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Abstract

This paper describes a new robust regular polygon detec-

tor. The regular polygon transform is posed as a mixture

of regular polygons in a five dimensional space. Given the

edge structure of an image, we derive the a posteriori prob-

ability for a mixture of regular polygons, and thus the prob-

ability density function for the appearance of a mixture of

regular polygons. Likely regular polygons can be isolated

quickly by discretising and collapsing the search space into

three dimensions. The remaining dimensions may be effi-

ciently recovered subsequently using maximum likelihood

at the locations of the most likely polygons in the subspace.

This leads to an efficient algorithm. Also, the a posteriori

formulation facilitates inclusion of additional a priori infor-

mation leading to real-time application to road sign detec-

tion. The use of edge orientation information also reduces

noise compared to existing approaches such as the gener-

alised Hough transform. Results are presented for images

with noise to show stability. Also, the detector is applied to

two separate applications: real-time road sign detection for

on-line driver assistance; and, feature detection, recovering

stable features in rectilinear environments.

1 Introduction

In scenes containing manufactured artefacts, features of-

ten appear as regular polygons. In road scenes, triangular,

rectangular and octagonal signs display critical information.

Polygonal shapes appear frequently in the structure of of-

fice environment. Corners are common partial polygons,

but over a large range of scales regular polygons represent

much more indoor structure. In outdoor scenes, brickwork,

office buildings, windows, etc., all exhibit features that can

be recognised repeatably by regular polygon detection.

The literature related to this topic is vast, covering line

and analytical shape estimation and perceptual grouping,

as well as road sign detection. There are two alternative

schools of approach: model-driven approaches; and, per-

ceptual grouping approaches that are frequently data driven.

The model-driven approaches typically employ retinotropic

mappings, whereby local features are detected purely lo-

cally, and pixel information is incorporated directly into

feature detection. Grouping approaches take low-level fea-

tures, such as edges (but also alternatively raw edge pixels)

and apply matching and clustering based methods.

In perceptual grouping, image elements are grouped ac-

cording to some perceptual criteria. Several authors have

investigated iterative relaxation style operators for group-

ing edgels. This began with Shashua and Ullman [19],

which required many iterations. This was refined by Guy

and Medioni [7] among others so as to be O(k2) where k is

the number of edgels. At a high level this problem can be

composed as recovering a graph of relational arrangement.

A common approach is spectral graph theory, e.g., [16, 18].

Probabilistic approaches in this area include Bayes nets [5]

and combining evidence from raw edge attributes [3]. More

recent approaches have used EM, e.g., [1, 4]. One of the ba-

sic algorithmic approaches here is examining pairwise rela-

tions. If the elements being examined is edge pixels then the

complexity is at least O(N2), where N is the image size.

Alternatively, we may fit functions to the image data.

The Hough transform [8] and circular Hough transform [15]

vote to an in-place representation of the shape to be de-

tected. The circular Hough detects circle centres, and the

Hough transform detects the closest line point to the origin

(this mapping is in the same space in the log-Hough trans-

form [21] in log-polar images). Each pixel ‘votes’ for each

feature that it could possibly be a part of. This approach

is inherently robust, as gaps, noise, and partial occlusion

are ignored, but appear as a decreased strength of the fea-

ture. Such algorithms are local in their computation with

each point only being registered for shapes that it can be

part of. These methods have been generalised [2] to detect

arbitrary shapes. The original Hough transform has a rel-

atively simple mapping for each pixel, however, the gener-

alisations vote into higher dimensions, and quickly become

computationally intensive on serial architectures. Further,

parallelisation is non-trivial due to the high dimensionality.

The Hough transform can be formulated as maximum

likelihood estimation [20]. Kiryati and Bruckstein [10] for-

mulated robust maximum likelihood line finding on a grid,

assuming independent noise between points. Geyer et al.

[6], applied a sampled likelihood function approach to esti-

mation of the essential matrix. Makadia and Daniilidis [14]

formulated a Hough-like algorithm in motion space for esti-

mating robot position using a Radon transform formulation
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with a distance-based soft characteristic function.

Variants of shape detector have also included edge orien-

tation information. The radial symmetry detector [13] im-

proves on the circular Hough giving O(Nl) performance,

where l is the range of radii of the shapes being examined.

We have taken a similar approach to regular polygons [12].

However, only one regular polygon type could be detected

at a time and the angle vote applied to the whole image to

resolve orientation was computationally expensive.

Road sign recognition research has been around since

the mid 1980’s. Good results may be achieved with a clas-

sification approaches such as normalised cross correlation

[17]. However, this is computationally intensive per pixel.

A standard approach is to first apply a low computational

cost detection stage reducing classification to a fraction of

the image stream. Typically this is through assumptions

about scene structure, colour, or a combination of both (e.g.,

[17, 9]). Although these assumptions are sound for many

road scenarios, the breakdown of a driver assistance sys-

tem on hills and corners is not acceptable. Colour methods

also break down under the enormous variation in lighting

chrominance in outdoor situations, and segmenting out self

similar regions is not robust in scenes with dense overhead

branches that shadow the road. Instead, we propose a illu-

mination invariant shape detection approach to find likely

candidates, to be followed by recognition.

We propose a computationally efficient algorithm to re-

cover regular polygons using an a posteriori probability ap-

proach taking advantage of locality and gradient informa-

tion. Rather than summing support, we recover the likeli-

hood of the probability density function for all regular poly-

gons in an image. The algorithm breaks the task into two

stages: 1) resolving likely regular polygons in a lower di-

mensional space; 2) taking the most likely regular polygons

and resolving their final parameters in higher dimensional

space. This allows us to recover all regular polygons in

one computationally efficient algorithm. The algorithm is

O(Nrlw), where N is the size of the image, l is the max-

imum radius length, r is the number of radii being consid-

ered, and w is the width of the operation of the distance

function. w is close to one pixel for most implementations,

and r and l tend to be small numbers leading to a more ef-

ficient algorithm. We demonstrate that in constrained cases

this can lead to real-time implementations.

2 Regular polygons

Archimedes gave a scientific method for calculating π to

arbitrary precision. The sum of the lengths of a regular

polygon of n sides inscribed on a circle is smaller than the

circumference, and the sum of the lengths of the sides cir-

cumscribed around a circle is greater than the perimeter of

the circle. We take our regular polygon definition that cir-

cumscribed around a circle. For an n sided regular polygon,

divide the circle into a set of n n
2π

angle isosceles triangles,

!

(cx, cy)

r

Figure 1: A sample polygon five sides, with parameters as

defined above, and the line over which the centre may be for

a given oriented edge pixels, as described in Equation 10.

where the centre point of the baseline falls on the circle.

The length of the individual sides is l = r2 tan π
n

.

We may define a regular polygon as having a centroid

in Euclidean 2-space (cx, cy), the radius r of the circle it

is circumscribed about, an orientation γ, and a number of

sides n. Thus we may define a regular polygon transform

as a function frp that maps the space of all possible regu-

lar polygons (regular polygon space) to 3D space. Regular

polygon space is five dimensional, and the transform forms

a mapping: frp : R
4,Z → R

3, where the integer dimension

is the number of sides, and to form closed polygons this is

three or greater, the space mapped to is image position plus

orientation of edges. Specifically, we label regular polygon

space: Φ = (cx, cy, r, γ, n). An example shape explaining

the parameters is shown in Figure 1.

Mapping all regular polygons into the image from 5D

regular polygon space is the integral across the space:

frp =

∫

Φ

frp(φ)dφ, (1)

The typical discrete image is a sampling over a regular

Cartesian grid. The gradient of the image is a set of gradi-

ent pixels x = (xj , j = 1, ...s) ∈ I corresponding to all

the edge pixels with orientation of the regular polygons (as

recovered by Sobel for example), plus any noise.

3 Likelihood formulation

A gradient image with a set of points x may be regarded

as the result of the transform from regular polygon space of

some set of polygons φm ∈ Φ, where m = 1 . . .M . In or-

der to recover φm from the xj , we may estimate the proba-

bility density function over regular polygon space given xj ,

considering the image as the result of a mixture of regular

polygons, each of which is a Gaussian. That is:

f =
M
∑

m=1

αmp(φm|x), (2)

where αm is a mixing parameter. If we assume a uniform

mixture, then αm is constant for all m. As
∑M

m=1 αm = 1,

we may drop this term, and apply Bayes Law:

M
∑

m=1

p(φm|x) =
m

∑

m=1

p(x|φm)p(φm)

p(x)
(3)



Note that there is a distinction between a regular polygon

in the scene and what appears in an image. An accidental

view where several straight lines at different scene depths

align to form a polygon is not a world structure, but is a

polygon in the image. We may say that any apparent reg-

ular polygon is a regular polygon in the image. Further,

with incomplete data, any edge pixel may be regarded as

part a regular polygon. Thus, the edge image can be seen

as being made up of regular polygons with noise. The re-

sult of this noise has two effects: edge displacement and

gradient error. Due to standard image noise, or an imper-

fect scene edge (e.g., a faded road sign), the gradient edge

in the image may be displaced slightly. There is also some

residual uncertainty of position due to image sampling. All

of these effects on the gradient edge may be reasonably ap-

proximated by a Gaussian in 3D over the parameters. The

gradient error results from the effect of intensity noise in

the image, and relation between orientation and intensity

values is a sinusoid. For small angles the error in orienta-

tion will be linear and therefore may also be approximated

by a Gaussian. Note that some authors choose to take gradi-

ent magnitude as a measure of edge certainty, however, it is

also highly correlated with the intensity contrast of the un-

derlying image. Thus, we threshold the gradient magnitude

to basic noise, and set the remaining xj to unit magnitude.

If required, the magnitude can also be included as a contin-

uous measure of gradient certainty in this formulation.

We may take it that the xj are the result of a set of poly-

gons with missing data. Also, that the noise in the appear-

ance of the edge pixels in their position and estimated orien-

tation is additive and independent between the points. Then

we may take the probability of the Gaussian mixture of reg-

ular polygons in the image for the full set of points to be:

M
∑

m=1

p(φm|x) =
m

∑

m=1

∏

j

p(xj |φm)p(φm)

p(xj)
(4)

Then, following Kiryati and Bruckstein [10], the proba-

bility density for an individual polygon φm and edge point

xj can be modelled as a Gaussian in 3D xj = (xj , yj , θj)
with zero mean and a point-specific covariance matrix:

P (xj |φm) =
exp

(

−g(xj , frp(Φ))Σ−1
j g(xj , frp(Φ)

)

2π|Σj |
1

2

,

(5)

where g(xj , frp(Φ)) is a function giving the distance from

the edge pixel to the closest point on the image projection

of the the regular polygon, Σj is the covariance matrix:

Σj =





σ2
xj

σxyj
σxθj

σxyj
σ2

yj
σyθj

σxθj
σyθj

σ2
θj



 (6)

and |Σj | is the determinant of the covariance matrix. By

the independence of noise between points, we may take the

product over all edge points:

P (x|φm) =
∏

j

exp
(

−g(xj , frp(Φ))Σ−1
j g(xj , frp(Φ)

)

2π|Σj |
1

2

,

(7)

Substituting back into Equation 3:

M
∑

m=1

p(φm|x) = (8)

m
∑

m=1

∏

j

exp(−g(xj ,frp(Φ))Σ−1

j
g(xj ,frp(Φ))p(φm)

2π|Σj |
1

2 p(xj)

Taking log-likelihoods and collecting constants:

M
∑

m=1

log(L(φm|x) = (9)

m
∑

m=1

∑

j

−g(xj , frp(Φ))Σ−1
j g(xj , frp(Φ)) + const.

Matching to the regular polygon function: Two major

issues are posed by the formulation of Equation 9. The term

g(xj , frp(Φ)) is the distance from xj to the nearest point

on the regular polygon, i.e., this requires finding the nearest

point. Also, Φ is a 5D space, and so optimising may be

computationally expensive, while we would like to have a

real time implementation.

As regular polygon space is high dimensional, the image

is low dimensional, and edge points are sparse in general,

we may pose the problem as a mapping from image edge

pixels to possible regular polygons. We wish to form the

inverse mapping f−1
rp from xj to regular polygons that it

may be a part of, i.e., Φ. f−1
rp will allow us to create a

function g(xj ,Φ) that gives a distance metric from the point

xj to the regular polygon defined by Φ.

Consider f−1
rp for a given xj , for unknown r and γ. If we

do not consider the edge gradient at xj , a regular polygon of

any number of sides may have a centre anywhere, the sub-

space of Φ that xj may be an element of is large, and the

function f−1
rp is intractable. However, we may recover ori-

entation using a standard image processing operator (e.g.,

Sobel) giving xj = (xj , yj , θj), where θj is the direction of

the maximum intensity gradient. In this case the orientation

of the regular polygon is constrained. Indeed, regardless

of n, (cx, cy) is constrained to be on a line, orthogonal to

the gradient, at a distance r from (xj , yj). This relation

is as shown in Figure 1. We maintain the standard of rep-

resenting this in polar coordinates, but follow Weiman in

representing a straight-line segment in the complex plane

[22]. Consider that z1 is a complex number, with argument
π
2 − θj , and modulus 1, we have:

h(xj) =

∫ t= l
2r

t=− l
2r

xj + r(z1t+ iz1)dt, (10)



where xj is the (xj , yj) component of the point represented

in the complex plane, l is the side length given n and r.

Using Equation 10, we may define a new regular polygon

detection sub-space that is ambiguous in γ and n, but hence

only 3D, and computationally simple. To form the detection

subspace, we need only form the likelihood density function

of Equation 9 over (cx, cy, r). Let this new subspace be

Ψ = (cx, cy, r), and the function from this space to the

image be frps (s for subspace).

In order to collapse the dimension of number of sides,

we may assume the longest possible side length, that of a

triangle. In the case of other shapes with shorter sides, this

will lead to some edge pixels being considered that are not

actually part of the true regular polygon. However, these

ambiguities may be resolved subsequently. Thus, for any

particular ψ ∈ Ψ, we may define g as the minimum distance

from Ψ to the line defined in Equation 10.

Regular polygon detection: Using Equation 10 to find

likelihood density across a Ψ, we may take the peaks of the

distribution as the set of n regular polygons that are most

likely in this subspace, by the assumption of zero mean, if

we assume that the actual regular polygons are spatially sep-

arate. We will deal with the difficulties that arise from this

assumption subsequently. Rather than recover the variance

directly, we resolve the remaining dimensions in a second

stage. This separation is computationally motivated. By

finding most likely polygons in a reduced space we may fo-

cus computation on the most likely polygons, and ignoring

parts of Ψ1 that are not likely to have any regular polygons

present. This will be sufficient to recover all polygons to

some required likelihood, if we investigate regular polygons

in the reduced space down to the required likelihood as the

likelihood in Φ is an overestimate of that in Ψ.

In practice the variance constitutes: remaining dimen-

sions of n and γ; and, regular polygons (or partially visi-

ble regular polygons) that are overlayed. This may result

in a figure that has a number edges of different length, for

which likelihood is overestimated. For example, consider

an octagon, where all sides are the length of sides for the

corresponding triangle, although this is a correct octagon,

its likelihood may be overestimated in Φ.

Resolving orientation and shape: Now we have re-

solved the mean for ψh = (cxh, cyh, rh) ∈ Ψ for the set

of regular polygons that are most likely in Ψ. We may con-

struct a likelihood function given this information to resolve

the remaining dimensions, that is:

log(L(o, n|x, cx, cy, r) = (11)
∑

j

−g(xj , frp(Φ))Σ−1
j g(xj , frp(Φ)) + const

With a truncated distance function, for each point in de-

tection subspace we may consider only the local xj , this

1and of the image if we truncate our distance function.

may be assembled by maintaining a list of the parameters

for the xj that contributed to that point. This includes its

basic parameters, plus its distance as defined by g in the 3D

subspace, let this be dj . We may iterate over n, and inte-

grate over γ and compute the log-likelihood of the prob-

ability density function over the remaining parameters us-

ing Equation 12. This is now a reduced dimensional space

search, however an efficient approximation to this algorithm

is discussed in the implementation.

4 Implementation

Computation of the complete regular polygon likelihood

distribution is expensive. Instead we discretely sample the

distribution in a manner that is appropriate for the applica-

tion. Note that a coarse-to-fine strategy may be employed or

found peaks may be better located by subsequent EM. The

likelihood distribution can subsampled by a simple scan line

algorithm through xj . If one considers the distance function

to be the soft characteristic function of [14], then the log-

likelihood estimation may be considered as a Hough-like

algorithm for estimation of regular polygon parameters.

Using g2, the likelihood contribution of a regular poly-

gon of xj rapidly becomes small as distance increases.

Thus, if L(xj |Ψ) < ǫ, we set it to zero. Given this formula-

tion, the algorithm can operate by, for each edge pixel, step

along the line of h for the width implied by ǫ, and adjust

the log likelihood of each sample point of the distribution

according to L(xj |Ψ). Alternatively, we may approximate

by adjusting only the closest pixels to the line, and convolv-

ing the likelihood with a Gaussian. Thus for each xj , we

update log-likelihoods for rlw points in Ψ, where w is the

width implied by ǫ. In practice, small w is sufficient, for a

fast implementation this may be one-two pixels. Also, for

most specific applications, r may be over a small range.

The second stage of the algorithm can also be imple-

mented more computationally efficiently. In practice, one

is typically seeking either the set of k regular polygons with

the maximum likelihood, or all regular polygons with a like-

lihood greater than a threshold. Let us assume intially that

the xj in the list are all actually part of the polygon. In this

case, γ will be a mixture of Gaussians corresponding to the

orientations of each of the component edges. We may define

the log-likelihood of the probability of a regular polygon as

the sum over the edges, splitting Equation 12 over edges,

and replacing frp(Φ) with each of the edges from Equation

10. In order for an xj to be an element of any particular

edge, θj must fall within the expected variance of the mean

for the orientation of the edge.

As edge length may be less with known n, an edge-based

distance function (with orientation) is more constrained

than g(xj , frps(Ψ)) adjusted to include orientation. Thus,

if we approximate the distance function, by its distance dj ,

multiplied by a distance function over θj , this is an upper

bound on the actual edge distance function. If we take the



Given edge elements xj of an image, detect regular poly-

gons with n ∈ N sides. For each polygon radius r:

1. Estimate likelihood image:

(a) For each xj : Compute all triangle locations pk

that could generate xj , accumulate locations in

a vote image, and record information: pk, ∠xj

and distance mk along line h.

(b) Convolve vote image with Gaussian to generate

discrete approximation of likelihood image.

2. Evaluate each maxima qi for each n ∈ N :

(a) Build a weighted angular histogram of all

recorded ∠xj values with mk <
l(n,r)

2
,

weighted by a Gaussian of ‖pk − qi‖2.

(b) Convolve histogram with string of delta func-

tions δ(γ − 2π
n

) corresponding with the p peak

edges. The γ that maximises this convolution is

the most likely orientation of an n sided poly-

gon, and the values at γ ± 2π
n

u, u ∈ Z indicate

the support for each side.

(c) Total support is determined as a function of the

support for each side of the shape.

Figure 2: Summary of the algorithm.

weighted xj over θ and convolve it with a Gaussian cor-

responding to our expected variance in θ, then this forms

an approximate upper bound on the log-likelihood of the

probability density function of individual edge orientations.

We may use this to hypothesis test for γ and n, by taking

each hypothesis in turn and summing over edges in the up-

per bound density function by direct look up at the expected

angles, to form the upper bound density function across our

remaining parameters. Rather than for all γ we may take

the top p peaks as this corresponds to upper bounds likeli-

hoods of the most likely edges. For each of these we may

form the complete likelihood function of Equation 12. As

the mean of the maximum likelihood orientation may not

correspond to the mean orientation of the most likely edge.

If required an EM search may be performed over orientation

in the neighbourhood of these peaks.

For real applications, the number of radii being explored

is not large, and the sampling can be coarse. Further if it is

acceptable to overstate the likelihood, and precise position

is not required, the algorithm may cease without removing

edge pixels. Implementation is summarised in Figure 2.

With no a priori scene information, we may assume that

the xj appear with an isotropic distribution, except for reg-

ular polygons. However, in a road scene, for example, the

edges of the road and dividing lines often result in long

piecewise straight edges. In this case, the probability of

multiple edge points appearing together, with the same gra-

dient, that are not part of something we wish to consider as

a regular polygon, is greater than the probability of pixels

appearing together randomly in the image.

In such a case, we may determine a priori distributions

from a set of images that is representative of the incoming

images. From this we may adjust the likelihoods to reflect

the number of supporting edges from the support for each

of the edges. In such long clear line scenarios, we found it

was effective to incorporate negative probability weighting

at the ends of the line of influence of the xj . This prevented

over emphasis of strongly contrasting long lines.

Finally, where other information is known a priori we

may incorporate this information into our function, and sim-

plify computation. This will be explained in more detail in

the context of road sign detection in the results.

5 Experimental results

We evaluate performance in the presence of noise in arti-

ficial images, as well as on real images. By incorporating

prior knowledge about the appearance of the road scene, we

were able to adapt the algorithm to run at 16Hz for 320×240
images in which it was able to reliably detect a road sign in a

test sequence taken from the vehicle in Figure 5(a). Finally,

we demonstrate the application of a constrained version as

a feature detector for wide-baseline matching for robot cor-

ridor navigation on the robot shown in Figure 5(b).

On still images: The detector was evaluated on a range

of images containing regular polygons. Figures 3 and 4

show detection results for searching for 3 to 8 sided reg-

ular polygons over radii r ∈ {8, 11, ...17}. Note that this

non-continuous range of radii is adequate to detect shapes

at neighbouring radii. Figure 3(b) shows the approximation

of the likelihood image generated by the algorithm; note the

peaks at the centres of the shapes detected in (c). The final

output (d) illustrates both the impressive detection perfor-

mance, and illustrates some of the artefacts of the method.

Owing to the Gaussian modelling of edge and centroid loca-

tions the shapes detected do not always exactly overlay the

edge locations of the original shapes. Also, polygons may

be found with alignment of partial edges, and are awarded

low (but not zero) strength accordingly.

The majority of incorrect hypotheses correspond to poly-

gons of a small number of sides. There are two reasons for

this: firstly, (for n ≤ 8) as n increases it becomes less likely

that n edges will be ‘accidentally’ aligned by noise; sec-

ondly the prevalence of right angles in built environments

gives a strong prior for finding squares.

Figure 4 shows the detector operating on outdoor im-

ages, here the near-perfect regular polygon nature of the

road signs ensure that they are strongly detected. The top

right figure shows an example of the detected square shapes

common around man-made structures, however, for sign de-

tection the orientation of the diamond-shaped warning sign

in the foreground sets it apart from the other squares.

Robustness to noise: The 180 × 240 test image I :
I(p) ∈ [0.25, 0.75] in Figure 3 (e) was corrupted by increas-

ing amounts of additive Gaussian noise σ = 0, 0.05, ..., 1
and performance was evaluated over 20 runs at each noise



(a) (b) (c) (d)

(e) (f) (g)

Figure 3: (a) Input image, (b) likelihood image for r = 17, (c) results for r = 17, and (d) results across all radii. Detection

results fade from red (strong) to blue (weak). (e) Noise test image, (f) with SNR=3Db (σ = 0.5) (g) mean and standard

deviation of detection performance with additive Gaussian noise.

Figure 4: Performance on outdoor images.

level at radius r = 20. Performance was quantified from

the top six shape hypotheses which were taken to be cor-

rect if they located the shape with the correct number of

sides within ±4 pixels of its ground truth location. Figure 3

(f) shows the average detection performance versus noise,

demonstrating stability in the presence of noise. At σ = 0.5
the average detection rate drops below 50%, but at this point

it is difficult even for a person to differentiate between some

of the shapes, Figure 3 (e).

Real-time sign detection: Critical information signs

with information that requires driver action regularly appear

on triangular, diamond, or octagonal backgrounds. In road

scenes signs are designed to be easily visible; they appear

at set orientation (approximately) unless damaged. Further,

if the camera axis aligns with the vehicle’s forward motion,

(a) (b)

Figure 5: (a) Inside the intelligent vehicle. Cameras moni-

tor the road scene appear in place of the rear-vision mirror.

(b) The NOMAD robot for navigation in corridor-like envi-

ronments with a camera pair on top.

signs will always be parallel to the image plane when they

are close, even on curved roads and will be visible for many

frames. Also, for a camera of approximately known fo-

cal length, their apparent size (radius) is constrained over

a narrow range. Signs smaller than a few pixels cannot be

recognised, so need not be detected. As signs have maximal

world size, physical constraints mean they will never appear

more closely than a set distance from the vehicle.

Detection aim to reduce each image to a small number

of possible candidates. A sign need not be detected in ev-

ery frame, but must be reliably detected while it is visible.

Due to the appearance of regular polygons due to accidental

features, it is efficacious to require a regular polygon to be

detected over several images at a similar position and size as

such accidental views will occur frequently in robot vision,

but often will not be sustained.



In this trial, we constrained the detector to giveway and

roundabout signs, triangles, where the top edge is parallel to

the ground plane, thus the number of sides is constrained,

and orientation is constrained to a range a priori. For the

standard configuration of the vehicle used in this sequence,

four separate radii were sufficient of 6, 8, 10, and 12 pixels.

The a priori constraint over number of sides and radii meant

that gradient orientations outside the constraints could not

be part of these oriented polygons, so could be disregarded

a priori. These orientations were 0, 120 and 240 ◦, each

±12◦. Thus, only the first stage of the algorithm was re-

quired to recover all ambiguity. The constrained algorithm

was able to run in less than 50ms per frame (320x240 im-

age), based on an implementation in C++ on a standard PC,

equivalent to that mounted in the vehicle. This is quite ad-

equate for a sign to be visible for many frames in any rea-

sonable situation for a road vehicle, and hence is real-time.

The road trial is on a sequence, see Figure 6. Of the

sequence the sign is of a detectable size for 48 frames. A

sample detection image is shown in Figure 6. For detection,

we required the sign to be one of the two most likely tri-

angles for any radius for an initial image, and then one of

the top 10 for the next k images. False positive and false

negative curves are shown in Figure 7. Although the sign

was not detected as one of the top two candidates in every

image, it was reliably detected many times over the image

sequence. The processing of recognition using normalised

cross correlation for each candidate is less than 1ms in our

system, so the number of false positives was well within

computation limits for real time processing.

Indoor scenes: In a project to develop vision-based

robotic mapping, we applied the regular polygon detector

to detect square-like features. Here n is set, but γ must be

resolved, i.e., 1D ambiguity after initial detection. The de-

tector was run at three different radii, and found all squares

above a low likelihood (a few pixels on three edges). It de-

tects stable edges that are the basis of squares, but is tolerant

to incomplete edges and affine distortion. Figure 8 shows a

sample image. The detector was applied to pair of images

taken from the robot as it was navigating around indoor of-

fice environment, moving at approximately 30 cm/sec. With

images three seconds apart the baseline was wide, approx-

imately one metre. On corners the robot turned mostly in

Figure 6: An image from the middle of the roundabout sign

sequence, with most likely triangles backprojected, and the

likelihood function for radius 8.

Figure 7: Average and standard deviation of number of false

positives (top) and false negatives (bottom), given number

of frames k that the sign is required to be present.

place, leading to shifts of more than half the image of fea-

tures, see Figure 9. Features were matched according to

size and orientation, the local greyscale environment and

position, and used to calculate the fundamental matrix to

recover motion. Results showed a high percentage of the

found points matched (around 70% typically) correctly over

frames moving down the corridor, but reduced over rotation

as expected. Figure 9 shows a typical images taken from

the sequence of 69 images as it turns around a corner. The

matches show promising initial results. Figure 9 (c) shows

the matches obtained by SIFT [11], using the reference im-

plementation with its packaged parameters.2 Note that the

square feature detector will be most effective in this type of

rectilinear environment, however, it is highly suitable to be

part of a battery of detectors for matching. Its speed of op-

eration makes it plausible for robotic mapping applications.

6 Conclusions

Regular polygon detection is an important problem with

multiple applications in robotics and computer vision. Us-

ing an aposteriori probability approach, we presented a new

2http://www.cs.ubc.ca/ lowe/keypoints/

Figure 8: Square features: size and orientation are repre-

sented directly, likelihood is represented by colour, where

red is most certain, and yellow is least certain.



(a) (b) (c)

Figure 9: Matches for turning a corner. The pink lines rep-

resent correct matches, while the others represent erroneous

matches. (c) Matches found using SIFT, only one found.

algorithm for detecting regular polygons. We defined the

continuous log-likelihood of the probability density func-

tion of regular polygons. In order to make the algorithm

computationally efficient we find initial likely regular poly-

gons in a lower dimensional space, and then resolve the re-

maining parameters for likely regular polygons. We pre-

sented an efficient algorithm based on this, and adaptations

of this algorithm that can run at 16Hz detecting signs in an

intelligent vehicle application. Experimental results show

the efficacy and robustness of the algorithm, and its ap-

plication to driver assistance, and as a feature detector for

matching, applied to a robot sequence for mapping.
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