hλ(z) is holomorphic in λ for
any z ∈ X∗. Let Xλ = hλ X∗.

We will summarize fundamental properties of holomorphic motions
which are usually referred to as the λ-lemma. It consists of two parts:
extension of the motion and transversal quasiconformality, which will be
stated separately. The first extension result was obtained in [L1], [MSS], and
states that any holomorphic motion of a subset ofC extends to a holomorphic
motion of the closure. A much more involved result was obtained by [BR],
[ST]. Let Br ⊂ E stand for the Banach ball of radius r centered at ∗.
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Extension Lemma ([BR], [ST]). A holomorphic motion hλ : X∗ → Xλ of
a set X∗ ⊂ C over a Banach ball Br admits an extension to a holomorphic
motion Hλ : C→ C of the whole complex plane over the ball Br/3.

Remark 2.2. Assume that a complex Banach space E is supplied with an
anti-linear isometric involution conj : E → E. Let

ER = {λ ∈ E| conj(λ) = λ}

and ∗ ∈ ER. Let us say that a holomorphic motion of an R-symmetric set
X ⊂ C over Br is R-symmetric if hconjλ(z) = hλ(z). Then the above Ex-
tension Lemma actually provides an R-symmetric extension of this motion
over Br/3. This follows from the fact that the extension constructed by [BR]
is canonical.

In what follows, this remark will be applied to certain spaces of holo-
morphic functions on some R-symmetric domains, and (conj f )(z) = f(z).

Remark 2.3. If a holomorphic motion hλ : X∗ → Xλ is defined over a sim-
ply connected hyperbolic domain D ⊂ C, then Slodkowski’s Theorem [Sl]
gives the existence of an extension to Hλ : C → C defined over the full
parameter space D.

Quasiconformality Lemma [MSS], [BR]. Let hλ : U∗ → Uλ be a holo-
morphic motion of a domain U∗ ⊂ C over a hyperbolic domain D ⊂ C.
Then the maps hλ are K(r)-qc, where r is the hyperbolic distance between
∗ and λ in D. Moreover, K(r) = 1 + O(r) as r → 0.

Remark 2.4. Combining the Extension Lemma and the Quasiconformality
Lemma, we obtain the following statement: If hλ : X∗ → Xλ is a holomor-
phic motion of a subset X∗ ⊂ C over a hyperbolic domain D then hλ admits
a K(r)-qc extension to the whole C, where r is the hyperbolic distance
between ∗ and λ.

Indeed, it is enough to work in the universal cover (notice that we do not
require the extensions to fit together in a holomorphic motion). If r ≤ 1/4,
a direct application of the Extension Lemma and the Quasiconformality
Lemma will do. In the general case, we can cover a geodesic path linking
∗ to λ by at most 4r + 1 balls of hyperbolic diameter bounded by 1/4,
so we just have to apply the previous case at most 4r + 1 times. See also
[BR], Theorem 1, which provides optimal bounds for the dilatation of the
extensions.

A holomorphic motion hλ : X∗ → Xλ over V can be viewed as a com-
plex codimension-one lamination on V × C, whose leaves are graphs of
the functions λ �→ hλ(z), z ∈ V. More generally, a codimension-one holo-
morphic lamination L on a complex Banach manifold M is a family of
disjoint codimension-one Banach submanifolds of M, called the leaves of
the lamination that locally looks like a holomorphic motion:

• For any point p ∈ M, there exists a holomorphic local chart Φ : W →
V ⊕ C (where W is an open neighborhood of p in M and V is an open
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set in some complex Banach space) such that for any leaf L and any
connected component L0 of L ∩ W , the image Φ(L0) is a graph of
a holomorphic function V → C.
The neighborhood W in the above definition is called a flow box, and
the connected components L0 are called local leaves in this flow box.

Note that by the Extension Lemma, any holomorphic lamination extends
locally, near any point p ∈ M, to a lamination whose leaves fill out a full
Banach neighborhood of p.

A one-dimensional holomorphic submanifold of M which only has
transversal intersections with the leaves of L is called a transversal to L.
Given two transversals X and Y within one flow box W , we have a partially
defined local holonomy map H : X → Y , H(p) = q iff p and q belong to
the same local leaf in W . This definition can be extended to local transversals
X and Y through two points p and q on the same leaf connected by some
path γ . To this end, cover the path with finitely many flow boxes Wi and
and define the local holonomy H : X → Y as the composition of local
holonomies within the Wi .

A map H : X → Y is called locally qc at p ∈ X if it admits a qc extension
to some neighborhood of p. We say that a lamination L is transversally
quasiconformal if the holonomy between any two transversals is locally qc.
The λ-lemma implies (see e.g., [L6, Appendix 2]):

Corollary 2.6 (Transverse qc structure). Any codimension-one holomor-
phic lamination is transversally quasiconformal.

A holomorphic motion hλ : C→ C will be called normalized if it fixes
points 2 and −2.

The Measurable Riemann mapping Theorem can be interpreted in terms
of holomorphic motions in the following way. Let µλ, λ ∈ D, be a holo-
morphic family of Beltrami differentials on C such that ‖µλ‖∞ < 1 for all
λ ∈ D, and µ0 = 0. Then there exists a unique normalized holomorphic
motion hλ of C based at 0 such that µhλ

= µλ. The converse is also true:

Theorem 2.7 (see [BR], Theorem 2). Let hλ be a holomorphic motion of
an open set ofC. Then µhλ

is a holomorphic family of Beltrami differentials.

Holomorphic motions also enjoy the compactness properties of qc
maps:

Lemma 2.8. Let X ⊂ C be a set containing 3 distinct points {a, b, c} and let
V be an open subset of a separable Banach space. Consider a holomorphic
motion of X over V as a map from V to the space of continuous maps from
X to C endowed with the uniform metric. The space of all holomorphic
motions hλ : X → C, λ ∈ V, fixing {a, b, c} is compact in the uniform
topology over compacts of V.

For a proof, see [D1].
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2.6. Infinitesimal deformations

2.6.1. Quasiconformal vector fields. A continuous vector field v ≡ v(z)/dz
on an open set U ⊂ C is called K-quasiconformal (or briefly,K -qc) if
it has locally integrable distributional partial derivatives ∂v and ∂v, and
‖∂v‖∞ ≤ K . A vector field is quasiconformal if it is K -qc for some K .

The theory of qc vector fields has many parallels with the theory of qc
maps. Given µ ∈ L∞(C) one obtains a qc vector field α with ∂α = µ.
(Global) solutions to this problem are obtained from local ones, and those
can be explicitly given (see [AB]) using the Cauchy transform

−
1

π

∫

µ(ζ)

z − ζ
dζ ∧ dζ .

The Cauchy transform also implies that local solutions have modulus of
continuity φ(x) = −x ln(x) (see [Mc2], Theorem A.10).

Two qc vector fields α and α̃ such that ∂α = ∂α̃ differ by a conformal
vector field (this is another instance of Weyl’s Lemma). A conformal vector
field onCwhich vanishes at three given points vanishes on the whole sphere.

Second Compactness Lemma. The space of K-qc vector fields of the

Riemann sphereC vanishing at three given points is compact in the topology
of uniform convergence on C.

(See Corollary A.11, p. 199 of [Mc2] for the proof.)

Corollary 2.9. For any L > 0, there exists a C > 0 such that if α is a L-qc

vector field on C that vanishes at ∞ and on the boundary of some interval
T ⊂ R, then |α(z)| < C|T |, for all z ∈ T .

Proof. Let A : [0, 1] → T be an affine transformation and let β = A∗α.
Then the vector field β is L-qc and vanishes at 0, 1 and ∞. By the Sec-
ond Compactness Lemma, β is bounded by some universal C. Hence α is
bounded by C|T |. ⊓⊔

A qc vector field will be called normalized if it vanishes on {−2, 2,∞}.
A continuous vector field v on a closed set X ⊂ C is called quasicon-

formal if it extends to a qc vector field on C. If a vector field v on a closed
set X admits a normalized qc extension to C (this is always the case when
X does not intersect {−2, 2,∞}) then we let

‖v‖qc = inf ‖∂β‖∞,(2.3)

where β runs over all normalized qc extensions of v.
Notice that if α1 and α2 are qc vector fields that coincide in some

measurable set X then ∂α1 = ∂α2 on X up to sets of zero Lebesgue measure.
If we define α as the restriction of those vector fields to X, the object
∂α ∈ L∞(X) is well defined.

Quasiconformal vector fields are the infinitesimal counterparts of qc
maps. More precisely, they are tangent at identity to holomorphic motions.
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Lemma 2.10. Let hλ : X → C, λ ∈ D, be a holomorphic motion with base
point 0. Then

α ≡
d

dλ
hλ

∣

∣

∣

∣

λ=0

is a qc vector field on X. Moreover, if X is an open set,

∂α =
d

dλ
µhλ

∣

∣

∣

∣

λ=0

.(2.4)

Proof. Consider an extension of hλ, which we still denote hλ. By Theo-
rem 2.7, µhλ

depends holomorphically on λ, and (2.4) follows from the
proof of Lemma 19 of [AB]. ⊓⊔

2.6.2. Equivariant vector fields. Let f : Ω → C be a holomorphic map
and let v be a holomorphic vector field on Ω. A vector field α is called
equivariant on some set X ⊂ Ω (with respect to the pair ( f, v)) if for any
z ∈ X,

v(z) = α( f(z)) − f ′(z)α(z).(2.5)

Note that this equation can also be written in the form

f ∗α − α =
v

f ′
.(2.6)

This equation tells us that α is an “infinitesimal conjugacy” between
f and its “infinitesimal deformation” v. It is obtained by linearizing the
following commutative diagram:

Ω −→
id +εα

Ωε

f



�



� f +εv

C −→
id +εα

C

(2.7)

Let X ⊂ Ω and let α be a vector field on Y ≡ f(X). A vector field β
is called the lift of α to X by ( f, v) if v = α ◦ f − f ′β. This equation is
obtained by linearization of the following commutative diagram:

X −→
id +εβ

Xε

f



�



� f +εv

C −→
id +εα

C

Note that if 0 is a critical point of f , then a “liftable” vector field α
must necessarily satisfy condition v(0) = α( f(0)) (this condition is also
sufficient if 0 is a simple critical point, see Lemma 6.4).

Obviously, a vector field is equivariant if and only if it is equal to its lift.
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Assume now that the set X is open and the vector field α is quasiconfor-
mal. Since β = f ∗α − v/ f ′ where v/ f ′ is holomorphic,

∂β = ∂( f ∗(α|Y )) = f ∗∂(α|Y ),

where the former pullback acts on vector fields while the latter one acts on
Beltrami differentials. Hence

‖∂β‖∞ = ‖ f ∗∂(α|Y )‖∞ = ‖∂(α|Y )‖∞,

i.e., lifts preserve the qc norm of vector fields.

2.6.3. Variational formula. Let us consider now the iteration operator Sn :
f �→ f n acting between some spaces of (real or complex) analytic functions.
Linearizing the expression ( f +εv)n , we obtain (by induction) the following
formula for the differential of Sn:

vn ≡ DSn( f )v = D f n−1 ◦ f

n−1
∑

k=0

v ◦ f k

D f k ◦ f
= D f n

n−1
∑

k=0

( f k)∗

(

v

f ′

)

.

(2.8)

(Though f is implicit in the notation vn, it should not lead to a confusion.)
Note that if ft is a one-parameter family of analytic maps such that

d

dt
ft

∣

∣

∣

∣

t=0

= v

then

d

dt
f n
t

∣

∣

∣

∣

t=0

= vn.(2.9)

Applying to (2.6) the iterates of f ∗ and summing up, we see that if α is
equivariant with respect to ( f, v) on ∪n−1

k=0 f k(X), then it is equivariant with
respect to ( f n, vn) on X:

( f n)∗α − α =

n−1
∑

k=0

( f k)∗( f ∗α − α) =

n−1
∑

k=0

( f k)∗

(

v

f ′

)

=
vn

D f n
.(2.10)

(Another way of seeing it is to linearize the “iteration” of the diagram (2.7).)
The variational formula makes it clear that if α is a bounded vector field

equivariant on orb f (x) and D f k(x) → ∞ then (using (2.8) and (2.10)) we
have

α(x) = −

∞
∑

j=0

v ◦ f j

D f j+1
.

Note finally that if β is obtained from α by n consecutive lifts by ( f, v),
then β is the lift of α by ( f n, vn).
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2.7. Markov maps and expanding Cantor sets.

Definition 2.1. Consider two open sets U⋐Ũ and a smooth map f : Ũ →C.
The map f : U → C is called Markov if:

(i) U is the union of finitely many Jordan disks Ui with piecewise smooth
boundary and disjoint closures;

(ii) the restrictions f |Ui are diffeomorphism onto the image;
(iii) for any i and k, the curves f(∂Uk) and f(∂Ui) are either disjoint or

coincide;
(iv) for any i, j, the image f(Ui) is either disjoint from U j or contains U j

(Markov property).

A Markov map will be called strictly Markov if the Markov property (iv) is
strengthened to the strict Markov property: fUi ⋑ U j .

The “Julia set” of a Markov map is defined as

K( f ) = {z : f nz ∈ U, n = 0, 1, 2, . . . }.

The map f and its Julia set are called expanding if K( f ) is compact and
there exist constants C > 0 and ρ > 1 such that

|D f n(z)v| ≥ Cρn|v|, z ∈ K( f ), v ∈ TzU, n = 0, 1, 2, . . . .

We will be mostly concerned with holomorphic (on Ũ) Markov maps,
though we will sometimes encounter a more general situation. It follows
from the Schwarz Lemma that the Julia set of a holomorphic strictly Markov
map is an expanding Cantor set.

Recall that BV stands for the Banach space of holomorphic functions
f : V → C which are continuous up to the boundary.

Proposition 2.11. Let f : U → C be a holomorphic strictly Markov map
as above. Let V be an open set such that U ⋐ V ⋐ Ũ. Then there exists
a holomorphic motion hg : C→ C over some neighborhood V ⊂ BV of f
conjugating f : U → C to g : Ug → C, where Ug = hg(U).

Proof. We will give a proof of this well-known statement which illustrates
a simplest version of the so called “pull-back argument”. By property (iii)
of Definition 2.1, the image Γ = f(∂U) is a 1-cycle, i.e., a finite union
of disjoint Jordan curves. Let Un = f −nU . Since the restrictions f |Ui are
univalent, each Un is a finite union of Jordan disks with disjoint closures.
Moreover,

U ≡ U0
⋑ U1

⋑ U2
⋑ . . . .

Let γ = ∂U .
Let γg = g−1

Γ. If g is sufficiently close to f in BV , then γg is a 1-cycle
moving holomorphically with g, where the motion h0

g : γ → γg is defined
by the requirement: g(h0

g(z)) = f(z), z ∈ γ . Moreover, γg bounds some
domain Ug and the map g : Ug → C is a strictly Markov map.



Real analytic dynamics 467

Extend h0
g to Γ as the identity. By the λ-lemma, this motion further ex-

tends to a holomorphic motion of the whole plane over some neighborhood
V ⊂ BV . Let us keep the same notation h0

g for the extension. By definition,
h0

g conjugates f : γ → Γ to g : γg → Γ.
Let Un

g = g−nU .
Since the restrictions f |Ui are univalent, we can lift h0

g to U as follows:

g ◦ h1
g

∣

∣U = h0
g ◦ f

∣

∣U.

Since h0
g is equivariant on γ , it matches with h1

g on γ . Thus, we can let
h1

g = h0
g in C \ U . We obtain a holomorphic motion of the whole plane

which conjugates f : U \ U1 → C to g : Ug \ U1
g → C.

Similarly, pulling this motion back to U2, we obtain a motion h2
g conju-

gating f : U \ U2 → C to g : Ug \ U2
g → C, etc. Since the motions

hl
g, l ≥ n, coincide with hn

g on C \ Un, at the end we obtain a mo-
tion hg : C \ K( f ) → C \ K(g) conjugating f : U \ K( f ) → C to
g : U \ K(g) → C. By the λ-lemma, this motion admits an extension
through the Julia sets. Since the Julia sets are nowhere dense, this extension
conjugates f : U → C to g : Ug → C. ⊓⊔

Remark 2.5. The same result is valid for (non-strictly) Markov maps for
which one can construct a holomorphic motion h0

g of γ ∪ Γ, provided its
Julia set has empty interior. The rest of the argument carries to this more
general situation without changes.

Given a smooth map f : U → C and a Riemannian metric ν on C, we
say that ν is expanded by f on an invariant set Q ⊂ U if there is a constant
λ > 1 such that ‖D f(x)v‖ν ≥ λ‖v‖ν for all x ∈ Q and v ∈ TxC. The
following useful fact is well-known:

Lemma 2.12. Assume that a smooth map f : U → C is expanding on
a compact invariant set Q ⊂ U. Then there exists a Riemannian metric ν
which is expanded by f on Q. If f is holomorphic then the metric ν can be
selected to be conformal.

2.8. Unimodal maps. We refer to the book of de Melo & van Strien [MS]
for the general background in one-dimensional dynamics.

A smooth map f : I → I of the interval I = [−1, 1] is called unimodal
if it has a single critical point and this point is an extremum. We always
assume that the critical point is located at the origin. Let U3 be the space
of C3 unimodal maps f : I → I with quadratic critical point, which are
even (symmetric), that is f(x) = f(−x), D f(0) = 0 and D2( f(0)) �= 0. We
normalize the maps so that −1 is a fixed point and f(1) = −1. We endow
U3 with the C3 topology. If D f(−1) < 1, either the dynamics is trivial
(−1 is the global attractor) or the map has a proper unimodal restriction.
For this reason we will assume further that D f(−1) ≥ 1.
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The symmetry assumption above was introduced to simplify the proofs,
but is not essential. In fact the general case reduces to the symmetric case,
as we show in Appendix C.

We let cn = f n(0), n = 0, 1, 2, . . . .
Basic examples of unimodal maps are given by quadratic maps

qτ : I → I, qτ(x) = τ − 1 − τx2,(2.11)

where τ ∈ [1/2, 2] is a real parameter.
A map f ∈ U3 is quasiquadratic if any nearby map g ∈ U3 is topo-

logically conjugate to some quadratic map. We denote by U ⊂ U3 the
space of quasiquadratic maps. By the theory of Milnor-Thurston [MT] and
Guckenheimer [G], a map f ∈ U3 with negative Schwarzian derivative is
quasiquadratic, so the quadratic family is contained in U.

Let us consider a periodic point q of some period n and its cycle q =

{ f k(q)}n−1
k=0 . Let λ = (D f n)(q) be its multiplier. The point q and its cycle q

are called attracting, parabolic, or repelling depending on whether |λ| < 1,
|λ| = 1, or |λ| > 1. A periodic point is called superattracting if λ = 0,
which means that the cycle of this point contains 0.

The basin of attraction D(q) of an attracting cycle q is defined as
{x ∈ I : f n(x) → q}. The basin of attraction D(q) of a parabolic cycle q
is defined similarly, except that the orbits landing at the cycle itself are not
considered to be in the basin (this makes the basin open).

A quasiquadratic map f is called hyperbolic or regular if it has an
attracting cycle q. In this case the orbit of the critical point 0 converges to q,
hence a quasiquadratic map can have at most one attracting cycle [Fa,Si].
Moreover, if it has one then almost all orbits converge to this cycle (this
follows from a result by Guckenheimer and Mañé, see [M]).

A quasiquadratic map f is called parabolic if it has a parabolic cycle q.
Similarly to the hyperbolic case, in the parabolic case the critical point 0
belongs to the basin D(q) and this basin has full Lebesgue measure in I .
Thus, a quasiquadratic map can have at most one parabolic cycle (and the
map cannot be simultaneously hyperbolic and parabolic).

Remark 2.6. Let us denote by D0(q) the union of connected components
of D(q) whose closure intersects q (the immediate basin of q).

There is a simple criteria to decide if a unimodal map f ∈ U3 is
topologically equivalent to a quadratic map: any non-repelling periodic orbit
must contain the critical point in its immediate basin. This is a consequence
of Milnor-Thurston Theory and non-existence of wandering intervals for
maps in U3 (see [MS], Theorem 6.2, p. 156 and Theorem 6.4, p. 162).

To prove that a map is quasiquadratic, we need a robust version of the
above criteria given in the following:

Lemma 2.13. If f ∈ U3 is topologically conjugate to a quadratic map and
has no parabolic periodic orbit then f is quasiquadratic.
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Proof. We only have to show that the criteria of Remark 2.6 is valid for all
g in a neighborhood of f .

By the result of Guckenheimer and Mañé (see also Proposition 2.15 be-
low), if J is a neighborhood of the critical point then f |I \ J is expanding.
This property is persistent, so we conclude that for any J there is a neigh-
borhood V ⊂ U3 of f such that for g ∈ V all periodic orbits which do
not intersect J are repelling. This implies the result if f has an attracting
periodic orbit, so let us assume that all periodic orbits are repelling. In this
case, the (automatically repelling) periodic cycles of f accumulate on 0.3

By Theorem A of [K2], there exists a symmetric interval J f contain-
ing the critical point such that the first return map to f(J f ) has nega-
tive Schwarzian derivative. Shrinking the interval J f we may suppose that
f(J f ) = [p f , f(0)] where p f is a repelling periodic point and p f ∩ f(J f ) =
{p f } (this condition implies the nice condition, to be defined in the next
section).

The interval J f has a continuation Jg for g ∈ U3 near f such that
g(∂Jg) = pg is the continuation of p f , and by the proof in [K2], it is clear
that there exists a neighborhood V ⊂ U3 of f such that if g ∈ V then
the first return map to g(Jg) still has negative Schwarzian derivative. By
the argument of Singer [Si], it follows that any non-repelling periodic orbit
for g which intersects Jg must contain the critical point in its immediate
basin. Shrinking V we may assume that there exists an interval J which
is contained in ∩g∈V Jg. Shrinking V again, we conclude (by the previous
argument) that all periodic orbits contained in I \ J are repelling, and the
result follows. ⊓⊔

In what follows, all unimodal maps under consideration will be assumed
to be quasiquadratic.

If the fixed point −1 is repelling, then f has a unique fixed point in
the interior of I . This point will always be denoted by α. If the α-point is
repelling, then it is orientation reversing, that is, f ′(α) < 0.

A unimodal map is called preperiodic if the orbit of the the critical point
0 lands at a repelling cycle. Simplest examples of preperiodic maps are
provided by Ulam-Neumann (or Chebyshev) maps which are defined by
the condition f(0) = 1 (so that the second iterate of 0 lands at the fixed
point −1, which is automatically repelling in this case). For instance, the
quadratic map q2 is Chebyshev.

A unimodal map f is renormalizable if there exists an interval J con-
taining the critical point and an integer n ≥ 2 such that f n(J) ⊂ J and the
intervals J, f(J), . . . , f n−1(J) have pairwise disjoint interior. The smallest
such n is called the renormalization period.

Let n be the renormalization period and J ∋ 0 be the maximal periodic
interval of period n as above. This interval is bounded by a periodic point p

3 To see this, first notice that by the No Wandering Intervals Theorem, the preimages of
the critical point are dense on I . By the Intermediate Value Theorem, if n ≥ 1 and f n(x) = 0
then there exists p ∈ [−x, x] with f n(p) = p.
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(of period n if n ≥ 3 and period 1 if n = 2) and the symmetric point. The
restriction f n|J is called the pre-renormalization of f .

Let A : I → J be the affine scaling mapping −1 to p. Then the map

R( f ) ≡ A−1 ◦ f n ◦ A : I → I

is called the renormalization of f .

Remark 2.7. The renormalization of a quadratic map has negative
Schwarzian derivative and hence is quasiquadratic. Since the renormaliza-
tion operator is an open continuous map in the topology of U3 and respects
topological equivalence, it acts on the space of quasiquadratic maps.

If the renormalization R( f ) is in turn renormalizable, then the map f
is twice renormalizable. In this way we can define n times renormalizable
maps for any n = 1, 2, . . . , including n = ∞.

A hyperbolic or parabolic map with an attracting/parabolic cycle of
period n > 1 is renormalizable but at most finitely many times (the last
renormalization of this map has an attracting/parabolic fixed point). Prepe-
riodic maps are at most finitely renormalizable. In fact, infinitely renormal-
izable maps have a recurrent critical point.

A unimodal map is called Yoccoz if it is not infinitely renormalizable
and has all periodic orbits repelling. A Yoccoz map with a non-recurrent
critical point is called Misiurewicz.

2.9. Spaces of unimodal maps. Let UN stand for the set of Ulam-
Neumann maps f ∈ U3. It is a domain in an affine hyperplane of the
Banach space C3.

Unimodal maps f ∈ U3 with negative Schwarzian derivative form an
open subset of U containing the quadratic family {qτ : τ ∈ [1/2, 2]}. We
will be interested in the intersection of U with some Banach spaces of real
analytic unimodal maps.

Let a > 0, and let Ea ⊂ BΩa
be the complex Banach space of holo-

morphic maps v : Ωa → C continuous up to the boundary which are
0-symmetric (that is, v(z) = v(−z)) and such that v(−1) = v(1) = 0, en-
dowed with the sup-norm ‖v‖a = ‖v‖∞. It contains the real Banach space
ERa of “real maps” v, i.e, holomorphic maps symmetric with respect to the
real line: v(z) = v(z).

The complex affine subspace q2 + Ea will be denoted as Aa.
If f ∈ Aa, we denote the postcritical set orb( f(0)) by O f .
Let Ua = U∩Aa. Note that Ua is the union of an open set in the affine

subspace ARa = q2 + ERa and a codimension-one space of Ulam-Neumann
maps.

2.10. Real puzzle. Let us start with some combinatorial preparation, which
will be used throughout this paper. We assume that both fixed points of f ,
−1 and α, are repelling.
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A symmetric interval J containing 0 is called nice in the sense of Martens
if the orbits of its boundary points do not intersect int J .

The real Yoccoz puzzle P R for a quasiquadratic map f is a collection of
closed intervals Pn

i , n ∈ N ∪ {0}, called real Yoccoz puzzle pieces such that
P0

0 = [−α, α] and the Pn
i , n > 0, are the components of f −n P0

0 . Intervals
of the Yoccoz puzzle containing the critical point are called critical and are
labeled as Pn

0 . Any critical Yoccoz puzzle piece Pn
0 is nice. Moreover,

• any non-critical Yoccoz puzzle piece Pn
i is diffeomorphically mapped

onto some other puzzle piece Pn−1
k(i) ;

• any critical Yoccoz puzzle piece Pn
0 , n > 0, is folded into the Yoccoz

puzzle piece Pn−1
1 containing the critical value c1 in such a way that

f(∂Pn
0 ) ⊂ ∂Pn−1

1 .

Take now a critical Yoccoz puzzle piece J0 ∈ P R and consider the first
landing map L to it. The domain of this map consists of a family J of
disjoint Yoccoz puzzle pieces Ji ∈ P R, i ∈ N, satisfying the following
properties (see [Ma]): Any Ji , i > 0, is diffeomorphically mapped by f
onto some other interval Jk(i) ∈ J, and there exists ni ∈ N such that the
branch L|Ji = f ni |Ji diffeomorphically maps Ji onto J0.

More generally, a similar description for the landing map applies to any
nice interval J0. In this case, we will loosely say that the collection {Ji} (of
pairwise disjoint intervals) is the real puzzle associated to J0, and we will
call the Ji real puzzle pieces.

The following statement explains the role of nice intervals.

Theorem 2.14 ([Ma]). Let f be a quasiquadratic map. Let us consider
two symmetric intervals J0 ⊂ T0 such that the orbit of f(∂J0) does not
return to int T0 (in particular, J0 is nice). Let f ni : Ji → J0 be a branch of
the landing map L to J0. Then f ni diffeomorphically maps some interval
Ti ⊃ Ji onto T0. Moreover, the distortion of L|Ji is O(|J0|/|T0|).

The following is a consequence of the result by Guckenheimer and
Mañé.

Proposition 2.15 (see [MS], Corollary 1, p. 248). Let f : I → I be a
quasiquadratic map with all periodic orbits repelling and let L : ∪Ji → J0
be the first landing map to a nice interval J0. Then the complement Q =
I \ ∪ int Ji is an expanding set.

Remark 2.8. The above expanding set is usually a Cantor set (for instance,
if the boundary points of J0 are not periodic). If ∂J0 is contained in the
preorbit of a periodic point q, then this Cantor set admits a real Markov
partition {MRj } constructed with the help of finitely many preimages of q
(see the proof of Lemma 7.10 for an explicit construction of a real Markov
partition). If f is analytic, this partition can be further refined and thickened
to become a (complex) strictly Markov partition {M j}.
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For a given unimodal map f , let us construct the principal nest

[−α, α] = T 0 ⊃ T 1 ⊃ T 2 ⊃ . . .(2.12)

of real puzzle pieces. Consider the first return map g1 : ∪T 1
i → T 0 to

the interval T 0. It is defined on the union of disjoint closed intervals T 1
i

contained in T 0. Assuming the critical point 0 returns to T 0, one of these
intervals contains the critical point. Call it T 1 ≡ T 1

0 . Otherwise we stop and
the principal nest consists only of T0.

We define inductively the first return maps

gn : ∪T n
i → T n−1(2.13)

to T n−1, and we let T n ≡ T n
0 be the critical interval of the domain of gn .

If there is n such that the critical point never returns to T n , the principal
nest consists of the intervals T 0, ..., T n. In this case f is necessarily non-
renormalizable and has a non-recurrent critical point. Otherwise the prin-
cipal nest is an infinite sequence of intervals. If f is non-renormalizable,
the intervals T n shrink to zero. Otherwise they shrink to the domain of the
pre-renormalization of f (see [L3]).

The scaling factors of f are defined as follows: λn = |T n|/|T n−1|.
We will now reformulate Theorem 2.14 in a way convenient for further

references.

Theorem 2.16. Let f be a non-renormalizable quasiquadratic map with
recurrent critical point such that f(0) �= 0. Let J0 = T n+1, n ∈ N, and let
L : ∪Ji → J0 be the corresponding first landing map. Let L|Ji = f ni and
J̃i be the monotonicity interval of f ni containing Ji . Then f ni ( J̃i) ⊃ T n and
hence the distortion of L|Ji is O(λn+1).

It is important to distinguish two combinatorial possibilities for the
returns of the critical point: central and non-central returns. The return to
level n − 1 (and the level n − 1 itself) is called central if gn(0) ∈ T n. Let
{nk − 1} be the sequence of non-central levels in the principal nest. (Under
the assumption that the principal nest consists of infinitely many intervals,
the sequence {nk − 1} is infinite if and only if f is non-renormalizable.)

The following result will provide us with a big space around certain
intervals of the principal nest.

Theorem 2.17 ([L3]). Let f be a non-renormalizable quasiquadratic map
with non-trivially recurrent critical point (that is, f(0) �= 0). Then there
exist constants C > 0 and ρ ∈ (0, 1) such that

λnk+1 ≤ Cρk.

Combining the last two theorems, we see that the branches of the first
landing map L : ∪Ji → J0 become almost linear if J0 is selected sufficiently
deep in the principal nest.
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Remark 2.9. Theorems 2.14 and 2.17 were proven in the quoted papers
for quasiquadratic maps with negative Schwarzian derivative. The general
case was reduced to this one by Kozlovski [K2], who has proven that for
sufficiently big n, the first return map to T n−1 has negative Schwarzian
derivative, and this is enough to obtain good properties for gn .

Lemma 2.18. Let us use the notations of Theorem 2.16. There is a function
C(λ) → ∞ as λ → 0 with the following property. For any n, there exist
topological disks Ui ⊃ Ji such that mod(U0 \ J0) = C(λn+1) and the first
landing map L|Ji

extends to a univalent map from Ui onto U0.

Proof. Fix some φ ∈ (0, π) and let U0 be the hyperbolic neighborhood
Dφ(T

n) of T n (see §2.2). ⊓⊔

2.11. Stochastic maps. A unimodal map f : I → I is called stochastic if
it has an invariant measure µ which is absolutely continuous with respect to
the Lebesgue measure on I (such a measure will be abbreviated as a.c.i.m.).

Existence of an a.c.i.m. is related to the rate of expansion along the orbit
of the critical value c1. It was shown by Collet & Eckmann [CE] (with
a complement by Nowicki [N]) that the map is stochastic if the expansion
rate is exponential:

D f n(c1) ≥ Cλn, C > 0, λ > 1.

This criterion was improved by Nowicki & van Strien [NS] who replaced
the exponential rate with the summability condition:

∑

|D f n(c1)|
−1/2 < ∞.(2.14)

Since the strongest contraction occurs near the critical point 0, one should
expect that the rate of expansion along the critical orbit is related to the rate
of recurrence of the critical orbit. Here is an efficient criterion of this kind:

Theorem 2.19 (Martens & Nowicki [MN]). Let f be a non-renormalizable
quasiquadratic map and let λn be its scaling factors. If

∑√

λn < ∞

then f is stochastic (in fact, f satisfies (2.14)).

This result together with Theorem 2.17 implies the following combina-
torial criterion:

Theorem 2.20. Let f be a non-renormalizable quasiquadratic map. If all
but finitely many levels in its principal nest are non-central then f is stochas-
tic.
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2.12. Quadratic-like maps. A holomorphic map f : U → U ′ is called
quadratic-like if it is a double branched covering between topological disks
U, U ′ such that U ⋐ U ′. It has a single critical point which is assumed to
be located at the origin 0, unless otherwise is stated. We will also make the
following technical assumptions:

• U is symmetric with respect to the origin and f is even, i.e., f(−z) =
f(z).

• The domains U and U ′ are bounded by piecewise smooth curves.

Quadratic-like maps are considered up to affine conjugacy. We will say that
a quadratic-like map f is normalized at 0 if it has the following expansion
at 0:

f(z) = c + z2 + O(z3).(2.15)

Note that this normalization is not the same as the normalization we use for
unimodal maps.

A quadratic-like map is called real if the domains U and U ′ are R-
symmetric and f preserves the real line: f(U ∩ R) ⊂ R.

The filled Julia set of a quadratic-like map is defined as the set of non-
escaping point:

K( f ) = {z : f nz ∈ U, n = 0, 1 . . . }.

Its boundary is called the Julia set, J( f ) = ∂K( f ). The sets K( f ) and
J( f ) are connected if and only if the critical point itself is non-escaping:
0 ∈ K( f ). Otherwise these sets are Cantor.

If f is a real quadratic-like map with connected Julia set, then K( f )∩R
is an interval [−β, β], where β is a fixed point of f . Since f is considered
up to affine conjugacy, we can normalize it so that β = −1.

The fundamental annulus of a quadratic-like map f : U → U ′ is the
annulus between the domain and the range of f , A = U ′ �U .

Two quadratic-like maps f and g are called topologically equivalent if
they are topologically conjugate in some neighborhoods of their Julia sets.
They are called hybrid equivalent if they are conjugate by a qc map h with
∂h = 0 a.e. on K( f ). Note that in the hyperbolic case (when f has an
attracting cycle), the hybrid class of f consists of topologically equivalent
quadratic-like maps with the same multiplier of the attracting cycle (Douady
& Hubbard).

By the Douady-Hubbard Straightening Theorem [DH1], every hybrid
class with connected Julia set intersects the quadratic family

{Pc : z �→ z2 + c}c∈C

at a single point c of the Mandelbrot set. (Recall that the Mandelbrot set is
defined as the set of parameter values c ∈ C for which the Julia set J(Pc)
is connected.) It follows that given a real quadratic-like map f without
parabolic points, the restriction f |I is quasiquadratic (this is still true when
parabolic points are allowed, but requires an extra argument).
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Theorem 2.21 ([L4,GS2]). Let us consider two real non-hyperbolic quad-
ratic-like maps f and g with connected Julia set. If f and g are topologically
equivalent then they are hybrid equivalent. Thus, there exists a unique
quadratic polynomial qτ , τ ∈ [1/2, 2], in the topological class of f .

Let us now consider the projectivized real tangent bundle L → C over
the plane C. An invariant line field on the Julia set J( f ) is a measurable
section X → L invariant under the action of f , where X ⊂ J( f ) is
a measurable invariant set of positive (plane) Lebesgue measure. In other
words, it is a measurable function θ : X → R mod πZ such that for a.e.
z ∈ X,

θ( fz) = θ(z) + arg D f(z) mod πZ.

Associated to an invariant line field on the Julia set, there is family of
f -invariant Beltrami differentials

µλ(z) = λe2iθ(z), |λ| < 1,

on X (extended by 0 to the whole complex plane). Hence any invariant
line field generates a Beltrami disk fλ = hλ ◦ f ◦ h−1

λ , |λ| < 1, of the
map f , where hλ is the solution of the Beltrami equation ∂hλ = µλ∂hλ.
This deformation is non-trivial on the Julia set. Thus, Theorem 2.21 yields
the following result due to Yoccoz (in the finitely renormalizable case,
see [H]) and McMullen [Mc1]:

Theorem 2.22. A real quadratic-like map with connected Julia set does not
have invariant line fields on the Julia set.

2.13. Real hybrid classes. Theorem 2.21 can be carried to the class of real
analytic maps:

Theorem 2.23 (see §B.3). If two non-hyperbolic real analytic unimodal
maps
f, g ∈ Ua are topologically conjugate then they are quasisymmetrically
conjugate.

(For a a stronger statement in the Yoccoz case, see Theorem B.1.)
The above discussion motivates the following definition. Two quasi-

quadratic maps f and g of class Ua are called (real) hybrid equivalent
if they are topologically equivalent and (in the hyperbolic case) their at-
tracting cycles have the same multiplier. (Because of Theorem 2.21, two
quasiquadratic maps which have quadratic-like extensions belong to the
same real hybrid class if and only if they belong to the same hybrid class as
quadratic-like maps.)

We denote by HR

f ≡ HR

f,a ⊂ Ua the real hybrid class of f (for simplicity
we often omit a in the notation). By Theorem 2.21, each hybrid class
intersects the quadratic family {qτ}τ∈[1/2,2] at a single point. Hence we can
consider the straightening map χ : U → [1/2, 2], which associates to
a quasiquadratic map f ∈ U the hybrid equivalent quadratic polynomial.
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Remark 2.10. By the Milnor-Thurston theory, two quasiquadratic maps be-
long to the same hybrid class if and only if they have the same kneading
sequence and the multipliers of any non-repelling cycles are the same for
both maps. This is a consequence of non-existence of wandering intervals
for quadratic maps, and can be easily obtained by the argument of [MS],
Corollary of Theorem 6.2, p. 157.

This has the following nice consequence for the action of renormalization
in the space of quasiquadratic maps. Let f and g be renormalizable of the
same type. It is clear that they have the same kneading sequence if and only
if their renormalizations do, so f and g belong to the same hybrid class
if and only if their renormalizations do. So each renormalization operator
(corresponding to some renormalization combinatorics) acts on the hybrid
classes injectively.

2.14. A priori bounds. A relation between general real analytic and quad-
ratic-like maps is provided by the renormalization: an appropriate renor-
malization of a real analytic map is quadratic-like. This statement is usually
encoded as a priori bounds:

Theorem 2.24 ([LS1,LY]). Let f be an infinitely renormalizable real ana-
lytic map of class Ua. Then some renormalization Rn f admits a quadratic-
like extension to the complex plane.

Note that this property is robust: if it holds for some map f0 ∈ Ua then
it also holds, with the same n, for nearby maps f ∈ Ua.

2.15. Parameter geometry of the quadratic family. The real quadratic
family {qτ} can be partitioned according to the combinatorics of the first
return maps [L5]. According to this construction, the set N of non-renormal-
izable quadratic maps with both fixed points repelling4 is covered with
countable unions Dn of intervals ∆

n
i each of which is endowed with a family

of first return maps gτ,l : ∪T l
τ, j → T l−1

τ of a certain level l = l(n, i). Each
interval ∆

n
i contains a subinterval Π

n
i corresponding to the central return of

the critical point: gτ,l(0) ∈ T l
τ,0.

Theorem 2.25 ([L5]). There exist constants C > 0 and ρ ∈ (0, 1) such
that

|Πn
i |

|∆n
i |

≤ Cρn.(2.16)

Thus, the probability of the central return on level n is exponentially
small in n. By the Borel-Cantelli Lemma, the probability of infinitely many
central returns is equal to 0. By Theorem 2.20, almost all quadratic maps
qτ with τ ∈ N are stochastic.

4 N will also denote the corresponding set of parameter values τ ∈ [1/2, 2], and the same
convention applies to other sets which appear below: F , � , etc.
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By means of the renormalization, this result extends to quadratic maps
which are not infinitely renormalizable:

Theorem 2.26 ([L5]). Almost all Yoccoz quadratic maps qτ , τ ∈ [1/2, 2],
are stochastic maps whose last renormalization satisfies the Martens-
Nowicki criterion for existence of a.c.i.m.

Recently, Avila and Moreira (see [AM1]) have strengthened the re-
sult above by showing that almost every Yoccoz map satisfies the Collet-
Eckmann condition.

2.16. Regular or Stochastic Theorem. Let � stand for the set of infinitely
renormalizable quadratic maps qτ , τ ∈ [1/2, 2].

We say that a set X ⊂ R has definite gaps everywhere if there exists
a C > 0 such that for any x ∈ X and any ε > 0 there exists an interval
J ⊂ (x − ε, x + ε) \ X such that

C−1 dist(x, J) ≤ |J| ≤ C dist(x, J).

By the Lebesgue Density Theorem, such a set has zero measure. But unlike
the measure zero property, the property to have definite gaps everywhere is
preserved by quasisymmetric maps.

Theorem 2.27 ([L7], §4.1). The set � has definite gaps everywhere and
hence has zero Lebesgue measure in the parameter interval [1/2, 2].

Putting together the last two theorems, we obtain:

Theorem 2.28. Almost any real quadratic map qτ is either regular or
stochastic.

2.17. Invariant line fields and equivariance. In this work, the non-exist-
ence of invariant line fields on the set of non-escaping points of a holo-
morphic dynamical system will be a recurrent hypothesis. It will allow us
to estimate the global dilatation of equivariant qc maps or vector fields in
terms of their “external dilatation”. The following two Lemmas will clarify
this relation.

Lemma 2.29. Let f : U → C, f̃ : Ũ → C be two non-constant holo-
morphic maps such that there exists a qc map h : C → C, h(U) = Ũ,
equivariant on U. Let K( f ) be the set of non-escaping points of f . Then

Dil(h) = max{Dil(h|C \ U), Dil(h|K( f ))}.

Furthermore, if Dil(h|K( f )) > 1 then f has an invariant line field on
K( f ).

Proof. Equivariance implies that f ∗(µh) = µh , so

Dil(h|C \ K( f )) = max Dil(h| f −n(C \ U)) = Dil(h|C \ U).

If Dil(h|K( f )) > 1, µh gives an invariant line field on K( f ). ⊓⊔
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The same argument gives the following infinitesimal version:

Lemma 2.30. Let f : U → C be a non-constant holomorphic map and
let v be a holomorphic vector field on U such that there exists a qc vector
field α on the plane equivariant on U. Let K( f ) be the set of non-escaping

points. Then ‖∂α‖∞ = max{‖∂α|C \ U‖∞, ‖∂α|K( f )‖∞}. Furthermore, if

‖∂α|K( f )‖∞ > 0 then f has an invariant line field on K( f ).

2.18. Some generalities about Banach spaces. Let E denote a complex
Banach space.

We say that a set K ⊂ E \ {0} is a cone if v ∈ K implies λv ∈ K for
all λ ∈ C \ {0}. We say that a codimension-one subspace F is transverse to
K if F ∩ K = ∅.

Lemma 2.31. Let F be a codimension-one subspace transverse to an open
cone K and v ∈ K . There exists C > 0 such that if w ∈ E \ K and
w = w1 + λv with w1 ∈ F then |λ| ≤ C‖w1‖E .

For a sequence of subspaces Fn ⊂ E, let

lim sup Fn = Lin{v ∈ E| lim inf distE(v, Fn) = 0}.

Lemma 2.32. If the Fn are codimension-one subspaces, then lim sup Fn is
either E or a codimension-one subspace.

Proof. Let G be any subspace of E of dimension 2. Since each Fn has
codimension one, Fn ∩ G contains a unitary vector vn . So there exists
a subsequence converging to some unitary vector v ∈ lim sup Fn . Since
lim sup Fn is a subspace which intersects any 2-dimensional subspace of E,
we conclude that lim sup Fn is either E or a codimension-one subspace. ⊓⊔

3. Results and methods

3.1. Statement of the results. We are now ready to formulate the main
results of this paper.

Fix some a > 0. Note that the affine space Aa has a natural involution
around its real subspace ARa . A subset in Aa is called R-symmetric if it is
invariant under this involution.

Theorem A. Every real hybrid class HR

f , f ∈ Ua, is an embedded

codimension-one real analytic Banach submanifold of Ua . Furthermore, the
hybrid classes laminate a neighborhood of any non-parabolic map f ∈ Ua.
More precisely, any non-parabolic map f ∈ Ua has anR-symmetric neigh-
borhood V in the complex affine space Aa endowed with a codimension-one
R-symmetric holomorphic lamination such that for any g ∈ V ∩ URa , the

intersection of the leaf through g with ARa coincides with HR

g ∩ V.



Real analytic dynamics 479

A real analytic one-parameter family { fλ}λ∈Λ of quasiquadratic maps is
called non-trivial if it is not contained in a single real hybrid class.

Theorem B. Let { fλ}λ∈Λ ⊂ Ua be a non-trivial one-parameter real analytic
family of quasiquadratic maps. Then for Lebesgue almost all parameter
values λ ∈ Λ, the map fλ is either regular or stochastic.

Theorem C. Under the circumstances of the previous theorem, there is an
open and dense set Λ0 ⊂ Λ of parameter values with countable complement
such that the straightening map χ( ft) is quasisymmetric on any compact
interval contained in Λ0.

Remark 3.1. The map conjugating ft to its straightening does not depend
continuously on t (see [NPT], Theorem 3.2, p. 15, or [DH1], Proposition 15,
p. 315).

3.2. Ideas of the proofs.

3.2.1. Quadratic-like maps. The entry point for this paper is the theory of
quadratic-like maps g : U → U ′ described in §2.12. Briefly, the picture
is as follows. The space Q of quadratic-like maps is endowed with a nat-
ural complex analytic structure based on families of Banach spaces. The
connectedness locus C of this space is laminated by the hybrid classes H f

each of which is a codimension-one complex analytic submanifold in Q.
By the λ-lemma, this lamination is transversally quasiconformal (but it is
not transversally smooth!). The quadratic family {Pc : z �→ z2 + c}c∈C is
a global transversal to this lamination.

The tangent (“horizontal”) space to the hybrid class H f consists of
holomorphic vector fields v on U , which admits representation (2.5), v =

α ◦ f − f ′α, where α is a qc vector field on U whose ∂-derivative vanishes
a.e. on the filled Julia set K( f ). This equation tells us that v is an “infinites-
imal hybrid deformation” of f and α is the corresponding “infinitesimal
conjugacy”.

A transverse (“vertical”) direction to the hybrid class H f can be selected
as a holomorphic vector field V tr ≡ V tr

f which can be represented as (2.5)

in U \ K( f ), where α(z)/dz is a holomorphic vector field on C \ K( f )
vanishing at ∞. This explicit description of a vertical direction exploits
essentially the “external structure” of quadratic-like maps (existence of the
fundamental annulus U ′ \U). Lack of this structure for general real analytic
maps is the source of major difficulties addressed in this paper.

3.2.2. Horizontal space. Theorem 2.23 motivates the following definition.
Assume that f ∈ Ua is not hyperbolic, and let v be a holomorphic vector
field in the neighborhood Ωa. We say that it is horizontal if there is a qc
vector field α(z) onC satisfying (2.5) on orb(0). (This definition is designed
in such a way that it will still make sense for complex perturbations of f .)
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Clearly, the horizontal vector fields form a linear space, which will be
denoted T f . Moreover, it is easy to see (by the Implicit Function Theorem)
that for simple combinatorics, like parabolic or preperiodic, the hybrid class
HR

f is a real analytic codimension-one submanifold in Ua, whose tangent
space coincides with T f . For general combinatorics, this is still true but
requires much finer analysis; it will be outlined below.

3.2.3. Infinitely renormalizable case. As usual in one-dimensional dynam-
ics, the analysis depends on the combinatorial properties of the maps under
consideration. It turns out that for our problem, the infinitely renormalizable
case is easier to handle. The reason is that by means of renormalization, it
can be reduced to the quadratic-like case.

Take some infinitely renormalizable map f ∈ Ua. By a priori bounds
(Theorem 2.24) some renormalization Rn f is a quadratic-like map, and the
same is true for all (complex) f̃ ∈ Aa near f . Moreover, all maps Rn f̃
belong to some Banach ball V of quadratic-like maps.

The classical Runge Theorem implies that the differential DRn( f ) has
a dense image in V. By the Implicit Function Theorem, the pullback of the
hybrid lamination near g = Rn f in V is a holomorphic lamination near f
in Aa. It is easy to see that the real slices of the leaves of this lamination are
local real hybrid classes.

3.2.4. Puzzle maps. To handle the non-renormalizable case (the finitely
renormalizable case is completely analogous), we need to consider a special
class of piecewise holomorphic maps. A puzzle map is defined on a disjoint
union ∪i≥0Ui of topological disks Ui called “puzzle pieces” such that the
“critical” piece U0 contains 0 and is symmetric with respect to 0, while any
noncritical puzzle piece Ui is univalently mapped by f onto some other
puzzle piece U j(i) (see Fig. 1). Moreover, we require that for any i, either
f(U0) contains Ui or f(U0) is disjoint from Ui (and there are also some
other technical requirements). Let U1 denote the puzzle piece containing
the critical value c1 = f(0).

The filled Julia set K( f ) of the puzzle map is defined as the set of all
non-escaping (from ∪Ui) points. It is not necessarily compact.

Let us fix from now on a non-renormalizable unimodal map f ∈ Ua

with repelling fixed points and recurrent critical point. Any such map can be
restricted to a puzzle map in the following way. Select a nice critical interval
J0 ≡ T n in the principal nest (see §2.10), and let U0 be an appropriate
hyperbolic neighborhood of J0 in the slit complex plane C \ (R \ J0).
Consider the first landing map L : ∪ j≥0 J j → J0 to J0, where we denote
by J1 the component containing the critical value c1 (notice that f −1(J1) =
T n+1). Then Ui ⊃ Ji are defined as the preimages of U0 under L . The last
requirement on the puzzle map can be ensured by selecting the interval
J0 = T n sufficiently deep in the principal nest to make the corresponding
scaling factor λn so small (by Theorem 2.17 ) that f −1(U1) ⊂ U0 (see
Lemma 5.5).
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Fig. 1. Puzzle map

This puzzle structure of unimodal maps f ∈ Ua will serve as a substitute
for the external structure of quadratic-like maps. A crucial property of the
puzzle structure (see §5.2) is that it is persistent under perturbations of
the map, even complex, and moreover moves holomorphically under the
perturbation.

3.2.5. Key estimate. By definition, a horizontal vector field v for a non-
hyperbolic puzzle map is a holomorphic vector field on ∪Ui satisfying (2.5)
for some qc vector field α on orb(0). In the hyperbolic case, we also require
that the multiplier of the corresponding periodic attractor does not change
“infinitesimally” along the direction v (that is, v satisfies (5.1)) .

The key estimate says that, for any map g ∈ V in some neighborhood
V ∋ f which either does not have invariant line fields on K(g) or is
hyperbolic, the dependence of α on v is uniformly bounded:

‖α‖qc ≤ L‖v‖a, v ∈ Tg.(3.1)

(The norms ‖ · ‖qc and ‖ · ‖a are defined in §2.6.1 and 2.9.) Recall that
the no-invariant line fields assumption is satisfied for all real maps which
are not hyperbolic or parabolic (see Theorem 2.22 and Lemma A.24). It is
also satisfied for complex preperiodic puzzle maps for simpler reasons (see
Appendix B).

The proof goes as follows. Select an ε > 0 so that the puzzle struc-
ture is persistent in the 2ε-neighborhood V of f , and let g belong to the
ε-neighborhood of f . Consider a holomorphic curve gλ = g + λv ∈ V tan-
gent to v, |λ| < ε/‖v‖a. Let hλ : (C,∪Ui) → (C,∪Uλ

i ) be a holomorphic
motion of the puzzle structure, and let

α0 =
dhλ

dλ

∣

∣

∣

∣

λ=0

.

Since hλ is equivariant on the boundary of the puzzle, α0 is equivariant with
respect to (g, v) on ∂U . Moreover,

∂α0 =
dµλ

dλ

∣

∣

∣

∣

λ=0

,
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where µλ is the Beltrami differential of hλ. Applying the Schwarz Lemma
to the map λ �→ µλ, we obtain: ‖∂α0‖∞ ≤ ε−1‖v‖a.

We exploit now a new tool, the “Infinitesimal Pullback Argument”
(§6.2), to construct a qc vector field β equivariant with respect to (g, v) on U ,
coinciding with α on orb(0), and coinciding with α0 onC\U . Moreover, if g

has no invariant line fields on the filled Julia set, then ‖∂β‖∞ ≤ ‖∂α0‖∞,
and the key estimate follows with L = ε−1.

3.2.6. Transverse direction. We are now approaching the most delicate
issue, construction of a “transverse vector field”, i.e., a non-horizontal vector
field belonging to T f (Ua). The idea is first to construct a smooth transverse
vector field v and then to approximate it with a holomorphic one using
Mergelyan’s Theorem. In fact, v is going to be holomorphic on the critical
value puzzle piece U1 and vanishing on all other puzzle pieces Ui , i �= 1.
Moreover, v can be selected in such a way that it has a definite hyperbolic
length (with respect to the hyperbolic metric of U1) at any given point
q ∈ J1 = U1 ∩R, no matter how close this point to is ∂J1 (it is essential here
that v is required to be only C1). It turns out that if the nice interval J0 was
originally selected sufficiently deep, then the vector field v corresponding to
q = c1 cannot be horizontal. Assuming otherwise, we use the infinitesimal
pullback argument to construct a qc vector field α equivariant on orb(0)
and vanishing on the boundary of the real puzzle. Let us then consider the
first landing point p of the orb(q) in the domain W = f −1U1 ⋐ U0 (notice
that by construction, α must vanish in ∂W ∩R). Equation (2.5) allows us to
bound from below the hyperbolic length of α(p) in U0 via the hyperbolic
length of v in U1. So, the former length is also definite. Moreover, using the
ideas of the proof of the Key estimate we are able to bound from above the
qc norm of α uniformly.

But the hyperbolic diameter of W in U0 is very small, provided the
nice interval J0 was selected deep enough (note that W ∩ R is the puzzle
piece of the principal nest following J0). Hence the length of α(p) is very
big compared with the diam W . But this contradicts Corollary 2.9, since α
vanishes at the boundary points of W ∩ R and has uniformly bounded qc
norm.

Next we approximate v in the union of two appropriate sectors by poly-
nomial vector fields vn vanishing to the first order at the boundary point
of J1 where the sectors touch. We claim that the vn are eventually not
horizontal (and hence they represent transverse directions at f in Ua). As-
suming contrary, we prove the key estimate for the corresponding vector
fields αn. It follows the same lines as described above, though technically
more involved. The key estimate allows us to pass to a limit in equation (2.5)
and to conclude that v is horizontal – contradiction.

Remark 3.2. In this construction we control uniformly the ‖ · ‖1 norm of v.
The scaling invariance of the ‖ · ‖1 norm is essential for this argument,
as it is for the C1 Closing Lemma of Pugh [Pu]. In fact, the construction



Real analytic dynamics 483

of the transverse direction can be seen as the infinitesimal counterpart to
the C1 Connecting Lemma of Hayashi [Ha] (we want to close the critical
orbit at the infinitesimal level). The key estimate, based heavily on complex
analysis, is what allows us to promote a C1 perturbation to an infinitesimal
holomorphic perturbation.

3.2.7. Transverse cone field. Thus, the tangent space at f can be decom-
posed in the direct sum of the horizontal and transverse spaces, T f Aa =
T f ⊕ V tr

f , where V tr
f = Lin{V tr} and V tr is the transverse vector field con-

structed above. Since Aa is an affine space, we can use this decomposition
as a “coordinate system” in it. Let θ ∈ (0, π/2). For a complex map g ∈ Aa

near f , let us consider a tangent cone in TgAa,

Kθ
g = {v ∈ TgAa : ‖vh‖ < tan θ ‖vtr‖},

where vh and vtr are the projections of v to T f and V tr
f respectively.

If the angle θ is sufficiently small and g (possibly complex) is sufficiently
close to f and does not have invariant line fields on K(g), or is hyperbolic,
then

Kθ
g ∩ Tg = ∅.(3.2)

Otherwise there would exist a sequence of maps gn → f , either without
invariant line fields on K(gn) or hyperbolic, and a sequence of unitary
horizontal vector fields vn ∈ Tgn

Aa converging to V tr. Let αn be a a qc
vector field equivariant with respect to (gn, vn) on orbgn

(0). By (3.1) and
the Second Compactness Lemma, the sequence {αn} admits a subsequence
converging to a qc vector field α equivariant on orb f (0) with respect to
( f, V tr). It follows that the vector field V tr is horizontal – contradiction.

3.2.8. Local laminations. Let V ⊂ Aa be a neighborhood of f where
(3.2) holds. We can select this neighborhood as a product Vh × Σ

tr where
Vh ⊂ T f and Σ

tr ⊂ V tr
f is a transverse segment. Exploiting a macroscopic

version of the Key estimate, we show that for Σ
tr small enough, each hybrid

class may intersect Σ
tr only at a single point (the estimate we use essentially

implies that if two nearby maps g1 and g2 are hybrid conjugate then g2 − g1
is almost tangent to the hybrid class of g1, so g1 and g2 cannot be both in the
transverse segment Σ

tr). This implies that preperiodic and hyperbolic maps
are dense in Σ

tr (thus, at this stage we obtain a new proof of Kozlovski’s
Theorem [K1]).

If g ∈ V is preperiodic or hyperbolic then the hybrid class Hg is a com-
plex analytic submanifold in Aa whose tangent space coincides with the
horizontal space Tg. By the cone transversality (3.2), this submanifold has
a bounded slope in the coordinate system T f ⊕ V tr

f . This implies (together
with the existence of uniform qc conjugacies for Hg ∩ V, obtained using
the Macroscopic Pullback Argument) that it is a graph with a bounded slope
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over the whole neighborhood Vh . For these simple combinatorics (preperi-
odic or hyperbolic), it is easy to see that the local hybrid classes Hg ∩ V of
different maps cannot intersect, so we have indeed constructed the lamina-
tion through a dense subset of Σ

tr. An application of the Extension Lemma
promotes it to a lamination through the whole transversal Σ

tr.
Since we already dealt with infinitely renormalizable maps, the remain-

ing case of the construction of local laminations is for hyperbolic maps,
which is much easier. If f is hyperbolic, there is a neighborhood VR ⊂ Ua

of f consisting of hyperbolic maps. The analytic map that associates to
each g ∈ VR the multiplier of its attracting periodic orbit is a submersion.
This implies that the real hybrid classes in VR form a transversally analytic
foliation.

3.2.9. Connectivity of the hybrid classes. In the Appendix B, we prove
that any hybrid class HR

f,a of a Yoccoz map f is connected. To this end
we complement the puzzle structure of f with a Markov structure in such
a way that the combinatorics of this pattern depends on the combinatorics
of f only, while the geometry of the pattern is definite. In other words,
these patterns are qc equivalent for any two maps f and f̃ ∈ HR

f . By the

pullback argument, f and f̃ are qc equivalent in a complex neighborhood
of the interval I .

In particular, we can select f̃ as the quadratic polynomial qτ in the
hybrid class of f . Let h be an R-symmetric qc map conjugating f to f̃
near I , and let µ be its Beltrami differential. Let µt = tµ, 0 ≤ t ≤ 1, and let
h t : C→ C be the solution of the corresponding Beltrami equation fixing
0 and 1. Then the Beltrami path ft = h t ◦ f ◦ h−1

t is a real analytic family
of unimodal maps connecting f to f̃ in HR

f,a′ for some a′.
Starting with this path ft in HR

f,a′ we build a two parameter family
ft1,t2 = ft1 + t2vt1 in Ua′ using a transverse direction vt along the path ft .
This family can be approximated by a two parameter family in Ua, passing
through f and f̃ . By the Implicit Function Theorem, the intersection of this
family with HR

f,a yields a path in HR

f,a linking f and f̃ .

3.2.10. Regular or Stochastic Theorem. We will outline now a proof of
Theorem B. Take some map f ∈ Ua which is not parabolic, and consider
a real analytic family ft ∈ Ua, f0 = f , transverse to the hybrid class
HR

f . We wish to prove that almost all maps ft near f are either regular or
stochastic. Of course, we can assume that f is not hyperbolic. Moreover,
since maps with non-recurrent critical point have absolutely continuous
invariant measures (Misiurewicz [Mi]), it is enough to consider the recurrent
case.

Assume first that f is at most finitely renormalizable. Since the real
hybrid class HR

f is connected, there is a local holonomy from the fam-
ily { ft} to the quadratic family {qτ}. By Corollary 2.6, this holonomy is
quasisymmetric.
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Quasisymmetric maps are not in general absolutely continuous. How-
ever, by Lemma 2.5, they respect the property of exponential decay of the
parapuzzle geometry (Theorem 2.25). This property implies that almost any
map ft near f , which is not hyperbolic and is at most finitely renormaliz-
able, satisfies the Martens-Nowicki criterion for existence of a.c.i.m. Hence
almost any map ft near f which is at most finitely renormalizable is either
regular or stochastic.

If f is infinitely renormalizable then some renormalization {gt = Rn ft}
is a quadratic-like family near g = Rn f transverse to the real hybrid
class HR

g (since the image of DRn( f) is dense, Rn is transversally non-
singular). Since the hybrid classes form a holomorphic lamination with
connected leaves in the space of quadratic-like germs, the holonomy from
{gt} to the quadratic family {qτ} is quasisymmetric. By Theorem 2.27 the set
� of infinitely renormalizable quadratic maps has definite gaps everywhere.
This property carries to the family {gt} by means of the quasisymmetric
holonomy. Since Rn analytically maps { ft} to {gt}, the same is true for
the family { ft}. By the Lebesgue Density Theorem, the set of infinitely
renormalizable maps ft near f has zero Lebesgue measure.

Consider now an arbitrary non-trivial real analytic family { ft} ⊂ Ua. We
show in §9.1 that this family contains at most countably many tangencies
with the real hybrid classes and at most countably many parabolic points.
At all other points it is transverse to the hybrid classes. It follows that
almost all parameter values in this family are either regular or stochastic.
The set of transverse points is an open set with countable complement, so
this argument also proves Theorem C.

4. Infinitely renormalizable case

4.1. Hybrid lamination in the space of quadratic-like maps

4.1.1. Banach balls of quadratic-like maps. Let U be a 0-symmetric do-
main, and let B0

U be the space of normalized at 0 even holomorphic functions
f ∈ BU . This is an affine subspace of BU . The ball or radius ε centered at
f ∈ B0

U is denoted as B0
U( f, ε).

Each class of affinely conjugate quadratic-like maps contains a unique
representative normalized at 0. Let Q stand for the space of normalized at 0
quadratic-like maps. The connectedness locus C is the set of quadratic-like
maps f ∈ Q with connected Julia set. The hybrid class H f ⊂ Q is the set
of quadratic-like maps g ∈ Q which are hybrid equivalent to f on some
neighborhoods of the filled Julia sets.

Take some quadratic-like map f : U → U ′ in Q. Consider a 0-
symmetric Jordan domain V ⋐ U with a piecewise smooth boundary such
that V ⊃ K( f ) and fV ⋑ V . Then any normalized at 0 even holomorphic
function g ∈ B0

U which is sufficiently close to f restricts to a quadratic-like
map g : V → V ′. Thus, we have an embedding jV : B0

U( f, ε) → Q. Its
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image QV ( f, ε) endowed with the topology induced from BU will be called
a Banach ball (centered at f of radius ε) of quadratic-like maps.

Given a set X ⊂ Q, the intersection X∩QV ( f, ε) will be called a Banach
slice of X (by the ball QV ( f, ε)).

4.1.2. Hybrid lamination. Below we will summarize the results of [L6]
(especially §4) about the hybrid lamination in the space of quadratic-like
maps.

Theorem 4.1. Let f : U → U ′ be a normalized at 0 quadratic-like map
with connected Julia set. Then there exists a Banach ball V = QV ( f, ε)
such that for any g ∈ V ∩C, the slice of the hybrid class Hg by the ball V is
a complex codimension-one analytic submanifold in V. These submanifolds
form a holomorphic lamination in V.

In the setting of the above theorem, let us consider a map f̃ ∈ V
which is hybrid equivalent to f and in the same connected component of
V ∩ H f . Take two transversals T ∋ f and T̃ ∋ f̃ to H f ∩ V. Then we
have a well defined local holonomy h : T ∩ C → T̃ ∩ C along the leaves
of the lamination. Moreover, by the λ-lemma, h admits a qc extension to
a neighborhood of f in T . (We will formulate this property briefly by saying
that “the holonomy is locally quasiconformal” or that the “the lamination is
transversally quasiconformal”). In fact, these holonomies can be extended
to the whole hybrid class of f :

Proposition 4.2. Let f ∈ C be a normalized quadratic-like map with con-

nected Julia set. If f̃ ∈ H f is hybrid equivalent to f then it can be joined
to f with a path { ft} ⊂ H f covered with finitely many Banach balls from
Theorem 4.1. Thus, there is a well-defined local qc holonomy between any

two transversals T ∋ f and T̃ ∋ f̃ to H f .

The role of the quadratic family is partly explained by the following
statement:

Proposition 4.3. The quadratic family {qτ} is transverse to the hybrid lam-
ination (in any Banach ball from Theorem 4.1).

The tangent space T f to the above Banach slice of H f consists of vector
fields v ∈ BU that admit representation (2.5), v = α ◦ f − f ′α, where α

is a qc vector field on U whose ∂-derivative vanishes a.e. on the filled Julia
set K( f ). Such vector fields are called horizontal.

A transverse, vertical direction to the hybrid class H f can be selected as
a holomorphic vector field V tr

f which can be represented as (2.5) in U\K( f ),

where α(z)/dz is a holomorphic vector field onC\K( f ) vanishing at ∞. The
latter condition means that near ∞, α(z) = az +h(z), where h is a bounded
holomorphic function. If f isR-symmetric, the transverse direction can also
be chosen R-symmetric.
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4.2. From real analytic to quadratic-like. Let us consider an infinitely
renormalizable quasi-quadratic map f ∈ Ua. By the a priori bounds, there
is a quadratic-like renormalization of f . This means that there exist R-
symmetric Jordan domains U ≡ U0, . . . , Un−1, Up ≡ U ′ such that:

• Ui ⋐ Ωa, i = 0, 1, . . . , n − 1.
• U0 ∋ 0 is 0-symmetric and f : U0 → U1 is a branched double covering;
• the maps f : Ui → Ui+1 are conformal isomorphisms, i = 1, . . . , n −1;
• U ′

⋑ U .

We call the map
P( f ) ≡ f n : U → U ′

a quadratic-like pre-renormalization of f . If g ∈ Ua is sufficiently close
to f , then the restriction gn|U gives a quadratic-like pre-renormalization
of g. Normalizing these maps at the origin, we obtain a renormalization
R : V → QRW , where V ⊂ Ua is some neighborhood of f and W ∋ 0
is an R-symmetric and 0-symmetric Jordan disk obtained from U by little
shrinking and rescaling.

To carry out the infinitesimal analysis of the renormalization operator,
we will make use of the variational formula (2.8).

Lemma 4.4. The renormalization operator R : V → QRW is real analytic.

Proof. The pre-renormalization of f analytically depends on f , since it is
a restricted iterate of f (with the differential explicitly given by (2.8)). The
normalization of a function f is the rescaling by factor f ′′(0) analytically
depending on f as well. ⊓⊔

We want to prove that the derivative of the renormalization operator is
transversally non-singular, that is, the image of DR( f ) contains transverse
vectors to HR

R( f ). Let us deal first with an easier case.

Lemma 4.5. Assume U i are disjoint, 0 ≤ i ≤ n − 1. Then the image of the
infinitesimal renormalization DR( f ) : T f A

R

a → TR( f )Q
R

W is dense.

Proof. The operator R is a composition of the pre-renormalization operator
P from ARa to BRU and a rescaling operator from BRU to QRW . It is easy to
see that the derivative of the rescaling operator has dense image, so we just
have to show that DP( f ) : T f A

R

a → TR( f )B
R

U has dense image. Since P( f )
is the restriction of the iterate f n, the differential DP( f )v is given by the
variational formula (2.8).

Take an even holomorphic vector field w ∈ BRU . Let us define a holo-
morphic vector field ṽ on ∪Ui such that DP( f )ṽ = w. First let ṽ = 0 on
∪n−1

i=1 Ui . Using (2.8) with w in the left-hand side, extend this vector field
to U:

ṽ(z) =
w(z)

D f n−1( f(z))
(4.1)

(notice that in (2.8) the only non-vanishing term corresponds to k = 0).
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Then ṽ is an even vector field on U , and the pre-renormalization of ṽ
is equal to w. By the Mergelyan Polynomial Approximation Theorem (see
[R], Theorem 20.5, p. 423), ṽ can be approximated by a polynomial vector
field v with which is even and R-symmetric. Then the pre-renormalization
of v approximates w. Rescaling the domain U , we obtain the assertion. ⊓⊔

The above situation occurs whenever the last renormalization is not
period doubling. In the doubling case, the intersections between the Ui are
unavoidable, since the little Julia sets (the forward images of J( f 2n|U),
where 2n is the period of renormalization) intersect.

In this case, we can still select the Ui with the following properties:

• If the closure of Ui intersects the closure of U j and i < j then j = i + n
and Ui ∪ U j is simply connected;

• U0 ∩ Un is contained in a small neighborhood V of a repelling periodic
point q of period n;

• V is a topological disk such that f n|V is a diffeomorphism and V ⊂
f n(V ); hence f n|V is linearizable.

Lemma 4.6. Under the circumstances just described, DR( f ) : T f A
R

a →

TR( f )Q
R

W has dense image.

We will make use of the following lemma.

Lemma 4.7. Let |λ| > 1, L : s �→ λs, and let S be a bounded connected
open set such that 0 ∈ S ⊂ L(S). Consider two holomorphic functions
a, b ∈ BS such that b(0) = λ. Then there exists a holomorphic function
u ∈ BS such that

a(s) = u(s) + b(s)u(λ−1s), s ∈ S.(4.2)

Proof. Let us first consider the case where S = Dε and ‖b‖BS
< |λ|2. Let

a(s) =
∑∞

k=0 aksk, b(s) =
∑∞

k=0 bksk. Then (4.2) has a formal solution
u(z) = ukzk whose coefficients are recursively found from the equations:

(λ + λk)uk = ak −

k−1
∑

j=0

bk− ju j .

To prove convergence of the formal solution, let us consider the linear jet of
u, û(s) = u0 +u1s, and let â(s) = û(s)+b(s)û(λ−1s). A simple calculation
gives a(s) − â(s) = O(|s2|).

Hence it is enough to solve (4.2) in the space of functions u with van-
ishing linear jet (assuming that a is also in the same space). In terms of
w(s) = u(s)/s2 and c(s) = a(s)/s2, (4.2) assumes the form

c(s) = w(s) + λ−2b(s)w(λ−1s) ≡ (id +T )w(s),



Real analytic dynamics 489

where T : BS → BS is a contracting linear operator (since ‖T‖ =
λ−2‖b‖ < 1). Hence id +T is invertible, and the conclusion follows.

In the general case, we first notice that for ε sufficiently small we still
have a, b ∈ BDε

and ‖b‖BDε
< |λ|2. By the previous consideration, we

obtain u ∈ BDε
satisfying (4.2) for s ∈ Dε. Then we find a k ≥ 0 such that

L−k(S) ⊂ Dε and use the functional equation k times to extend u to S. ⊓⊔

Proof of Lemma 4.6. As before, we just have to show that the image of
DP( f ) is dense.

Arguing as in Lemma 4.5, let w ∈ BRU be an arbitrary even polynomial
vector field (note that even polynomial vector fields are dense in BRU ). We
claim that there exists a holomorphic vector field vlin in f n(V ) such that

w(z) = D f n−1( f n+1(z)) vlin( f n(z)) + D f 2n−1( f(z)) vlin(z), z ∈ V.

(4.3)

(Note that the right-hand side of this equation is formally equal to DP( f )vlin
assuming that vlin is extended outside f n(V ) by zero.) To solve (4.3), let us
linearize f n in V . Let λ = D f n(q), L(s) = λs, S be a neighborhood of 0
such that L(S) ⊃ S, and let φ : (L(S), 0) → ( f n(V ), q) be a conformal
map satisfying φ ◦ L = f n ◦ φ for s ∈ S.

In this linear coordinate s the above equation can be written in the form
(4.2), with a = w ◦ φ, b = D f n ◦ f n ◦ φ (so that b(0) = λ), and

u = (vlin ◦ φ ◦ L) · (D f n−1 ◦ f ◦ φ ◦ L).

Using Lemma 4.7, we obtain a solution u ∈ BS of (4.2). Passing back to V
we obtain a solution vlin of (4.3).

Let vn be an even polynomial vector field which is close to vlin on f n(V ),
and let v0 be an even polynomial vector field close to

w(z) − D f n−1( f n+1(z)) vn( f n(z))

D f 2n−1( f(z))

in a neighborhood of U0 ∪ V . Notice that v0 is close to vn on V .
Let us now construct a vector field interpolating between v0 and vn .

Since we want even vector fields, we first symmetrize the domains. Let
−Un and −V be the central reflections of respectively Un and V about the
origin, and let

Usym
n = U ∪ (−U), V sym = V ∪ (−V )

(see Fig. 2). Let K ⊂ V sym be a compact 0-symmetric neighborhood of
U0 ∩ U

sym
n .

Using a partition of unity, construct an even smooth (C∞) vector field
vsm on C with the following properties: vsm = v0 on U0 \ K , vsm = vn on
U

sym
n \ K , and vsm is C1 close to vn on K (this is possible because v0 is C1

close to vn on K ⊂ V ).
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Fig. 2.

Consider now a normalized qc vector field α such that ∂α|U0 ∪ U
sym
n =

∂vsm and ∂α|C \ (U0 ∪ U
sym
n ) = 0 (see §2.6.1). Notice that ‖∂α‖∞ is close

to 0 and so by the Second Compactness Lemma, α is close to 0. Then
vsm − α ∈ B0

U0∪U
sym
n

interpolates between v0 and vn .
By the Mergelyan Theorem, there is an even polynomial vector field v

which is close to v0 on U0, to vn on Un and to 0 on the Ui , i �= 0, n. Then
DP( f )v is close to w in BU . ⊓⊔

Lemmas 4.5 and 4.6 imply:

Lemma 4.8. DR is transversally non-singular.

4.3. Local laminations near infinitely renormalizable maps.

Theorem 4.9. Let f ∈ Ua be an infinitely renormalizable map. Then some
neighborhood V ⊂ Ua of f is foliated by the real hybrid classes, which are
codimension-one real analytic submanifolds in V.

Proof. Consider the above renormalization operator R : V → QRW . Let
g = R( f ). By Theorem 4.1, QRW = Tg ⊕ V tr

g , where Tg is the tangent space
to the real hybrid class at g and V tr

g is the transverse vertical line. Moreover,
g has a neighborhood W ⊂ QRW foliated by the real hybrid classes of
quadratic-like maps, which are graphs of real analytic functions Tg → V tr

g .
If the neighborhood W is sufficiently small, then the hybrid class HR

g ∩W
is the zero-set of some real analytic submersion φ : W → R. By Lemma 4.8,
there exists a vector v ∈ ARa such that w ≡ DR( f )v �∈ Tg. Hence the
composition φ ◦ R : V → R is a submersion at f . By the Implicit Function
Theorem, its zero-set X f = R−1Hg is a codimension-one submanifold
near f .

Since R is real analytic and the horizontal space TG varies continuously
for G ∈ W , DR(F)v �∈ TR(F) for all F ∈ V sufficiently close to f . By
shrinking V, we can assume that this is valid for all F ∈ V. Applying
the Implicit Function Theorem as above we see that the preimages X F =
R−1HR(F), F ∈ V, are real analytic codimension-one submanifolds in V.
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Moreover, these submanifolds are closed in V and are transverse to v at any
point F ∈ V. Hence they form a real analytic lamination of V.

Observe finally that the leaves X F of this lamination coincide with the
real hybrid classes. Indeed, if two non-hyperbolic maps F and F̃ in V are
topologically equivalent on the real line then so are their renormalizations
R(F) and R(F̃). By Theorem 2.21, these two maps are hybrid equiva-
lent. If F and F̃ are hyperbolic with the same multiplier then so are their
renormalizations.

Vice versa, if R(F) and R(F̃) are topologically equivalent on the real
line then the maps F and F̃ have the same kneading sequence. Hence, by
Remark 2.10, if R(F) and R(F̃) are hybrid equivalent, then so do F and F̃.

⊓⊔

Remark 4.1. Since the hybrid class of an infinitely renormalizable map f
has just been shown to be codimension-one submanifolds, the transverse
non-singularity of the renormalization operator at f (and the fact that hybrid
classes are preserved by the renormalization) implies that the image by DR
of any vector transverse to HR

f is transverse to HR

R( f ).

4.4. Regular or stochastic property near infinitely renormalizable pa-
rameter values.

Theorem 4.10. Let { ft} ⊂ Ua be a one-parameter real analytic family of
quasi-quadratic maps such that f ≡ ft0 is infinitely renormalizable. If { ft}
is transverse to the real hybrid class HR

f then for almost all t near t0, the

map ft is either regular or stochastic.

Proof. Let us consider the above renormalization operator R : V → QRW .
By Remark 4.1, DR( f )v �∈ TR( f ) if v is not tangent to HR

f . Since R is
analytic, {gt = R( ft)} is a real analytic family of quadratic-like maps
transverse to the hybrid class HR

g ∩ QRW , where g = g0.
By Theorem 4.1, the foliation by the real hybrid classes in QR is transver-

sally quasisymmetric with connected leaves, so the straightening gt �→ qχ(t)

is quasisymmetric near 0. By Theorem 2.28 and the argument of §3.2.10
(detailed in §9.4), this implies the Regular or Stochastic property for the
family {gt} near 0.

Since the map gt is regular or stochastic if and only if the corresponding
map ft is, the conclusion follows. ⊓⊔

4.5. Straightening near infinitely renormalizable parameters.

Theorem 4.11. Let { ft} be a one-parameter real analytic family of uni-
modal maps such that f = ft0 is infinitely renormalizable. If { ft} is trans-
verse to HR

f at f then the straightening χ of this family is quasisymmetric
near f .
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Proof. Consider the renormalization operator R : V → Q in a neighbor-
hood V of f described in §4.2. Since R is transversally non-singular, it
diffeomorphically maps the family { ft} near f onto its image {R ft}.

Let q = χ( f ) be the straightening of f . By Proposition 4.3, the quadratic
family qτ is transverse to the hybrid lamination. For the same reason as
above, the renormalization R diffeomorphically maps the quadratic family
near q onto its image {Rqτ } ⊂ Q.

By Proposition 4.2, there is a well-defined quasisymmetric holonomy h
from the family {R ft} to the family {Rqτ } in the space Q of quadratic-like
maps. Since χ = R−1 ◦ h ◦ R (the renormalization operator acts on hybrid
classes, see Remark 2.10), we conclude that χ is quasisymmetric as well.

⊓⊔

We will consider next the case of at most finitely renormalizable maps.

5. Tangent space and puzzle maps

5.1. Tangent space. To prove that a hybrid class is a Banach submanifold
we have to find a candidate for its tangent space. We will now associate to
each map f a complex vector space whose intersection with the real slice
will be the tangent space to the hybrid class whenever the map is real and
unimodal.

As in the unimodal case, a map g ∈ Aa is called preperiodic if there
exists k such that ck is a repelling periodic orbit. It is called hyperbolic if
ω(0) is an attracting cycle.

Remark 5.1. For the class of maps that we are considering, there could be
(complex) attracting cycles that do not attract the critical point. However,
whenever we refer to an attracting cycle, we mean the one which does attract
the critical point.

The following three propositions will motivate the definition of the
tangent space to a hybrid class.

Proposition 5.1. Let f ∈ Aa and v ∈ Ba. Let { ft} be a smooth curve in
Aa such that f0 = f and

d

dt
ft

∣

∣

∣

∣

t=0

= v.

Then, for each n, the curve cn(t) = f n
t (0) ∈ C is smooth in a neighborhood

of t = 0. If there is an equivariant vector field α on orb f (0) then

α(cn) =
d

dt
cn(t)

∣

∣

∣

∣

t=0

= vn(0).
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Proof. The second equation follows from (2.9). Since α is also equivariant
by ( f n, vn) (see §2.6.2), we have:

α(cn) = α(cn) − D f n(0)α(0) = vn(0).
⊓⊔

Remark 5.2. If the orbit of zero is infinite, there is always a (perhaps not
even continuous) vector field α on orb f (0) satisfying (2.5). If the critical
orbit of f is periodic or preperiodic, the set T f of vector fields v for which
there exists an α satisfying (2.5) is a codimension-one subspace. Moreover,
α on the orbit of the critical value is uniquely determined by v on the orbit
of the critical point.

Recall that O f stands for the postcritical set orb(c1).

Definition 5.1. Let us consider a map f ∈ Ua. We denote by G f the set of
qc vector fields on the closed set O f endowed with the norm ‖ · ‖qc.

Proposition 5.2. Let fλ be a holomorphic family in Aa through f ≡ f0,
with non escaping critical orbit. Assume there is a holomorphic motion hλ

satisfying the equation hλ ◦ f ◦ h−1
λ = fλ on the critical orbit. Let

v =
d

dλ
fλ

∣

∣

∣

∣

λ=0

and

α =
d

dλ
hλ

∣

∣

∣

∣

λ=0

.

Then α is a qc vector field that satisfies equation (2.5) on the critical orbit.

Proof. Differentiating the equation

hλ ◦ f(cn) = fλ ◦ hλ(cn)

at λ = 0 we conclude that

α(cn+1) = f ′(cn)α(cn) + v(cn)

for every n ≥ 0, which is clearly equivalent to equation (2.5). Quasiconfor-
mality of α follows from Lemma 2.10. ⊓⊔

If f ∈ Aa is a preperiodic map we denote by C f ⊂ Aa the connected
component of f in the set of preperiodic maps with the same relation on the
critical orbit. If f is hyperbolic we denote by C f the connected component
of f in the set of hyperbolic maps with the same multiplier of the attractor
as f .

Definition 5.2. Let f be either a non-hyperbolic map in Ua or a complex
map in Aa with preperiodic or periodic critical point. We denote by T f the
set of vectors v ∈ TAa such that there exists a qc vector field α equivariant
on the critical orbit.
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By Remark 5.2, for each v ∈ T f , there exists a unique qc vector field α
on O f which extends to a qc vector field equivariant on the critical orbit.
It is clear that the correspondence L f : T f → G f that to each v associates
such an α is a linear map.

Remark 5.3. We will later see that L f is a continuous linear map. This is
part of the content of the Key estimate (Lemma 6.12) and is one of the main
results of our analysis.

Proposition 5.3. Let f ∈ Aa be a preperiodic map. Then C f is a complex
codimension-one submanifold in Aa whose tangent space at f is T f .

Proof. If f is a preperiodic then there exists minimal p, q > 0 such that
cp = cp+q. By the Implicit Function Theorem, the solutions of the equation
cp = cp+q form a codimension-one submanifold whose tangent space at f
is T f . ⊓⊔

With this motivation we define T f for a hyperbolic but not superattracting
map f ∈ Aa as the tangent space to C f , which is a codimension-one com-
plex submanifold by the Implicit Function Theorem. The following simple
proposition shows that in this case, T f cannot be described by Definition 5.2.

Proposition 5.4. If f ∈ Aa is hyperbolic but not superattracting and
v ∈ Ba, then there is a qc vector field onCwhich satisfies the equation (2.5)
on the critical orbit.

Proof. Since f is hyperbolic but not superattracting, for λ small enough f
is conjugate to fλ ≡ f + λv in a neighborhood V of the attractor. Since
there are only a finite number of n such that cn /∈ V we conclude that f is
conjugate to fλ on the critical orbit. We can now consider a holomorphic
motion hλ such that hλ( f n(0)) = f n

λ (0). The conclusion follows from
Proposition 5.2. ⊓⊔

If f is hyperbolic but not superattracting and v ∈ T f we define L f (v) =
α ∈ G f satisfying (2.5) which exists by the above proposition (and is unique
by Remark 5.2).

It is easy to see that if f is a hyperbolic map with a periodic attractor
p of period n then vector fields v tangent to C f at f satisfy the following
formula,

Dvn(p)(D f n(p) − 1) = vn(p)D2 f n(p),(5.1)

since this formula implies that the multiplier of the continuation of p along
f + tv (given infinitesimally by p+ tvn(p)(1− D f n(p))−1) does not change
infinitesimally.
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5.2. Puzzle maps. Let D ⊂ C be a topological disk. We say that D has
L-bounded shape around x ∈ D if there exists r > 0 such that

Dr(x) ⊂ D ⊂ DLr(x).

Let U ⊂ C be an open set and let X ⊂ U be measurable. We say that X
is thin in U if there exist L, ε > 0 with the following property: any x ∈ X
has a neighborhood D ⊂ U with L-bounded shape around x, such that
mod(U \ D) > ε and meas(D \ X)/ meas D > ε. Notice that this notion
is qc invariant: if X is thin in U and f : U → C is a qc map then f(X)
is thin in f(U). It is also invariant with respect to the lifting by branched
coverings: if f : V → U is a holomorphic finite branched covering and X
is thin in U then f −1(X) is thin in V .

Definition 5.3. A holomorphic map f : U → C of class A1(U) is called
a puzzle map if:

• U is a countable union of quasidisks Ui , i ≥ 0, called puzzle pieces,
with pairwise disjoint closures, and U0 ∋ 0;

• For i > 0, f is a diffeomorphism of the closure of Ui onto the closure of
some U j;

• There exists a sequence ni ≥ 0 such that f ni |Ui is a diffeomorphism
onto U0;

• 0 is a critical point of f and f ′ does not vanish on ∂U0;
• f |U0 is a double covering onto the image;

• For any i, either Ui is contained in f(U0) or it does not intersect f(U0).

And furthermore the collection Ui satisfy the following geometric con-
ditions:

(1) infUi⊂ f(U0) mod( f(U0) \ Ui) > 0;

(2) ∪Ui ∩ f(U0) is thin in f(U0);
(3) limi→∞ diam(Ui) = 0.

We will use notation U1 ≡ U(c1) for the puzzle piece containing the
critical value c1 (whenever c1 ∈ U). We will also use the notation P = P f

for the collection of puzzle pieces {Ui}.

Definition 5.4. The filled Julia set K( f ) of a puzzle map f : U → C is the
set of points which do not escape U.

We say that a puzzle map f : U → C is hyperbolic if there is an
attracting periodic cycle p contained in U . For hyperbolic puzzle maps, the
immediate basin of attraction of p is compactly contained in U and contains
the critical orbit.

Definition 5.5. Let f ∈ Ua. A geometric puzzle for f is a countable collec-
tion of topological disks Ui (puzzle pieces) with piecewise smooth boundary
such that:
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Fig. 3. Geometric domains

• f restricted to the union of the puzzle pieces is a puzzle map;
• There is a real puzzle P such that the real slices Ji = Ui ∩R are puzzle

pieces of P;
• The Ui are R-symmetric;
• The closure of the union of the Ji contains a neighborhood of the interval

[−1, c1] in [−1, 1].

And furthermore, there exist 0 < φ < ψ < γ < π/2 and k > 0 such
that

(1) Dφ(Ji) ⊂ Ui ⊂ Dψ(Ji);
(2) For each i, either the closure of Dγ (Ji) is contained in f(U0) or it does

not intersect the closure of f(U0);
(3) If Ui is contained in f(U0) then mod( f(U0) \ Ui) > k;
(4) There exists Ũ0 ⊃ U0 with mod(Ũ0 \ U0) > k, such that if f ni maps Ui

diffeomorphically onto U0 then there is an Ũi ⊃ Ui which is mapped
diffeomorphically onto Ũ0 . Furthermore Ũi ⊂ f(U0) or Ũi∩ f(U0) = ∅.

We will call (φ,ψ, γ, k) the geometric parameters of the puzzle.

Remark 5.4. The geometric conditions 1–4 of Definition 5.5 of a geometric
puzzle map automatically imply the geometric conditions 1–3 of Defin-
ition 5.3 of a puzzle map.

If U is a geometric puzzle for f , then f : U → C is naturally called
a geometric puzzle map.

Definition 5.6. We say that the puzzle P f persists in a neighborhood V of f
in Aa if there exists a normalized holomorphic motion Hg : C→ C, g ∈ V,
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Fig. 4. Domain f(U0)

such that g(Hg(z)) = Hg( f(z)),∀z ∈ ∂U f . We denote Hg(U
f ) = Ug.

Notice that g|Ug is automatically a puzzle map.

Lemma 5.5. Let 0 < φ < ψ < γ < π/2 and let k > 0 be arbitrarily big.
If f ∈ Ua is a Yoccoz map, then there exists a puzzle for f with geometric
parameters (φ,ψ, γ, k).

Proof. Let g = f n : J → J be the last pre-renormalization of f and let p
be the fixed point of g in the interior of J . Let T i be the principal nest for g.

Assume first that the critical point is recurrent. By Theorem 2.17,
|T i−1|/|T i| is unbounded. Let i0 be such that |T i0−1|/|T i0 | is big. Letting
J0 = T i0 , consider the associated real puzzle {Ji}. Let J̃0 = T i0−1. In what
follows, we discard the puzzle pieces to the right of the puzzle piece J1. We
still have that ∪Ji is a neighborhood of [−1, c1] in [−1, 1] (since the set of
points that never enter J0 is a Cantor set, see Remark 2.8).

By Theorem 2.16, there are intervals J̃i ⊃ Ji such that f ni is a diffeo-
morphism from J̃i to J̃0 and J̃i ∩ J0 = ∅ for i �= 0.

Let θ = (φ + ψ)/2 and let U0 = Dθ(J0). By Lemma 2.18, there exist
topological disks Ui ⊃ Ji such that for each i, f ni maps Ui onto U0 and
extends to a univalent map onto some Ũ0 with big mod(Ũ0 \ U0). By the
Koebe Distortion Theorem, each Ui satisfies Dφ(Ji) ⊂ Ui ⊂ Dψ(Ji). In
particular the domains Ui are pairwise disjoint.

Let us show that if Ui intersects V ≡ f(U0), then Ui is well inside V (see
Fig. 4). Note first that in this case, Ji ⊂ V ∩R. Otherwise there would be an
interval Jk such that f(Jk) = Ji , Jk ∩ J0 = ∅, but Uk ∩U0 �= ∅ contradicting
disjointness of the U j . It follows that Ji is contained in the convex hull of
f(∂J0) and J1 (since we assume there are no Ji to the right of J1).

Notice also that there exists a constant ρ that only depends on θ and the
initial bounds on f such that V contains Dρ(V ∩ R). It follows that there
is a κ (depending only on the same data) such that for any x ∈ [ f(∂J0), c1],
dist(x, f(∂J0)) < κ dist(x, ∂V ).
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Furthermore, the interior of J̃i does not intersect f(∂J0) since the orbit of
f(∂J0) never returns to the interior of J̃0. Since dist(Ji, ∂ J̃i)/|Ji | is big when
| J̃0|/|J0| is big, we conclude that |Ji | is much smaller than dist(Ji, f(∂J0)).
It follows that |Ji | is much smaller than dist(Ji, ∂V ). Thus, Ui is well inside
V as was asserted. All other properties of a geometric puzzle are easily
supplied.

Suppose now that the critical point is non-recurrent. Let T i be the last
interval of the principal nest, so that the iterates of 0 never return to the
interior of T i . It follows that the set of points in T i which do not return to
the interior of T i accumulate on 0. Let us consider a small nice interval J0
whose endpoints do not return to T i and the associated real puzzle {Ji}.

Let J̃0 = T i . By Theorem 2.14, there are intervals J̃i ⊃ Ji such that f ni

is a diffeomorphism from J̃i onto J̃0. Notice that c1 is accumulated from the
right by intervals Ji , so we can discard all Ji outside a small neighborhood
of [−1, c1] and still get a neighborhood of [−1, c1] in [−1, 1]. We can now
argue exactly as before. ⊓⊔

Remark 5.5. Notice that the above construction can be adapted to construct
a (non-geometric) puzzle for f with any central puzzle piece U0 with
a reasonable shape. More precisely, given 0 < φ < ψ < π, if |Tn|/|Tn−1|
is small enough, then any U0 trapped in between Dφ(Tn) and Dψ(Tn) (i.e.,
Dφ(Tn) ⊂ U0 ⊂ Dψ(Tn)) generates a puzzle {U j} whose real trace {J j}
form a real puzzle for f .

Lemma 5.6. Let 0 < φ < ψ < γ < π/2 and let k > 0 be arbitrarily big.
If f ∈ Ua is a Yoccoz map, then there exists a puzzle for f with geometric
parameters (φ,ψ, γ, k) which persists on a neighborhood V ⊂ Aa of f .

Proof. We will show that the puzzle given by Lemma 5.5 is a persistent
puzzle. We will keep the notation of that lemma. We show how to define
a holomorphic motion Hg in a neighborhood of f .

We first observe that the Cantor set Q of points which never enter J0
is contained in a persistent Markov family {M j}, that is, f restricted to
∪M j is strictly Markov (see Remark 2.8). So by Proposition 2.11 there is
a holomorphic motion hg : C → C over a neighborhood of f such that
hg ◦ f = g ◦ hg on ∪M j .

Let us show that there is a neighborhood V of f such that for any i
there is a holomorphic motion h i

g of Q ∪ Ui such that h i
g|Q = hg and

hg ◦ f ni+1 = gni+1 ◦ h i
g in Ui . It is clear that for any fixed i we can get

a neighborhood Vi where such a holomorphic motion is defined.
To deal with all i at the same time we notice that all but finitely many Ui

are compactly contained in ∪M j since the Ui accumulate on Q and Q
is compactly contained in ∪M j . Let � be the set of Ui which are not
compactly contained in ∪M j . Let J be the set of Ui which are compactly
contained in ∪M j but f(Ui) ∈ � (in particular J is also finite). Shrinking
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the neighborhood V if needed, we may suppose that for g ∈ V, h i
g is defined

for Ui ∈ � ∪ J, and h i
g(Ui) ⊂ ∪hg(M j) for Ui ∈ J.

Now, if Ui /∈ � ∪ J, there is a unique k such that f k(Ui) = U j belongs
to J. We then define h i

g|Ui so that gk ◦ h i
g = h

j
g ◦ f k in Ui . These are the

desired holomorphic motions h i
g.

We extend each of the holomorphic motions h i
g to normalized holomor-

phic motions of C.
The property that orb( f(∂J0)) never enters int J̃0 implies that J̃ j ∩ Ji = ∅,

for all i �= j with ni ≤ n j (compare the proof of the previous Lemma).
Hence dist(J j , ∂Ji) is much bigger than |J j |. By the condition 1 in the
definition of geometric parameters, we have for all k, Uk ⊂ Dπ/2(Jk), hence

inf
i �= j

distS(Ui, U j) > 0,(5.2)

where S = C \ Q (use the Schwarz Lemma and ∂J j ⊂ Q). Moreover, by
condition 4 in the definition of geometric parameters, for all k there exists
Ũi with Ũi ∩ ∂V = ∅ and mod(Ũi \ Ui) > k, so by similar considerations,

inf
i

distS(Ui, ∂V ) > 0, where V ≡ f(U0).(5.3)

By the Quasiconformality Lemma (see §2.5), V can be shrunk so that
the dilatation of the motions hg and h i

g will be close to 1. By Lemma 2.3,

inf
i �= j

disthg(S)

(

h i
g(Ui), h j

g(U j)
)

> 0,

inf
i

disthg(S)

(

h i
g(Ui), hg(∂V )

)

> 0.(5.4)

So we can define a holomorphic motion Hg which agrees with hg on
Q ∪ ∂V and with h i

g on Ui . This concludes the proof of the lemma. ⊓⊔

Remark 5.6. The above proof also shows that the holomorphic motion Hg,
g ∈ V associated to the persistent puzzle P f may be taken R-symmetric.
More precisely, we can choose V to be a small ball around f and construct
Hg with the property that Hg(z) = Hconj(g)(z), where conj(g)(z) = g(z). To
see this, notice that all the constructive (dynamical) steps in the above proof
respect the R-symmetry. If we also choose all neighborhoods of f to be
small balls centered at f , then the successive applications of the Extension
Lemma in the above argument yield R-symmetric holomorphic motions by
Remark 2.2.

From now on, when considering a holomorphic motion associated to
a persistent geometric puzzle we will always assume it is R-symmetric. In
particular, if g ∈ Ua ∩ V then Hg is an R-symmetric qc map.

Remark 5.7. The above construction is refined in Lemma 7.9. For a related
but different construction see also Lemma 12.5 of [LS2].
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6. Pullback arguments and the key estimate

6.1. Macroscopic pullback argument. Let f : U f → C and f̃ : U f̃ →
C be two puzzle maps, and let h be a homeomorphism of C such that
h(U f ) = U f̃ , equivariant on ∂U f . If h( f(0)) = f̃ (0), then there is a unique
homeomorphism h1 coinciding with h onC\U f and such that h◦ f = f̃ ◦h1
on U f . It is called the lift of h.

Definition 6.1. We say that a homeomorphism h : C→ C is a combinato-
rial equivalence between f and f̃ if it is equivariant on ∂U f and the lift h1
of h is homotopic to h rel ∂U f ∪ orb f (0).

Lemma 6.1. Let h be a qc combinatorial equivalence between f and f̃ .

Then the lift h1 of h is a qc combinatorial equivalence between f and f̃
and Dil(h1) ≤ Dil(h).

Proof. Let H t be a homotopy between h and h1 rel ∂U f ∪ orb f (0), and let
H t

1 be the lift of H t . Then H t
1 is a homotopy rel ∂U f ∪ orb f (0) between h1

and its lift h2.
Define a sequence of homeomorphisms ψk as follows

ψk =

{

h1 on ∪k
j=0U

f

j

h otherwise.

We notice that ψk is quasiconformal on C \ (∪k
j=0∂U j ∪ {0}), since it

coincides with h on the complement of ∪k
j=0U j and is the conformal lift

of h on ∪k
j=0U j \ {0}. Since quasiarcs and points are qc removable, ψk

is quasiconformal on the whole complex plane. Since quasiarcs have zero
Lebesgue measure, the estimate Dil(ψk) ≤ Dil(h) follows from the fact that
conformal lifts preserve the norm of Beltrami differentials.

Since ψk → h1 pointwise, the result follows from the First Compactness
Lemma. ⊓⊔

The Pullback Argument in the context of quadratic-like maps was for-
mulated by Sullivan, see [MS], Chap. 6, Sect. 4. The following result adapts
it to the context of puzzle maps.

Theorem 6.2. Let us consider two puzzle maps f and f̃ with all periodic
orbits hyperbolic. Let h be a qc combinatorial equivalence between f and f̃ .

Then there is a qc homeomorphism H : C→ C such that H ◦ f = f̃ ◦ H on
U f , H = h on C \ U f , and Dil(H) ≤ Dil(h). If there are no invariant line
fields on K( f ) or if f and f̃ are hyperbolic maps with the same multiplier,
then Dil(H) ≤ Dil(h|C \ U f ).
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Proof. Assume first that all periodic orbits are repelling. In this case K( f )
has empty interior by Lemma A.21.

Let h0 = h and define by induction hk+1 as the lift of hk. By the previous
lemma all hk are qc maps with Dil(hk) ≤ Dil(h). By the First Compactness
Lemma, there exists an accumulation point H of hk which is quasiconformal
and whose dilatation is bounded by the dilatation of h. Since the hk(z) are
eventually the same for any z ∈ C \ K( f ), H is a conjugacy between f and
f̃ on U f \ K( f ). Since K( f ) has empty interior, H is a conjugacy between
f and f̃ on U f .

Moreover, Dil(H|C \ K( f ) ≤ Dil(h|C \ U f ). Hence, if there are no
invariant line fields on K( f ), then the dilatation of H on the entire complex
plane has the same bound.

If f and f̃ are hyperbolic maps with the same multiplier we can use
Lemma A.26 to modify h inside K( f ) in order to have ∂h|K( f ) = 0. ⊓⊔

Remark 6.1. We will show in the Appendix A that the assumption that
a puzzle map f has only hyperbolic periodic orbits is satisfied for all
complex preperiodic or hyperbolic maps (Lemma A.23), as well as for
the puzzle extensions of unimodal maps without parabolic points on I
(Lemma A.20).

Lemma 6.3. There exists a constant L > 0 with the following property. Let
f ∈ Ua be a Yoccoz map, and let P f be a geometric puzzle which persists
in an ε-neighborhood of f in Aa (which exists by Lemma 5.6). Let V be
an ε/2-neighborhood of f . If g ∈ Ua ∩ V is preperiodic or hyperbolic
and g̃ belongs to the same connected component of Cg ∩ V, then there is
a normalized L-qc homeomorphism h : C→ C equivariant with respect to
g and g̃ on Ug.

Proof. Let Hg be the holomorphic motion of P f . By the λ-lemma, the
dilatation of the motion restricted to V is bounded by some constant L .

Consider some preperiodic or hyperbolic g ∈ Ua ∩V and a holomorphic
path gλ, λ ∈ D, in Cg∩V connecting g0 = g with g̃ (such path exists since Cg

is a codimension-one analytic submanifold). Let Hλ = Hgλ
◦ H−1

g denote
the corresponding holomorphic motion of the puzzle Pgλ

with base point
λ = 0.

Let hλ = Hλ on the complement of Ug and hλ(g
n(0)) = gn

λ(0) whenever
gn(0) ∈ Ug.

Assume first that the critical orbit of g never escapes Ug. Then

gn(0) �∈ ∂Ug, n = 0, 1, . . . .(6.1)

Let us consider the set W of points λ0 ∈ D such that hλ is injective in
a neighborhood of λ0. Then 0 ∈ W . Indeed, by (6.1), any curve λ �→ gn

λ(0)
does not collide with ∂Ugλ for λ sufficiently close to 0 (depending on n).
This makes the statement obvious in the preperiodic case. In the hyperbolic
case, there exist N ∈ N and neighborhoods V ∋ 0 and Λ ∋ 0 such that gλ|V
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is injective and gλ(V ) ⋐ V for λ ∈ Λ, and gN
λ (0) ∈ V . Then the points

gn
λ(0), n ≥ N, do not collide neither with ∂Ugλ , nor with each other.

Let W0 be the connected component of W containing 0. We claim that for
each λ0 ∈ W0, hλ0 extends to a qc combinatorial equivalence ĥλ0 between g
and gλ0 . To see it, let us consider a simply connected domain D ⊂ W0 con-
taining 0 and λ0. Restricting the motion hλ to λ ∈ D and using Slodkowski’s
Theorem (see Remark 2.3)5, we obtain an extension ĥλ : C → C, λ ∈ D.
By the Quasiconformality Lemma, ĥλ0 is qc. Moreover, since ĥλ0 comes
from a holomorphic motion, it is a combinatorial equivalence between g
and gλ0

6. This concludes the proof of the claim.
By Theorem 6.2 (together with Remark 6.1), there exists an L-qc map

of C which conjugates gλ to g on Ug. By the First Compactness Lemma,
for any λ ∈ W0 ∩ D, gλ is L-qc conjugate to g on Ug.

Vice versa, if gλ is qc conjugate to g on Ug, then there exists a neigh-
borhood of λ where hλ is injective, so λ ∈ W . Hence W0 ∩D ⊂ W0, so that
W0 is open and closed. Thus, W0 = D, so that hλ is always injective and gλ

is always L-qc conjugate to g on Ug.
Assume now that the critical orbit of g escapes U . Since g is real,

there is a smallest n such that gn(0) belongs to the invariant Cantor set
Q ≡ ∂Ug∩R (see Proposition 2.15). The holomorphic motion Hλ restricts to
the dynamical motion of Q given by Proposition 2.11. Hence Hλ(g

m(0)) =
gm

λ (0), for m ≥ n, so that the maps hλ are equivariant on orbg(0) ∪ ∂Ug.
By the same argument of the non-escaping case, the points gm

λ (0) =
hλ(g

m(0)), m < n, do not collide with Hλ(C\Ug), which yields the desired
statement. ⊓⊔

Remark 6.2. In the above Lemma we constructed, for each g̃ in the con-
nected component of g in Cg ∩V, a qc map h g̃ which has the three following
properties:

• h g̃|C \ Ug = Hg̃ ◦ H−1
g is a holomorphic motion of the puzzle with base

point g;
• h g̃ is equivariant on Ug;
• ∂h g̃ = 0 on K(g).

It is easy to see that such a qc map h g̃ is uniquely defined by the
above properties (once the motion Hg̃ is fixed). It follows that the map
g̃ �→ h g̃|C \ int K(g) depends holomorphically on g̃ along the connected
component of g in Cg ∩V. Indeed, this is automatic in the case where K(g)
has empty interior. By Lemma A.22, since g is R-symmetric, if K(g) has
non-empty interior then int K(g) is the basin of attraction of an attracting

5 We can use the Extension Lemma instead to construct a piecewise holomorphic motion
joining 0 with λ0, see Remark 2.4.

6 If we denote the lift of ĥλ by ĥλ,1 and let s : [0, 1] → D be any path connecting 0 to
λ0, then a homotopy between ĥλ0 and its lift can be written explicitly as ĥλ0 ◦ ĥ−1

s(t) ◦ ĥs(t),1,
t ∈ [0, 1].
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periodic cycle. The holomorphic dependence of the linearizing coordinate
of an attracting periodic cycle implies that h g̃ depends holomorphically in
int K(g) as well.

6.2. Infinitesimal Pullback Argument. The “Infinitesimal Pullback Ar-
gument” introduced in this section will allow us to reconstruct, by means
of consecutive liftings (see §2.6.2), a qc vector field which is equivariant on
some essential part of the dynamical domain into a qc vector field which
is equivariant on the whole domain. One step of the pullback argument is
given by the following lemma:

Lemma 6.4. Let Ω ∋ 0 be a quasidisk. Consider a map f ∈ A1(Ω) whose

derivative does not vanish on Ω \ {0}. Assume that f : Ω → f(Ω) is
either a diffeomorphism or a double branched covering ramified at 0. Let
v ∈ BΩ. Let α and β be qc vector fields on C such that β|∂Ω is the lift of
α by ( f, v). Moreover, if f is a double branched covering, we assume that
v(0) = α( f(0)). Then there exists a qc vector field γ such that γ |Ω is the
lift of α by ( f, v), γ |C \ Ω = β, and

‖∂γ‖∞ ≤ max {‖∂α‖∞, ‖∂β‖∞}.(6.2)

Proof. Define a continuous vector field γ on C \ {0} by letting γ = β on
C \ Ω and letting γ = (α ◦ f − v)/ f ′ on Ω \ {0}.

If f is a diffeomorphism then γ clearly extends to 0. Assume f is
a branched double covering. Since the modulus of continuity of qc vector
fields is φ(x) = −x ln(x) (see §2.6.1), we have for z near 0:

|α( f(z)) − α( f(0))| = O(φ(| f(z) − f(0)|)) = O(φ(|z|2)).

Since v(0) = α( f(0)) and f ′ has a simple root at 0, we have

γ(z) =
v(0) − v(z)

f ′(z)
+ O(φ(|z|)),

where the first term is a regular holomorphic function. Hence γ admits
a continuous extension to 0.

It is clear that γ is quasiconformal on C \ (∂Ω ∪ {0}). Since quasiarcs
and isolated points are qc removable, γ is quasiconformal on the whole
complex plane.

Since the lifts preserve the qc norm of vector fields, we have ‖∂γ‖∞ =

‖∂α‖∞ on Ω, while we have ‖∂γ‖∞ = ‖∂β‖∞ on C \ Ω. Since quasiarcs
are removable, (6.2) follows. ⊓⊔

Remark 6.3. This lemma extends to branched coverings of any degree n
with some extra conditions on the derivatives of v (which assure that the
critical point does not bifurcate infinitesimally along f + tv).
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Theorem 6.5. Let f : U → C be a puzzle map whose critical point does

not escape U, and let v be a tangent vector field at f . Assume there exists
a normalized qc vector field β onCwhich is equivariant on ∂U∪orb(0). Then

there exists an equivariant (on U) qc vector field α with ‖∂α‖∞ ≤ ‖∂β‖∞

which coincides with β on C\U. Furthermore, if there are no invariant line

fields on K( f ), then ‖∂α‖∞ ≤ ‖∂β |C \ U‖∞.

Proof. This proof is the essence of the “infinitesimal pullback argument”.
Using Lemma 6.4, let us lift the vector field β to the puzzle piece U0 by

means of f : U0 → C. We obtain a qc vector field γ0 on C with ‖∂γ0‖∞ ≤

‖∂β‖∞, coinciding with β on C \ U0. Let Um = ( f |U \ U0)
−m(U0). Define

inductively a sequence of qc vector fields γm on C by letting γm on Um be
the lift of γm−1 and letting γm = γm−1 on C \ Um . Since holomorphic lifts
preserve the qc norm, ‖∂γn‖∞ ≤ ‖∂γn−1‖∞.

By The Second Compactness Lemma, this sequence of vector fields is
precompact. Since it stabilizes pointwise, it converges to a qc vector field α1.
This vector field satisfies the following properties:

• α1|U0 is the lift of β;
• α1|U \ U0 is equivariant;
• α1|C \ U = β;
• ‖∂α1‖∞ ≤ ‖∂β‖∞.

Replace now β ≡ α0 with α1 and repeat the procedure. In this way we
will construct a sequence of qc vector fields αn with the following properties

(i) αn|U0 is the lift of αn−1;
(ii) αn|U \ U0 is equivariant;
(iii) αn|C \ U = αn−1 (so by induction αn|C \ U = β for all n);
(iv) ‖∂αn‖∞ ≤ ‖∂αn−1‖∞.

Taking any Cesaro limit of this sequence (which exists by the Second
Compactness Lemma),

α = lim
1

ni

ni−1
∑

k=0

αk,

we obtain a qc vector field α with ‖∂α‖∞ ≤ ‖∂β‖∞. Properties (i)–(iii)
imply that α is equivariant everywhere on U .

Note that α on C \ K( f ) is obtained by consecutive liftings of β on
C \ U . Hence

‖∂α |C \ K( f )‖∞ ≤ ‖∂β |C \ U‖∞.

If there are no invariant line fields on K( f ) then

‖∂α‖∞ = ‖∂α |C \ K( f )‖∞,

and the last assertion follows (see Lemma 2.30). ⊓⊔
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Remark 6.4. The same proof also applies to the case when the critical point
escapes. More precisely, let f be a puzzle map and Ω ⊂ U be a union
of puzzle pieces. Let n = min{k ≥ 0, ck /∈ Ω} (the escaping time of the
critical point). Assuming the critical point escapes Ω, we have n < ∞. If β
is a vector field equivariant on ∂Ω and on {ck, 0 ≤ k ≤ n − 1}, then there
exists a vector field α equivariant on Ω coinciding with β outside of Ω and
such that ‖∂α‖∞ ≤ ‖∂β‖∞. By Lemma A.23, K( f |Ω) has zero Lebesgue
measure, so ‖∂α‖∞ ≤ ‖∂β|C \ U‖∞.

6.2.1. Gluing qc vector fields. Assume now that we have two qc vector
fields βi on C which respect some dynamical data on sets X i ⊂ C, i = 0, 1.
Let us say that these vector fields can be glued if there is a qc vector field
on C coinciding with βi on X i . The case which will interest us is when
X1 = O f , X0 = C \ U .

Note first that if X0 and X1 have disjoint closures, the vector fields βi

can be obviously glued using partition of unity. Together with Theorem 6.5
this implies:

Lemma 6.6. Let f be a puzzle map with non-escaping critical point such
that the postcritical set O f is disjoint from ∂U, and let v ∈ BU . Assume
that there are qc vector fields β0 and β1 on C such that β1 is equivariant on
orb f (0) and β0 is equivariant on ∂U. Then there exists an equivariant qc
vector field α on U coinciding with β0 onC\U and coinciding with β1 on O f .

If there are no invariant line fields on K( f ), then ‖∂α‖∞ ≤ ‖∂β0 |C\U‖∞.

If the postcritical set intersects the boundary of the puzzle, the gluing
method is much more delicate. It will be based on a pullback construction.

Recall that U(x) is the connected component of U containing x.

Lemma 6.7. Let f be a puzzle map such that c1 ∈ U. Let v ∈ BU , and let
β0 be a qc vector field on C equivariant on ∂U. Then there are constants
C1 and C2 with the following property. Consider a point x ∈ U such that
0 ∈ ω(x). If there exists a bounded vector field β equivariant on orb(x) then
there exists a qc vector field α on C such that

• ‖∂α‖∞ ≤ C1 + C2‖β‖∞;
• α(x) = β(x);
• α coincides with β0 outside of U(x).

Proof. Let W = ( f |U0)
−1(U) (the domain of the first return map to U0)

and W0 = W(0) (the central domain of the first return map).
Let β1 be a qc vector field on C coinciding with β0 on C \ U1 and such

that v(0) = β1(c1). By Lemma 6.4 there exists a qc vector field ζ coinciding
with β0 on C \ U0 and such that ζ is the lift of β1 on U0. So ζ is equivariant
on ∂U ∪ ∂W .

Since W0 ⊂ U0, there exist qc vector fields θ0, θ1 such that θ0|W0 = 1,
θ0|C \ U0 = 0, and θ1|W0 = 0, θ1|C \ U0 = β0. We let

C1 = max{‖∂β0‖∞, ‖∂ζ‖∞, ‖∂θ1‖∞} and C2 = ‖∂θ0‖∞.
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Let si denote the sequence of landing moments of x, that is,

s0 = min{k ≥ 0| f k(x) ∈ U0} and si+1 = min{k > si | f k(x) ∈ U0}.

Let m = min{k ≥ 0| f sk(x) ∈ W0}, so that f sm(x) is the first landing of
x on W0 (m < ∞ since 0 ∈ ω(x)). For each k ≤ m there exists a unique
quasidisk Vk around x such that f sk |V k is a diffeomorphism onto U0.

Let η = θ1 +β( f sm (x))θ0 (we identify freely vector fields and functions
when defined on subsets of C), so that

η|C \ U0 = β0, η( f sm (x)) = β( f sm (x)), ‖∂η‖∞ ≤ C1 + C2‖β‖∞.

Let γm be the lift to Vm of η by ( f sm , vsm ). For each k < m, let γk be the
lift to Vk of ζ by ( f sk, vsk). So we have constructed, for k ≤ m, qc vector
fields γk on Vk such that ‖∂γk‖∞ ≤ C1 + C2‖β‖∞.

Notice that the equivariance of ζ on ∂U ∪ ∂W implies that, for k < m,
γk and γk+1 coincide on ∂Vk+1. It also follows that β0 coincides with γ0 on
∂V0.

Let α = β0 outside V0, α = γk on Vk \ Vk+1, k < m, and α = γm on Vm .
Then α is a continuous vector field on C and since quasiarcs are removable,
α is a qc vector field with ‖∂α‖∞ ≤ C1 + C2‖β‖∞. By equivariance of β
on orb(x), α(x) = β(x). ⊓⊔

Remark 6.5. The proof above uses that 0 ∈ ω(x) only to assure that there
exists an m < ∞ such that f sm(x) ∈ W0. If this is not the case (but x is still
non-escaping from U), then one can show that the conclusion still holds
under the (weak) assumption |D f sk(x)| → ∞.

Lemma 6.8. Let f be a puzzle map with a recurrent critical point such
that orb(0) intersects infinitely many puzzle pieces, and let v ∈ BU . Assume
there are qc vector fields β0 and β1 on C such that β1 is equivariant
on orb(0) and β0 equivariant on ∂U. Then there is a qc vector field α
equivariant on U coinciding with β0 on C \ U (and coinciding with β1 on
orb( f(0))). Furthermore, if there are no invariant line fields on K( f ), then

‖∂α‖∞ ≤ ‖∂β0|C \ U‖∞.

Proof. By the assumption, there exists a sequence k( j) → ∞ and a se-
quence V j of components of U such that

ck( j) ∈ V j but ci /∈ V j, i < k( j).

Let Ω j = U \ V j .
We first construct a uniformly bounded sequence of vector fields α j

equivariant only on Ω j . This is done in three steps.
In the first, we modify the vector field β0 inside V j to obtain the correct

value (given by β1) on ck( j), uniform bounds come from Lemma 6.7. In
other words, there exists a constant C and a sequence γ j of vector fields
such that ‖∂γ j‖∞ ≤ C, γ j(ck( j)) = β1(ck( j)), and γ j coincides with β0 on
the complement of V j .
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In the second step, we prepare ourselves for a pullback argument by
modifying γ j inside Ω j to obtain the correct values in the finite set {ci, 0 ≤
i < k( j)}. More precisely, we define a sequence ζ j of qc vector fields on
C such that ζ j coincides with γ j on C \ Ω j and ζ j coincides with β on ci ,
0 ≤ i ≤ k( j). In this step we lose uniform estimates, which are recovered
in the next one.

The third step is the pullback argument truncated to Ω j . Since ζ j is
equivariant on ∂Ω j and on ci , 0 ≤ i < k( j), we can apply the Infinitesimal
Pullback Argument (or rather, its escaping version outlined in Remark 6.4)
to obtain a qc vector field α j equivariant on Ω j and coinciding with ζ j on
C \ Ω j (hence α j |C \ Ω j = γ j). Moreover, ‖∂α j‖∞ ≤ C.

To obtain the desired vector field equivariant on all of U we just need
to take a limit α of the vector fields α j (using the Second Compactness
Lemma). If there are no invariant line fields, the estimate on α follows as
before.

Notice that the equivariance of α and β1 on the critical orbit determines
uniquely their values on the orbit of the critical value, so α| orb( f(0)) = β1.

⊓⊔

Remark 6.6. In the above proof, it was only used that the vector field β1 is
bounded on orb(0). No assumption of quasiconformality or even continuity
is necessary.

Lemmas 6.6 and 6.8 immediately imply:

Theorem 6.9. Let f be a puzzle map with a recurrent critical point, and
let v ∈ BU . Assume there are qc vector fields β0 and β1 such that β1 is
equivariant on orb(0) and β0 is equivariant on ∂U. Then there is a qc vector
field α equivariant on U and coinciding with β0 on C \ U. Furthermore, if

there are no invariant line fields on K( f ), then ‖∂α‖∞ ≤ ‖∂β0|C \ U‖∞.

Let us finish this section with a discussion of infinitesimal deformations
of hyperbolic puzzle maps.

Lemma 6.10. Let f be a hyperbolic puzzle map. If v satisfies equation (5.1)
then there exists a qc vector field α onCwhich is conformal and equivariant

on a neighborhood of orb(0).

Proof. Let p be the attracting periodic point whose immediate basin of
attraction contains 0, and let n stand for its period. Take some f n-invariant
topological disks V ⋐ V ′ ∋ p containing orb f n(0). It is enough to find a so-
lution of the equation vn(z) = α( f n(z)) − α(z)D f n(z) which is conformal
and equivariant in V , since such solution can be spread (by means of n − 1
lifts) around the rest of the orbit of 0 and then extended arbitrarily to a qc
vector field on C.

Equation (5.1) tells us that vn is an infinitesimal deformation of f n|V ′

preserving the multiplier of the attracting periodic point. Hence there is
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a holomorphic family gλ : V → C, g0 = f n, tangent to vn, such that
each gλ has an attracting fixed point pλ (depending analytically on λ) with
multiplier D f n(p). By the standard local theory, there is a holomorphic
family of conformal maps

ψλ : (V, 0) → (Vλ, 0)

conjugating f n to gλ. Then α = dψ/∂λ|
λ=0 is the desired vector field. ⊓⊔

Remark 6.7. The above equation can also be solved directly using the
Böttcher or linearizing coordinate near p. In these coordinates, it is reduced
to either u(s) = a(s2)−2sa(s) (superattracting case) or u(s) = a(λs)−λa(s)
(simply attracting case). Both equations can be easily analyzed by means
of power expansions.

Lemma 6.11. Let f be a hyperbolic puzzle map and let v ∈ BU be a vector
field satisfying equation (5.1). Let β0 be a qc vector field on C equivariant
on ∂U. Then there exists a vector field α on C equivariant on U such that

‖∂α‖∞ ≤ ‖∂β0|C \ U‖∞. Moreover, α is holomorphic on the basin of
attraction of the attracting cycle.

Proof. Let β be the vector field given by Lemma 6.10. We can create a vector
field γ by gluing β0 on the complement of U with β on a neighborhood of
orb(0). Applying the Infinitesimal Pullback Argument (Theorem 6.5), we
obtain a vector field α which is equivariant on U , conformal on the basin of
attraction int K( f ) and satisfies

‖∂α|C \ K( f )‖∞ ≤ ‖∂β0|C \ U‖∞.

By Lemma A.21, ∂K( f ) has zero Lebesgue measure for a hyperbolic puzzle
map, so the estimate follows. ⊓⊔

6.3. Key estimate. We say that a preperiodic or hyperbolic complex map g
has special combinatorics with respect to V, a complex neighborhood of g,
if the connected component of g in Cg ∩ V contains a real map.

Recall that Lg is the linear map which associates to any tangent vector
field v ∈ Tg the unique qc vector field α on the postcritical set such that
v = α ◦ f − α f ′ and v(0) = α(c1).

Lemma 6.12 (Key estimate). Let f ∈ Ua be a Yoccoz map. There exists
a neighborhood V of f in Aa and a constant C > 0 such that, for any g
with special combinatorics with respect to V, the operator norm of Lg is
bounded by C.

Proof. Consider a persistent puzzle for f given by Lemma 5.6. Take an
ε > 0 such that this puzzle persists in an ε-neighborhood of f , and let Hg

be the associated holomorphic motion. Let V be an ε/2-neighborhood of f
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and let C = 2/ε. Given g ∈ V with special combinatorics and v ∈ Tg with
‖v‖a = 1, let hλ = Hg+λv ◦ H−1

g , λ ∈ Dε/2. Let

β0 =
d

dλ
hλ

∣

∣

∣

∣

λ=0

.

Notice that β0 is equivariant on ∂Ug with respect to (g, v). By Theorem 2.7,
µhλ

is a holomorphic function onDε/2 with values in the unit ball of L∞(C).
By Lemma 2.10,

∂β0 =
d

dλ
µhλ

∣

∣

∣

∣

λ=0

.

Since µh0 = 0, we can apply the Schwarz Lemma to get ‖∂β0‖∞ ≤ 2/ε.
Assume g is preperiodic. By Lemma A.23, g has no invariant line fields

on K(g).
By Lemma 6.3, the special combinatorics assumption implies that g|Ug

is qc conjugate to g̃|U g̃ for some real map g̃ ∈ V; in particular, the critical
orbit does not escape Ug. By Theorem 6.5, there exists a qc vector field α

equivariant on Ug, coinciding with β0 on C \ U , and such that ‖∂α‖∞ ≤ C.
In the hyperbolic case we proceed as above using Lemma 6.11. ⊓⊔

Remark 6.8. It is possible to show that for each f ∈ Ua, L f has a bounded
operator norm. Near infinitely renormalizable maps, we can reduce to a per-
sistent quadratic-like renormalization, and our argument works unchanged.
For the hyperbolic and parabolic case, one can obtain explicit estimates,
using the formulas for the tangent space. However, in the parabolic case
those explicit estimates are less stable than the ones in our arguments, and
do not seem to allow to obtain estimates for nearby maps.

7. Transverse direction

In this section we will construct a transverse direction to the tangent space
T f for at most finitely renormalizable maps f . Later on, in §8.3, we will
identify T f with the genuine tangent space to H f . Let us start with simple
cases.

7.1. Non-recurrent cases. In the hyperbolic case T f was actually defined
as the tangent space to the hybrid class H f , which is a codimension-one sub-
manifold (see §5.1). This tangent space is explicitly given by equation (5.1),
so that the transverse vector fields are those which satisfy the inequality

Dvn(p)(D f n(p) − 1) − vn(p)D2 f n(p) �= 0,(7.1)

where p is the attracting periodic orbit of period n.
In the parabolic case with D f n(p) = 1, Definition 5.2 implies that

vn(p) = 0 for v ∈ T f . Obviously this condition specifies a codimension-
one subspace.

The parabolic case with D f n(p) = −1 is more delicate:



510 A. Avila et al.

Lemma 7.1. Let f ∈ Ua be a parabolic map such that the multiplier of its
parabolic orbit is −1 and let v ∈ T f . Then v satisfies (5.1), that is

2Dvn(p) + vn(p)D2 f n(p) = 0.

Proof. Let v be a vector field in T f and let α be a qc vector field ofC, equiv-
ariant on O f . Since 0 is attracted by p, we may assume limk→∞ ckn = p.

Equivariance allows us to write

vn(ckn) = α(c(k+1)n) − D f n(ckn)α(ckn).

By continuity of α on O f , α(ckn) − α(p) = o(1). Thus,

vn(p) + Dvn(p)(ckn − p) =

α(c(k+1)n) + α(ckn) − D2 f n(p)α(p)(ckn − p) + o(1)(ckn − p).

Taking the difference between two consecutive equations, we obtain:

(Dvn(p)+ D2 f n(p)α(p))(c(k+1)n −ckn) = α(c(k+2)n)−α(ckn)+o(ckn − p).

Since p is parabolic with multiplier −1, c(k+1)n − ckn = −2(ckn − p) +
o(ckn − p). Thus,

lim
k→∞

α(c(k+2)n) − α(ckn)

ckn − p
= 2Dvn(p) + 2D2 f n(p)α(p).

Equivariance gives vn(p) = 2α(p), so to obtain (5.1) we just have to show
that

lim
k→∞

α(c(2k+2)n) − α(c2kn)

c2kn − p
= 0.

To see this, notice that c2kn − p approaches p from one of the sides,
that is, for big k, all c2kn − p have the same sign. Since p is parabolic with
multiplier −1, c2kn − p ∼ ηn−1/2 for some η �= 0 (see Lemma B.3), so
∑

k(c2kn − p) diverges. Since α is uniformly bounded on orb(0),

∑

k

α(c(2k+2)n) − α(c2kn)

is bounded. Since the limit

lim
k→∞

α(c(2k+2)n) − α(c2kn)

c2kn − p

exists, it must be 0, proving the lemma. ⊓⊔
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By Lemma 7.1, T f is contained in a codimension-one subspace, and
transverse directions may be obtained again by (7.1).

We will now construct the transverse direction in the Misiurewicz case.
Let δx denote the Dirac measure concentrated on x. Let

νn =

n
∑

k=0

δck

( f k)′(c1)
,

which are signed measures on the interval I or equivalently bounded func-
tionals acting on C0(I ). By Proposition 2.15, in the Misiurewicz case f is
expanding on O f , so that |( f n)′(c1)| grows exponentially fast. Therefore,
the νn converge in the weak-∗ topology to a signed measure ν.

Lemma 7.2. There exists a polynomial p ∈ T f A
R

a such that ν(p) �= 0.

Proof. Since the critical point is non-recurrent, ν(J) = 1 for a small interval
J around 0 such that c j /∈ J for j ≥ 1. So the signed measure ν does
not vanish and hence there exists a continuous function φ ∈ C0(I ) such
that ν(φ) �= 0. Since any continuous function can be approximated by
a polynomial, the assertion follows. ⊓⊔

Lemma 7.3. If ν(v) �= 0, then v /∈ T f .

Proof. Let v ∈ T f , and let α be a qc vector field equivariant on orb f (0).
Then α(cn+1) = vn+1(0) = ( f n)′(c1)νn(v), so that

lim
|α(cn+1)|

|( f n)′(c1)|
= |ν(v)|.

Since α is a qc vector field, α(cn+1) is uniformly bounded, so ν(v) = 0. ⊓⊔

The existence of the transverse direction follows from Lemmas 7.2
and 7.3. Once we show that T f has codimension-one, it will follow that
T f = Ker(ν).

Remark 7.1. More generally, this analysis allows to obtain transverse di-
rections for maps f which satisfy the summability condition

∞
∑

k=0

1

|D f k(c1)|
< ∞.

7.2. Smooth transverse vector field. We will now proceed with analysis
of puzzle maps satisfying certain geometric assumptions, which will allow
us to handle the case of at most finitely renormalizable maps with a recur-
rent non-periodic critical point. In this section we will construct a smooth
transverse vector field, which is holomorphic on the puzzle piece containing
the critical value U1 and vanishes on the other puzzle pieces.
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Definition 7.1. An equipped holomorphic family of puzzle maps over some
neighborhood V ∋ 0 in a complex Banach space is a pair ( fλ, hλ), λ ∈ V,
where fλ : ∪Uλ

i → C is a puzzle map and hλ : C → C is a holomorphic

motion of C that maps U0
i onto Uλ

i and such that

hλ ◦ f0(z) = fλ ◦ hλ(z)(7.2)

for z ∈ ∪(∂U0
i ).

Let U ⊂ C be an R-symmetric open set which intersects the real line
in some interval J . We denote by Υ(U) the Banach space of holomorphic
vector fields of class A1(U) that vanish together with their derivatives at ∂J ,
endowed with the A1 norm ‖ · ‖1, that is ‖v‖1 = supz∈U |v′|, see (2.2) (‖ · ‖1
is a norm in Υ(U) because of the boundary conditions). We will extend
those vector fields to the whole real line as 0 outside J . (The case that will
interest us most is U = Dγ (J).)

Recall that for a puzzle map f : ∪Ui → C, we denote by Ji the real
slices of the domains Ui .

Proposition 7.4. Let f : ∪Ui → C be a geometric puzzle map with pa-
rameters (φ,ψ, γ, k). Then there is an ε > 0 depending only on ψ and γ ,
and there exists an equipped holomorphic family of puzzle maps ( fv, hv)
over the Banach ball Bε(Υ(Dγ (J1))) such that:

• hv is the identity on U j, j �= 1, on ∂( f(U0)), and is normalized;
• (id +v) ◦ hv is the identity in U1;
• fv = f in U j, j �= i;
• fv = f ◦ (id +v) in Uv

1 = hv(U1).

Proof. Let ε > 0 and v ∈ Υ(Dγ (J1)) such that ‖v‖1 < ε. If ε < 1 then
Iv ≡ (id +v)|Dγ (J1) is a diffeomorphism fixing ∂J1 with I ′

v|∂J1 = 1 (using
the convexity of Dγ (J)). If ε is small (depending only on ψ and γ , then
Iv(Dγ (J1)) contains Dψ (J1) ⊃ U1. Hence I−1

v (U1) ⊂ Dγ (J1). By definition
of geometric parameters, the domain I−1

v (U1) is disjoint from U j, j �= i,
and from ∂( f(U0)).

Thus, we can define fv in I−1
v (U1) as f ◦ Iv. We then define hv as the

identity on U j, j �= 1, and on ∂( f(U0)), and we let hv|U1 = I−1
v |U1.

Since U1 ⊂ Iv(Dγ (J1)), I−1
v |U1 depends holomorphically on v. We obtain

a holomorphic motion hv on U ∪∂( f(U0)). By the Extension Lemma, it can
be extended to a normalized holomorphic motion of the whole sphere over
a Banach ball of radius ε/3. ⊓⊔

To motivate the next statement, note that the tangent vector to the curve
t �→ ftv at t = 0 is given by the vector field v(z) f ′(z) on U1 (and 0
elsewhere). This vector field is tangent to the hybrid class of f if there
exists a qc vector field α on the orbit of the critical value c1 such that
α(c1) = 0 and

v(z) f ′(z) = α( f(z)) − α(z) f ′(z).
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This equation can be written in the following concise form:

v = f ∗α − α,(7.3)

where f ∗α is the pullback of α by f , compare equation (2.6).
If U is a hyperbolic domain and v is a tangent vector at a point x ∈ U,

we denote ‖v‖U
hyp the hyperbolic length of v.

Lemma 7.5. Given (ψ, γ), there exists an L > 0 with the following prop-
erty. Let f be a geometric puzzle map without invariant line fields on K( f )
with parameters (φ,ψ, γ, k). Let v ∈ Υ(Dγ (J1)) be a holomorphic vec-
tor field such that there is a qc vector field α on the closed set O f with
α(c1) = 0, satisfying (7.3).

Then α has a normalized L‖v‖1-qc extension, which satisfies (7.3) on U
and vanishes on ∂(U ∩ R).

Proof. Without loss of generality we can assume that v is normalized:
‖v‖1 = 1. Take an ε > 0 as in the above proposition and consider the
corresponding equipped holomorphic family of puzzle maps ( fλv, hλv),
|λ| < ε. Let

α0 =
d

dλ
hλv

∣

∣

∣

∣

λ=0

.

Since hλv satisfies (7.2) for z ∈ ∂U , α0 satisfies (7.3) for z ∈ ∂U .
As in Lemma 6.12 we conclude that ‖α0‖ ≤ L‖v‖1 with L = 1/ε.
Now we can use Theorem 6.9 to conclude that there exists a qc vector

field β that coincides with α on the orbit of the critical value, coincides with
α0 on the complement of U and satisfies the equation (7.3) on U . Moreover,
by Lemma A.24, there are no invariant line fields on K( f ), so we conclude
that ‖∂β‖∞ ≤ L‖v‖1.

This vector fields vanishes on the ∂(U ∩ R), since hλv|∂(U ∩ R) = id,
|λ| < ε. ⊓⊔

Lemma 7.6. Let f be a geometric puzzle map with geometric parameters
(φ,ψ, γ, k) such that c1 ∈ U. Then there exists a vector field v ∈ Υ(Dγ (J1))

such that ‖v‖1 = 1 and ‖v(c1)‖
U1
hyp > 1/7.

Proof. Let

wn(z) = (1 − z2)(1 − e−2n) +
2

n
(e−n(1+z) + e−n(1−z) − e−2n − 1).

Then wn ∈ Υ(D). Also, ‖wn‖1 < 6 and wn(z) → 1 − z2 pointwise in D
as n → ∞. Hence the hyperbolic norm of wn(z) in D goes to the value
|1 − z2|/(1 − |z2|) ≥ 1. Take a big n and let w be the restriction of wn to
Dγ (I ) normalized so that ‖w‖1 = 1. Rescaling Dγ (I ) to Dγ (J1), we obtain
a vector field v in the latter domain with desired properties, because both
the norm ‖ · ‖1 and the hyperbolic norm are scaling invariant. ⊓⊔
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Lemma 7.7. Given φ and k0, there exists a κ > 0 with the following
property. Let f : U → C be a geometric puzzle map with parameters
(φ,ψ, γ, k), with k > k0, such that the critical value c1 returns to U1, and
let v ∈ Υ(Dγ (J1)) be a vector field from Lemma 7.6. If there exists a qc

vector field α on C, satisfying (7.3) on U, then there exists q ∈ f −1(U1)∩R
such that |α(q)| > κ d(q, ∂J0).

Proof. Let n > 1 be minimal such that cn ∈ U1. Let us show that

‖α(cn−1)‖
U0
hyp ≥ ‖v(c1)‖

U1
hyp.(7.4)

Since n − 2 is the first landing time of c1 in f −1(U1), there exists
a domain W ⊂ U1 containing c1, which is univalently mapped onto U0
by f n−2 (see e.g., [L4, Lemma 3.5]). Moreover the orbit of this domain,
f k(W ), k = 1, 2, . . . , n − 2, does not intersect U1.

Equation (7.3) implies

( f n−2)∗α − α =

n−3
∑

k=0

( f k)∗v.

Evaluating it at c1 we obtain ( f n−2)∗α(c1) = v(c1) (since v vanishes outside
U1 and α(c1) = 0). Since f n−2 : W → U0 is a hyperbolic isometry,

‖α(cn−1)‖
U0
hyp = ‖v(c1)‖

W
hyp.

This equation implies (7.4) by the Schwarz Lemma.
Let q = cn−1. Then [−q, q] ⊂ V ≡ f −1(U1). By condition 4 of the

definition of geometric puzzle map, mod(U0 \ V ) > k/2, hence there exists
a constant depending only on k which bounds dist(q, ∂J0)/ diam J0 from
below. Since ‖α(q)‖

U0
hyp > 1/7 and U0 ⊃ Dφ(J0), there is a constant κ

depending on φ and k only such that |α(q)| > κ dist(q, ∂J0). ⊓⊔

Lemma 7.8. Given (φ,ψ, γ), there exists a k > 0 with the following prop-
erty. Let f : U → C be a geometric puzzle map with parameters (φ,ψ, γ, k)
such that the critical value c1 returns back to the domain U1. Assume that f
does not have invariant line fields on K( f ). Then there exists a vector field
v ∈ Υ(Dγ (J1)) such that there are no qc vector fields α satisfying (7.3) on
the critical orbit. Moreover, v|J1 is real.

Proof. Let L be the constant from Lemma 7.5 associated to ψ and γ . Fix
some k0 > 0 and let κ be the constant from Lemma 7.7 associated to φ
and k0. Let T = f −1 J1 ∩ R and let C be the constant from Corollary 2.9
corresponding to L and T .

If k > k0 is big enough then |T | ≤ κC−1 dist(T, ∂J). Let v be the
vector field given by Lemma 7.7. Suppose by contradiction that equation
(7.3) is satisfied on the critical orbit for some qc vector field. Then by
Lemma 7.5, this equation is satisfied by some normalized L-qc vector
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Fig. 5. Set Z and the puzzle

field α on ∪U j which vanishes at ∂(∪ int J j). By (7.3), α vanishes at ∂T
as well. By Corollary 2.9, α(z) ≤ C|T | ≤ κ dist(T, ∂J0) for z ∈ T . On
the other hand, Lemma 7.7 yields existence of a point q ∈ J such that
|α(q)| > κ dist(q, J0). This is a contradiction. ⊓⊔

7.3. Puzzle motion. In this section we will show that the puzzle moves
holomorphically over an appropriate neighborhood of a geometric puzzle
map. First, let us introduce some notations.

Let us consider a unimodal map f ∈ Ua supplied with a geometric
puzzle {Ui} with parameters (φ,ψ, γ, k). Every puzzle piece Ui is univa-
lently mapped onto U0 by some iterate of f , f ni : Ui → U0. Recall that
the (closed) real slices of the Ui are denoted by Ji and that J1 stands for the
interval containing the critical value c1. Let J1 = [q, r], where q < r, and
let N = [−q, q]. Let us consider the union of two (open) hyperbolic disks
based upon the intervals N and J1 together with their real boundary points:

Z ≡ Z f = Dγ (N) ∪ Dγ (J1) ∪ {−q, q, r}.

In what follows we will consider only puzzle pieces Ui which intersect Z.
Notice that this family of puzzle pieces is forward invariant, except that
f(U0) does not belong to it.

Let E ≡ E f = orb(∂J0)∪{0} (notice that this is a finite set). Let Λ ≡ Λ f

be the space of odd vector fields v ∈ A1(Z) which vanish to the first order
on E (where “odd” means that v(z) = −v(−z) whenever both z and −z
belong to Z).

Notice that Υ(Dγ (J1)) ⊂ Λ and the inclusion is an isometry.
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We assume that the angle γ is so small that f is defined on some
neighborhood of Z. For v ∈ Λ, we let fv = f ◦(id +v). For small enough v,
this map is well defined on Z, fv ∈ A1(Z), and depends continuously on v.

Let Q ≡ Q f = ∂(∪ int Ji) be the maximal invariant set of f |(I \ int J0).

Lemma 7.9 (Puzzle Motion). Let f as above be a geometric puzzle map
with parameters (φ,ψ, γ, k) which is a restriction of a map in Ua. Assume
that f |Q is hyperbolic. Then for some ε > 0 there is an equipped holomor-
phic family of puzzle maps ( fv, hv), v ∈ Bε(Λ), such that hv is the identity
on ∂( f(U0))∪∂Z and is normalized. In particular, f ni+1

v ◦hv = hv◦ f ni+1 =

f ni+1 on each ∂Ui .

The proof of this lemma will be based on several lemmas. By Lem-
ma 2.12, there exists a smooth metric dν = ρ|dz| which is expanding on Q.
By approximating ρ near Q with a piecewise constant function, we obtain
an expanding piecewise Euclidean metric near Q. So, we can assume that
ν is piecewise Euclidean near Q in the first place.

Lemma 7.10. The map fv = f ◦(id +v) has an invariant expanding Cantor
set Qv ⊂ Z, Q0 ≡ Q, which moves holomorphically over some neighbor-
hood V ⊂ Λ f of 0.

Proof. For simplicity, let us assume that f is non-renormalizable (the
general case is dealt in the same way, but the notation is more compli-
cated). Notice that the orientation reversing fixed point p of f belongs
to orb f (∂J0). In particular, p is also a fixed point for fv with the same
multiplier.

We will construct a holomorphically moving Markov partition Mv

for fv whose elements are contained in Z. To this end let us use the
linearizing coordinate Lv : (D, p) → (C, 0) near the orientation re-
versing fixed point pv ≡ p of fv normalized by L ′

v(pv) = 1. The Lv-
preimages of the straight rays landing at 0 will be called “rays” of fv
landing at pv:

Rv(ζ) = L−1
v {tζ : 0 ≤ t ≤ 1}.

Since the multiplier of pv is real, the second iterate of any ray “overflows”
itself. Since the linearizing coordinate depends holomorphically on v, the
ray Rv(ζ) with a given ζ moves holomorphically over some neighborhood
V ⊂ Λ f . Moreover, this ray (viewed as a smooth arc in C) smoothly
depends on v.

Let xv be a preimage of pv under some iterate of fv such that the whole
orb fv(xv) is close to Q (in particular, the smooth metric ν selected before is
expanded along the orbit of xv). If xv is different from the special points q,
−q and r, then all sufficiently short rays landing at pv can be pulled back
to xv providing us with “rays” landing at xv.

Assume xv = q. Let f l(q) = p. Let us consider the union S(q) of
two R-symmetric Euclidean sectors of size 2γ/3 with vertex at q. Then the
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map f n1
v is holomorphic on S(q) near q and f l(S(q)) contains the union S(p)

of two sectors centered at p of size γ/2. Hence we can take the preimages
of the rays landing at p within the sectors S(p) and obtain “rays” landing
at q.

Similarly we construct rays landing at points −q and r within appro-
priate sectors with vertices at those points (one sector for each of the
points).

Clearly, all the rays we have constructed move holomorphically with v
and smoothly depend on v. We will fix now θ < γ/2 and only consider rays
which make this angle with the real line.

Let us now defined “h-rays” for f as the rays truncated on the height ±h
with respect to the smooth expanding metric ν fixed before. Here “height”
denotes the vertical distance to the real line (recall that we chose ν such
that in small scales near Q, ν is just a multiple of the Euclidean metric).
For any point xv, they are well-defined provided h is small enough. We
define h-rays for fv as the holomorphic motions of these rays. Since the
metric ν is expanding, this family of rays satisfies the following overflowing
property: If Γ is an h-ray landing at xv at angle θ with the real line, then
the image fvΓ strictly contains the h-ray landing at fv(xv) at angle θ or
π − θ.

Given some n, we will now consider a real Markov covering {M j} of Q

by partitioning [−1, 1] by the set Q ∩ ∪n
k=0 f −k(p) and taking only those

(closed) intervals of the partition which intersect Q. For n big enough, this
covering is contained in a small neighborhood of Q.

Let us now complexify this covering. The complex domains of the
coverings will be R-symmetric (smooth) hexagons H j based upon the inter-
vals M j . Take some M j = [a, b]. Consider four h-rays landing at points a
and b at angle θ with the interval M j . We obtain four sides of H j . Join
two endpoints of the rays lying in the upper half-plane with a horizontal
interval on height h, and similarly in the lower half-plane. Since the h-rays
are smoothly close to the straight rays for h sufficiently small, we obtain
a smooth hexagon H j (see Fig. 6). Since the h-rays move holomorphi-
cally with v, the hexagons also do (on the top and bottom sides of the
hexagon the motion can be defined by linear interpolation). This defines
hexagons Hv

j .
The overflowing property of the family of rays implies that the family

of hexagons Hv
j is Markov family. By Proposition 2.11 (and the remark

following it), the set of non-escaping points,

Qv = {z : f n
v z ∈ ∪Hv

j , n = 0, 1, . . . },

is a holomorphically moving invariant Cantor set.
Smooth dependence of the rays on v implies that all the hexagons are

contained in Z provided v is sufficiently small. Hence Qv ⊂ Z as well.
⊓⊔
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Fig. 6. A hexagonal Markov piece

Let hv be the holomorphic motion of the Markov partition {H j} in the
above lemma.

Lemma 7.11. There exists a neighborhood V of 0 in Λ such that for each
Ui there is a holomorphic motion h i

v of Ui ∪ ∂Z ∪ Q such that hv ◦ f ni+1 =

f ni+1
v ◦ h i

v in Ui and h i
v = hv in ∂Z ∪ Q.

Proof. Suppose first that i = 1. Notice that f n1+1 is a ramified double
covering map over a neighborhood of f(U0). Using that both f and fv
are symmetric, we conclude that for any v ∈ Λ sufficiently small we can
associate w ∈ Υ(Dγ (J1)) such that f n1+1

v = f n1+1 ◦ (id +w) and this
association is continuous. We can then argue exactly like in Lemma 7.4
that for w ∈ Υ(Dγ (J1)) small enough, id +w is a diffeomorphism from
Dγ (J1) onto a set which contains U1, which allows us to define the motion
as (id +w)−1 in U1.

If i �= 1 is fixed, it is clear that there exists a neighborhood Vi where
such holomorphic motion is defined.

We now argue exactly as in Lemma 5.6. We notice that all but finitely
many Ui are compactly contained in the domain of the persistent Markov
partition {H j}. Let � be the set of Ui which are not contained in any H j . Let
J be the set of Ui which are contained in some H j but f(Ui) is in � . Shrink-
ing the neighborhood if needed, we may suppose that in V, hv is defined, h i

v

is defined for Ui ∈ � ∪ J (a finite set of domains) and h i
v(Ui) ⊂ ∪hv(H j)

for Ui ∈ J. This allows us to construct the motion of all Ui in V by pulling
back, as in Lemma 5.6. ⊓⊔

Let S = C \ Q. As in Lemma 5.6 we conclude the estimates (5.2) and
(5.3), which imply by Lemma 2.3 the estimates (5.4).
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So we can define a holomorphic motion Hv which agrees with hv

on Z f ∪ ∂ f(U0) ∪ Q and with h i
v on Ui . This conclude the proof of the

Lemma 7.9.

7.4. Existence of transverse direction. Let P f be the set of all p ∈ Λ f

such that p f ′ is a polynomial.

Lemma 7.12. PRf is dense in Λ
R

f .

Proof. This follows from the Mergelyan Polynomial Approximation Theo-
rem (see [R], Theorem 20.5, p. 423). ⊓⊔

Lemma 7.13. Given f as above, there exists an L with the following prop-
erty. Assume v ∈ Λ f and there is a qc vector field α satisfying equation
(7.3) on orb f (0). Then α has a normalized L‖v‖1-qc extension.

Proof. We argue as in Lemma 6.12.
Let V be a neighborhood of 0 in Λ given by Lemma 7.9. Arguing as

in Lemma 6.12 we conclude that β = d
dt

h tv

∣

∣

t=0
is a normalized qc vector

field such that ‖β‖qc ≤ L‖v‖1 for some constant L . Applying Theorem 6.9
and Lemma A.24 we get a normalized qc vector field α with the same
estimates. ⊓⊔

Corollary 7.14. The set of v ∈ Λ f satisfying equation (7.3) is closed.

Proof. Follows from Lemma 7.13 and the Second Compactness Lemma. ⊓⊔

Theorem 7.15. If f ∈ Ua is at most finitely renormalizable then there
exists a vector field v ∈ ARa which does not belong to T f .

Proof. The non-recurrent case was treated in §7.1, so let us assume that f
has a recurrent critical point. By Lemma 5.6 there exists a geometric puzzle
for f satisfying the assumptions of Lemma 7.8. By Lemmas 7.8, 7.12, and
Corollary 7.14, there exists a real polynomial p f ′ such that p f ′ does not
belong to T f . ⊓⊔

Remark 7.2. Existence of the transverse direction can be proved for maps
with minimal postcritical set (which includes infinitely renormalizable and
some finitely renormalizable combinatorics) by different means.

This construction is based on a renormalization approach: the assump-
tion of minimality is used to obtain a renormalization which is polynomial-
like with finitely many branches. The first step is the construction of the
transverse direction for the renormalization through a variation of the con-
struction in the case of quadratic-like maps in §4.5 of [L6]. This is possible
since polynomial-like maps still enjoy a tame “external structure”.

The second step is to show that the derivative of the renormalization
operator has dense image and is based on the construction of Lemma 4.5.

This allows to generalize this work for classes of unimodal maps without
any decay of geometry and will be elaborated elsewhere (for maps such that
the closure of the critical orbit is not a minimal set, there is some decay of
geometry and the construction of the transverse direction we develop here
can be applied).
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8. Local laminations

8.1. Transverse cone field.

Lemma 8.1. Let f be a Yoccoz map and consider two sequences fn, gn

in Ua such that fn is hybrid equivalent to gn and lim fn = lim gn = f .
Assume that

lim
gn − fn

‖gn − fn‖a

= w.

Then w ∈ T f .

Proof. Denote by Vε an ε-neighborhood of f in Aa.
Consider a geometric puzzle P f for f which persists in Vε (see Lemma

5.6), and let ψg : C→ C be a normalized holomorphic motion of the puzzle.
For F, G ∈ Vε, denote by µ(F, G) the Beltrami coefficient of ψG ◦ ψ−1

F . It
follows from the Quasiconformality Lemma that there exists a constant C
such that ‖µ(F, G)‖∞ ≤ C‖G − F‖a, provided F and G belongs to Vε/2.

By Remark 5.6, ψgn
◦ ψ−1

fn
is an R-symmetric map. By Lemma A.25,

there exists a normalized qc map Hn, equivariant with respect to fn and gn

on U fn , such that

‖µHn
‖∞ ≤ ‖µ( fn, gn)‖∞ ≤ C‖gn − fn‖a.

Let µHn
= λnµn with ‖µn‖∞ = 1. It follows that f ∗

n (µn) = µn on U fn . We
may assume also that τ ≡ lim λn/‖gn − fn‖a exists, so that |τ| ≤ C.

Let Hn,λ be a normalized holomorphic motion over D with Beltrami
coefficient λµn . Let fn,λ : Hn,λ(U

fn) → C be defined as

fn,λ = Hn,λ ◦ fn ◦ H−1
n,λ.

Since µn is invariant by fn, we conclude that fn,λ is holomorphic on
Hn,λ(U

fn). Moreover, we have fn,λn
|Ugn = gn .

By Lemma 2.8, passing to a subsequence, we may assume that the
Hn,λ converge to some normalized holomorphic motion Hλ uniformly on
compacts of D.

Let fλ : Hλ(U
f ) → C be defined as

fλ = Hλ ◦ f ◦ H−1
λ .

It follows that for each λ ∈ D, fn,λ converges to fλ uniformly on compacts
of Hλ(U

f ), so that fλ is holomorphic.
For any fixed compact set K ⊂ U f , there exists δ > 0 such that

H−1
λ (K ) ⊂ U f , λ ∈ Dδ. It follows that (λ, z) �→ fn,λ(z) converges
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uniformly to (λ, z) �→ fλ(z) on Dδ/2 × K . By uniform convergence of
derivatives of holomorphic maps, we conclude that for any z ∈ U f ,

τ
d

dλ
fλ(z)

∣

∣

∣

∣

λ=0

= lim
λn

‖gn − fn‖a

lim
fn,λn

(z) − fn,0(z)

λn

= lim
gn − fn

‖gn − fn‖a

= w(z).

Since ‖w‖a = 1, it does not vanish identically, so that τ �= 0. Let

α =
d

dλ
Hλ

∣

∣

∣

∣

λ=0

.

By the argument of Proposition 5.2, α is a qc vector field equivariant with
respect to ( f, w/τ) on orb(0), so w ∈ T f . ⊓⊔

From now on, let us fix a Yoccoz map f , and let v ∈ ARa be a transverse
vector field given by Lemma 7.15 such that ‖v‖a = 1.

Corollary 8.2. Let Σε = { f + tv|t ∈ (−ε, ε)}. Then there exists an ε such
that Σε intersects each hybrid class in at most one point.

Proof. If this is not the case, there exist sequences t1,n, t2,n → 0 such that
t1,n �= t2,n with f + t1,nv hybrid conjugate to f + t2,nv. Applying Lemma 8.1
we conclude that v ∈ T f , which is a contradiction. ⊓⊔

Remark 8.1. It follows that the straightening χ : Σε → [1/2, 2] is a homeo-
morphism onto the image. Since hyperbolic maps are dense in the quadratic
family, they are dense in Σε as well.

Below we use the notion of special combinatorics defined in §6.3.

Lemma 8.3. There exists a neighborhood V of f such that if fn → f
is a sequence of maps with special combinatorics with respect to V, then
lim sup T fn

⊂ T f .

Proof. Consider a geometric puzzle for f which persists in a neighborhood
of f and take a neighborhood V of f as in Lemma 6.12. Let fn → f be
a sequence of maps with special combinatorics with respect to V, and let
vn ∈ T fn

be a sequence of vector fields converging to some vector field v.
Since ‖vn‖a is uniformly bounded, and the operator norm of L fn is uniformly
bounded, there exists a qc vector field αn, equivariant on orb fn

(0), and such
that ‖αn‖qc < C. Denote by βn some normalized extension of αn to C with
‖∂βn‖∞ < C. By the Second Compactness Lemma, we may assume that
βn converges to some vector field β. It is easy to see that β is equivariant
with respect to ( f, v) on orb(0). So v ∈ T f , and since T f is a vector space,
lim sup T fn

⊂ T f . ⊓⊔
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Corollary 8.4. There exists a neighborhood V of f in Aa and an open cone
K such that for any g ∈ V which has special combinatorics with respect
to V, Tg is transverse to K .

Proof. Suppose that the statement is false. Let Vn ⊂ Aa be a 1/n-neigh-
borhood of f and let Wn ⊂ TAa be a 1/n neighborhood of the transverse
vector field v. Since the cone generated by Wn is an open cone, there exists
a sequence fn ∈ Vn , with special combinatorics with respect to Vn, such
that T fn

∩ Wn �= ∅. So v ∈ lim sup T fn
and thus lim sup T fn

�⊂ T f .
To obtain a contradiction with Lemma 8.3, we observe that, for a fixed

neighborhood V of f , Vn ⊂ V for all n big enough, so that fn has special
combinatorics also with respect to V. ⊓⊔

Corollary 8.5. T f is a codimension-one subspace of TAa.

Proof. By Remark 8.1, there exists a sequence fn → f with special com-
binatorics. For each fn , T fn

is codimension-one, so by Lemma 2.32, ei-
ther lim sup T fn

is codimension-one or is equal to TAa. By Lemma 8.3,
T f ⊃ lim sup T fn

, so T f must be a codimension-one subspace, since the
transverse vector field v does not belong to T f . ⊓⊔

8.2. Proof of Theorem A. The construction of the lamination in the in-
finitely renormalizable case was carried out in Theorem 4.9. The lamination
near hyperbolic maps is trivial to construct and parabolic combinatorics are
codimension-one submanifolds by the Implicit Function Theorem (notice
that parabolic points of quasiquadratic maps must be non-degenerate). We
will construct the lamination near a Yoccoz map f .

Fix a puzzle for f and let V and K be as in Lemmas 6.3, 6.12 and Corol-
lary 8.4 and v be as in last section. Let Π1 : TAa → T f , Π2 : TAa → C be
the linear projections along T f and v, that is, w = Π1(w) + Π2(w)v. From
Lemma 2.31, there exists a constant C such that for any w ∈ TAa \ K ,
Π2(w) ≤ C‖Π1(w)‖a. In particular, tangent spaces as in Corollary 8.4 are
C-Lipschitz graphics from T f to the transverse one-dimensional subspace
spanned by v.

Fix ε very small and let Λ be an ε-neighborhood of 0 in T f and let
Σ = Σε be as in Corollary 8.2.

Let g ∈ Aa. We say that γ : W → Aa is a g-graphic (over W ) if W is
a neighborhood of 0 in T f and if γ(0) = g and Π1 ◦γ − id = Π1(g). We say
that a g-graphic is C-Lipschitz if ‖Π2 ◦ Dγ‖ ≤ C. We say that a g-graphic
is contained in some set X if γ(W ) ⊂ X.

We say that a set X ⊂ Aa is a definite g-graphic if there is a g-graphic
over Λ onto X.

Lemma 8.6. If g ∈ Σ has special combinatorics and γ : W → Cg, W ⊂ Λ

is a g-graphic, then γ is C-Lipschitz.

Proof. This is an immediate consequence of Corollary 8.4. ⊓⊔
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Lemma 8.7. If g ∈ Σ has special combinatorics then Cg contains a definite
g-graphic.

Proof. Since Cg is a codimension-one submanifold transverse to v at g,
there exists a g-graphic contained in Cg.

Let W ⊂ Λ be the set of all w such that there exists a neighborhood Ww

of [0, w] in T f and a g-graphic over Ww contained in Cg.
Since Cg is a codimension one submanifold, it is also clear that the

continuation property is valid, that is, if γ1 is a g1-graphic over W1 and γ2
is a g2-graphic over W2 which are contained in Cg, and W1 ∩ W2 is simply
connected, then γ1|W1 ∩ W2 = γ2|W1 ∩ W2. It follows that there exists
a g-graphic γ : W → Cg. So we just have to show that Λ = W .

If this is not the case, there exists w0 ∈ Λ \ {0} such that [0, w0) ⊂ W ,
but w0 /∈ W . By Lemma 8.6, γ is C-Lipschitz, so that γ(W ) is contained
in a small neighborhood of g, and limw→w0 γw exists and will be denoted
by γ(w0). By Lemma 6.3, for any w ∈ W , γ(w) is L-qc conjugate to g
on Ug. Using the First Compactness Lemma, we conclude that γ(w0) is
L-qc conjugate to g on Ug, so w0 ∈ Cg and w0 has special combinatorics
with respect to V. By Corollary 8.4, v is transverse to Tγ(w0), so there exists
a γ(w0)-graphic contained in Cg. By the continuation property, w0 ∈ W ,
which is a contradiction. ⊓⊔

Let γg be the definite g-graphic contained in Cg. Let ∆g = γg(Λ) ⊂ Cg.
By the continuation property, if g1, g2 ∈ Σ have special combinatorics

and are different, then ∆g1 ∩ ∆g2 = ∅.
By Remark 8.1 and the Extension Lemma for holomorphic motions,

there is a unique extension of the lamination ∆g whose leaves pass through
every point of Σ. Given now g ∈ Σ not necessarily with special combina-
torics, we let ∆g be the leaf of the extended lamination. It is clear that each
∆g is still a definite C-Lipschitz g-graphic.

It follows that the slices of the ∆g by Ua form a lamination with
codimension-one real analytic leaves. Moreover, by the First Compact-
ness Lemma, the maps in the same leaf are L-qc conjugate, and hence the
leaves coincide with the local hybrid classes. This completes the proof of
Theorem A.

Remark 8.2. The present proof for the existence of the laminations given
the existence of the transverse direction (see Remark 7.2) also works in the
infinitely renormalizable case.

This proof also apply to a class of maps considered in [LS2], namely
covering maps of the circle with a unique critical point of inflection type
(for which the existence of the transverse direction is automatic). This
application will be elaborated elsewhere.

8.3. Characterization of the tangent space. Let us recall that each ∆g

constructed above consists of maps g̃ which are L-qc conjugate to g on Ug.
Moreover, the conjugacy between g and g̃ can be chosen to vary holomor-
phically inside ∆g:
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Proposition 8.8. For each g ∈ Σ there is a normalized holomorphic motion
h g̃, g̃ ∈ ∆g such that h g̃(Ug) = Ug̃ and h g̃ is equivariant with respect to g
and g̃ on Ug.

Proof. Let us fix a holomorphic motion Hg of the puzzle on V. For g
with special combinatorics, it follows from Remark 6.2 that there exists
a holomorphic motion h g̃ over ∆g, equivariant on Ug and coinciding with
Hg̃ on C \ Ug.

In general, ∆g is the limit of a sequence ∆gn
, gn with special combina-

torics. By Lemma 2.8, there exists a holomorphic motion over ∆g which is
a limit of the holomorphic motions over ∆gn

. By continuity, this holomor-
phic motion is also equivariant. ⊓⊔

Though the above proof only applies for our construction of the lami-
nation in a neighborhood of a Yoccoz map, a similar statement still holds
near infinitely renormalizable maps. In this case instead of using persistent
puzzles, the situation can be reduced to the quadratic-like case by means
of the renormalization. The hyperbolic case can be dealt in an easier way
with a construction based on the persistence of the basin of attraction (in
a similar argument to Proposition 5.4). Similarly, the case of parabolic maps
can be dealt using the persistence of attracting petals along the submanifold
where the parabolic point persists. All those cases are summarized below:

Proposition 8.9. Let g ∈ Ua. There exists a codimension-one complex
submanifold ∆g ⊂ Aa, such that ∆g ∩ Ua ⊂ Hg and a normalized holo-
morphic motion h g̃, g̃ ∈ ∆g, which is equivariant on I . Moreover, the ∆g

form a lamination near any non-parabolic map f ∈ Ua.

Recall that except in the hyperbolic but not superattracting case, the
“tangent space” T f was defined as the set of vector fields admitting a repre-
sentation v = α ◦ f − f ′α on orb f (0) for a qc vector field α. The following
proposition shows that this choice was completely justified:

Theorem 8.10. T f = T f H f .

Proof. First we notice that T f contains the tangent space to the real hybrid
class of f . Indeed, if v ∈ T f H f then there exists a path fλ ∈ H f through f
tangent to v at f . By Proposition 8.9, fλ can be equipped with an equivariant
holomorphic motion of the interval. By Proposition 5.2, v ∈ T f .

We obtained in §7 a transverse vector field to T f for at most finitely
renormalizable maps f . Since T f H f is codimension-one, T f = T f H f .

Let now f be infinitely renormalizable, and let R be the renormalization
operator of §4, so that R( f ) : U → U ′ is a quadratic-like map. Let v
be a vector field transverse to T f H f . By transverse non-singularity of R,
DR( f )v /∈ TR( f )HR( f ) (see Remark 4.1).

By the characterization of the tangent space to the hybrid class of
a quadratic-like map (see §4.1.2), there are no qc vector fields α equiv-
ariant with respect to (R( f ), DR( f )v) on U satisfying ∂α|K(R(F)) = 0.
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However, this last condition is vacuous since there are no invariant line fields
on K(R( f )) (Theorem 2.22). By the Infinitesimal Pullback Argument (in
the quadratic-like setting), we see that this is equivalent to non-existence of
a qc vector field α equivariant just on orbR( f )(0). In particular, there is no
qc vector field equivariant with respect to ( f, v) on orb f (0), so v /∈ T f . ⊓⊔

9. Regular or stochastic theorem

9.1. Tangencies between holomorphic curves and holomorphic lamina-
tions. Let us consider a codimension-one holomorphic lamination F in
an open set V of a complex Banach space B. For a point a ∈ V in the
support of the lamination, denote by La the leaf of F through a and by Ta

the tangent space to this leaf at a. Let γ : D→ V be a holomorphic curve.
We say that γ has a tangency with F at some parameter value λ0 if γ(λ0)
belongs to the support of the lamination and

d

dλ
γ(λ)

∣

∣

∣

∣

λ=λ0

∈ Tγ(λ0).

The set of tangencies is clearly closed in D.

Lemma 9.1 (A. Douady). If the curve γ is not contained in any leaf of F
then the set of tangencies is discrete.

Proof. We may assume that we have flow box coordinates W ⊕ C, in
other words, the leaves of the lamination are graphs over W . Let’s consider
a parameter λ0 where γ has a tangency with the lamination.

By a change of coordinates we may assume λ0 = 0 and that the leaf
containing γ(0) is the graph of the zero function from W to C. If γ is not
contained in a leaf, we may write for z near 0, γ(z) = (φ(z), znψ(z)) where
ψ(0) �= 0 and n ≥ 2.

Let S : W ⊕C→ W ⊕C be defined by S(z, w) = (z, wn) and F̃ be the
lamination in W ⊕C whose leaves are connected components of preimages
by S of leaves of F .

It is easy to see that if γ̃ is a path in W ⊕ C and if S ◦ γ̃ has a tangency
at λ with F then either γ̃ has a tangency at λ with F̃ or γ̃ (λ) ∈ W × {0}.

Let then γ̃ = (φ(z), zψ(z)1/n) for z near 0. Then γ̃ is transverse to F̃
at 0, and so there is no tangency in a neighborhood of 0. We conclude that 0
is the unique tangency of γ = S ◦ γ̃ in a neighborhood of 0. ⊓⊔

9.2. Connectivity of some hybrid classes.

Theorem 9.2. If f is a Yoccoz map, then there exists a one parameter real
analytic family { ft}t∈[0,1] ⊂ Ua in the hybrid class of f connecting f0 = f
with the quadratic map f1 = qχ( f ).
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Proof. It follows from Theorem B.1 that f is qc conjugate to the quadratic
polynomial qχ( f ) in a neighborhood of the interval I . Moreover, this conju-
gacy fixes 0 and 1, and commutes with the reflections with respect to 0 and
R (we will call such maps “symmetric”). Extend it to a global symmetric
qc homeomorphism h : C→ C. Let µ be its Beltrami differential. Solving
the Beltrami equation with differential λµ, we obtain a holomorphic family

hλ : C→ C, |λ| < 1/‖µ‖∞,

of symmetric qc maps fixing 0 and 1. Let fλ : hλ(Ωa) → C be defined by
fλ = hλ ◦ f ◦ h−1

λ . Then there is some a′ < a such that { ft}t∈[0,1] is a real
analytic curve in Ua′ contained in the hybrid class of f .

Let us show that this curve can be approximated, in the topology of Ua′

by a similar curve taking values in Ua. To this end, let us consider a one-
parameter real analytic family of vector fields {vt}t∈[0,1] in TUa′ along the
family { ft}t∈[0,1] such that for any t, vt is transverse to the hybrid class of f
in Ua′ (that is vt /∈ T ft

H f,a′). Consider a 2-parameter family

G(t, s) = ft + sv(t) in Ua′ , (t, s) ∈ [0, 1] × [−1, 1].

Letting ζ0 : [0, 1] → [0, 1]× [−1, 1] be the natural inclusion ζ0(t) = (t, 0),
we have ft = G ◦ ζ0(t).

Let us now consider a real analytic family F : [0, 1] × [−1, 1] → Ua

such that F(0, 0) = G(0, 0) and F(1, 0) = G(1, 0). We may also require
that Πa,a′ ◦ F is C1 close to G, where Πa,a′ : Ua → Ua′ is the inclusion.
By the Implicit Function Theorem, there exists a real analytic curve ζ :
[0, 1] → [0, 1]×[−1, 1], C1 close to ζ0, such that Πa,a′ ◦ F ◦ζ is contained
in H f,a′ . In particular, F ◦ζ : [0, 1] → Ua is a real analytic path connecting
f0 to f1 in H f,a. ⊓⊔

9.3. Proof of Theorem C. Let { ft}t∈J be a real analytic family in Ua

defined over some (open or closed) interval J ⊂ R. Assume { ft} is non-
trivial. By Theorem A each hybrid class is a real analytic codimension-one
submanifold. Let T ⊂ R be the union of the set of parabolic parameters and
the set of tangencies of ft with the hybrid classes.

Lemma 9.3. T is countable.

Proof. We notice that the set of parabolic parameters is countable. Indeed,
those are associated with countably many analytic equations of the type
f k
t (x) = x, |D f k

t (x)| = 1, where k > 0 is an integer. Since { ft} is not
contained in a leaf, each of these equations corresponds to a discrete set of
parameters.

So if T is not countable there is a parameter t such that ft is not
parabolic and any neighborhood of t intersects T in infinite many points.
By Theorem A, since ft is not parabolic there exists a neighborhood of
fλ in Aa which is holomorphically laminated by the hybrid classes. By
Lemma 9.1, the set of tangencies in a smaller neighborhood is finite. This
is a contradiction. ⊓⊔
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To conclude the proof of Theorem C, it is enough to show that each pa-
rameter in the complement of T has a neighborhood where the straightening
is quasisymmetric.

Consider then a parameter λ0 /∈ T . If fλ0 is hyperbolic, χ is clearly
analytic in a neighborhood of λ0. If fλ0 is infinitely renormalizable, we can
apply Theorem 4.11. Assume then that fλ0 is a Yoccoz map. In this case,
there is a path connecting it to the quadratic family and we can just use the
transversality at λ0 to conclude the quasisymmetry of χ, since codimension-
one real analytic laminations are transversally quasisymmetric.

9.4. Proof of Theorem B. Let X be the complement of the set of parame-
ters of the quadratic family which are either hyperbolic or are Yoccoz maps
and have at most a finite number of central levels in the principal nest of
their last renormalization. By Theorem 2.20, a map which is neither regular
or stochastic is hybrid equivalent to a parameter in X. In view of Theorem C,
it is enough to prove the following:

Lemma 9.4. The image of X by any qs map has zero Lebesgue measure.

Proof. We first decompose X = � ∪ F ∪ P where � are infinitely renor-
malizable parameters, F are Yoccoz parameters contained in X, and P are
parabolic. Let h be a qs map.

Then |h(P )| = 0 since P is countable, and |h(� )| = 0 follows from
Theorem 2.27, since the property of having definite gaps everywhere is
preserved by quasisymmetric maps.

Parameters in F can be further decomposed as a countable union
∪F j , where parameters in each F j have the same combinatorics for their
smallest renormalization interval. Let us show that each h(F j) has zero
Lebesgue measure. For simplicity, let us consider the case F0 ⊂ N of
non-renormalizable maps, the general case reduces to this one by renormal-
ization.

According to §2.15, for each n there exists a covering of N by disjoint
intervals ∆

n
i ⊂ [1/2, 2] (“real parapuzzle pieces of level n”), and each

of the ∆
n
i contains a central interval Π

n
i satisfying (2.16). Furthermore,

a parameter belongs to F0 if and only if it belongs to infinitely many Π
n
i .

By Lemma 2.5, there exists constants C̃ > 0 and 0 < ρ̃ < 1 such that

|h(Πn
i )|

|h(∆n
i )|

≤ C̃ρ̃n,

so that
∑

n

∑

i |h(Πn
i )| < ∞. By the Borel-Cantelli Lemma, |h(F0)| = 0.

⊓⊔

Appendix A. Complex return maps

The dynamics of certain classes of complex return maps was described in
the works of Branner-Hubbard [BH], Yoccoz [H], and Lyubich [L2], [L4].
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The precise hypothesis on the dynamics change from work to work. In this
appendix we adapt those ideas for our setting, collecting the results needed
for the analysis of puzzle maps.

A.1. Definitions. Let W be a quasidisk and let {W j} be a family of at least
2 quasidisks inside W with pairwise disjoint closures such that 0 ∈ W0.
Assume further that

inf mod(W \ W j) > 0,(A.1)

that ∪W j is thin in W (see definition in the beginning of §5.2), and
diam(W j) → 0.

An R-map is a holomorphic map F : ∪W j → W such that for any
j �= 0, F|W j is a univalent map onto W , and F|W0 is a double covering
onto W branched at 0 (“R” stands for “Return”). We let Wn = F−n(W ) and
we define the filled Julia set K(F) as ∩Wn.

The components of F−n(W ) are called puzzle pieces of depth n. For
x ∈ F−n(W ), we let Pn(x) be the puzzle piece of depth n containing x.
Puzzle pieces containing 0 are called critical.

An R-map F is called renormalizable if there exists a puzzle piece
V = Pn(0), n ≥ 1, and an integer p > 0 such that V ⊂ F p(V ), the puzzle
pieces F j(V ) 1 ≤ j ≤ p are pairwise disjoint, and Fm p(0) ∈ V , m > 0.
The map R(F) = F p|Pn(0) with minimal n as above will be called the
renormalization of F. It is a quadratic-like map with connected Julia set.

Let F : ∪W j → W and F̃ : ∪W̃ j → W be two R-maps, and let h be
a homeomorphism of C equivariant on ∪∂W j . If h(F(0)) = F̃(0), then for
each j there is a unique homeomorphism ψ j : cl W j → cl W̃ j coinciding
with h on ∂W j and such that h ◦ F = F̃ ◦ ψ j on W j . Let

h1 =

{

ψ j on W j

h on C \ ∪W j .

Since diam W j → 0, h1 is a homeomorphism of C. It is called the lift of h
(compare §6.1).

We say that a homeomorphism h : C → C is a combinatorial equiva-

lence between F and F̃ if it is equivariant on ∪ ∂W j and the lift h1 of h is
homotopic to h rel ∪ ∂W j ∪ orbF(0).

The notions of topological/qc/hybrid equivalence between two R-maps
are self-evident.

A.2. Divergence property. For x ∈ K(F), we let

An(x) = Pn(x) \ Wn+1.

We define mod An(x) as the extremal length of the family of curves in An(x)
joining ∂Pn(x) to ∂Wn+1 ∩ Pn(x).
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Theorem A.1. Assume that F : ∪m
j=1W j → W is a non-renormalizable

R-map defined on the union of finitely many domains W j . Then for any
x ∈ K(F),

∑

mod An(x) = ∞.(A.2)

Proof. Fix x ∈ K(F) and let µn
k = mod An(Fk(x)). These numbers satisfy

the following rules: µn
k = µn−1

k+1 if Pn(x) is not critical and 2µn
k = µn−1

k+1
otherwise.

Since there are only finitely many W j , ∪W j ⊂ W . This implies that
µ0

k (which in fact does not depend on k) is positive. Since F is non-
renormalizable, the “tableau” {Pn

k (0)}n,k is aperiodic in k. By the work
of Branner and Hubbard, Theorem 4.3, p. 264 of [BH], these properties
imply (A.2). ⊓⊔

A compact set X ⊂ C is called removable if any qc map H : C\ X → C

extends to a qc homeomorphism of C. The following remark is due to
Jeremy Kahn.

Corollary A.2. Under the assumptions of the previous theorem, the filled
Julia set K(F) is removable and hence has zero Lebesgue measure.

Proof. Since there are only finitely many domains W j , the filled Julia set
K(F) is compact. Now the result follows from the divergence property
(A.2) by [SN], §1 (see also McMullen in [BH], §5.4). ⊓⊔

A.3. Geometry of puzzle pieces. Let us say that x ∈ K(F) shadows
the critical orbit if for any k and all m ≥ m(k), there exists j ≤ m
such that the puzzle piece Pk+ j (Fm− j(x)) is critical (in other words, the
map Fm : Pk+m(x) → Pk(Fm(x)) is not univalent). In particular, for
m ≥ m(k), Pk(Fm(x)) intersects the critical orbit. Moreover, for all k,
orbF(x) ∩ Pk(0) �= ∅.

Lemma A.3. Let F be an R-map and let x ∈ K(F). If

mod(Pn(x) \ Pn+1(x)) → 0

then x shadows the critical orbit.

Proof. Assume that x does not shadow the critical orbit. Then there exist
k and arbitrarily big m such that the map Fm : Pk+m(x) → Pk(Fm(x)) is
univalent. Hence

mod(Pk+m(x) \ Pk+m+1(x)) = mod(Pk(Fm(x)) \ Pk+1(Fm(x))).

Taking k more iterates of Fm(x), we conclude that

mod(Pk(Fm(x)) \ Pk+1(Fm(x))) ≥
1

2k
mod(W \ P1(Fm+k(x))).

By the definition of R-map, the later modulus is bounded away from 0. This
is a contradiction. ⊓⊔
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Lemma A.4. If F is renormalizable and x shadows the critical orbit then
there exists k such that Fk(x) ∈ K(R(F)).

Proof. Let R(F) = F p|Pn(0) and let Ui = Pn(Fi(0)). Then {Ui}
p−1
i=0 is

a disjoint cover of the orbit of 0. Let K j = F j(K(R(F))) so that

K j =
{

x ∈ U j : Fk(x) ∈ ∪
p−1
i=0 Ui, k = 0, 1, ...

}

.

Let x ∈ K(F) shadow the critical orbit and let m0 be such that

Pn(Fm(x)) ∩ orbF(0) �= ∅ for m ≥ m0.

Hence, Pn(Fm(x)) ⊂ ∪Ui for all m ≥ m0, and the conclusion follows. ⊓⊔

Theorem A.5. Let F be an R-map and let x ∈ K(F) satisfy

∑

mod(Pn(x) \ Pn+1(x)) < ∞.

Then F is renormalizable and Fk(x) ∈ K(R(F)) for some k.

Proof. For x ∈ K(F), let Bn(x) = mod(Pn(x) \ Pn+1(x)). Let x be a point
such that

∑

Bn(x) < ∞. By Lemma A.3, Pk(0) intersects orbF(x) for
every k. In particular, if mk is minimum such that Fmk(x) ∈ Pk+1(0),
Bk+mk

(x) = Bk(0). Since the sequence k + mk is strictly increasing, we
conclude that

∑

Bk(0) < ∞.
Assume first that orbF(0) intersects infinitely many domains W j . Then

F(0) does not shadow the critical orbit: if m is minimal with Fm (F(0)) ∈ W j ,
the map Fm : Pm+1(F(0)) → P1(Fm(F(0))) is a diffeomorphism. In
particular, by Lemma A.3, Bk(F(0)) does not converge to 0, so neither does
Bk(0), and this contradicts

∑

Bn(0) < ∞.
Thus, orbF(0) intersects only finitely many W j . Let F̃ be the R-map

obtained by restricting F to those. The sequence Bk(0) does not change by
taking this restriction. The Divergence Property of Theorem A.1 implies
that F̃ is renormalizable. So F is also renormalizable, and since x shadows
the critical orbit we have Fk(x) ∈ K(R(F)) for some k by Lemma A.4. ⊓⊔

Corollary A.6. If F is a non-renormalizable puzzle map, for every x ∈
K(F), ∩Pn(x) = {x}.

Lemma A.7. Let F be an R-map such that int K(F) �= ∅. Then F is
renormalizable and int K(F) = ∪F−n(int K(R(F))). Furthermore, R(F)
has a non-repelling periodic orbit.

Proof. Let x ∈ int K(F). Notice that ∂Pn(x) is not contained in K(F), so
∩Pn(x) contains a neighborhood V of x. By Theorem A.5, F is renormal-
izable, and Fk(x) ∈ K(R(F)) for some k. Since K(R(F)) = ∩Pn(0), we
have:

Fk(V ) ⊂ Fk(∩Pn(x)) ⊂ K(R(F)).
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Hence Fk(x) ∈ int K(R(F)). By the classification of Fatou components,
see [Mc1] p. 37, a quadratic polynomial whose filled-in Julia set has non-
empty interior must have either a hyperbolic or parabolic periodic orbit or
an indifferent periodic orbit associated to a Siegel disk, so in all cases it
must have a non-repelling periodic orbit. The same conclusion holds for
R(F) via the Straightening Theorem of Douady-Hubbard (see §2.12). ⊓⊔

A.4. Measure of the Julia set. In this section we generalize the results
of [L2] and [Sh] on the Lebesgue measure of the Julia sets of quadratic
polynomials to the setting of R-maps.

Lemma A.8. Let F be an R-map. Then almost every x ∈ K(F) shadows
the critical orbit.

Proof. Consider a point x ∈ K(F) which does not shadow the critical
orbit. Then there exist k and a sequence m j → ∞ such that each map
Fm j : Pm j+k(x) → Pk(Fm j (x)) is univalent. Applying a few more iterates
of F, we will find a critical puzzle piece Pk−n j (0) such that the map Fm j+n j :
Pm j+k → Pk−n j (0) is also univalent.

Since the property of being thin is invariant under lifts by branched
coverings, the filled Julia set K(F) is thin in each Pl(0), 0 ≤ l ≤ k. By the
Koebe Distortion Theorem, K(F) is also uniformly thin in all puzzle pieces
Pm j+k(x). Since the puzzle pieces Pm j+k(x) shrink to x (by Lemma A.3),
x is not a density point of K(F). The conclusion follows from the Lebesgue
Density Points Theorem. ⊓⊔

Corollary A.9. If F has an escaping critical point then meas K(F) = 0.

Proof. In this case there are no points which shadow the critical orbit. ⊓⊔

Theorem A.10. Let F be an R-map. If meas K(F) > 0, then F is renor-
malizable and K(F) \ ∪F−n K(R(F)) has zero Lebesgue measure.

Proof. Assume F is non-renormalizable. Consider a point x ∈ K(F) which
shadows the critical orbit. Recall that orbF(x) intersects all critical puzzle
pieces.

Assume that the critical point intersect infinitely many W j , and let
jk → ∞ be a sequence such that orbF(0) ∩ W jk �= ∅. Let nk be the
first landing time of the orbit of 0 at W jk , and let mk be the first landing
time of x at Pnk+1(0). Notice that the maps Fnk : Pnk (F(0)) → W and
Fmk : Pnk+mk+1(x) → Pnk+1(0) are univalent.

Since ∪W j is thin in W , K(F) is uniformly thin in Pmk(F(0)) by the
Koebe Distortion Theorem. Pulling back by the double covering F|P1(0),
we conclude that K(F) is uniformly thin in Pmk+1(0). Pulling back again,
we get that K(F) is uniformly thin in Pnk+mk+1(x). Since the Pn(x) shrink
to x (Corollary A.6), x is not a density point of K(F). By the Lebesgue
Density Point Theorem and Lemma A.8, K(F) has zero Lebesgue measure.
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Assume now that orbF(0) intersects only finitely many W j . Let us con-
sider the R-map F# which is the restriction of F to the W j visited by the
critical point. It follows that ∪F−n(K(F#)) contain all points x ∈ K(F)
which shadow the critical orbit. By Corollary A.2, meas K(F#) = 0, and by
Lemma A.8, K(F) has zero Lebesgue measure.

Thus, F is renormalizable, and the last assertion follows from Lemma A.3
and Lemma A.4. ⊓⊔

A.5. Periodic orbits.

Lemma A.11. Let F be an R-map and let p be a non-repelling periodic
orbit. Then for all n, p intersects Pn(0).

Proof. Let k be the period of p and assume that p does not intersect Pn(0).
Then Fk|Pn+k(p) is univalent onto Pn(p). Since Pn+k ⊂ Pn(p), p is
repelling by the Schwarz Lemma. ⊓⊔

Lemma A.12. Let F be an R-map and assume F has a non-repelling
periodic orbit p. Then F is renormalizable, p intersects K(R(F)), and
p is the unique non-repelling periodic orbit of F. Furthermore, if F is
R-symmetric, ω(0) = p, so p ⊂ R.

Proof. By the previous lemma, p intersects ∩Pn(0). By Corollary A.6,
if F is non-renormalizable then ∩Pn(0) = {0}, so 0 ∈ orbF(p). Since
0 is periodic, F is renormalizable, contradiction. So F is renormalizable,
and in this case ∩Pn(0) = K(R(F)), so K(R(F)) intersects p. By [D2],
a quadratic-like map has at most one non-repelling periodic orbit, and this
yields uniqueness of p.

If F is R-symmetric, then R(F) is R-symmetric and the straightening
map can also be chosen R-symmetric. By the classical theory of Fatou and
Julia, a non-repelling periodic orbit of a R-symmetric quadratic polynomial
must be contained in R, and this yields the conclusion for F. ⊓⊔

Lemma A.13. Let F be an R-map which has an attracting hyperbolic
periodic orbit p . Then K(F) \ int K(F) has zero Lebesgue measure and
int K(F) is the basin of attraction of p.

Proof. By the previous lemma, F is renormalizable and R(F) is a quadratic-
like map with a unique attracting periodic orbit (the intersection of orbF(p)
and K(R(F))). It is well known that this implies that int K(R(F)) is the
basin of attraction of orbF(p)∩ K(R(F)) and ∂K(R(F)) has zero Lebesgue
measure. By Lemma A.7, it follows that int K(F) is the basin of attraction
of p. By Theorem A.10, K(F)\ int K(F) is equal to the union of preimages
of ∂K(R(F)) up to some set of zero Lebesgue measure, so it has zero
Lebesgue measure. ⊓⊔
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A.6. Rigidity. The following lemma is analogous to Lemma 6.1.

Lemma A.14. Let h be a combinatorial equivalence between two R-maps F

and F̃. Then the lift h1 of h is a combinatorial equivalence between F and F̃.
If h is quasiconformal then h1 is quasiconformal and Dil(h1) ≤ Dil(h).

Lemma A.15. Let h : C → C be a qc map which is a combinatorial

equivariance between two R-maps F and F̃. Assume int K(F) = ∅. Then
there exists a qc conjugacy H : C → C such that H|C \ ∪W j = h and
Dil(H) ≤ Dil(h).

Proof. As in the puzzle case (Lemma 6.2) we can obtain a qc map H :
C→ C as a limit of a series of lifts of h. This qc map automatically satisfies
Dil(H) ≤ Dil(h) and is equivariant on C \ K(F). Since int K(F) = ∅, the
conclusion follows. ⊓⊔

Theorem A.16. Let F and F̃ be non-renormalizable R-maps which are
combinatorially equivalent and let h be a combinatorial equivalence be-
tween them. Assume that h|C \ ∪W j extends to a qc map of C. Then there
exists a hybrid conjugacy H : C→ C such that H|C \ ∪W j = h.

Proof. Let us assume first that the domain of F has finitely many com-
ponents W j . We let h0 = h and define h i+1 be the lift of h i . Then h i(z)
is eventually constant for every z /∈ K(F). Let H be the limit of h i on
W \ K(F). Then H is a qc homeomorphism and by Corollary A.2 H ex-
tends to a qc homeomorphism of C. Since K(F) has empty interior and H

is equivariant on C \ K(F), the result follows.
Assume now that there are infinitely many W j , but orbF(0) intersects

only finitely many of them (in particular this covers the case of escaping
critical orbit). Consider the restrictions F# and F̃# to the union of those
puzzle pieces. Let ĥ : C → C be a qc extension of h|C \ ∪W j . For every
j �= 0 let ψ j be the lift of ĥ to W j . Let us define Ψ as follows

Ψ =

{

ψ j on W j , for W j ∩ orbF(0) = ∅

h otherwise.

Then Ψ is a combinatorial equivalence between F# and F̃# which is quasi-
conformal on the complement of the domain of F#. By the previous case,
we obtain a qc conjugacy H# between F# and F̃#. Moreover, H# : C→ C

is also a combinatorial equivalence between F and F̃, so by Lemma A.15,
it can be turned into the desired qc conjugacy.

Now let us assume that the critical orbit intersects infinitely many puzzle
pieces. Since W is a quasidisk, the qc homeomorphism h|C \ W can be
extended to a qc homeomorphism ĥ : C → C taking F(0) to F̃(0). As
above, let ψ j be the lift of ĥ to W j and let

Ψ =

{

ψ j on W j

h otherwise.
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For x ∈ W0, y ∈ W̃0, let hx,y be a qc map coinciding with h on C \ W
and taking x to y. It is clear that we may choose hx,y in such way that

sup
x∈W0,y∈W̃0

Dil(hx,y) < ∞.

There exist jk, nk → ∞ such that nk is the first landing moment of the
critical orbit at W jk . Let mk be the first landing moment of Fnk(0) at W0.
Assume first that mk < ∞. Let V

j

k = P j(Fnk (0)). Define

ψ j,k : V
j

k \ V
j+1

k → Ṽ
j

k \ Ṽ
j+1

k , 0 ≤ j ≤ mk − 1,

as the lift of Ψ by the pair (F j , F̃ j). Let φk : V
mk

k → Ṽ
mk

k be the lift of
hFmk (0),F̃mk (0) by the pair (Fmk , F̃mk ). Define Ψk as follows:

Ψk =











ψ j,k on V
j

k \ V
j+1

k , 0 ≤ j ≤ mk − 1

φk on V
mk

k

h on C \ W .

Then the Ψk are qc maps such that Ψk(Fnk (0))= F̃nk (0) and sup Dil(Ψk)<∞.
If mk = ∞, define

Ψk =











ψ j,k on V
j

k \ V
j+1

k , j ≥ 0

F̃nk (0) at Fnk (0)

h on C \ W .

Notice that since ∩ j V
j

k = {Fnk (0)}, this map has the same properties as
before.

Let now Fk = F|∪ j �= jk W j and F̃k = F̃|∪ j �= jk W j . Modify Ψk on finitely
many domains W j which contain points f l(0), l = 0, ..., nk − 1, so that
it becomes a qc combinatorial equivalence Φk between Fk and F̃k . We are
now in the escaping case considered above, so that we can turn Φk into a qc
conjugacy Hk between Fk and F̃k. Moreover,

Dil(Hk) ≤ Dil(Φk|C \ ∪W j) ≤ Dil(Ψk),

since K(Fk) has zero Lebesgue measure. Take some limit H of the Hk. This
is the desired qc conjugacy.

Since meas K(F) = 0 (see Theorem A.10), H is automatically a hybrid
conjugacy. ⊓⊔

Remark A.1. Note that the above theorem leads to a simple proof of the
Yoccoz Rigidity Theorem for non-renormalizable quadratic polynomials
(see [H]). Indeed such a quadratic map can be renormalized in a generalized
sense to an R-map (see [L4], §3). The conjugacy between the corresponding
R-maps lifts to a conjugacy between the quadratic polynomials by means
of the pullback argument.
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The following lemma is a slight modification of well known results, see
[DH1].

Lemma A.17. Let F : U → U ′ and F̃ : Ũ → Ũ ′ be quadratic-like maps
with connected Julia set which are qc conjugate and let ψ be a qc conjugacy
on a neighborhood of K(F). Let h : C→ C be a qc map equivariant on ∂U.
Then there exists a qc homeomorphism H : C→ C such that H|C \ U = h
and H|K(F) = ψ.

Proof. Let Φ : C\K(F) → C\K(F̃) be obtained as a limit of a series of lifts
of h by the pair of unbranched double coverings F : U \K(F) → U ′\K(F)

and F̃ : Ũ \ K(F̃) → Ũ ′ \ K(F̃). Then Φ is quasiconformal and equivariant
on U \ K(F).

Let V ′ = F−n(U) be a small neighborhood of K(F) which is contained
in the domain of ψ and let V = F−1(V ′). Let A = V

′
\ V . Consider

a homotopy Φt : A → Ũ \ K(F̃) between Φ|A and ψ which is equivariant
on ∂V (the existence of such a homotopy follows from the fact that F has
degree 2).

By means of successive lifts, we obtain a homotopy Φt : V
′
\ K(F) →

Ũ \ K(F̃), between Φ|V
′
\ K(F) and ψ, equivariant on V \ K(F).

Let us supply Ũ \ K(F̃) with the hyperbolic metric. Given a point
x ∈ V ′ \ K(F), let c(x) be the length of the hyperbolic geodesic joining
Φ0(x) = Φ(x) and Φ1(x) = ψ(x), homotopic to the path t → Φt(x). By
compactness, c(x) is bounded on V ′ \ V .

Let x ∈ V and let Fm(x) be the first landing time of x on V ′ \ V . By
the Schwarz Lemma, c(x) ≤ c(Fn(x)), so c(x) is uniformly bounded in
V ′ \ K(F) as well. In particular, if x is close to K(F), |ψ(x) − Φ(x)| is
close to 0.

Let

H =

{

Φ on C \ K(F)

ψ on K(F).

By the previous estimate, H is continuous, so by the Gluing Lemma (see
[B], Lemma 2, p. 93), H is quasiconformal. It is also clearly a conjugacy. ⊓⊔

Lemma A.18. Consider two renormalizable R-maps F and F̃. Assume that
they are combinatorially equivalent and let h be a combinatorial equiva-
lence between them such that h|C \ W1 admits a qc extension to C. Assume

R(F) and R̃(F) are qc (resp. hybrid) conjugate. Then there exists a qc

(resp. hybrid) conjugacy H between F and F̃ such that H|C \ W1 = h.

Proof. Let R(F) = F p|Pn(0). Let ψ be the (n + p)-fold lift of h. Then
ψ is equivariant on W1 \ Wn+p. Let Vp = Pn(0), V0 = Pn+p(0). Let
ψp : Vp → Ṽp be a qc conjugacy between R(F) and R(F̃), homotopic to
ψ rel C \ V0 (which can be obtained using Lemma A.17).
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Let V j = Pn+p− j(F j(0)), 1 ≤ j < p. Let ψ j : V j → Ṽ j be the lift of
ψp by (F p− j , F̃ p− j). Then ψ0 coincides with ψp|V0. Let

Ψ =

{

ψ j on V j , 1 ≤ j ≤ p

ψ on C \ ∪V j .

Let us show that Ψ is a combinatorial equivalence between F and F̃. Let
Ψ1 : C→ C be the lift of Ψ by (F, F̃). Then Ψ and Ψ1 coincide onC\Wn+p

by equivariance, as well as on V j , 0 ≤ j < p by construction. The set
Wn+p\∪

p−1
j=0 V j is a countable union of Jordan disks with shrinking diameters

(by the thin condition), so Ψ is homotopic to Ψ1 rel C \ (Wn+p \ ∪
p−1
j=0 V j).

Since orbF(0) ⊂ ∪
p−1
j=0 V j , Ψ is a combinatorial equivalence between F

and F̃.
Let φ be a qc map homotopic to Ψ rel (C\ W1)∪∪

p

j=1V j . Then φ is a qc

combinatorial equivalence between F and F̃. We can obtain a qc conjugacy
H as a limit of a series of lifts as before. Notice that H|K(R(F)) = ψ0, so
by Theorem A.10, Dil(H|K(F)) = Dil(ψ0|K(R(F)), and if ψ0 is hybrid
then so is H . ⊓⊔

A.7. Non-critical R-maps. Let W j and W be as in the definition of R-maps
except that 0 /∈ ∪W j . A holomorphic map F : ∪W j → W will be called
a non-critical R-map if F|W j is univalent onto W for all j. The definition
of puzzle pieces and filled Julia set goes as before. By a trivialization of the
arguments for R-maps we obtain:

Lemma A.19. Let F be a non-critical R-map. Then meas K(F) = 0 and
for every x ∈ K(F), ∩Pn(x) = {x}. Given another non-critical R-map F̃
and a qc map h : C \ ∪W j → C equivariant on ∪∂W j there exists a qc
conjugacy H such that H|C \ ∪W j = h.

A.8. Application to puzzle maps. Let f : U → C be a puzzle map and
let Q( f ) be the first return map to U0. Then its domain consist of connected
components of ( f |U0)

−1(U) and Q( f ) is either an R-map (if f(0) ∈ U) or
a non-critical R-map (otherwise). We will now use the results on complex
return maps (applied to Q( f )) to understand f .

It is easy to see that K( f ) = ∪( f ni |Ui)
−1(K(Q( f )). As a consequence,

the following three lemmas can be deduced for puzzle maps f from the
corresponding statements for Q( f ) (respectively Lemmas A.12, A.7 and
A.13).

Lemma A.20. Let f be a puzzle map and assume it has a non-repelling
periodic orbit. Then this non-repelling periodic orbit is unique and Q( f ) is
renormalizable. If f is R-symmetric then such an orbit is necessarily real.

Lemma A.21. Let f be a puzzle map. If int K( f ) �= ∅ then f has a non-
repelling periodic orbit.
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Lemma A.22. Let f be a hyperbolic puzzle map. Then K( f )\ int K( f ) has
zero Lebesgue measure and int K( f ) coincides with the basin of attraction
of the attracting cycle.

The next lemmas extend well-known properties of quadratic-like maps.

Lemma A.23. Let f be a puzzle map whose critical point either escapes
or is preperiodic but not periodic. Then meas K( f ) = 0 and all periodic
orbits are repelling.

Proof. Assume that meas K( f ) > 0 or that f has a non-repelling pe-
riodic orbit. By Lemmas A.12 and A.10, Q( f ) is renormalizable and
meas K(R(Q( f ))) > 0 or R(Q( f )) has a non-repelling periodic orbit.
Since Q( f ) is renormalizable, the critical point of f is non-escaping.

It is well known that if F is a quadratic-like map which has a preperiodic
but not periodic critical point then meas K(F) = 0 and all periodic orbits are
repelling. In particular, R(Q( f )) (and hence f ) cannot have a preperiodic
but not periodic critical point. ⊓⊔

Lemma A.24. Let f be an R-symmetric puzzle map. Then either f has an
attracting or parabolic periodic orbit or K( f ) has no invariant line fields.

Proof. Since K( f ) is the union of preimages of K(Q( f )), if K( f ) has an
invariant line field, then so does K(Q( f )).

In particular Q( f ) is renormalizable and R(Q( f )) is a quadratic-like
map with invariant line-field. Since f is real, the result follows from Theo-
rem 2.22. ⊓⊔

Lemma A.25. Let f, g be R-symmetric puzzle maps in the same hybrid
class and h be an R-symmetric qc homeomorphism equivariant on ∂U f .
Then there is an R-symmetric conjugacy H between f and g on U f co-

inciding with h on C \ U f and such that ∂H = 0 in K( f ). In particular,
Dil(H) ≤ Dil(h).

Proof. Given h we first redefine it inside ∪U
f

i so that it coincides with
the topological conjugacy between f and f̃ on ∪J

f

i . The resulting map
can still be required to be a homeomorphism (we use that h is real and
diam(J

f

i ) → 0).
We can now lift this map to U

f

0 to obtain a homeomorphism Ψ. It turns
out that Ψ is a combinatorial equivalence between Q( f ) and Q( f̃ ). Indeed,
Ψ coincides with its lift Ψ1 outside ( f |U0)

−1(U) \ R. This set is a union
of Jordan disks with diameter going to 0, so Ψ is homotopic to Ψ1 rel its
boundary.

If Q( f ) is renormalizable, then R(Q( f )) is hybrid conjugate to R(Q( f̃ ))
by Theorem 2.21. By Lemma A.18 and Theorem A.16, there exists a hy-
brid conjugacy between Q( f ) and Q( f̃ ) coinciding with h on ∂U

f

0 \

( f |U
f

0 )−1(U f ). Let ψ j be the lift of this conjugacy by ( f n j |U
f

j , f̃ n j |U
f̃

j ).
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We let H be defined as

H =

{

ψ j on U
f

j

h on C \ U f .
⊓⊔

Lemma A.26. Let f : U → C and f̃ : Ũ → C be qc conjugate hyperbolic
puzzle maps with the same multiplier and let h : C→ C be a qc conjugacy
between them. Then there exists a qc conjugacy H : C → C, such that

H|C \ K( f ) = h and ∂h|K( f ) = 0.

Proof. In this case, Q( f ) is renormalizable, and h is a qc conjugacy between
Q( f ) and Q( f̃ ). Since R(Q( f )) is qc conjugate to R(Q( f̃ )) and both
are hyperbolic with the same multiplier, it follows that they are hybrid
equivalent. By Lemma A.18, there is a hybrid equivalence H between
Q( f ) and Q( f̃ ) coinciding with h outside K(Q( f )), and this equivalence
can be lifted to a hybrid equivalence between f and f̃ with the desired
properties. ⊓⊔

Appendix B. Quasiconformal conjugacies for Yoccoz maps

The main aim of this appendix is to prove the following theorem:

Theorem B.1. Let f, f̃ ∈ Ua topologically conjugate Yoccoz maps. Then
there is a qc map h : C→ C, symmetric with respect to the real line and 0
which is equivariant with respect to f and f̃ in a neighborhood of I .

This is stronger than the statement that f and f̃ are qs conjugate on I .
Difficulties arise essentially because of the lack of a nice external structure
(if f and f̃ have quadratic-like extension, both statements are equivalent
using Sullivan’s pullback argument). To compensate for this, we will provide
some geometrical external structure, constructed by hand. This particular
construction is based on existence of small scaling factors in the principal
nest, and does not immediately adapt to the case of, say, infinitely renor-
malizable maps of bounded type.

To simplify the exposition we will assume that the Yoccoz maps we are
dealing with are in fact non-renormalizable and have a recurrent critical
point. The finitely renormalizable case is analogous and the proof applies
with obvious modifications to the Misiurewicz case.

B.1. Compatible external structures. We have so far concentrated mostly
on the description of puzzle structures, which is suitable to analyze the set
of points which eventually land in a given nice interval. We have also in
Lemma 7.10 used a Markov structure to treat the points which never land
on the nice interval. We will here describe how both constructions can be
made compatible in the presence of good geometric parameters.
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Let p be the fixed point of f . Fix a sufficiently deep stage in the principal
nest in a way that |Tn|/|Tn−1| is very small, and let J0 = Tn = [−q, q].

Let Q be the set of points in I that never land on J0 and Q′ be a truncation
of Q, so that Q′ = Q ∩ [−1, r], where r is the right endpoint of J1. So
Q′ is a hyperbolic Cantor set and we may use Lemma 2.12 to obtain a real
analytic conformal metric ν which is expanded by f . We assume ν to be
symmetric with respect to the real line and to 0. In what follows we will
only measure distances with respect to the metric ν.

Let Qm = Q′ ∩ ∪m
j=0 f − j(p) ∪ {−1}, so Qm is a finite forward invariant

set contained in Q.

Lemma B.2. Fix a small ε > 0. For all sufficiently small h, there exists
a family of curves (called v-segments) Γ(x), x ∈ Q, with the following
properties:

(i) Γ(x) is an R-symmetric continuous path;

(ii) Γ(x)\x is a C∞ curve whose tangent is ε-close to the vertical direction;

(iii) distν(∂Γ(x), x) = h;

(iv) overflowing: Γ( f(x)) ⊂ f(Γ(x)).

Proof. Let us consider a complex strictly Markov covering {V j} of Q, which
is R-symmetric and 0-symmetric. Let V k = {x | f j(x) ∈ V 0, 0 ≤ j ≤ k},
V ∞ = ∩V k (note that V ∞ contains Q but does not necessarily coincide
with it).

Let us define g = gk : V k → Cwhich isR-symmetric, 0-symmetric, and
for each connected component V k

j , there exists z ∈ V k
j such that g(w) =

f(z) + f ′(z)(w − z), w ∈ V k
j . It is easy to see that gk : V k → C is

a strictly Markov map provided k is big enough. The map g is a linear model
for f . This lemma is obvious for g, since we can take vertical segments for
v-segments.

Let H : C → C be a smooth diffeomorphism, R-symmetric, 0-sym-
metric, which coincides with the identity near ∂V k and is equivariant near
∂V k+1. We may select H arbitrarily close to id choosing k sufficiently big.
By Proposition 2.11, we can turn H into a qc map h equivariant on V k+1

and coinciding with H on C \ V k+1.
Notice that ℑ(D f(x))/|D f(x)| = O(ℑ(x)). Since f |V 0 is expanding,

|ℑ(Dh(x))|

|Dh(x)|
< ε/2, x ∈ C \ V ∞,(B.1)

provided k is sufficiently big. For each x ∈ Q, consider the arc Γ̂(x), the
preimage by h of the vertical line through h(x). Let Γ(x) be the truncation of
Γ̂(x) at height h. Properties (i) and (iii) of this family of curves are obvious.
Property (ii) follows from B.1. The overflowing property (iv) follows from
the corresponding property of the linear model and the expanding property
of the metric ν. ⊓⊔
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Let us now describe the central puzzle piece U0 of the external puzzle
structure. It is an R-symmetric hexagon whose real trace is J0. Its boundary
consists of the arcs Γ(−q), Γ(q) (the wall of U0) and four straight segments
(the roof of U0) constructed as follows. Let Γ(−q) have as upper endpoint
(−x, y). Then one of the straight segments joins (−x, y) to (0, x + y) and
the others are obtained by symmetries with respect to the real line and 0.
Let Λ be the roof of U0.

Since f |Q′ expands ν, there is a neighborhood V of q and a constant
C ′ > 1 such that f |V expands distances by C′. By construction, dist( f(Λ)\
f(V ), [−1, r]) is uniformly bounded from below, independent of how small
h is chosen. On the other hand, dist(Λ, I ) = h(1 + o(1)) (since ν is
conformal and continuous). So we conclude that there exists 1 < C < C′

such that

dist( f(Λ), [−1, r]) > Ch(B.2)

for h small enough.
By Remark 5.5, U0 generates a complex puzzle P {U j}. The boundary

of the of the puzzle pieces U j can be described in terms of walls and roofs
which are taken by f n j onto the wall and the roof of U0. By the overflowing
property of Lemma B.2, the walls of U j consist of truncated v-segments.

Let us now construct an external Markov structure. Let {MRj } be the
family of those components of [−1, r] \ Qm which are different from the
puzzle pieces J j . We want m to be so big that the diameter of any MRj is
smaller than h/10.

The complexification of each MRj = [a, b] is obtained by taking four
arcs, Γ(a), Γ(b) and straight almost horizontal segments linking the upper
endpoints as well as the lower endpoints. The closed cell bounded by those
arcs will be denoted M j .

Notice that if m is big enough, then {−q, q} ⊂ Qm . Furthermore, when-
ever the boundary of some J

j
m intersects Qm , its boundary is contained in

Qm . By the combinatorics of the construction, given MRk and J j , there are
two possibilities for intersection: either J j is compactly contained in int MRk ,
or their interiors do not intersect. Similarly, given Mk and U j , either U j is
compactly contained in int Mk, or their interiors are disjoint. Furthermore,
if their boundaries do intersect, the intersection is one of the walls of U j .
This follows from the property that no puzzle piece U j has the roof crossing
the boundary of some Markov piece Mk (they can only touch at an endpoint
of the roof).

To see this, notice that the roof of U j cannot cross laterals of Markov
pieces by geometric considerations (using that the angle of a U-segment is
nearly π/4 and a Γ-segment is nearly vertical). As a consequence, the roof
of U j cannot intersect ∂Mk if J j is not contained in MRk . Furthermore, the
base of Mk is at least ten times smaller then its height, while the height of
U j is almost half the size of its base since it is mapped in U0 with small
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Fig. 7. Inside a Markov piece

distortion (depending on |Tn|/|Tn−1|), assuring that its roof do not intersect
the top of Mk if J j ⊂ Mk.

Observe also that all Markov pieces are in a neighborhood of [−1, r] of
size near h(1 + o(1)) (by choosing m big), so they do not intersect f(Λ) by
(B.2).

We construct the family {M′
j} as the set of all ( f |Mk)

−1(Ml) for pieces
Mk and Ml such that Ml ∩ int f(Mk) �= ∅. We let M = ∪ int M j , M′ =
∪ int M′

j , and U = ∪ int U j .

Let W = M\M′ ∪ U . This is the union of Jordan domains with piecewise
smooth boundary. The maximal smooth segments contained in the boundary
of those Jordan domains will be called W-segments. The boundaries of the
Jordan domains can intersect, but only along a W-segment. A W-segment
is either contained in ∂M, ∂M′ or is the roof of some U j .

Figure 7 shows the interior of a piece Mk which contains two pieces M′
l

and M′
r , with a unique U j whose interior is contained in Mk \ (M′

l ∪ M′
r).

The component of W inside Mk (shown shaded) is bounded by segments
of ∂Mk, segments of ∂M′

l and ∂M′
r , and U-segments of ∂U j . The picture is

skewed to show better the details, actual Markov pieces are much narrower
(their bases being at least ten times smaller then the heights).

Notice in conclusion that if x ∈ M \ U , then either f n(x) ∈ W for some
n, or x ∈ Q′. For this reason, W will work as a fundamental domain for the
map f : M′ \ U → M \ U .

B.2. Construction of the conjugacy. Let us now consider a map f̃ topo-
logically conjugate to f . Then it is possible to make the above construction
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simultaneously, the only care we have to take is choose n and m the same
for both maps. Each object for f (say, a given segment in ∂M \ ∂M′) has
a corresponding object for f̃ , said to have “the same combinatorics”. We
will mark the corresponding objects for f̃ with a ∼ e.g., Ũ , M̃, Λ̃.

The construction has essentially two parts: first we obtain a qc map re-
lating the fundamental domains W and W̃ (and some additional structures),
and then use the Macroscopic pullback argument to obtain a conjugacy on
a neighborhood of the interval.

Let us first define an R-symmetric homeomorphism h0 on some relevant
parts of the boundary of the puzzle and Markov pieces. The construction
below will be R-symmetric and also 0-symmetric “where defined” (that is,
if x and −x belong to the domain of h0 then −h0(−x) = h0(x)).

Let us start the construction with the ray Γ(p) through the fixed point p.
It is well-known that conformal maps are locally qc conjugate near repelling
fixed points in such a way that the conjugacy is smooth outside the fixed
points themselves. In particular, f near p is qc conjugate to f̃ near p̃ so
that the conjugacy is smooth in the punctured neighborhoods. Moreover, it
is easy to select a conjugacy so that it maps Γ(p) onto Γ̃( p̃). Similarly we
can construct a local qc conjugacy near -1 carrying Γ(−1) to Γ(−1). Let h0
stand for the restriction of the above local conjugacies to Γ(p) ∪ Γ(−1).

Recall that points of Qm+1\{−1} are preimages of p. By the overflowing
property of the family of rays Γ(x), it is easy to extend h0 to a homeomor-
phism

h0 : ∆ ≡
⋃

x∈Qm+1

Γ(x) →
⋃

x̃∈Q̃m+1

Γ̃(x̃)

which admits a qc extension to a neighborhood of ∆, is piecewise smooth
on ∆ \ R, and is equivariant on ∆ ∩ M

′
.

Thus, the map h0 is defined on the laterals of M and M′ (which are the
arcs of ∆) and is equivariant on the laterals of M′. Extend it to the tops of
M and M′ so that it is equivariant on ∂M′. Then extend it to the roof of U0
and to f(∂U0) \ M (this set is the image of the roof of U0 and the part of its
wall that is not contained in M′), so that h0 is now equivariant also on ∂U0.

Notice that there are only a finite number of roofs which are not contained
in M′. By a finite number of lifts, extend h0 to those roofs. This concludes
the definition of h0. It is defined on the set Z1 consisting of f(∂U0), ∂M,
∂M′ and a finite number of roofs not contained in M′. Moreover, this map
is equivariant on the set Z2 consisting of ∂U0, ∂M′ and the same union of
roofs.

Notice that each embedded arc on Z1 is a quasiarc since it consists of
smooth arcs meeting at a positive angle. Hence the notion of a quasisymmet-
ric map on Z1 makes an obvious sense. The map h0 being piecewise smooth
is quasisymmetric on Z1. The set C \ Z1 is a finite union of quasidisks, so
by Ahlfors-Beurling criteria (see [LV]), h0 has a qc extension to C, denoted
by h1, which can be required to be also R-symmetric.
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Since h1 is equivariant on ∂M′, we can apply the simple version of
the Macroscopic pullback argument (see Remark 2.5) to f : M′ → M. It
provides us with a qc map (still denoted by h1) which is equivariant on M′.
In the course of this pullback procedure h1 is not modified on Z2. Hence it
is equivariant on ∂U ⊂ M′ ∪ Z2.

By Lemma A.25, there is a qc map h2 which is equivariant on U and
coincides with h1 on C \ U . Since this does not modify h1 on M \ U , h2
is also equivariant on M′ \ U . Thus, h2 is equivariant on M′ ∪ U . On the
left, this set is bounded by the ray Γ(−1), so it fails to be a neighborhood
of the repelling fixed point −1. It is easy to modify h2 in the complement
of M ∪ U in order to make it equivariant on a small neighborhood V of −1
as well.

The last problem is that the set V ∪M∪U is a neighborhood of [−1, f(0)]
rather than of [−1, 1]. By lifting h2 to the neighborhood f −1(V ∪ M ∪ U)
of [−1, 1], we obtain the desired map h. This concludes the proof of Theo-
rem B.1.

B.3. Quasisymmetric conjugacies for real analytic quasiquadratic
maps. We will now give a proof of Theorem 2.23. Obviously Theorem B.1
covers the case of Yoccoz maps, so we will concentrate on the remaining
cases.

B.3.1. Infinitely renormalizable case. Let h be a topological conjugacy be-
tween f and f̃ . If T is a deep enough renormalization interval (of period m),
Theorem 2.24 implies that f m : T → T and f̃ m : h(T ) → h(T ) extend
to quadratic-like maps, and Theorem 2.21 can be applied so that h|T is
quasisymmetric.

Let us say that a triple (l, m, r) is κ-commensurable if

κ−1 ≤
r − m

m − l
≤ κ.

In this notation, h is κ-qs if and only if it takes a 1-commensurable triple to
a κ-commensurable triple.

Fix a 1-commensurable triple (l, m, r), that is, m is the midpoint of
the interval J = [l, r] ⊂ I . Let T ′ be a symmetric interval slightly smaller
than T , and let δ = (|T |−|T ′|)/2. Let k ≥ 0 be maximal with f j (J)∩T ′ = ∅
for j < k. It follows from the result of Guckenheimer [G] and Mañé [M]
that f k|J and f̃ k|h(J) have distortion bounded by some constant ln C
independent of J . In particular ( f k(l), f k(m), f k(r)) is a C-commensurable
triple. Two possibilities arise:

(1) | f k(J)| ≥ δ. In this case both intervals [ f k(l), f k(m)] and [ f k(m),
f k(r)] have length at least δ/2C. Since h is a homeomorphism, there
exists ε > 0 such that the image by h of any interval of length δ/2C
has length at least ε. It follows that (h( f k(l)), h( f k(m)), h( f k(r))) is
a 2ε−1-commensurable triple, and hence (h(l), h(m), h(r)) is a 2Cε−1-
commensurable triple.
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(2) | f k(J)| < δ. In this case, f k(J) ⊂ T . Since h|T is quasisymmetric,
there exists C′ (depending only on C, and thus independent of J) such
that C-commensurable triples in T are taken by h|T to C′-commensur-
able triples. Thus (h( f k(l)), h( f k(m)), h( f k(r))) is a C′-commensur-
able triple, and hence (h(l), h(m), h(r)) is CC′-commensurable.

This shows that h is κ-qs with κ = max{2Cε−1, CC ′}.

B.3.2. Attracting case. If f and f̃ are in the same hyperbolic hybrid class
then (using the linearizing coordinate) one obtains a topological conjugacy
h : I → I which is real analytic on a symmetric interval T contained
in the basin of attraction of the attracting periodic orbit p (here and in
the parabolic case, p will denote the non-repelling periodic point which is
closest to 0) and such that [−p, p] ⊂ int T . The same argument for the
infinitely renormalizable case can now be applied (where one should select
a symmetric interval T ′ slightly smaller than T but bigger than [−p, p]).

B.3.3. Parabolic case. Let us first recall the standard fact concerning the
asymptotics of the orbits converging to parabolic points.

Lemma B.3. Let g : (R, 0) → (R, 0) be a real analytic germ near a non-
degenerate7 parabolic fixed point 0. Fix x0 �= 0 such that xn = gn(x0) → 0.

(1) If Dg(0) = 1 then |xn − xn+1| ∼ ηn−2 for some constant η > 0.
(2) If Dg(0) = −1 then |xn − xn+2| ∼ ηn−3/2 for some constant η > 0.

If f has a parabolic point p (of period q) with multiplier −1, it is
still true (as in the attracting case) that there exists a symmetric interval
T with [−p, p] ⊂ int T , and f q(T ) ⊂ int T . This implies that we can
choose a topological conjugacy which is smooth in T \ {−p, p}. It follows
from Lemma B.3 that h is bi-Lipschitz near p. The dynamics outside T is
uniformly expanding (by the result of Guckenheimer and Mañé mentioned
above), so the same argument as before shows that h is quasisymmetric.

The case where f has a parabolic point p (of period q) with multiplier 1
is more delicate. For s > q big, let P̂s be the set of all x ∈ I such that
f j(x) = p for some j ≤ s. Let {M̂s

j} j be the collection of connected

components of I \ P̂s which are not contained in the basin of attraction of p.
There are exactly q elements of {M̂s

j} j whose closure intersects orb f (p),

which we will label M̂s
1,...,M̂s

q. Since f(P̂s) ⊂ P̂s, the collection {M̂s
j} j is

a Markov partition. However, the action of f on this Markov partition is not
uniformly expanding.

Let Ps be the union of P̂s with the set of all x ∈ I such that f k(x) ∈ P̂s

for some k ≥ 1, and f j(x) ∈ ∪
q

j=1M̂s
j for j < k. Notice that Ps \ P̂s is

7 In the case of multiplier 1 it means that D2g(0) �= 0. In the case of multiplier −1, it means
that D3g2(0) �= 0. Parabolic points of quasiquadratic maps are always non-degenerate.



Real analytic dynamics 545

an infinite set which accumulates on orb f (p). Let {Ms
j} j be the collection

of connected components of ∪ j M̂
s
j \ Ps. Since f(Ps) ⊂ Ps, the collection

{Ms
j} j is an “infinite Markov partition”. Let us show that this infinite Markov

partition is “uniformly expanding” in some sense.

Lemma B.4. If s is sufficiently big, then for any N > 0, and for any δ > 0
sufficiently small (depending on s and N) the following holds. Let J ⊂ I be
any interval and let k ≥ 0 be the smallest number such that either

(1) f k(J) ∩ [−p, p] �= ∅, or
(2) f k(J) contains N different intervals of the collection {Ms

j} j , or

(3) | f k(J)| ≥ δ.

Then the distortion of f k|J is at most ln 2.

Proof. Let ε(s) =
∑

j |Ms
j |. By [M], Theorem 4, the complement of the

basin of attraction of p has Lebesgue measure zero. This implies that
lims→∞ ε(s) = 0.

Let φ ≡ f n : L → Ms
j be any branch of the first return map to some

Ms
j . It follows from the Markov property that φ is surjective, so it has a fixed

point r in the closure of its domain. Notice that orb f (p) ∩ Ms
j = ∅, so r is

not parabolic and by [MMS], Theorem B, |Dφ(p)| ≥ eρ, where ρ > 0 only
depends on f .

Let us choose s so big that 4Cε(s) ≤ ρ where

C = sup
x∈I\[−p,p]

ln
|D2 f(x)|

|D f(x)|
.

It is easy to see that the intervals f i(L), 0 ≤ i ≤ n − 1 are disjoint and
contained in ∪ j M̂

s
j . In particular, the distortion of φ can be bounded by

C

n−1
∑

i=0

| f i(L)| ≤ Cε(s) ≤
ρ

4
,

so |Dφ| ≥ eρ/2 on its entire domain.
Let now J and k be as in the statement of the lemma. Let k0 ≤ k be

maximal such that for i ≤ k0 we have f i(J) ⊂ ∪ j M̂
s
j (it follows that

k −k0 ≤ s). Using that f k0−1(J) is contained in the union of N +1 intervals
Ms

j , we see that

k0−1
∑

i=0

| f i(J)| ≤
(N + 1)

1 − e−ρ/2

∑

j

min
{
∣

∣M̂s
j

∣

∣, δ
}

≡ ζ(δ, N, s).

It is clear that with N and s fixed we have limδ→0 ζ(δ, N, s) = 0. Choose
δ > 0 so small that C(ζ(δ, N, s) + δs) < ln 2. Then the distortion of f k|J
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is bounded by C
∑k−1

i=1 | f i(J)| = C(
∑k0−1

i=0 | f i(J)| +
∑k−1

i=k0
| f i(J)|) ≤

C(ζ(δ, N, s) + δs) < ln 2 as required. ⊓⊔

Lemma B.5. Let h be a topological conjugacy between f and f̃ . For every
s > q, there exists N > 0, K > 1, such that if (l, m, r) is a 2-commensurable
triple in I and J = [l, r] intersects more than N intervals of the collection
{Ms

j} j then (h(l), h(m), h(r)) is a K-commensurable triple.

Proof. It is enough to consider the case when |J| is small. Since the only
accumulation points of Ps are in orb f (p), we may assume (by taking N big)
that J is close to orb f (p).

The set Ps ∪ orb f (0) is forward invariant and its only accumulation
points are in orb f (p). It follows from Lemma B.3 that h| (Ps ∪ orb f (0))
extends to a bi-Lipschitz map h1 : I → I .

Let L , M, and R be the connected components of I \ (Ps ∪ orb f (0))
containing points l, m, and r respectively (in case some of these three points
lies in Ps ∪ orb f (0), we let the corresponding component be empty). Then
|L| + |M| + |R| is much smaller than |J| (assuming |J| is small and N is
large). This implies that h| {l, m, r} extends to a bi-Lipschitz map I → I
with constants almost as good as for h1 , which implies the commensurability
statement. ⊓⊔

Let us now fix a topological conjugacy h which is smooth in (−p, p).
Then it follows from Lemma B.3 that h|[−p, p] is bi-Lipschitz. Let s be as
in Lemma B.4, N = N(s) be as in Lemma B.5, and let δ = δ(s, N) be given
by Lemma B.4. Let (l, m, r) be a 1-commensurable triple and let J = [l, r].
Let k be as in Lemma B.4, so that f k|J has distortion bounded by ln 2 and
at least one of the conditions (1), (2), or (3) hold. We may assume that the
distortion of f̃ |h(J) is also bounded by ln 2 (after some increasing of s and
decreasing of δ). Let us show that in each of the three cases we can conclude
that (h(l), h(m), h(r)) is κ-commensurable for some universal constant κ.

If (3) holds, we can argue as in the infinitely renormalizable case. If
(2) holds, then we can apply Lemma B.5. If (1) holds then either f k(J) ⊂
[−p, p] or int f k(J) ∩ {−p, p} �= ∅. In the first case we just use that
h|[−p, p] is bi-Lipschitz. In the second case, p ∈ int f k+q(J), so f k+q(J)
intersects infinitely many intervals of the collection {Ms

j} j , and Lemma B.5
implies the assertion.

Appendix C. Non-symmetric maps

So far we restricted our attention to a class of symmetric (i.e. even) unimodal
maps. Below we will show how to extend our results to an appropriate
space of asymmetric unimodal maps. The idea is to reduce one case to the
other by means of a transversally non-singular projection from the space of
asymmetric maps to the space of symmetric maps.
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Let Ũk, k ≥ 3 be the space of (not necessarily symmetric) Ck unimodal
maps f : I → I , that is, f(−1) = f(1) = −1 and f has a unique non-
degenerate critical point at 0. Let Ũ ⊂ Ũ3 be the set of quasiquadratic
unimodal maps, that is, maps f which have a neighborhood V such that for
all g ∈ V, g is topologically conjugate to a quadratic map. Let Ẽa ⊂ BΩa

be the subspace of holomorphic maps v with v(−1) = v(1) = 0. Let
Ãa = q2 + Ẽa and Ũa = Ũ ∩ Ãa.

Denote by c f the critical point of f and let q f be the quadratic unimodal
map with the same critical value as f . Define Θ : Ũ∞ → C∞(I ) which
associates to each f the unique diffeomorphism of I such that f = q f ◦

Θ( f ). Define the projection Π : Ũ∞ → U∞ by Π( f ) = Θ( f ) ◦ q f .
Obviously, Π( f ) is a symmetric unimodal map. It is conjugate to f ,

since Π( f ) = Θ( f ) ◦ f ◦ Θ( f )−1. Moreover, any unimodal map g ∈ Ũ3

near Π( f ) is conjugate to some unimodal map near f , namely, to Θ( f )−1 ◦

g◦Θ( f ) ∈ Ũ3. Hence Π( f ) is quasiquadratic. Clearly, if f is analytic then
Π( f ) analytic as well. We conclude that Π acts from Ũ to U.

Moreover, if Γ is an analytic family of unimodal maps in some Ũa then
Π ◦ Γ is an analytic family of unimodal maps in some Ua′ . It follows that
Theorems B and C can be “lifted” to the asymmetric setting.

To “lift” Theorem A we need some extra information: the derivative of
Π (restricted to appropriate Banach spaces of analytic unimodal maps) has
a dense image, and therefore it is transversally non-singular with respect
to the hybrid lamination we constructed in the symmetric case. This is
analogous to what we did in the infinitely renormalizable case in preparation
for the proof of Theorem 4.9, where we used the renormalization operator
instead of Π.

Lemma C.1. Let f ∈ Ũa. Then there exist b > 0 and a neighborhood
V ⊂ Ũa of f such that Π(V) ⊂ Ub, Π : V → Ub is real analytic, and
DΠ( f ) : TŨa → TUb has a dense image.

Proof. Let a > a′ > 0 be such that Θ( f ) ∈ BΩa′ . Let V ⊂ Ua′ be a small
neighborhood of f . If b > 0 is small enough, then Π(V) ⊂ Ub and Π :
V → Ub is real analytic. Since the derivative of the inclusion from Ua into
Ua′ has a dense image, it is enough to prove that DΠ( f ) : TŨa′ → TUb

has a dense image.
To this end, let us consider a polynomial vector field w0 ∈ TUb, and let

us try to find v ∈ TŨa′ such that

DΠ( f )v = w0.(C.1)

It is easier to compute DΠ( f )v for the case of a vector field v such that
v(c f ) = 0. In this case the quadratic polynomial q f does not vary infinites-
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imally, and we obtain:

w ≡ DΘ( f )v =
v

q′
f ◦ Θ( f )

,(C.2)

DΠ( f )v = w ◦ q f .

Since w0 is even, we can represent it in the form w0 = w ◦ q f where w
is a polynomial vector field. Let v = w · (q′

f ◦ Θ( f )). Then v ∈ BΩa′ and
v(c f ) = 0, and (C.1) follows from (C.2). ⊓⊔

Using this Lemma the argument of Theorem 4.9 can be applied to obtain
Theorem A for asymmetric maps.
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Norm. Supér., IV. Sér. 16, 193–217 (1983)

[MS] de Melo W., van Strien S.: One-dimensional dynamics. Springer 1993
[MT] Milnor, J., Thurston, W.: On iterated maps of the interval. Dynamical Systems.

Proc. U. Md., 1986–87, ed. J. Alexander. Lect. Notes Math. 1342, 465–563 (1988)



550 A. Avila et al.

[NPT] Newhouse, S., Palis, J., Takens, F.: Bifurcation and stability of families of diffeo-
morphisms. Publ. Math., Inst. Hautes Étud. Sci. 57, 5–71 (1983)

[N] Nowicki, T.: A positive Liapunov exponent for the critical value of an S-unimodal
mapping implies uniform hyperbolicity. Ergodic Theory Dyn. Syst. 8, 425–435
(1988)

[NS] Nowicki, T., van Strien, S.: Invariant measures exist under a summability condition
for unimodal maps. Invent. Math. 105, 123–136 (1991)

[Pa] Palis, J.: A global view of dynamics and a conjecture of the denseness of finitude
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