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REGULAR POINTS FOR ELLIPTIC EQUATIONS WITH
DISCONTINUOUS COEFFICIENTS

by W. LirT™MAN, G. STAMPACCHIA and H. F. WEINBERGER (*)

(University of Minnesota)

Introduction.

The main purpose of this paper is to investigate the notion of regular
boundary points for Dirichlet’s problem with respect to uniformly elliptic
equations in divergence form
(x) Lu = — (a;j (%) uwi)wj =0
when the coefficients are only supposed to be bounded and measurable.
The boundary values are given by an arbitrarily assigned continuous
function.

When L is the Laplace operator the question of determining whether
the solution attains its boundary value continuously at a particular boun-
dary point (regularity) is eclassical. The regular points were characterized
by Wiener [30.31]. The Wiener criterion has been stated and proved in
geveral ways by Kellogg [8], Vasilesco [9]. De la Vallée Poussin [10],
Frostman [5], and Brelot [2]. Piischel [17] showed that a boundary point
is regular for the equation (%) if and only if it is regular for the Laplace
operator. Piischel has to assume that the coefficients are twice continuously
differentiable. Tautz [27,28] and Ol€inik [16] extended this result to equa-
tions with lower order terms. These proofs use the simmoothness of the coef-
ficients in a very essential way.

(*) Prepared under Grant NSF-G 18918 between the National Science Foundation
and the University of Minnesota, and Contract Nonr 710 (16), Project NR 043 041 bet-
ween the Office of Naval Research and the University of Minnesota.
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Using an axiomatic approach, R. M. Hervé [7] has recently extended
these results to equations of the form

Wij Uz ) + biug, +ou=0

with locally Lipschitz continuous coefficients.

In recent years it has been found that solutions of uniformly elliptic
equations (¥) have some continuity properties even when the coefficients are
only bounded and measurable,

We will show (§ 3) that a locally continuous solution of (#) may be
aggociated with any continuous boundary values. Therefore the question of
regularity of a boundary point can again be posed.

In § 9 we prove that even in this general case the regular points are
the same as those for Laplace’s equation.

In order to prove this result we make extensive wuse of those recent
results on uniformly elliptic equations with discontinuous coefficients de-
seribed in § 2.

We also establish some new results which are of interest in themselves.

In § 5 we prove the existence of solutions vanishing at the boundary
of Lu = u for any measure u of bounded variation. In particular, the
Dirac meusure gives rise to the Green’s function g¢(x,y) (§ 6). This Green’s
function enjoys the fundamental properties of the classical one.

The solation of Lu = u can be represented by u :fg du (§ 6). This

allows us to prove that for non-negative i, v is lower semi-continuous and
has a mean value property (§ 8).

The capucitary potential » of a set F is defined by a classical varia-
tional problem (§ 4). The capacitary distribution u arises naturally from
the variational problem. The capacitary poteuntial is a solution of the
equation Lu = u.

An important role is played by the fact that the ratio g(w,)/g(x,y) of
the Green’s functions corresponding to two equations of the formm (*)
is bounded in any compact subset by a constant depending only on the
ellipticity constant (§ 7).

The results are extended to unbounded domains in § 10.

1. Some Notation and Preliminaries.

Let £2 be a bounded domain in Euclidean n-space, let £ denote its
boundary, and £ its closure.



for elliptic equations with discontinuous coefficients 45

We denote the class of real confinuous functions in 2 by(?° (§). We
let C1(Q2) be the subclass of C°(2) fuuctions having continuous first partial
derivatives in £ which can be extended continuously to £.

The completion of O (£2) with respect to the norm

” % ”HLP(_Q) = “ % HLP(Q) +@§1” U, ”Lp([)) (p=1)

will be denoted by H?1 2 (),

We shall say that u€ Hio,? (Q) if ue H"? (Q’) for every 2’ with clo-
sure in Q.

The closure in H? () of the subelass ¢y (2) of the ¢'(2) functions
vanishing near 6Q is Hy'? ().

1 1 1
The dual of H,"? (Q) (for p>1) is called H ¥ (Q), (;-—[— ?: 1) .

It is well known [11, p. 225; 20] that H —1#" () consist of distributions on
£ which are first derivatives of functions in L ¥ (£2). H? (Q) is a re-
flexive Banach space.

In the following we shall denote by X a sphere and cousider the
space Hol”’(Z). Of this space we have to use some properties which will be
explained here.

To begin with we make the following :

ReMARK (1.1). Let M, be the space of Lipschitz functions in 3 vanis-
hing near 92, Any function of M, can be approximated by functions of
(!(3) vanishing near 93 in the norm of HJ”’(Z) for any p = 1. Therefore
0 (S)e M,c Hy'? (3), and H"?(Z) is also the completion of M, with
respect to the norm of H'? ().

Let u (x) be any element of H,"P (3). Since u (x) belongs to L? (),
we have to distinguish two different definitions of positivity of « on a
subset of 2.

DEFINITION (1.1). A funetion u () of Hy"? (3) will be said to be non-
negative on a set E in the sense of LP(X) or almost everywhere (a. e.) if

meas [{#|u<0}N E]=0.
DEFINITION (1.2). A function % (x) of Hy"" (3) will be said to be non-

negative on o set B in the sense of H}'? () if there exists a sequence u,,
of functions of M, such that: i) u,, =20 on F; ii) u, —u in P (2).
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Obviously the two definitions are quite different, and while the first
one imposes no restriction on n for a set & of zero measure, the second may.
The following properties of inequalities are easily proved.

Pror. (1.1). If u(x) belongs to Hol’p(Z) and u(x) is non-negative on a
set B in the sense of Hy' ¥ (Z) then u(x) is non-negative almost everywhere
on H. (Y

Pror. (1.2). If u(x) belongs to H'?(Z) and u(») is non-negative almost

everywhere on a set H, then w(x) is non-negative in the sense of HN? (Z) on
any subset of E which is bounded away from JE.

The first property is a consequence of the well known theorem on the
quasi-uniform convergence of a subsequence of functions converging in L2,
The second property follows from the regularity theorem (mollification) for
the functions of H,"? (3).

The following property shows that weak convergence may be used
instead of strong convergence in the definition (1.2).

PRrOP. (1.3). A function u(x) of Hy'? (3) is non-negative on a set B if
there exists a sequence u,, of functions of M, such that i) u,, >0 on E,
ii) w,, —> w weakly in Hy ¥ (3).

In fact, from a well known theorem by Banach and Saks [18, p. 80]
there is a sequence u, of means of u,, which converges to u in H)? ().
This sequence satisfies the properties i) and ii) of the definition (1.2).

If w(x)€ L?(3) and k is a positive number we define the truncated

function
w if w<k
fule =
E if uw>k.
We prove the following.

LeMMA (1.1). If u(x) € Hy ¥ () and k> 0 then {u(x))* € Hy'? (3).
Let u,, be a sequence in M, converging to »(x) in Hy? (Z). Consider the
sequence { u,, }* of functions still in M,. Since

Hm || fa o — fuf? | Sm“lan U — U || o) = 0

m — 00
and
lim sup ” ( U }k “HlvP(Z) < H u “HIOxP():)

m — o 0

(!) A more precise result holds if instead of Lebesgne measure one considers a suitable
capacity [1, 4, 6]
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there exists a subsequence, which we still call {u,, }¥, which converges
weakly in H"? (2) to {w}®. Then by the Banach-Saks theorem [18] a se-
quence u), of means of the {u,, }* converges strongly in Hy'? (Z) to {u}*(3).
The u,, are clearly in M.

It is easy to define more general inequalities in the sense of HY? (),
such as % > const., w < 0, or u < const. on a set K. In particular a func-
tion wu (x) of H},’p(Z) is equal to 1 on a set K in the sense of HY? (3) if
% (®) is both <1 and >1 in the sense of Hol"’(Z) (see definition (1.2)). It
is easy to see that if w = 1 on [, there exists a sequence u,€& M, such
that w, =1 on E and u, —>u in H;'* (3). We mention the following.

LeMMA (1.2). If u (%) belongs to Hy? () and u(x)>1 on a set E in the
sense of H"? (3) then {u(@) )t = 1 on the same set B in the same sense.

In fact if u,, is a sequence converging to u(x) in Hy'¥ (3) with u,,>1
on FE, a subsequence of {u,, }! converges weakly. Then by the Banach-Saks
theorem [18] a sequence of means of {u,}! converges strongly to {u}!,
and is equal to 1 on K.

LuMMA (1.8). The set of functions of Hy'? (3) which satisfy the condition
u(x)>1

on a set E in the sense of H'? (5) is a closed convew set.
This is clear from the definition. We also have to consider some ine-
qualities for functions of H1? (L) on 4£2.

DeEFNITION (1.2). A function u (x) € H1.?7(82) will be said to be non-
negative on 08 (in the sense of H'? (L)) if there exists a sequence wu,, of

functions of O () such that i) u, >0 on 92, i) 4y —>u in HL?2(Q).
By the same proof as that of Lemma (1.1) we have the following,

LuuyMA (1.4). If w(x) € HL 2 (L) is non-positive on 982 in the sense of
H??(8), then the function

w (@) — {u (x)}*
for any positive k, belongs to HyP(Q).

REMARK (1.2). In the same way as in definition (1.2') we can give a
meaning to funections non-negative on a subset I of 2 or bigger than a
constant on a subset E of 9f.

(® In fact, N. Meyers has shown that {um}k converges to { u {¥ in HDP(Z), (Oral
communication).
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We consider the differential operator

L = — («y; (@) Uz, )
where a; (x) = aj (x) are real bounded measurable functions defined in Q.

Throughout, we use the summation convention. We assume [ is
uniformly elliptic. That is, there is a constant 1> 1, such that

(1.1) U EP<an@) &G <A|EP

for all # in £ and all real Euclidean = vectors & We shall suppose that
the coefficients a; are defined and satisfy (1.1) in all E® This can always
be done by putting a; = d; outside of £.

DeFINITION (1.3). Given = -1 fanections f;,f,, ..,/ , in L?(£), the
function u (x)€ HY2(£Q) is said to be a solution of the equation

(1.2) Lu=f,— g Vil
if
(1.3) fui, Uz, (ij de = [(fo D+ § Ji @%z) dw
. =1
02 R

for all ¢ HY? (). If moreover w€ H?(2), then u will be said to vanish
on the boundary ¢£.

DEFINITION (1.4). A function u (x)€ Hie (2) will be ecalled a local
solution in L of the equation Lu =0, if

(1.4) faij Uy, d)wj dr =20
o]

for all @ in C'(Q) with compact support in Q.

DEFINITION (1.5). A fuuction » (x)€ HL2 (L) is called an L-subsolution
in Q if
(1.5) [aij Uy, @w}. dzx <0
2

for all non-negative functions ® of Hy?(2). u(x) is called an L-superso-
lution in £ if — v is an IL-subsolution.
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2. Some Known Results.

We recall some results on uniformly elliptic operators which we shall
use later. The following results are related to local solutions of the equa-
tion Luw = 0. To begin with, we recall the following standard

LEMMA (2.1). For any local solution of Lu =0 in 2 the following ine-
quality holds.

> w2 dx < —i— u? dx
i % —(R—p)f
Sy, e) S(y, B)

where 1 is the constant of (1.1) and S(y,r) denotes the sphere with center at
y and radius r ;0 <R and S(y, R)C .

It is enough to take in (1.4) @ = P? u where ¥ is an M function equal
to 1 in S(y, o) and to 0 outside of 8 (y, K).

THEOREM (2.1). Any local solution of Lu==10 in 2 is Holder continuous
in any compact subdomain of . More precisely, for any Q' such that @' 2
there are constants (3) K = K (4, &, Q) a = « (4, 2, £2) such that

|w @) —u@)|< K| ullpo|e —a”|

Jor o', 2" € 2.
This theorem is due to De Giorgi [3] and Nash [15]. A simpler proof
was given by Moser [13].

THEOREM (2.2). For any positive local solution of the equation Lu = 0
in Q and for any ' such that 2 C £

max % () <S¢ min u (x)
xesd we Q'

where ¢ is a constant depending only on 1, 2, and £'.

This extension of the classical Harnack inequality is due to Moser [14].
As Moser has shown [14], theorem (2.1) can be deduced from this theorem.
The following results are related to solutions of the equation (1.3). The
following theorem is proved by the classical Hilbert space approach.

(3) Throughout this paper 4 will denote the ellipticity constant in (1.1).

4. Annali della Scuola Norm. Sup. - Pisa.
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THEOREM (2.3). Given fi€I2{(Q) (i=1,2,...,n) and h€ HL2(Q), there
exists one and only one solution of the equation

(2.1) L = (fi)y, (t=1,2,..,n)
such that
(2.2) w— h € Hy? (Q).

The following theorem is true only for a domain whose boundary satisfies
certain smoothness assumptions. For our present purposes it is sufficient
to take as domain a sphere 3.

THEOREM (2.4). If fie P (2) (i=1,2,..,n) and he H1P () with p>n,
then the solution of the equation (2.1) satisfying (2.2) is Holder continuous in Z.

This theorem is a special case of a theorem proved by Morrey [12] and
Stampaechia [24]. The following two theorems are maximum principles.

THEOREM (2.5). If wu(x)e H12(Q) is an L-subsolution (def. (1.5)) which
is non-positive in the sense of HV2(Q) on 982 (def. (1.2')) then u (x) is non-
positive almost everywhere in £,

For this theorem see Stampacchia [25, 26]. We repeat here the easy
proof.

Let % (x) be an L-subsolution in £ which is non-positive on §£. For
a fixed &> 0 the function % (x) — {u (x)}* is non-negative in £ and moreover,
by Lemma (1.4), belongs to Hy'* (2). Taking in (1.5) @ (x) = w () — {u (@)}
we get

fai_, d’w, ij dr <0
Q

and because of the ellipticity of L, @, =0 (i =1, 2, ..., ) i. e. u (2) = {u ()}
Since ¢ is an arbitrary positive number we get u (x)< 0 a. e.

THEOREM (2.6). If u(x) is a solution of the equation (2.1} vanishing on
08, where f;€ LP () (p >n) then

max | u (@) | < ¢ A [meas QU0 | fi | 0
Q
where ¢ depends only on p (and =n).
This inequality is due to Stampacchia [22, 23). A different proof giving
the best value of ¢ is given by Weinberger [29].
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3. The boundary value problem and regularity.

Given a continuous function % (x) on the boundary 82 we seek to solve
the Dirichlet problem

(3.1) Lu=0in Q
(3.2) w=~"L on §L.

If b is the trace on 60 of a funetion & (x) in H12(Q), theorem (2.3)
gives a solution » € H12({2) which, by theorem (2.1) is locally Hdélder con-
tinuous. The boundary values h are attained in the sense that w — h € H)” (Q).
Obviously, the solution u is the same if instead of I (x) we consider a new

fanction h(x) such that b — k€ Hy® (2). We denote by 72 the quotient space
HY(Q)/H{* (2) where

(3.3) [7]lo=_ inf | z”fll,z(g) ,
h— he HY? (2)

and we consider the continuous linear mapping of U2 into HY2 (L) just
defined. We denote it by

(3.4) % = Bh.
By theorem (2.5) if h is bounded on §£ in the sense of H12(£2), then

(3.5) min b < min Bk < max Bh < max h
L o Q Y

where max kb [min ] means the minimum [maximum] of the numbers @ such
082 082
that b < @ [h> @] on 9L in the sense of H12(Q)*).

By lemma (2.1) and (3.5) we get
(3.6) Il Bh || < C(4,2)max | L |
o0

(4) max and win mean the essential max and min, as usual.

Q
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where

Mgl = lubé < ngfc dw)llz -+ max|yg |,
Qce Vi ¥ Q
6 being the distance between Q' and 80.

We conclude that Bh is a linear mapping of the subset BL2 of fun-
ctions of 72 which are bounded on 9£2 (in the sense of H12 (L)), into the
gpace of functions # such that || u || < oo.

Since any continuous function h on 4£2 can be approximated in the
norm mgx[ | by functions smooth in any set containing 0 (for instance

0

by polynomials), we conclude that the set B’?2 is dense in the space of con-

tinuous functions & on 62 with the norm max |h |
082
Therefore, the linear mapping u = B (h), restricted to the space of con-
tinuous functions (on 8£) of 712, can be extended to the space of continuous

functions on ¢£2. The mapping so obtained is still denoted by
u — Bh.

It associates to any continuous function » on 6% a unique function u
locally Holder continuous such that

I}l < co.

It is easily proved that the function u(x) is a local solution of the
equation Lu = 0 (see Def. 1.4).
We have thus proved the following theorem.

THEOREM (3.1). There exists a mapping Bh which to any continuous
Junction h on 882 associates o local solution w of the equation Lu = 0 (which
is locally Holder continuous by theorem (2.1)) in such a way that if b is the
trace of a C1(Q) function, then w = Bh coincides with the solution in H2(Q)
obtained by the variational approach (theorem (2.3)). Moreover (3.5) and (3.6) hold.

In the case of smooth coefficients it can be shown that w = Bh coinci-
des with the Perron-Wiener solution [2] of the boundary value problem.

Our problem is to investigate whether v = Bh, just defined, approaches

the boundary values h. For this purpose we consider the following.

DEFINITION (3.1). A point y€ 52 is said to be regular if for any con-
tinuous function % (x) on 04 the generalized solution w =— Bh satisfies

{3.7) lim » (@) = & (y).
x>y
@E LR
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If there is at least one continuous function % on 32 for which (3.7) is not
satisfied, the point y is said to be irregular.

We first show that irregularity at a peint, if it exists, already arises
in the variational problem, without extending B to all continuous functions.

LemmA (3.1). If at o point y€ 92 (3.7) holds for uw = Bh for every con-
tinuous h €112, then y is regular.

PROOF. Let h be continuous on 9£. Given any &> 0 there is a conti-
nuous function %, € t12 such that

|h—h8|<%s on 4L

1
Let w = Bh, u, = Bh, . By the maximum principle (3.5) | — u, | < 5 ¢

in Q. By (3.7) there is a neighborhood N, of y in 2 such that

1
|hs(.’/)'—“e(w)|<—§-s for x€N,.
Then

[h@) —u@ | <R @) — ke @) | A | he () — v (@) | 4 | we (¥) — u (@) |
<e& for x€N,.

so that y is regular.
In order to characterize regular points, we define a barrier at a point

y of 942

DEFINITION (3.2). A function V,(x)€ H2(Q) is called a barrier at the
point y € oL if
i) L(V,)==0 in £ in the sense of def. (1.4)
ii) For any o >0 there is a number m >0 such that V,(x)>m in
the sense of H12({) on the set

(w|eeoQ; |o—y|2e}
iii) ¥, {x) is continuous at the point y, and

x>y
xc O
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The condition (iii) has meaning because from (i) and theorem (2.1) V, (x)
can be defined in any point of Q2 and is continuous in 0.
‘We now prove the following lemma :

LEMMA (3.2). A point y€ 8L is regular if and only if there exists a bar-
rier Vy at 9.

Proor. If y is a regular point, the function
Vy=B(|le—y|)

is a barrier because on 9£2 |z — y|€7>? and is continuous.
Suppose now that a barrier V, exists. Let k (x) be any continuous func-
tion in <2, and u = Bh. Given any ¢ > 0 there is a ¢ > 0 such that

1
|h(m)-——h(y)|<?e

for | — y| < g, #€0Q2. Moreover h is bounded, so that |h(x)|<M on 90.
Since V,>m for | —y|>p, We find that

1 2M
B+ et o Vy @ —h(@)>0
m
on 92 in the sense of H12 (). By theorem (2.5)

1 2M
w(@ <hy) + 5 e+ Vy (@)
Similarly

1 2M

u(m)zh(y)—?e——m— Vy(x).

Sinee V,(x)— 0 as ¥ — y, we can find a neighborhood N, of y in £ such

1
that 2M V, (x) < 5 em for x€ N.. Then

|u (@) — R (y)|<e for x€N,,

and (3.7) holds for continuous h € 71:2. Therefore, by lemma (3.1) y is regular.
Next we show that regularity is a local property.

LEmMMA (3.3). Let Q' be a subdomain of Q. Let y be a boundary point
of both Q and £, and for some sphere S (y,0)={x|x —y]|<po] let
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02N 8S(y,0)=082 N8 (y, 0). Then y is a regular boundary point of 2 if and
only if it is a regular point of Q.

Suppose first that ¥ is regular with respect to £'. We wish to show
that V,,= B (|« — y|) is a barrier in £. This function is clearly bounded.
Therefore, V, (x)<c¢|®x —y| on 62— (62 N §42') for some constant c. By the
maximum prineciple (3.5) 0< V, ()< eV, (x) where V, is the corresponding
function B'(|x — y|) in £'. By the regularity of y whith respect to €,
Vy(@)— 0 as x—»y.

Hence V, () — 0 as # —y, and V, is a barrier.

We now suppose that y is regular with respect to 2. Let 2 be a sphere
containing 2. We define the sets

EL’:[Z_'Q]n‘S(%Q)
and
Q,=3—E,.
(We suppose ¢ so small that 8(y, o)C 2).
We note that 0%, coincides with 602 in S(y, ) and £2, D Q. Hence by

the first part of the theorem y is a regular point for £,. Therefore the
solution we ()€ H12 (8,) of

Lue =0 in Q,
ue =10 on ¢>

ue =1 on 0.,

is continuous at y.

We define
P 2
Vy@)= 3 2781 — u® (x)).
k=2

This series converges uniformly, and hence is continuous at y. Moreover,
the strong maximum principle, which follows from theorem (2.2), shows that
for each & there is an my > 0 such that

2
1 — uel® (x) > 2% my, on 9L for |x—y|2?@.
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It follows that
V(@) > my for |z — y| > 2¢/k.

Thus V, is a barrier for £', and y is regular with respect to (.

REMARK : It is clear from the above proof that y is regular with
respect to 2 if and only if the functions ¢ () are continuous at y.

4. Capacity.

Let 3 be a fixed open sphere and let F be a closed subset of 3. We
define the capacity of E (with respect to the operator L and the sphere X)
as the infimum of

(4.1) DL (@) == [aij ("D“i Q””j dz

b4
among functions @ € H,'? (3) satisfying & > 1 on ¥ in the sense of H (3.
This infimum will be denoted by cap. H.

THEOREM (4.1). There exists one and only one function u (x) € H)®(3)
such that w(x) > 1 on E in the sense of Hy ' (Z) and

(4.2) cap B = Dy, (u).
Moreover w = 1 on E in the sense of Hy'® (3).

PrOOF. By lemma (1.3) the set of functions @ € Hy () satisfying
®>1 on FE in the sense of H)'?(Z) is a closed convex set. Since Hj? is
a Hilbert space, there exists one and only one function # € H?(>) assu-
ming the infimum of Dy, (P). Moreover since,

Dy, ({u}!) < Dy ()

it follows from lemma 1.2 that u(¥) = 1 on E in the semse of Hy*(2),
and the statement is proved.

DEFINITION (4.1). The function % () giving the minimum to Dp(P)
among the Hy ?(Z)-functions such that & >1 on K in the sense of H1%(3)
is called the capacitary potential of the set E (with respect to 2 and L).
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Using a well known variational technique, we find that the capacitary po-
tential u of the set F satisfies

(4.3) / aij uxi (p“’j dx > 0
Pt
for any & € H? (2) which is non negative on Z in the sense of H? ().
In fact u 4 ¢ @ is, for ¢ > 0, an admissible function for the conside-

red problem. Then Dy, (v + e®) > Dy (u); i.e. —gs— Dp,(u 4+ D) ;0 > 0.

The property (4.3) and the fact that « = 1 on F in the sense of H.2(X)
characterize the capacitary potential of the set E.

The inequality (4.3) means that the capacitary potential # of the set B
is an L-supersolution in X which is equal to 1 on & in the sense of H1 2 (3).
Moreover, since any ! (27) function @ with compaet support in X — F is
admissible in (4.3) we deduce that v € H1.2(3 — E) and is the solution of
the equation Lu = 0 in 3 — K which equals 1 on 6F and vanishes on 5.
From the maximum principle (theorem (2.5)) it follows that 0 < u (2) < 1 a.e.
on ¥ — H.

‘We have proved the following.

THEOREM (4.2). The capacitary potential w of the compact subset E of Q2
i8 the function of HV2*(2) which is equal to 1 on E in the sense of H12(X),
satisfies the equation Lu = 0 in X — E, and has the boundary values 1 on
0F and 0 on 03 in the sense of theorem (2.3). Moreover w (x) is an L-super-
solution in 2.

Further properties of the capacitary potentials will be proved in sec-
tions 5 and 6.

The funections u¢ introduced in the preceding section are the capacitary
potentials of the sets E,. Therefore the remark at the end of this section
becomes :

REMARK. y is regular with respect to Q if and only if the capacitary
potentials for all the sets K, are continuous at y.

5. Weak solutions.

We again let 2 be an (open) sphere in Euclidean n-space.

DEFINITION (5.1). For a measure u of bounded variation on X we say
that w € L' (3) is a weak solution of the equation

L’u:lu,
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vanishing at the boundary 02 if it satisfies

[uLdidw:f@d,u
b} b3

for every @€ Hy"*(3)N 0°(Z) such that LD e C°(3).

By theorem (2.3) with h =0 there is a continuous linear operator G
from H *(3) to HY?(Z) such that for Te€ H “*(3) uw= G(T) is the
unique solution in H, () of

Iu=T.

We call G the Green’s operator. _
By theorem (2.4), this operator takes H —"?(3) with p >u into 0°(3).
By theorem (2.6) the restriction of G maps H —Lr (2) with p>n into €°(3)

continuously. In particular, for any y € 0°(3) we have

1 1
(5.1) max | Gy | < ¢l [meas S | ylg—npy P>n

2

where ¢ depends only on p.
It is clear that » is a weak solution vanishing on g2 of the equation
Ly = p in 2 if and only if

fuwdw:fG(qJ)dlu
b5

Py

for every we C°(3).
Obviously there is at most one solution to this problem.
From (5.1) we find that

1 1
/W/’dWS ¢ [meas X*  # /\ dulll v llg—1»s
P

for any w€ C°(>). Since 0°(2) is dense in H—1 P (X), we obtain
11
(5.2) w1, p . <0A[meas I » fidy]
0
Py

The transformation u—>u is the adjoint operator G* of G. That is,
w = G* (u). Since GH?(3)c (°(X) and G* is defined on the dual
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space of G (H 17 (X)), it is certainly defined for all measures u of bounded
variation.
The range of G* is in the dual space of H —1h#(X), which is just

. 1
Hol,p () (_;_4_17_—_ 1). Thus we have

THEOREM (5.1). A unique weak solution w of the equation Lu = u
vanishing on §=2 ewists for every u, and lies in Hy'? (3) for every p' < nf(n — 1).

REMARK (5.1). If w€ Hy" *(3) satisfies

faijumb. dim]dw:f@du,
P z

it is the weak solution vanishing on 92X of the problem
Ly = .

For, if we take @ = G (y), v € 0°(Z), then by definition

/utpdw:fa,-j @,iumjd.%':fdid[u.
b = 3

In this case € H—1? in the sense that

[Qid,uScHdinHom

2

for all ®¢€HY*® ()N ¢°(3). Conversely, if ue H —b 2, it can be represented
"
by — 2 (fi)s, With fi€ L?(Z) in the sense that

i—1
[@dﬂ:fﬁ@midw
b3 b

for all deHy?(Z)N C° (Z). Tn this case theorem (2.3) shows that there is
a solution u € Hy?(3) of Lu = u. Thus we have proved

TEHEOREM (5.2). The weak solution w of Lu = u is in Hy”(Z) if and
only if we H—12,
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Suppose now we have a non-negative u€ Hy 2 (35). Let u' be another
measure such thaﬂ 0 < u' (6)<pu(e) for all subsets e of 3. We note that if
PeHL?(Z)N (°(2), the same is true of | D |. Then

Udidﬂ’ s[ldildu'
>

Py

S[l@ldﬂ

)

< ” @ HH(1)2 “ M HH—Lz .

Thus, p' € H=22 and || 4 [|g—12 < || & || =12 -
We have thus proved :

THEOREM (5.3). If the solution w of Lu= p is in Hy® and 0 < u' < p,
then the solution v of Lo = u' is in Hy*.

We shall now show that a weak solution can be approximated by weak
solutions of equations with continuous coefficients.

We take any family of mollifiers o, (x) having the properties:

We let Lsu= — (agj) Uz,), With

)

ol (@) = [ a, () o, (@ — 9)
E’l

where a;; is extended as o; outside 3. It is clear that L is uniformly el-
liptic with the same constant 1, since

o &&= | a, () § & a (v —y)dy.

Moreover, a§;> € C= (E™).
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THEOREM (5.4). For any measure p of bounded variation on = the weak
solutions u® of L* u® = u converge to the weak solution w of Lm = p weakly
in HY?' (3) for any p' <nfin — 1) and therefore strongly in L1(Z) for any
g<nf(n —2).

PRroOF. We first prove the theorem in the case when du = ¥ dx where
Pe(°(3). Then the «® are actually solutions in Hy*?(3). They satisfy

fw?. ul®) O dx ___-/yp D dux,
i ey T
z

X

for all e HY?(X).

By theorem (2.3) || u® ”HL?(z) is uniformly bounded. By theorem (2.4)
the u(® are uniformly Holder continuous in 3. Hence there exists a sequence
8, — oo such that u®) converges weakly in H(l)‘2 and uniformly in 3 to a
Holder continuous function . Since agls.) converges to a in every L7(2),
we have

fai]uxi@wjdwsfg’@dw

for all @€ (= (3) of compact support and therefore also for all @ € H, 57 ().
By definition, w€ HY?(>) is the solution of Lu = W. Since this solution is
unique, the whole sequence u* converges to u weakly in H(l,’2 (2) and uni-
formly in 3.

We now congider the general case. We have the weak solutions u® of
Lsu® = yu, which satisfy for any ¥e ()

(5.3) [u(*) Y dx :[@(3‘ du
§ g

where @ ¢ H J%(Z) is the solution of L° @ — ¥, By the above consideration
@* — @ uniformly, where @ is the solution of L& = P.

On the other hand, by inequality (5.2), || u® [|H1,p/(2) is uniformly boun-
ded. Therefore there exists a subsequence s; — oo such that u(%) converges
weukly to a function w € Hy? (). Taking limits in (5.3) we find

/u wa=[@d,u
b4 =
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for any P€C°(3) and e Hy*(Z) such that LP = P. Hence u is the
weak solution of Lu = u.
It is well known (for references see [11, p. 253]) that if the sequence

w converges weakly in H 3"’ ‘ (3) to u, a subsequence converges strongly

, L. 1 1 1 . . . .
to w in L2 (X) with 7 > T Since the weak solution u is unique, the

(®

whole sequence u*” converges to u weakly in Hy? (2) and strongly in Li(>).

6. Green’s function and representation of the capacitary potential.

‘We define the Green’s function ¢ (x,y) of the operator L on 3 as the
weak solution, vanishing on 62, of the equation

Lg =39,

where J, is the Dirac measure at y. Hence, by definition (5.1) the solution
@ in H{*(Z) of
L=V

for an arbitrary W€ ¢°(3) is given by
(6.1) D (y) = fg (@, y) P () da.
P

It is well-known that for an operator L with € coefficients

g,y >0
and

gz, y) = g (y, x).

By the limiting process of the preceding section, these results are easily
extended to any uniformly elliptic operator L.
‘We now prove

THEOREM (6.1). For every measure u of bounded variation the integral

MW)Ei[QWdeMW)

exists and is finite a. e., and i8 the weak solution vanishing on 862 of the
quation Lu = u.
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PROOF. We can assume without loss of generality that u is non-nega-
tive. Let ¥ be a non-negative function in €°(XY) and let @ be the solution
in Hy*(3) of the equation L® = ¥. Then P €(° (Z) by theorem (2.4) and
is non-negative by theorem (2.5). Moreover

q><y>=fg<m, W) ¥ (@) da.

Therefore, by Fubini’s theorem, the integral [ g (z, 2) du (y) exists a. e., and

f D (y) dpu () = f f g (@, 9) W (@) da dus (y) = f P () v (2) e

Since this identity holds for any continuous ¥ we tind that « satisfies the
definition (5.1), which proves our theorem.
From the above and another application of Fubini's theorem follows :

THEOREM (6.2). If u and v are weak solution, vanishing on 82, of the
equations Lu = u and Lv = v respectively, then

(6.2) [u dv =/vdu:ffg<w, Y) dp (@) dv (y)
= b

in the semse that if one exists, so does the other and they are equal.

‘We now consider the capacitary potential u of a closed set F as defined
in § 4. We saw that it satisfies (4.3) for any @€ (> (3) with compact
support in X such that $=20 on E. By a theorem of L. Schwartz [21, t.
1, p. 29] there exists a non-negative measure x on FE such that

(6.3) fa;j U @x] dax == f Ddu.
b5 b5

Furthermore, since # =1 in the sense of H01’2 (2) on E, the support
of u is on ¢F. The measure u just found will be called the capacitary di-
stribution of E.

The capacitary potential u (x) of a set F is, by remark (5.1), the weak
golution, vanishing on 42, of the equation Lu — u, and can be represented,
by theorem (6.1), as

(6.4) u (@) = [ g (@, y) du(y).
b
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Since v € H?(3) and w=1 on F in the sense of H;"? (3) we can find
a sequence &' —su in Hy'®(Z) such that &€ M, and 9°'=1 on K.

We consider (6.3) with @ = @*. Since the support of u is on F, the
right-hand side equals u(E) for any s, while the left-hand side converges
to the capacity of E. Thus we have proved that

(6.5) u(E) = cap K.

7. Properties of Green’s function.

Since we can approximate the Green’s function for any uniformly el-
liptic L, by theorem (5.4), we first consider only an L with coefficients in
0= (3).

Then it is well-known that for « 5=y, g (%, ) is continuous in « and y,
and that

lim g (%, y) = ~ oo.

Yy

Consequently y is an interior point of the set

Jo = {z|g (%, y) = al.

Therefore, the capacitary potential corresponding to this set as represented
by (6.4), is continuous and hence equal to 1 at y. The representation (6.4)
then gives

1 =f9(90, y) dvq (x)
b3

where v, is the capacitary distribution of J,. Since the support of v, is on
8J, where g (x, y) = a, (6.5) gives

1
(7.1) cap J, = i

We now let 2, be the sphere obtained from X by a uniform dilatiation
with the factor y (0 <y < 1) about the point y¢€ 2.
Let
o = min g (x, y).
%€y

Then by the maximum prineiple

3, cd,.
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It is clear from the definition that the capacity is a non-decreasing
function of the set E. Hence

= 1 1
cap X, <cap J, = 7 ming
2y
Similarly, if we let
b=maxyg
o2y
we find
= 1 1
cap 2, >cap J, = 7= maxg”
02y
Thus

min ¢ <[cap 3,]"! < max g.
Zy bZ'y

‘We now note that g is a positive solution of Lg=0 in X — y. There-
fore by Moser’s Harnack inequality (theorem (2.2)) there is a constant ¢
depending only on i and y such that

max g < ¢ min g.
22, 2,

Hence (%) on 62,
(7.2) ¢~ [cap 3,71 < g (@, 9) S ¢ [eap Z,17N.

Since the ellipticity constant 1 is invariant under a uniform dilation,
¢ can be chosen as a non-decreasing function of y. Hence for y <y, <1 we
can choose ¢ depending only on A.

Now let L be any other uniformly elliptic operator with the same A
and smooth coefficients. Let E(w, y) be its Green’s function. We can define
a capacity c_aﬁ(E ) with the operator L.

By the above proof

(7.3) o~ [eap 3,17 <g (w, y) < ¢ [eap 3,7
for y <y, with the same c.

It is clear from the definition of capacity that for any L and L with
ellipticity constant 1 and any set F

A2 cap (B) < cap (E) < 42 cap (K).

(5) A similar result was found independently by Royden [19]. See also [14, p. 590].

5 Annall della Scuwola Norm, Sup  Pisa
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Therefore, it follows from (7.1) and (7.3) that
(7.4) e g (@, )< g @ y)S 22y (xy)

for all we 3, .

If L does not have (= coefficients, we approximate it by L® as in
section 5. Then all the ¢® satisfy (7.4) with a fixed function E(a:, y). Since
g® — ¢ in Le(Z), the limit ¢ (x,y) again wsatisfies (7.4) for L with ¢
coefficients. We can now fix L and approximate any L by L® with 0
coefficients. Then we find that (7.4) holds for any L and L with ellipticity

constant 1. Thus we have proved :

THEOREM (7.1). Let g (x,y) and _;(x, y) be the Qreen’s functions for any
uniformly elliptic operators L and L with ellipticity constant A on a sphere
2. Then for any compact subset C of X theve exists a constant K depending
only on C,Z and 1 such that

(1.5) E-1g(z,9)< gy < Kg@y) for z,yeC.

REMARKS. 1. This theorem can easily be transferred to any simply
connected domain 3’/ which can be mapped smoothly onto the sphere.

2. If L is taken to be the Laplace operator, I the sphere |z |< R,
and n > 2,

(16 9@y =—27op (|a—y [ — o — B |yl y ),

where w, is the area of the unit sphere, so that (7.4) leads to bounds of
order |x —y >~ for |o — y| small
The following is an obvious corollary of theorem (7.1).

COROLLARY (7.1). If, in the notation of theorem (7.1), p i8 @ non negative
measure with support on C, and w and u are the weak solutions vanishing on
02 of Lu=pu and Lu= u, respectively, then

(7.7 K—lﬁ(w)ﬁu(w)SK—d(w) a.e. on C.

If ,uEH"l'z(Z), this inequality also is valid in the sense of Hy'®(3).

The inequality (7.7) is an immediate consequence of (7.5) and the re-
presentation theorem (6.1). The inequality in the sense of H?(Z) follows
from property (1.2) by applying (7.7) to an open set £ O C such that Qcz.
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‘We now return to the approximation of g (» y) by Green’s functions
g® (x,y) of operators I with coefficients in €= (). We let L be the La-
place operator, so that 3 is given by (7.6). It now follows from (7.5) and
the maximum principle that ¢® (x, y) is uniformly bounded in any compact
subset of 3 — y. Furthermore ¢® ¢ 0> and L® ¢'s) = 0 in this set. That is,

(7.8) j W) g Doy A = 0

>

for any @€’ (2_) with compact support in 3 — y. Therefore by lemma 2.1
|9}l g1, 2 ¢, over any compact subset ¢ of ¥ —y is uniformly bounded.
It follows that a subsequence of ¢®), and hence by convergence in H1 # (%)
the whole sequence g(”, converges to g weakly in H 1’2(0’). Since a(-j-)——>aij

in I?(X), we find from (7.7) that

f Aij o, @w,- de =0

X

for any & with compact support in 2 — y.

By theorem (2.4) the functions ¢® are equicontinuous in any compact
subset of 3 —y and hence ¢ (x,4)—> g (2, y) uniformly in any compact
subset of ¥ — y. Moreover, g (#,y) is Holder continuous in I — y.

It is easily seen that as the radius of X goes to infinity, the Green’s
function increases to a Holder continuous funection. This function has all
the basic properties of Green’s fanection. It is not in H1#' (E*), but is in
H5P (B™ N Hy, (B — y).

The bounds (7.5) now hold uniformly in E”, In particular if we take
the Laplace operator for L and n =3, we have

(7.9) E-l|lo—yP™<g@y<K|o—yp

uniformly in E*.

8. Properties of weak solutions.
We consider a weak solution u € H," v (), p' <nf(n — 1), as defined in
section 5, of

Lu=pu

for a non-negative measure p with support in the sphere 3.
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The representation theorem (6.4) gives

(8.1) u(y) =f9 (@, y) du ().

Py

This was previously interpreted in the sense of L!(X), since g was only
defined almost everywhere. We now agree to use the function g (x, ) which
is continuous for x ==y, whose existence was established in the preceding
section. Then (8.1) defines u (y) at each point of 2. (It may, of course, be
infinite at some points).

Since g becomes infinite for # =y, we must define the integral in
(8.1) as the limit of integrals of an increasing sequence of continuous
functions converging to g. Let

[ & E<a
Fa(§) = 5—4}“(5-“)2 W< E< 3a
\2(1/ 523(1/

Then F,(g(%,y)) is continuous in & and y. We define

(5.2) W) =l [ Fu (g 0, 9) du o)

a&—>00
=z

P
Thus » is a particular function in the L' equivalence class of the solution
w of Ln == u. The function u is the limit of a non-decreasing sequence of
continuous functions. Thus it is lower semi-continuous; that is,

% (y) < lim inf @ (x).
Y

It is easily seen that Fj,(g) is in 1-101’2 (2), and is the solution vanis-
hing on §£ of

1
— Qi; < g<
L (Fa 0) = — B (g) t Gug gy = | 20 "9 92192 @ =955
0 elsewhere.
Therefore, by the reciprocity relation (6.2)
(8.3) w(y)=1lim 5= | u(2) @ ga; (@, Y) g (2,Y) o
a=g=3a

where the integral on the right exists for all .
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By the results of section 7 ay gy, 9e; is loecally integrable for x 3= y and

1
% )/"ij 9oy Yao; de = 1.

¢ =<9 =3a

Moreover by (7.5) with L the Laplacian, the set ¢ < g <3a shrinks to the
point ¥ as @ — co. Thus (8.3) represents » (y) as the limit of averages of
uw over a set shrinking to y. Therefore,

/J(y) 2 lim inf u,

xX — co

where % is any member of the equivalence class w=1u a. e. Since w is lo-
wer semi-continuous, we find that
(8.4) “u (y) = lim inf u (@) = ess lim inf u (2).

®—y ® Y
By the essential limit inferior we mean the largest limit inferior obtained
among functions w such that = u a. e.

In particular if w is the capacitary potential of a closed set B, we know
that » =1 almost everywhere on E. Moreover, since u is continuous in
2 — B, it coincides with the continuous solution % of the boundary value
problem Lu=0 in ¥ — E, u=0 on 42, u=1 on 4F. Hence u==u < 1
in ¥ — E. It follows that if y is a boundary point of E

w(y) = lim infu (@)
xX Y
xeX —E

Then u (y) =1 if and only if the capacitary potential is continuous at
y. Thus the remark at the end of § 4 becomes:

LEMMA (8.1) The boundary point y is regular with respect to Q2 if and
only if we(y)=1 for all g, where

W) —hmfF (@ 9) dptp )

@ - Cco

and p, is the capacitary distribution of the set

B,=x|xe> — Q,|x —y|<o}.
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We note that if ;b\(.b') ig finite, the limit (8.2) may be replaced by

(8.6) (@) = lim fgwmwa
17‘»Olﬂo—y|>ﬂ

Since F,(g9) <g, we have

87 w@— gdu<

u(x)~fFa(g>du]+ f Falg)dp.
oy

e —y| >0 je—yl<o

1 . .
The bracket can be made less that o5 ¢ by choosing « sufficiently large

independently of 6 because of (8.2). The second integral is bounded by

2a du.

le—y|=o
By (7.5) with L the Laplace operator

w (@) > / g du > e / du,

lx—y|=<o le—yl=o

where ¢ is a constant. Hence the second integral in (8.7) is bounded by

@
— "2 y (%
% o2 @),

which can be made less than % ¢ for ¢ sufficiently small. The result follows.

9. The uniformity of regular points.

We are now in a position to prove our main result. Let L and L be
any two uniformly elliptic operators with ellipticity constant 1 defined on
the sphere 3. Let 2 be a domain such that 2 c 3. Let y be a boundary
point of £. Our theorem is:

THEOREM (9.1). If y is an irreqular point with respect to the uniformly
elliptic operator L, it is also irrvegular with respect to any other wuniformly
elliptic operator L.
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ProoF. Let
By ={r|oe> — Qe —y|<el

(We suppose ¢ so small that {|{z —y|<e}c2).

Let we (x) and %¢ (x) be the capacitary potentials of FE, with respect
to X and the operators L and Z, respectively. Let u2 and ue be their repre-
sentations of the form (8.2). By lemma (8.1) y is irregular with respect to
L if and only if for some ¢ > 0 ue¢(y) < 1. It is irregular with respect to L if

ﬁ_’(y)<1 for some 7> 0.
Thus to prove our theorem, we need only show that if ue(y) <1, there

-~

is a 7 such that wf(y)<1. We show this as follows.
Let u, be the capacitary distribution corresponding to ue.
Then

e ) = 90,2 A 2,
By (8.6) we can find a o <o such that

g9y, 2)du, () < ¢

lz—yl<o

for any preassigned &> 0. Let

v (@) = f 9 (®,2) due (2)

lz2—2]|<o0o

w (x) = f g (£, ?) dpy (2),
le—z|>e

so that

N

ue (a;) = v (&) + w(x)
and
v(y)<e

(The integrals are defined as in (8.2)). By theorem (5.3) v and w are in Hy"*(3).
Moreover w (x) is continuous at y, and w (y) <we (y) <1. Therefore, there is

a 7 <o such that

Lii4uwy) o B,

w () <

ol



72 W. LirtmaN, G. Sramraccmia, and H. F. WriNBerGER : Begular points

Now we(x)==1 on E,, and hence on F,, in the sense of H{ ?(3).
Therefore.

v(x)=1—w(x)

in the sense of Hy"?(3).
We now define

9.1) ) = f 7@, 2) g (?)
le—y|=o

where ¢ is the Green’s function corresponding to L. The integral is again
defined as in (8.2). Then by (7.5)

(9.2) v(y)<e K
while by corollary (7.1)

(9.3) v(@) > K—lo(x) on |z—y|Ze

in the sense of HJ’Z (Z). The constant K depends only on 1 and p.
If we let u*(x) be the capacitary potential of E, with respect to the
operator L, the last inequality becomes

¥ (@) > % E-1[l —we (@) w () on

in the sense of Hy" *(3).
— 1 ~ — . —
In>—E, v@— 5 K11 — ue (y)] w* (%) is a supersolution for L and
hence by the maximum prineiple

1

(9.4) v(@)> 5 K — @@ in 3

in the sense of Hy'®.
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Since w* is a capacitary potential,

w (y)= lim infw* (%) .
®— Y
we X — Eq

Since v is given by the representation (9.1), we have

17(:1/) = ess lim inf v (x).
>y

We choose

(9.5) o< K2 [1—ue )

Then by (9.2) and (9.3) ;(w) is bounded away from E(y) almost everywhere
on E,. Hence

v (y) = lim inf v (2).
Z—E,

Now Lv=Lu*=0 in 3 — E,. Hence by theorem (2.1) v and w* are
continuous in 3 — K,, so that the inequality (9.4) holds at every point.
It follows that

- . s o= 1 ~ . s
v(y)= lim inf v(a)= Y K11 —we(y)] lim infu*(x)
® ?5— E, ® :c;_y E,

1 =

=7Kﬂp—%www.

(Note that the intersections of ¥ — K, and 3 — F, with the neighborhood

|# — y| <7 of y coincide).
By (9.2) and (9.5) we have

ut(y) <1,

and the theorem is proved. _
By choosing first L, then L to be the Laplace operator, we have the
immediate corollary.

COROLLARY (9.1). A point y€ 082 is regular with respect to any uniformly
elliptic operator L if and only if it is vregular with respect to the Laplace
operator.
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By taking L =L in the proof of theorem (9.1y and noting that & is
arbitrary, we find the following generalization of a result of de la Vallée
Poussin [10].

COROLLARY (9.2). A point y of 982 is irregular if and only if ﬁ(y)—> 0
as o — 0.

For the sake of completeness we give a formulation and proof of the
Wiener criterion due to Frostman [5].

THEOREM (9.2). Let ¢ (9) be the capacity of the set
B,=lw|loeZ— Q, |x—y|<p}

The point y€ 982 is irregular if and only if

(9.6) fc (r) ri— dr < oo,

0

ProO¥., We let L be the Laplace operator and X an infinite sphere,

g0 that
g@2)=a|r—=z™",

where o = (n — 2)~! w1,
By integration by parts we have (°)

[4

(9.7) we (y) = f g (@, 9) dpy (y) = f v du, (B,)
Ee 0
24

= ag¥™" py (H,) + (n— 2) 0‘]’”1_“ o (By) dry

0

where ue is the capacitary potential of E,, and yu, is its capacitary distribution.
By the reciprocity theorem (6.2) we have for r <p

(9.8) o B = e B+ [ .
E, -~ E,

Suppose first that (9.6) holds, and note that u, (B, = ¢ (r). By (9.8) we
find that u, (E,) < u,.(H,), so that the integral on the right of (9.7) is bounded

© € &
() Note that & " 4, (B) > f " dqu (E,) -0 as £--0 by (8.6).
0
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e
by f ri=# ¢ (r)dr. This can be made arbitrarily small by choosing o small.

0
It also follows that from (9.6) that o>~ u, (#,) cannot be bounded away

from zero as ¢ — 0. Hence, the right-hand side of (9.7) can be made arbi-
trarily small. Hence there is a g for which ue (y) <1 and y is irregular.

Suppose, on the other hand, that y is irregular. By (9.7) and the fact
that wr <1 we have

(9.9) o e S g B+ [ o) dpy )
1, &,
Now

w2 (@) = o f | & — 2 |2~ dpyys (2).

ET/2
For ¢ B, — B, and z€ E,, we have

1 1
|x—z|2|w—y|——-é-1“2?|a'——y[,
and hence

wh (@) S @ 2872 | o —y 277 pppp (Hipp).
Thus from (9.9)

(9.10) pirfz (Bra) < pho (By) & 22 U2 (9) sz (Eypo)-

By corollary (9.2) we can choose g 80 small that 12\9(_1/)< 21=%_ Then
{9.10) gives

1
0(—5 7‘)=M7/2 (Brie) < 2 pro (By).
Since the integral on the right of (9.7) is finite, we find that

2
1
fc (—2— 'I’) ri=" dr is finite, so that (9.6) holds.

10. Unbounded domains.

It is easily seen that lemma (1.4) and theorems (2.3) and (2.5) ave still
valid when £ is unbounded. Thus we have a solution uw = Ek in H.2(Q)
of the problem (3.1), (3.2) for any h €712, and the solution satisfies (3.5).
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If 02 is Dbounded (exterior pioblem), we restrict £ to continuous
functions in 712 and then extend it to all continuous functions % on 48
exactly as in § 3.

If 302 extends to infinity, the operator B can be continued to the clo-
sure in the maximum norm of 2. This closure certainly contains those
functions # which are continuous on ¢£2 and vanish at infinity. By putting
B(1)=1, we define B for continuous k which have a limit at infinity. The
funetion u« = Bh is a local solution in Hzlj,i () of Lu =0 and satisfies the
maximum principle (3.5).

The proof of the localization lemma (3.3) can be extended to the case
where £ or £’ or both are unbounded simply by replacing the function
|# —y| by the truncated function {|z — y|}%

Thus the question of the regularity of y with respect to an unboun-
ded domain 2 ean be reduced to that of its regularity with respeet to a
bounded subdomain £'. Therefore theorems (9.1) and (9.2) remain valid,

The Green’s function g (z,y) for an infinite sphere constructed at the
end of § 7 satisfies the inequality (7.9) uniforinly. Therefore it serves as a
barrier at infinity if 60 extends to infinity. Thus the point at infinity is
always regular.
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