
Regular Orientations, Arboricity, and 
Augmentation * 

IIubert de Fraysseix and Patrice Ossona de Mendez 

CNRS UMR 0017, EHESS, 54 Boulevard Raspail, 75006, Paris, France 

1 I n t r o d u c t i o n  

Regular orientations, that is orientations such that almost all the vertices have 
the same indegree, relates many combinatorial and topological properties, such 
as arboricity, page number, and planarity. Those orientations are a basic tool 
in solving combinatorial problems that preserve topological properties. Planar 
augmentations are a simple example of such problems. 

Augmentation problems are concerned with the addition of dummy edges to 
a graph in order to get some connectivity or maximality properties. For instance, 
the problem of finding the minimum number of edges to augment a graph to a 
biconnected graph has been solved in [2]. If the original graph is planar and if it is 
required to preserve the planarity, the problem is NP-complete [3]. Triangulating 
a biconnected graph while minimizing the maximum degree has also been proved 
to be an NP-complete problem. 

Regular orientations are also related to arboricity. Those of planar graphs 
provide very simple algorithms to construct tree decompositions. 

We first study constrained orientations of graphs. Then we present a few 
results on augmentation problems and tree decompositions. 

2 E x i s t e n c e  o f  r e g u l a r  o r i e n t a t i o n s  

The necessary and sufficient conditions for a regular orientation to exist is a 
consequence of the following simple lemma : 

L e m m a  1. Let G be a graph and A : V(G) ~ IN be a mapping from the vertex 
set of G to the integer set. Then, there exists an orientation of G such that each 
vertex x has indegree d-(x)  smaller or equal to A(x) if and only if, for every 
subgraph H of G, 

[E(H)[ < Z A(x) (1) 
~ev(g) 

Proof. Actually, (1) translates to the tIoffman condition of the max-flow problem 
trivially associated to the orientation computation. Nonetheless, let us give a 
direct short proof of the lemma. 

* This work was partially supported by the ESPRIT Basic Research Action Nr. 7141 
(ALCOM II). 
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Let G be a graph and A be a mapping from V(G) to IN. 
Assume d-(z)  < A(x), for every vertex x of G. Then, for every subgraph H 

of G, 
]E(H)I-< Z d-(x)  < E X(x) (2) 

xeV(H) ~eV(H) 

and thus (I) holds. 
Conversely, assume (1) holds for any subgraph H of G. Consider any orien- 

tation of the graph G. We will prove the existence of an orientation of G such 
that d-(z)  _< A(x) for every vertex x of G by induction on the sum 

s =  ~ d-(~)-~(~) (3) 
~,d-(x)>x(=) 

If S is equal to 0, the condition d-(z)  < A(x) holds for every vertex of G. 
Otherwise, let a be a vertex of G such that 

d-(a)  > ~(a) (4) 

and let Ha be the subgraph of G induced by the vertices y such that there exists 
a (maybe empty) directed path in G from y to a. 

If g-(y)  >_ A(y), for any vertex y in Ha, then 

IE(Ha)I >- E d-(y) > E A(y) (5) 
~eV(H.) veV(H.) 

which contradicts (1). Thus, there exists in Ha a vertex b such that 

d-(b) < ~(b) (6) 

By definition of Ha, there exists in G a directed path from b to a. By reversing 
the orientation of the edges of this directed path, only the indegrees of the 
vertices a and b are changed and hence the sum S decreases by one. [] 

It is a straightforward consequence of this lemma that a graph G has an 
orientation such that each vertex has indegree at most ~ if and only if the average 
degree of the vertices of any subgraph of G is at most 2.a. In particular : 

T h e o r e m  2. Let G be a graph and ~(G) be the minimum integer such that the 
graph G has an orientation in which each vertex having at most ~(G) incoming 
edges. Then, 

IE(H)I ,~(G) = max (7) 
Hcc IV(H)I 

In particular, 

- t iG  is planar bipartite, ~r < 2 
- t iG  is of genus 7(G) < 1, then ~(G) < 3 
- t i the maximum degree of the vertices of G is 2.a, then g(G) < 
- t iT(G) denotes the arboricity o/G, then a(G) < T(G) 
- t ip(G) denotes the page number o /G,  then ,,(G) <_ p(G) + 1 (e.g. ,,(G) <_ 2 

ti G is outer pla.nar) 



113 

3 Some Planar Augmentation Problems 

3.1 Triangulation of  trlconneeted graphs 

Let us give the demonstration of an augmentation problem, where a rather sur- 
prising bound arises : 

Problem3. What is the smallest integer k, such that  any triconnected planar 
graph can be triangulated by increasing the degrees of the vertices by at most 
k ?  

The resolution of this problem is the consequence of few simple lemmas. 

Kant  [3] introduced a generalization of the canonical ordering introduced for 
triangulated planar graphs in [1] : 

Lemma (KANT). The vertices of a triconnected graph G can be ordered in a 
sequence vl, . . ., vn such that v2 and vn are neighbors of vl and are on a common 
face, and for every k, k > 3 : 

1. vk is on the outerface of Gk and has at least two neighbors in Gk-1, which 
are on the outerface o fGk-1 ,  vk has at least one neighbor in G -  Gk. Gk is 
biconnected, 

2. or there exists an l ~ 1 such that vk , . . .vk+t  is a chain on the outerface of 
Gk+t and has exactly two neighbors in Gk-1, which are on the outerface of 
Gk-1. Every vertex vk,. . .vk+~ has at least one neighbor in G - G k + 1 .  Gk+t 
is biconnected. 

[] 

Remark. Such a canonical ordering can be easily generalized to triconnected 
non-planar graphs. 

Using Kant's Lemma , we deduce : 

L e m m a  4. Let G be a triconnected planar graph. Then, there exists an orienta- 
tion of G, such that : 

- each interior vertex has indegree 2 or 3. 
- each face has at most one source. 
- this orientation is extendable to a orientation of a triangulahon of G, each 

interior vertex having indegree 3. 

Proof. We use the canonical ordering defined in Kant 's  Lemma to perform a 
triangulation Gt of G with the same canonical ordering. 

At each step, we add either a vertex vk or a chain {vk, . . .  vk+t}. Let x and y 
be respectively the leftmost and the rightmost vertices of Gk-z incident to one 
of the added vertices. Let some dummy edges be added incident to vk and all 
the vertices of Gk-z between x and y (if not already adjacent to vk). When a 
chain is added, we also add dummy edges from Vk+l, . . . ,  vk+t to y. 

The canonical order of G is obviously a vertex packing order of the obtained 
triangulated graph Gt. [] 
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To an orientation, we associate a marking #, which maps the angles of the 
planar map into the integers. The angle a defined by a vertex z and face f has 
a marking p(a) equal to the number of edges of f oriented toward z. 

If a graph G is a partial graph of a graph H,  then the angle a of G defined 
by a vertex z and face f has, by extension, a marking #(a) equM to the number 
of edges of H "inside" f and oriented toward x. 

L e m m a  5. Let G be a triconnected planar graph. Then, there exists a marking 
# such that : 

- the sum of the marks of the angles incident to a vertex is smaller or equal 
to 6, 

- the sum of the marks of lhe angles incident to a face of length ! is equal to 
31 - 6, 

- the mark of any angle a statistics 0 <_ p(a) <_ 3, 
- for any face r at most one angle of r has mark O. 

Proof. Consider the orientation of G and the oriented triangulation Gt defined 
by Theorem 4. The marking defined by Gt on the angle of G have the required 
properties. [] 

The final lemma proves the utility of the so-defined marking : 

L e m m a 6 .  Let 7 be a cycle of length l and let ~ be a marking of the interior 
angles ofT, such that : 

- the sum of the marks on 7 is greater or equal to 31 - 6, 
- the marks are smaller or equal to 3, 
- there is at most one angle of 7 with mark O. 

Then, there exists a triangulation of the interior of 7, such that the degree in- 
crease of the vertices of 7 are bounded by the corresponding marks. 

Proof. The proof is by induction and case analysis. In the following, the mark 
of the vertices of 7 are defirted as the mark of the corresponding angle of 7. 

- There exists a vertex v with mark 0. 
Let x and y be the neighbors of v. As the marks are smaller or equal to 3, 
#(z)  + / , ( y )  > (3l - 6) - 3 ( l -  3) >_ 3. As only one vertex may have a mark 
equal to 0, one vertex among z and y has a mark greater or equal to 2. When 
adding an edge joining z and y and decreasing by one the marks of z and y, 
we get a cycle of length l - 1 with the required properties. 

- There exists no vertex having a mark equal to 0, but  there exists a vertex 
having a mark equal to 1. 
A simple calculation shows that  there exist at most three vertices of 7 having 
a mark equal to 1. If i is not of length 3, there exists vertex v having a mark 
equal to 1 and adjacent to a vertex z having a mark greater or equal to 2. 
Let y be the other neighbor of v in 7. When adding an edge joining z and 
y and decreasing by one the marks of z and y, we get a cycle of length ! - 1 
with the required properties. 
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- All the marks are greater or equal to 2. 
The cycle can be triangulated using a "zig-zag". 

[] 

TheoremT.  Let G be a triconnected planar graph. Then there exists a trian- 
gulation of G, such that the degrees of the vertices of G increase at most by 6. 
Moreover, this bound is tight. 

Proof. The existence of such a triangulation is a direct consequence of Lemmas 
5 and 6. The tightness of the bound is shown by replacing each face of a big 
maximal planar graph by a prism (see Fig. 3.1). [] 

Fig. 1. Construction of a worst-case example 

3.2 O the r  Tr iangula t ion P r o b l e m s  

The bound obtained above for triangulating triconnected planar graphs may 
be improved when restricted to special classes of triconnected graphs. Without 
demonstration, let us mention the results obtained for outerplanar graphs and 
maximal bipartite planar graphs. 

T h e o r e m 8 .  Let G be a triconnected outerplanar graph. Then there exists a 
tmangulation of G, such that the degrees of the vertices of G increase at most by 
3. [] 

T h e o r e m  9. Let G be a triconnected maximal bipartite planar graph. Then there 
exists a triangulation of G, such that the degrees of the vertices of G increase at 
most by 4. Moreover, this bound is tight. D 

The tightness of the bound is shown by replacing each face of a big maximal 
bipartite planar graph as shown by Fig. 3.2. 

It seems that this bound also holds for any triconnected graph without sep- 
arating triangle : 

Con jec tu re  10. Let G be a triconnected planar graph free of separating trian- 
gles, it is possible to triangulate G by adding at most 4 edges at each vertex. 



116 

Fig. 2. Construction of a worst-case example 

3.3 Augmentation of connected graphs 

Let us present two other augmentation problems, that have been solved using 
regular orientations. We shall only give short hints on the way regular orienta- 
tions are actually used in solving them. 

By augmenting G into a maximal planar graph and computing the marking 
induced by an orientation with indegrees bounded by 3, we prove : 

T h e o r e m  11. Let G be a connected plane graph. Then, G can be augmented 
to a biconnected plane graph (while preserving the embedding) by increasing the 
degrees of the vertices of G increase at most by 6. Moreover, this bound is tight. 

D 

The tightness of the bound is shown by replacing each face of a big maximal 
planar graph the way shown in Fig. 3.3. In the worst-case example given above, 

w 

Fig. 3. Construction of a worst-case example 

the bound can be improved if the embedding may be changed. Nonetheless, it 
appears that the choice of the embedding is harder than simply gathering blocs 
articulated at a same vertex in a same face. 

Actually, by using an orientation of the angle graph of a planar graph with 
indegrees bounded by two, we prove : 

T h e o r e m  12. Let G be a connected planar graph. Then, G can be augmented to 
a biconnected planar graph by increasing the degrees of the vertices of G increase 
at most by 2. Moreover, this bound is tight. [] 

Remark 

It is straightforward to devise linear time algorithms to solve the augmentation 
problems presented in this section. 
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4 O n  t r e e  d e c o m p o s i t i o n s  

The arboricity T(G) of a graph has been expressed by a formula similar to that  
for ~ ( a ) [ 4 ] :  

T h e o r e m  ( N ~ h - W i l l i a m s ) .  The arboricity T(G) of a graph G is equal to : 

T(G) : max IE(H)I (8) 
HC_G,IV(H)I>I I V ( H ) I -  1 

It follows that  : 

- any maximal bipartite planar graph is covered by two trees [8] [6], 
- any maximal planar graph is covered by three trees [9] [7]. 

Actually, a necessary and sufficient condition for a graph G to be the union 
of k spanning trees may be expressed in terms of regular orientations : 

T h e o r e m l 3 .  A graph G with k(lv(O)l- 1) edges is the disjoint union of k 
disjoint spanning trees if and only if there exists an orientation 0 and a vertex 
zo of G, such that, for any bipartition VoUV1 of V(G) with zo E 1/'1, the number 
of edges directed from a vertex of Vo to a vertex of V1 is at least equal to k. 0 

Any tree decomposition canonically induces such an orientation. The converse 
seems also to be true : 

C o n j e c t u r e  14. Let k > 1 be an integer and ~eo be a vertex of an oriented graph 
G having exactly k(IV(O)[- 1) edges. 

Then, the following two properties are equivalent : 

1. For any bipartition (Vo, I/1) of the vertex set of G (with xo E Vo), there 
exists at least k distinct edges of G oriented from a vertex belonging to 1/'o to 
a vertex belonging to V1. 

2. The graph G is covered by k edge-disjoint trees, such that each vertex (except 
xo) has ezactly one incoming edge belonging to each tree. 

For some classes of planar graphs, tree decompositions may be easily deduced 
from such orientations. Thus, Schnyder's theorem on the decomposition of a 
maximal planar graph into 3 trees may be extended to [5] : 

T h e o r e m  15. The Schnyder decompositions of a maximal plane graph into 3 
trees are in boeclion with omentations such that each vertex not belonging to the 
unbounded face has indegree 3. Moreover those orientations are compatible with 
the orientation of the 3 trees oriented from their roots. [] 

For bipartite planar graphs, by slightly different techniques, we prove that : 

T h e o r e m  16. The decompostions of a maximal bipartite plane graph into g trees 
rooted in two vertices of the unbounded face, such that the edges belonging to a 
same tree are consecutive at each vertex, are in bijection with orientations such 
that each vertex not belonging to the unbounded face has indegree e. Moreover 
those orientations are compatible with the orientation of the 2 trees oriented from 
their roots. [] 
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From this theorem, it follows tha t  any maximal  bipart i te graphs may be drawn 
on two pages, with one tree on each page. It  seems that  such a representation can 
be generalized to any planar graph covered by two trees. As the page number  of 
any planar graph is at most 3, this would imply the following inequality : 

C o n j e c t u r e  17. Let G be a planar graph. Then, the page number p(G) of G is 
related to its arboricity T(G) by : 

p(G) < r(G) (9) 
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