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REGULAR POINTS FOR ELLIPTIC EQUATIONS WITH
DISCONTINUOUS COEFFICIENTS

by W. LITTMAN, G. STAMPACCHIA and H. F. WEINBERGER (*)

(University of Minnesota)

Introduction.

The main purpose of this paper is to investigate the notion of regular
boundary points for Dirichlet’s problem with respect to uniformly elliptic
equations in divergence form

when the coefficients are only supposed to be bounded and measurable.

The boundary values are given by an arbitrarily assigned continuous

function.

When .L is the Laplace operator the question of determining whether
the solution attains its boundary value continuously at a particular boun-
dary point (regularity) is classical. The regular points were characterized

by Wiener [30.31J. The Wiener criteriou has been stated and proved in
several ways by Kellogg [8J, Vasilesco [9]. De la Vall6e Poussin [10],
Frostman [5], and Brelot [2]. Püschel [17] showed that a boundary point
is regular for the equation (*) if and only if it is regular for the Laplace
operator. Piischel has to assume that the coefficients are twice continuously
differentiable. Tautz [27,28] and Oleinik [16] extended this result to equa-
tions with lower order terms. These proofs use the smoothness of the coef-
ficients in a very essential way.

~ 

(*) Prepared under Grant NSF-G 18918 between the National Soienoe Foundation

and the University of Minnesota, and Contraot Nonr 710 (16), Projeot NR 043 041 bet-
ween the Office of Naval Researoh and the University of Minnesota.
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Using an axiomatic approach, B,. M. Hervé [’l~ has recently extended
these results to equations of the form

with locally Lipschitz continuous coefficients.
In recent years it has been found that solutions of uniformly elliptic

equations (*) have some continuity properties even when the coefficients are
only bounded and measurable.

We will show (§ 3) that a locally continuous solution of (*) may be
associated with any continuous boundary values. Therefore the question of
regularity of a boundary point can again be posed.

In § 9 we prove that even in this general case the regular points are
the same as those for Laplace’s equation.

In order to prove this result we make extensive use of those recent

results on uniformly elliptic equations with discontinuous coefficients de-

scribed in § 2.

We also establish some new results which are of interest in themselves.

In § 5 we prove the existence of solutions vanishing at the boundary
of L?t for any measure p of bonnded variation. In particular, the

Dirac measure gives rise to the Green’s function g (x y) (§ 6). This Green’s
function enjoys the fundamental properties of the classical one.

The solution of can be represented by u = g dp (§ 6). This

allows us to prove that for non-negative is lower semi-continuous and

has a mean value property (§ 8).
The capucitary potential it of a set E is defined by a classical varia-

tional problem (§ 4). The capacitary distribution a arises naturally from
the variational problem. The capacitary potential is a solution of the

equation L2c = P.
An important role is played by the fact that the ratio of

the Greeks functions corresponding to two equations of the form (*)
is bounded in any compact subset by a constant depending only on the
ellipticity constant (§ 7).

The results are extended to unbounded domains in § 10.

1. Some Notation and Preliminaries.

Let S~ be a bounded domain in Euclidean it-space, let aQ denote its

boundary, and S~ its closure.
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We denote the class of real continuous functions in S~ byCO (~), We
let be the subclass of 00 (Q) functions having continuous first partial
derivatives in S~ which can be extended continuously to ~2.

The completion of with respect to the norm

will be denoted by (S~).
We shall say that (12) if for every S~’ with clo-

sure in ,~. 
_

The closure in of the subclass of the functions

vanishing near &#x26;Q is go’ ~ (S~).
The dual of (S) (for p &#x3E; 1) is called

It is well known [11, p. 225; 20] that H -1, P (S~) consist of distributions on
~ which are first derivatives of functions in L p’ , (S~), (,~) is a re-

flexive Banach space.
In the following we shall denote by Z a sphere and consider the

space (Z). Of this space we have to use some properties which will be
explained here.

To begin with we make the following :

REMARK (1.1). Let be the space of Lipschitz functions in E vanis-
hing near Any function of M~ can be approximated by functions of
(Z) vanishing near ô¿ in the norm of H6’ (2:) for 1. Therefore

is also the completion of lllo with

respect to the norm of 
P (Z).

Let u (x) be any element of (.2"’). Since u (x) belongs to Lp (~),
we have to distinguish two different definitions of positivity of u on a

subset of .2"’.

DEFINITION (1.1). A function u (x) of will be said to be non-

negative on a set E in the sense of L P (Z) or al1nost everywhere (a. e.) if

DEFINITION (1.2). A function u (x) of Hol, p (.2) will be said to be non-
negative on a set E in the sense of Hol,P (Z) if there exists a sequence 
of functions of M 0 such that : i) um &#x3E; 0 on E ; ii) um -+ ~¿ in HOl, p (.2).
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Obviously the two definitions are quite different, and while the first

one imposes no restriction on u for a set .E of zero measure, the second may.
The following properties of inequalities are easily proved.

PROP. (1.1). belongs to ~’~(~) and non-negative on a
set E in the sense ~No~~(~) non-negative everywhere
on E. (~)

PROP. (1.2). belongs to and non-negative almost

everywhere on a set E, then non-negative in the sense of .Ho( on
any subset of E which is bounded away aE.

The first property is a consequence of the well known theorem on the

quasi uniform convergence of a subsequence of functions converging in LP.
The second property follows from the regularity theorem (mollification) for
the functions 

The following property shows that weak convergence may be used

instead of strong convergence in the definition (1.2).

PROP. (1.3). A function ~c (x) of non-negative on a set E (/’
there exists a seqnence Uju of functions of such that i) ~~ ~0 on L,
ii) u~~ 2013~ ~ weakly in H~’ p (~).

In fact, from a well known theorem by Banach and Saks [18, p. 80]
there is a sequence um of means of um which converges to at in 

This sequence satisfies the properties i) and ii) of the definition (1.2).
If at (x) E Lp (Z) and k is a positive number we define the truncated

function

We prove the following.

LEMMA ( 1.1). jy u (x) E (.2) 0 u (r) )k E (~).
Let Um be a sequence in converging to n (x) in /~~(~). Consider the

sequence of functions still in Since

and

(1) A more precise result holds if instead of Lebesgue measure one considers a, suitable

capacity [1, 4, 6].
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there exists a subsequence, which we still call u~~ ~k~ which converges
weakly in to ( i+ )k * Then by the Bunach-Saks theorem [18] a se-
quence u of means of the 2c~z ~j~ converges strongly in HOl,P (,¿) to zc ~k (2).
The ’tt;n are clearly in lVlo .

It is easy to define more general inequalities in the sense of ..~o’ ~ (~),
such as u &#x3E; 0, const. on a set .E. In particular a func-

tion u (x) of Bo’ ~ (~) is equal to 1 on a set E in the sense of Ho’ p (~) if

is both  1 and &#x3E; I in the sense of $o ’ () (see definition (1.2)). It

is easy to see that if u = 1 there exists a sequence such

that on E and in Ho’ ~ (~). We mention the following.

LEMMA (1.2). If u (x) belongs to (~) and u (x) &#x3E; 1 on a set E in the
sense oj Ho’p (,¿) then u (x) ~1 = 1 o~z the set E in the sense.

In fact if um is a sequence converging to u (x) in j5r(~’~(~) with 
on E, a subsequence of converges weakly. Then by the Banach Saks
theorem [18] a sequence of means of converges strongly to u ~1,
and is equal to 1 on E.

LEMMA (1.3). set which satis fy the condition

on a set E in the sense of (1) is (t closed convex set.

This is clear from the definition, We also llave to consider some ine-

qualities for functions of on a.

DEFINI1.’ION (1.2’). A function u (x) E (S2) will be said to be non-

neglftive on aS2 (in the sense of if there exists a sequence of

functions of Of (S~) such that i) &#x3E; 0 on fJ(J, ii) in 

By the same proof as that of Leunna (1.1) we have the following,

LEMMA (1.4). If it (x) E H 1, P (Q) is non-positive on aD in the sense of
(Q), then the function

for any positive k, belongs to ~o’ ~’(S~).

REMARK (1.2). In the same way as in definition (1.2’) we can give a
meaning to functions non-negative on a subset /iJ of or bigger than a

constant on a subset E of aSZ.

(2) In fact, N. Meyers has shown that converges t(

communication). 
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We consider the differential operator

where (x) = aji (x) are real bounded measurable functions defined in Q.

Throughout, we use the summation convention. We assume L is

uniformly elliptic. That is, there is a constant A &#x3E; 1, such that

for all x in S~ and all real Euclidean it-vectors ~. We shall suppose that

the coefficients aij are defined and satisfy (1.1) in all En. This can always
be done by putting aij outside of S.

DEFINITION (1.3). Given it + 1 functions ... fn, in L2 (S2), the
function 2 (Q) is said to be a solution of the equation

for If moreover n E Ho’2 (S~), then u will be said to vanish

on the boundary ~.

DEFINITION (1.4). A function will be called a local

solution in Q of the equation Lu = 0, if

for all 0 in 01 (D) with compact support in S2.

DEFINITION (1.5). A function u (r) E HI, 2 (Q) is called an 

in Q if
r

for all non-negative functions CP of .go’ 2 (S) . u (x) is called an L-superso-
lution in Q if - 2c is an .L-subsolution.
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2. Some Known Results.

We recall some results on uniformly elliptic operators which we shall
use later. The following results are related to local solutions of the equa-
tion .Lu = 0. To begin with, we recall the following standard

LEMMA (2.1). For any local solution of .Lu = 0 in Q the followirtg ine-

quality holds.

where A is the constant of (1.1) and S (y, r) denotes the sphere with center at
y and radius r ; e  R arid S (y, R) C Q.

It is enough to take in (1.4) ø = 1/12 u where W is an Mo-function equal
to 1 in ~S (y, e) and to 0 outside of ,S (y, R).

THEOREM (2.1). Any local solution of Lu = 0 in Q is H61der continuous
in any compact subdomain of 0. Ilore precisely, ,for any Q’ such that Q

there are constants (3) K = K (~, S~’, a = a (27 Q) such that

This theorem is due to De Giorgi [3] and Nash [15]. A simpler proof
was given by Moser [13].

THEOREM (2.2). For any positive local solution of the equation .Lu = 0
in Q and for any Q’ such that Q’ c 0

where c is a constant depending only on A, Q, and Q’.
This extension of the classical Harnack inequality is due to Moser [14].

As Moser has shown [14], theorem (2.1) can be deduced from this theorem.
The following results are related to solutions of the equation (1.3). The
following theorem is proved by the classical Hilbert space approach.

(3) Throughout this paper A will denote the elliptioity constant in (1.1).

4. A nnaLi della Scuola Sup.. Pi8a.



50

THEOREM (2.3). Given fi E ~2 (S~) (i = 1, 2, ... , n) and hE Hl,2 (Q), there
exists one and only one solution of the equation

such that

The following theorem is true only for a domain whose boundary satisfies
certain smoothness assumptions. For our present purposes it is sufficient

to take as domain a sphere ~.

THEOREM (2.4). If fi E LP (Z) (i = 1, 2, ..., n) and h E (I) with p &#x3E; n,
then the solution of the equation (2.1) satisfying (2.2) is Hölder continuous in ~.

This theorem is a special case of a theorem proved by Morrey [12] and
Stampacchia [24]. The following two theorems are maximum principles.

THEOREM (2.5). If u (x) E (Q) is an L-subsolution (def. (1.5)) which
is non-positive in the sense of Hl,2 (Q) on aS (def. (1.2’)) then u (x) is non-

positive almost everywhere in Q.
For this theorem see Stampacchia [25, 26]. We repeat here the easy

proof.
Let u (x) be an Z-subsolution in D which is non-positive on For

a fixed B &#x3E; 0 the function u (x) - (St (x)jl is non-negative in S~ and moreover,
by Lemma (1.4), belongs to (S~). Taking in (1.5) ø (x) = u (x) - ju (x))e
we get

and because of the ellipticity of ._ 

, " ..

Since 8 is an arbitrary positive number we get

THEOREM (2.6). If u (x) is a solution of the equation (2.1) vanishing on
ag2, where fi E Lp (p &#x3E; n) then

where c depends only on p (and n).
This inequality is due to Stampacchia [22, 23]. A different proof giving

the best value of c is given by Weinberger [29].
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3. The boundary value problem and regularity.

Given continuous function h (x) on the boundary aD we seek to solve
the Dirichlet problem

If h is the trace on iJQ of a function h (x) in Hl,2 (Q), theorem (2.3)
gives a solution which, by theorem (2.1) is locally Holder con-

tinuous. The boundary values h are attained in the sense E (4li).
Obviously, the solution u is the same if instead of h (x) we consider a new
function h (x) such that h - hE go’2 (2). We denote by ’l1,2 the quotient space
I~1~2 (~)~Ho’2 (~) where

and we consider the continuous linear mapping of zl,2 into Hl,2 (S~) just
defined. We denote it by

By theorem (2.5) if h is bounded on aD iu the sense of Hl,2 (S~), then

where max h [mill h means the minimuin [maxitnullll of the numbers such

that on ~,~ in the sense of (,) (4).

By lennnn (2.1) and (3.5) we get

(4) ma,x and min mean the essential max and min, as usual.
S~ S~
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where

6 being the distance between and 
We conclude that Bh is a linear mapping of the subset of fun-

ctions of which are bounded on c~ (in the sense of (S~)), into the

space of functions u such that ~~~  oo.

Since any continuous function h on can be approximated in the
norm max I I by functions smooth in any set containing Q (for instance

~D
by polynomials), we conclude that the set is dense in the space of con-

tinuous functions h on aS~ with the norm max I h I.
as~

Therefore, the linear mapping u = B (h), restricted to the space of con-
tinuous functions (on of ’l1,2, 7 can be extended to the space of continuous
functions on The mapping so obtained is still denoted by

It associates to any continuous function h on aS~ a unique function u

locally Holder continuous such that

It is easily proved that the function u (x) is a local solution of the

equation Lu = 0 (see I)eL 1.4).
We have thus proved the fullowing theorem.

THEOREM (3.1). exists a mapping Bh which to any continuous
function It on aQ associates a local solution u of the equation Lu = 0 (wlcich
is locally Hölder continuous by the01’e1n (2.1)) in such a way that if h is the

trace of a G’1 (Q) then u = Bh coincides with the solutioaa in H1,2 (Q)
obtained by the variational approach (theorent (2.3)). Moreover (3.5) and (3.6) hold.

In the case of smooth coefficients it can be shown that u = Bh coinci-

des with the Perron-Wiener solution [2] of the boundary value problem.
Our problem is to investigate whether u = Bh, just defined, approaches

the boundary values h. For this purpose we consider the following.

DEFINITION (3.1). A point y E a,~ is said to be regular if for any con-

tinuous function h (x) on aD the generalized solution u = Bh satisfies
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If there is at least one continuous function h on ôQ for which (3.7) is not

satisfied, the point y is said to be irregular.
We first show that irregularity at a point, if it exists, y already arises

in the variational problem, without extending B to all continuous functions.

LEMMA (3.1). If at a point y E aQ (3.7) holds for u = Bh for every con-
E a12, then y is regular.

PROOF. Let h be continuous on aS2. Given any e &#x3E; 0 there is a conti-

nuous function h, E 1:1,2 such that

Let u = Bh, u, = Bhs. By the maximum principle

in S~. By (3.7) there is a neighborhood NE of y in S~ such that

Then

so that y is regular.
In order to characterize regular points, we define a barrier at a point

y of a S2.

DEFINITION (3.2). A function Vy (x) E HI,2 (S~) is called a barrier at the

point y E aD if
i) L (Vy) = 0 in Q in the sense of def. (1.4)
ii) For any e &#x3E; 0 there is a number m &#x3E; 0 such that Vy (x) &#x3E; m in

the sense of .g l2 (S~) on the set

iii) Vy (x) is continuous at the point y, and



54

The condition (iii) has meaning because from (i) and theorem (2.1) Vy (x)
can be defined in any point of Q and is continuous in Q.

We now prove the following lemma :

LEMMA. (3.2). A point y E aS~ is regular i f and only if there exists a bar-
rier Vy at y.

PROOF. If y is a regular point, the function

is a barrier because on E zl2 and is continuous.

Suppose now that a barrier Yy egists. Let h (x) be any continuous func-
tion in -r1, 2, and u = Bh. Given any 8 &#x3E; 0 there is a e &#x3E; 0 such that

for Moreover h is bounded, so that

we find that

on a~ in the sense of HI,2 (Q). By theorem (2.5)

Similarly

Sinee 
"

we can find a neighborhood Na of y in ,~ such

that Then

and (3.7) holds for continuous h E Tl,2. Therefore, by lemma (3.1) y is regular.
Next we show that regularity is a local property.

LEMMA (3.3). Let S~’ be a subdomain of y be a~ boundary point
of both S~ and Q’, and f’or some sphere rS (y, e) == x - y  el let
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a fl s (y, e) = aQ’ fl S (y, e). Then y is a regular boundttry point of Q if and
only if it is a point of Q’.

Suppose first that y is regular with respect to Q’. We wish to show

that 7~===JB(~2013~~) ) is a barrier in Q. This function is clearly bounded.
Therefore, Vy I on (aQ n aQ’) for some constant c. By the
maximum principle (3.5) where V~ is the corresponding
function B’ ( ( x - ) in Q’. By the regularity of y whith respect to S
V~ (x) --~ 0 as x 2013~ y.

We now suppose that y is regular with respect to ~, Let f be a sphere
containing ~. We define the sets

and

(We suppose e so small 
We note that coincides with aD in 8 (y, Lo) and Hence by

the first part of the theorem y is a regular point for Qe. 1. Therefore the
solution ue (x) E Hl, 2 of

is continuous at y.
We define

This series converges uniformly, and hence is continuous at y. Moreover,
the strong maximum principle, which follows from theorem (2.2), shows that
for each k there is an mk &#x3E; 0 such that
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It follows that

Thus T~~ is a barrier for Q’, and y is regular with respect to Q’.

REMARK: It is clear from the above proof that y is regular with

respect to S~ if and only if the are continuous at y.

4. Capacity.

Let I be a fixed open sphere and let .E be a closed subset of 1. We
define the capacity of E (with respect to the operator L and the sphere ~)
as the infimum of

among functions 0 E Ho’ 2 (Z) satisfying 4Y &#x3E; 1 on .E in the sense of Ho’ 2 ().
This infimum will be denoted by cap. -E.

THEOREM (4.1). There exists one and only one function u (x) E H01! 2 (Z)
such that u (x) &#x3E; 1 on B in the sense of H0112 (_y) and

Moreover u = 1 on E in the sense of (2:).

PROOF. By lemma (1.3) the set of functions E Hot, 2 () satisfying
4Y &#x3E; 1 on E in the sense of Ho!’ 2 (.1;) is a closed convex set. Since is

a Hilbert space, there exists one and only one function u E Hl’ 2 (.1;) assu-
ming the infimum of Moreover since,

it follows from lemma 1.2 that u (x) = 1 on E in the sense of H 1, 0 2 (.2’),
and the statement is proved.

DEFINITION (4.1). The function u (x) giving the minimum to 

among the Ho’ 2 such that 4Y &#x3E; 1 on E in the sense of 2 (Z)
is called the capacitary potential Z of the set E (with respect to X and L).
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Using a well known variational technique, we find that the capacitary po-
tential 2c of the set .E satisfies

for (~) which is non negative on E in the sense of Hol, 2 (~ ).
In fact u -f- s 4S is, for s &#x3E; 0, an admissible function for the conside-

red problem. Then DL (u + 8(fJ) &#x3E; DL (U); · i.e. d hL (u + 8(fJ) 8-0 &#x3E; 0.- , ds  -

The property (4.3) and the fact that u =1 on E in the sense of HI, 2 ()
characterize the capacitary potential of the set E.

The inequality (4.3) means that the capacitary potential u of the set .E
is an .L-supersolution in ~ which is equal to 1 on jE7 in the sense of Hl, 2 (~).
Moreover, since any G’1 (i) function (15 with compact support in ~ - jE7 is
admissible in (4.3) we deduce that it E .ET~(~ 2013 .E) and is the solution of

the equation Lu = 0 which equals 1 on 9jE7 and vanishes on a~.
From the maximum principle (theorem (2.5)) it follows that 0  u (x)  1 a.e.

on ~ - E.

We have proved the following.

THEOREM (4,2). The capacitary potential u of the compact subset .E of ,~
is the function 2 (Z) which is eqzcal to 1 on .E in the sense 2 (~),
satisfies the equation Lu = 0 in ~ - .E~ and has the boundary values 1 on

and 0 on ’ in the sense of theorem (2.3). Moreover u (x) is L-super-
solution in .

Further properties of the capacitary potentials will be proved in sec-

tions 5 and 6.

The functions ue introduced in the preceding section are the capacitary
potentials of the sets E~ . Therefore the remark at the end of this section

becomes :

REMARK. y is regular with respect if and only if the capacitary
potentials for all the sets Ee are continuous at y.

5. Weak solutions.

We again let I be an (open) sphere in Euclidean n-space.
DEFINITION (5.1). For a measure p of bounded variation on 2 we say

that E Ll (~) is a weak solution of the equation
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vanishing at the boundary ~~ if it satisfies

for every such that L W E C° (.1:).
By theorem (2.3) with h = 0 there is a continuous linear operator G

from B -1,2 to Hol, 2 (.1:) such that for T E H -1, 2 (2:) u = G (T) is the

unique solution in H~ ’ y (Z) of

We call G the Green’s operator.
By theorem (2.4), this operator takes (.1;) with P &#x3E; n into C° ().

By theorem (2.6) the restriction of G maps H -1, P (Z) with p &#x3E; n into 

continuously. In particular, for any y E CO (~) we have

where c depends only on p.
It is clear that u is a weak solution vanishing on aI of the equation

Lu = iA in ~ if and only if

for every y) E CO (~).
Obviously there is at most one solution to this problem.
From (5.1) we find that

for any 1p E CO (~). Since ) is dense in we obtain

The transformation is the adjoint operator G * of G. That is,
u = G* (/~). Since and G~ is defined on the dual
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space of (~ (H-1, P (Z)), it is certainly defined for all measures p of bounded

variation.

The range of G* is in the dual space of which is just

, Thus we have

THEOREM (5.1). A unique weak solution u of the equation = ~u

vanishing on a~ exists for every fl, and lies (~) for every p’  n/(n - 1).

REMARK (5.1). If u E Hl’ 2 satisfies

it is the weak solution vanishing on (J,¿ of the problem

For, if we take then by definition

In this case in the sense that

for all Conversely, I it can be represented

in the sense that

for all 4 Iu this case theorem (2.3) shows that there is

a solution u E (~) of Z/~ = p. Thus we have proved

THEOREM. (5.2). The weak solution u of
only if 

if and
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Suppose now we have a non-negative fl E (~). Let p’ be another
measure such that 0  p’ (e)  p (e) for all subsets e of ~. We note that if

4S E (~) n co (Z), the same is true Then

Thus, , I
We have thus proved :

THEOREM (5.3). If the solution u of .Lu = fl is in Hl,2 and
then the solution v of .Lv = p’ is in 

We shall now show that a weak solution can be approximated by weak
solutions of equations with continuous coefficients.

We take any family of mollifiers a$ (x) having the properties :

We let with

where aij is extended as ~~~ outside ~. It is clear that Ls is uniformly el-

liptic with the same constant A, since

Moreover,
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THEOREM (~~.4). For any measure fl of bounded variation the weak

solutions u(s) of Ls = ,u converge to the weak solution u of Lu = fl weakly
in H 0 (~) for any p’  n/(n - 1) and therefore strongly in Lq (~) for any
q  n/(n - 2).

PROOF. first prove the theorem in the case when d,u = P dx where
G~° (~). Then the u(s) are actually solutions in Hl,2 (.2). They satisfy

for 

By theorem (2.3) ~ uniformly bounded. By theorem (2.4)
the uCs) are uniformly Holder continuous in .2. Hence there exists a sequence
Sv 2013~. 00 such that converges weakly in .go’2 and uniformly in ~ to a
Holder continuous function u. Since converges to a.. in every Lr (.2).
we have

for all 4$ E C°° () of compact support and therefore also for all 4$ E Ho’2 ().
By definition, u E ~0’2 (~) is the solution of Lu = W. Since this solution is

unique, the whole sequence u~s~ converges to u weakly in (Z) and uni-

formly in ~.
We now consider the general case. We have the weak solutions u~s~ of

= fl, which satisfy for E C° (~)

where 0 (s) E H ~,2(..¿) is the solution of .LS 0(s) = By the above consideration
Ø8 - 4Y uniformly, where 4$ is the solution of LØ = ’.

On the other hand, by inequality (5.2), 11 u(s) is uniformly boun-
ded. Therefore there exists a subsequence si - oo such that uts2 ) converges

weakly to a function u E Taking limits in (5.3) we find
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for any such that Hence u is the

weak solution of Lu = p.
It is well known (for references see [11, p. 253]) that if the sequence

converges weakly in (~) to u, a subsequence converges strongly

to u in Lq (Z) with Since the weak solution u is unique, the
-1 ~,

whole sequence converges to u weakly in (~) and strongly in Lq().

6. Green’s function and representation of the capacitary potential.

We define the Green’s function g (x, y) of the operator Z on ~ as the
weak solution, vanishing on of the equation

where ðy is the Dirac measure at y. Hence, by definition (5.1 ) the solution
fl in Ho, 2 (~) of

for an arbitrary is given by

It is well-known that for au operator L with C°° coefficients

and

By the limiting process of the preceding section, these results are easily
extended to any uniformly elliptic operator L.

We now prove

THEOREM (6.1). For every measure ft of bounded variation the integral

I

exists and is finite al. e., and is the weak solution vanishing on a,~ of the

quation Lu --- It.
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PROOF. We can assume without loss of generality that a is non-nega-
ti ve. Let Y’ be a non-negative function in CO (~) and let 0 be tlie solution
in .Ho’ ~ (Z) of the equation L(15 == ~. Then 4S E 0° (~) by theorem (2.4) and
is non-negative by theorem (2.5). Moreover

Therefore, by Fubini~s theorem, the integral exists a. e., and

Sjnee this identity holds for any continuous W we find that it satisfies the

definition (5.1), which proves our theorem.
From the above and another application of Fubini’s theorem follows :

THEOREM (6.2). If u and v crre weak solution, vanishing on al, of the
equations .Lu = ,u and Lv = v respectively, then

in the sense that if one ea;ists, so does the other and they are equal.
We now consider the capacitary potential u of a closed set .E as defined

in § 4. We saw that it satisfies (4.3) for with compact
support in Z such that ø 2: 0 on E. By a theorem of L. Schwartz [21, t.

1, p. 291 there exists a non-negative measure p on E such that

Furthermore, since n =1 in the sense of ~o’ 2 (1) on E, the support
of it is on &#x26;E. The measure a just found will be called the capacitary di-
stribution of .E.

The capacitary potential u (x) of a set -E is, by remark (,5.1), the weak
solution, vanishing on a’-57, of the equation Lu = p, and can be represented,
by theorem (6.1), as 

At
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Since n E (~) and u =1 on E in the sense of .go’ 2 (1) we can find
a sequence - u in Hol, 2 (Z) such that 1&#x3E;8 E and ø8 =1 on .E.

We consider (6.3) with ø = fl8. Since the support of p is on E, the

right-hand side equals p (.E) for any s, while the left-hand side converges
to the capacity of E. Thus we have proved that

7. Properties of Green’s function.

Since we can approximate the Green’s function for any uniformly el-

liptic Zy by theorem (5.4), we first consider only an .L with coefficients in
o 00 (~1.

Then it is well-known that for x 4= y, g (x, y) is continuous in x and y,
and that

Consequently y is an interior point of the set

Therefore, the capacitary potential corresponding to this set as represented
by (6.4), is continuous and hence equal to 1 at y. The representation (6.4)
then gives

where va is the capacitary distribution of Ja. Since the support of va is on
aJa where g (x, y) = a, (6.5) gives

We now let Ey be the sphere obtained from -Y by a uniform dilatiation
with the factor 7 (0  y  1) about the point y E 1.

Let

Then by the maximum principle
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It is clear from the definition that the capacity is a non-decreasing
function of the set .E. Hence

Similarly, if we let

we find

Thus

We now note that g is a positive solution of Lg = 0 There-

fore by Moser’s Harnack inequality (theorem (2.2)) there is a constant c

depending only on A and y such that

Hence (5) on 9J~

Since the ellipticity constant À. is invariant under a uniform dilation,
c can be chosen as a non-decreasing function of y. Hence for y _ yo  1 we

can choose c depending only on ~.

Now let .L be any other uniformly elliptic operator with the same À.

and smooth coefficients. Let g (x, y) be its Green’s function. we can define
a capacity cap (.E ) with the operator L.

By the above proof

for y _ yo with the same c. 
-

It is clear from the definition of capacity that for any Land L with
ellipticity constant A and any set E

(5) A siInHar result was found independently by Royden (19~. See also [14, p. 590].

5. 1 mvali della Scuola Norm. Pisa
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Therefore, it follows from (7.1) and (7.3) that

for all x E 

If L does not have C- coefficients, we approximate it by as in

section 5. Then all the satisfy (7.4) with a fixed function g (x, y). Since
in the limit g(x,y) again satisfies (7.4) for L with C °~

coefficients. We can now fix L and approximate any .L by L(s) with 0 CXJ

coefficients. Then we find that (7.4) holds for any L and L with ellipticity
constant A. Thus we have proved :

THEOREM (7.1). Let g (x, y) and g (x, y) be the Green’s functions for any
uniformly elliptic operators Land L witlc ellipticity constant A on a sphere
. Then for any c01npact subset 0 there exists a constant K depending
only o7z and A such that

REMARKS. 1. This theorem can easily be transferred to any simply
connected domain ~’ which can be mapped smoothly onto the sphere.

2. If .L is taken to be the Laplace operator, the sphere I x  R,
and it &#x3E; 2,

where Wn is the area of the unit sphere, so that (7.4) leads to bounds of
order x - y for x - 

The following is an obvious corollary of theorem (7.1).

COROLLARY (7.1). If, in the notation of theorem (7.1), fl is a non-negative
measure with support on C, and u and u are the wealc solutions vanishing on
a~ of Lu = fl and L u = ~u, respectively, then

If p E H -1, 2 (~), this inequality also is valid in the sense of (Z).
The inequality (7.7) is an immediate consequence of (7.5) and the re-

presentation theorem (6.1). The inequality in the sense of Uol, 2 (~) follows
from property (1.2) by applying (7.7) to an open set S~ ~ C such that 
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We now return to the approximation of g (x, y) by Green’s functions
g(s) (x, y) of operators L8 with coefficients in C °° (~). We let L be the La-
place operator, so that g is given by (7.6). It now follows from k7.5) and
the maximum principle that g~8~ (x~ y) is uniformly bounded in any compact
subset of Z - y. Furthermore g~s~ E C °° and g(s) = 0 in this set. That is,

for any 0 E 0’ (¿) with compact support in ~ - y. Therefore by lemma 2.1

11 il.,, 1, 2 (,, over any compact subset 0 of Z - y is uniformly bounded.
It follows that a subsequence of g(s), and hence by convergence in P’(Z)
the whole sequence g (s) , converges to g weakly in HI, 2 ( C). Since a~~) - aij
in L2 (.J:), we find from (7.7) that

for any 4S with compact support in ~ - y.
By theorem (2.4) the functions g~s~ are equicontinuous in any compact

subset and hence g(s) (x, y) - g (x, y) uniformly in any compact
subset of Z - y. Moreover, g (x, y) is Holder continuous in ~ - y.

It is easily seen that as the radius of Z goes to infinity, the Green’s
function increases to a Holder continuous function. This function has all

the basic properties of Green’s function. It is not in but is in

(E n) n gloc2 - Y).
The bounds (7.5) now hold uniformly in E’~ . . In particular if we take

the Laplace operator for Land n 2:: 3, we have

uniformly in E" .

8. Properties of weak solutions.

We consider a weak solution

section 5, of

for a non-negative measure It with support in the sphere ~.
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The representation theorem (6.4) gives

This was previously interpreted in the sense of Li (~), since g was only
defined almost everywhere. We now agree to use the function g (x, y) which
is continuous for x =1= p, whose existence was established in the preceding
section. Then (8.1) defines u (y) at each point of Z". (It may, of course, be
infinite at some points).

Since g becomes infinite for x = y, we must define the integral in
(8.1) as the limit of integrals of an increasing sequence of continuous

functions converging to g. Let

Then (g (x, y)) is continuous in ~; and y. We define

-

Thus u is a particular function in the Ll equivalence class of the solution
u of JAt ==,a. The function u is the limit of a non-decreasing sequence of
continuous functions. Thus it is lower semi-coutinuous ; tlat is,

It is easily seen that Fa (g) is in Hol2(1), and is the solution vanis-

hing on ~~Q of
I 1

Therefore, by the reciprocity relation (6.2)

where the integral on the right exists for all y.
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By the results of section 7 aij is locally iiitegrable for x * y and

Moreover by (7.5) with L the Laplacian, the set (t - g - 3a shrinks to the
-

point y as a - oo. Thus (8.3) represents e (y) as the limit of averages of

u over a set shrinking to y. Therefore,

- -

where u is any member of the equivalence class it = u a. e. Since u is lo-

wer semi-continuous, we find that

By the essential limit inferior we mean the largest liniit inferior obtained

among functions u such that u = u a. e.

In particular if u is the capacitary potential of a closed set E, we know
- ,

that u = 1 almost everywhere on E. Moreover, since u is continuous in

~ - E, it coincides with the continuous solution it of the boundary value

problem Lu = 0 in ~ - E, u = 0 on 82, u =1 on OE. Hence u = u _ 1
in ~ - E. It follows that if y is a boundary point of E

Then u (y) = 1 if and only if the capacitary potential is continuous at

y. Thus the remark at the end of § 4 becomes :

LEMMA (8.1) The boundary point .1J is regular with respect to Q if and
./’..

only af ue (y) = 1 for all e, where

and ,u~ is the capacitary distribution of the set
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n

We note that if u (x~) is finite, the limit (8.2) may be replaced by

Since , we have

The bracket can be made less by choosing a, sufficiently large
2

independently of a because of (8.2). The second integral is bounded by

By (7,5) with L the Laplace operator

where c is a constant. Hence the second integral in (8.7) is bounded by

which can be made less than 1 s for a sufficiently small. The result follows.
2

9. The uniformity of regular points.

We are now in a position to prove our main result. Let L and L be
any two uniformly elliptic operators with ellipticity constant 2 defined on

the sphere Z. Let Q be a domain such that Q c Z. Let y be a boundary
point of Q. Our theorem is :

THEOREM (9.1). If y is an irregular point with respect to the uniformly
elliptic operator L, it is also irregular with respect to any other unijQr1nly
elliptic operator L.



71

PROOF. Let

(We suppose e so small that ( x - y ]  g ) C ~).
Let ue (x) and ue (x) be the capacitary potentials of Ee with respect

_ ~ _^

to and the operators Land L, respectively. Let ue and ue be their repre-
sentations of the form (8.2). By lemma (8.1) y is irregular with respect to
.L if and only if for some e &#x3E; 0 u~ (y)  1. It is irregular with respect to .L if

u1: (y)  1 for some 7: &#x3E; 0.

Thus to prove our theorem, we need only show that if ue (y)  1, there

is a 7: such that u1: (y)  1. We show this as follows.

Let fle be the capacitary distribution corresponding to u~ .

Then

By (8.6) we can find a a  e such that

for any preassigned E &#x3E; 0. Let

so that

and

(The integrals are defined as in (8.2)). By theorem (5.3) v and w are in HOl/2 ().
/

Moreover w (x) is continuous at y, and w ( y) _ ue (y)  1. Therefore, there is

a z  a such that
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(x) = 1 on Ee, and hence on .Et , in the sense of HoL 2 (~).
Therefore.

in the sense of (z).
We now define

where g is the Green’s function corresponding to L. The integral is again
defined as in (8.2). Then by (7.5)

while by corollary (7,1)

in the sense of (2). The constant K depends only on A and e.

If we let uT(x) be the capacitary potential of Ez with respect to the

operator L, the last inequality becomes

in the sense of HOL 2 (Z).
is a supersolution for L and

hence by the maximum principle

in the sense of 
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Since u, is a capacitary potential,

Since v is given by the representation (9.1), we have

We choose

Then by (9.2) and (9.3) v (x) is bounded away from v (y) almost everywhere
on Ez . Hence

Now in ¿ - Eo. Hence by theorem (2.1) v and u7: are
continuous in Z - Ea, so that the inequality (9.4) holds at every point.
It follows that

(Note that the intersections of with the neighborhood
coincide).

and (9.5) we have

and the theorem is proved.
By choosing first L, then .L to be the Laplace operator, we have the

immediate corollary.

COROLLARY (9.1). A point y E aQ is regular with respect to any uniformly
elliptic operator L if and only if it is regular with respect to the Laplace
operator.
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By taking L = L in the proof of theorem (9.1) and noting that 8 is

arbitrary, we find the following generalization of a result of de la Vall6e
Poussin ~10].

COROLLARY (9.2). A point y of irregular if and if ue (y) - 0

as e - 0.

For the sake of completeness we give a formulation and proof of the
Wiener criterion due to Frostman [5].

THEOREM (9.2). Let c (e) be the capacity of the set

The point y E aS2 is irregular if and only if

PROOF. We let L be the Laplace operator and I an infinite sphere,
so that

where

By integration by parts we have (6)

.11,

where ue is the capacitary potential of .Ee, and p, is its capacitary distribution.
By the reciprocity theorem (6.2) we have for r _ e

Suppose first that (9.6) holds, and note tha,t It,. (.Er) = c (r). By (9.8) we
find that fle (~r), so that the integral on the right of (9.7) is bounded
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This can be made arbitrarily small by choosing e small.
u

It also follows that from (9.6) that e2-n fte cannot be bounded away
from zero as to -~ 0. Hence, the right-hand side of (9.7) can be made arbi-

trarily small. Hence there is a o for which ue (y)  1 and y is irregular.
Suppose, on the other hand, that y is irregular. By (9.7) and the fact

1 we have

For x tnd we have

and hence

Thus from (9.! 1.

By corollary (9.2) we can choose p so small that

(9.10) gives 
I -

Then

Since the integral on the right of (9.7) is finite, we find that

~ dr is finite, so that (9.6) holds.

10. Unbounded domains.

It is easily seen that lemma (1.4) and theorems (2.3) and (2.5) are still

valid when 92 is unbounded. Thus we have a solution in Hl,2 (,~)
of the problem (3.1), (3.2) for any h E TI,2, and the solution satisfies (3.5).
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If 8Q is bounded (exterior I)i,oblem), we restrict B to continuous

functions in zl,2 and then extend it to all continuous functions h on ~~3

exactly as in § 3.

If extends to infinity, y the operator B can be continued to the clo-
sure in the maximum norm of TI,2. This closure certainly contains those
functions h which are continuous ol 8Q and vanish at infinity. By putting
B (1) = 1, we define B for coiitiiiiious h which have a limit at innnity. The
function it = Bh is a local solution in (~2) of Lu = 0 and satisfies the

maximum principle (3.5).
The proof of the localization lemma (3.3) can be extended to the case

where Q or Q’ or both are unbounded simply by replacing the function

I by the truncated function ( ) 
Thus the question of the regularity of y with respect to an iiiibotin-

ded domain S~ can be reduced to that of its regularity with respect to a

bounded subdolnain Q’. Therefore theorems (9.1) and (9.2) remain valid.
The Green’s function g (x, y) for an infinite sphere constructed at the

end of § 7 satisfies the inequality (7.9) uniformly. Therefore it serves as a

barrier at infinity if extends to infinity. Thus the point at infinity is

always regular.
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