
Regular Processes and Timed Automata�

Pedro R. D'Argenio

Dept. of Computer Science. University of Twente.

P.O.Box 217. 7500 AE Enschede. The Netherlands.

dargenio@cs.utwente.nl

January 24, 1997

Abstract

In [10], an algebra for timed automata has been introduced. In this article,

we introduce a syntactic characterisation of �nite timed automata in terms of

that process algebra. We show that regular processes, i.e., processes de�ned

using �nitely many guarded recursive equations, are as expressive as �nite timed

automata. The proof uses only the axiom system and unfolding of recursive

equations. Since the proofs are basically algorithms, we also provide an e�ective

method to translate from one model into the other. A remarkable corollary of

these proofs is that regular recursive speci�cations may need one clock less than

timed automata in order to represent the same process.

1991 Mathematics Subject Classi�cation: 68Q45, 68Q55, 68Q60.

1991 CR Categories: D.3.1, F.3.1, F.3.2, F.4.3.

Keywords: process algebra, real time, timed automata, regular process.

Note: A reduced version of this report was accepted to be published in the

Proceedings of the fourth AMAST Workshop on Real-Time Systems, ARTS'97 ,

Mallorca, Spain, May 1997.

�Supported by the NWO/SION project 612-33-006.

1

1 Introduction

In the last years, several formal techniques have been developed to specify and verify

real-time systems. For instance, many well-known process algebras have been extended

with features to manipulate time [11, 24, 25, 20, 21, 5, 17, 6, 8, 18]. But the apparently

most successful approaches are timed and hybrid automata [3, 22, 15, 2]. Both models

have been related in [22, 23, 14, 26, 12]. In [10] both approaches have been integrated

and an algebra for timed automata has been introduced. The syntax extends Milner's

CCS [19] with operations to manipulate clocks, namely, clock resettings, invariants,

and guards. There, an equational theory has been proven to be sound with respect

to timed bisimulation. Moreover, the process algebra happens to be as expressive as

timed automata. However, in [10] timed automata are not restricted in their amount

of locations, edges or clocks.

In this article, we give a syntactic characterisation of �nite timed automata, that is,

timed automata with �nitely many locations, edges, and clocks. We show that regular

processes, i.e., processes de�ned using �nitely many guarded recursive equations, are

as expressive as �nite timed automata. This connection is evident between CCS and

labelled transition systems where regular processes are de�ned, either as those processes

that are equivalent to a �nite labelled transition system, or as those processes that can

be rewritten into guarded recursive equations. Anyway, both de�nitions happen to be

equivalent.

Although the relation between our process algebra and the timed automata model

is not unexpected, its proof is rather far from being trivial, and moreover, we will �nd

some surprising results in between. Basically, the problems appear because this process

algebra has incorporated (clock) variables and the notion of binding. Let us see some

examples. In our language we represent the clock resettings by fjxjg p, the invariants

by �� p and the guards by �7!7!p, where and � are some constraints on the clock

variables. We notice that the operation of clock resetting binds clock variables. For

some expressions like

Z = fjxjg (x � 2)�� (x � 1)7!7!a;Z
x

a; x � 1x � 2

the respective timed automata is straightforwardly obtained. However, some other

expressions do not have an obvious associated timed automata. For instance, in

X = (x < 3)�� fjxjg (x < 2)�� a;X a; tt

x

x < 3
x < 2

(1)

a naive attempt to associate a timed automaton to X will derive in the one depicted on

the right-hand side. However, this is not correct since the x in the invariant (x < 3) is

not bound to the clock resetting that follows. This illegal binding is shown by the arrow

2

on the equation. Even less obvious is the following case, where �(x; y) and �0(x; y) are

some constraints containing clock x and y.

Y = (fjxjg �(x; y)7!7!a;Y) + (fjyjg �0(x; y)7!7!b;Y)

b; �0(x; y)
x; y

a; �(x; y)
tt (2)

In this expression, the x on the right-hand side of + should not be bound to the resetting

on the left-hand side, and symmetrically for y. Compare with the naive associated timed

automaton depicted beside the equation.

In this article, we show that for each �nite timed automata there is a regular re-

cursive speci�cation and vice versa. Moreover, we prove this by using only the axiom

system and unfolding of recursive equations, which shows the power of the equational

theory. It is also important to remark that all the proofs are basically algorithms, thus

we are also providing an e�ective method to translate one model into the other. A

remarkable corollary of these proofs is that regular recursive speci�cations may need

one clock less than timed automata in order to represent the same process.

We should point out the related work [4] where a Kleene theorem for timed au-

tomata is presented. The language introduced there is shown to be as expressive as

timed automata up to timed trace equivalence. Instead, our approach preserves timed

bisimilarity. Although our work is perhaps less ambitious, our intention has been to

emphasise on the connection of the timed automata theory with the process algebra

and its equational theory.

The rest of the article is organised as follows. Section 2 reviews the model of timed

automata. In Section 3 we describe the process algebra of [10]. Section 4 is the core of

this article and both relations are discussed and proven.

Acknowledgements. I would like to thank Ed Brinksma for his valuable suggestions

and discussions. I am grateful to Ahmed Bouajjani and Joseph Sifakis who posed the

main question answered in this paper while I was visiting the VERIMAG laboratory in

Grenoble, in March 1996.

2 Timed Automata

Time, clocks and constraints. We adopt the set IR�0 of non-negative reals as time

domain. A clock is a variable x ranging over a time domain IR�0. Let C denote a set

of clocks. The set �(C) of clock constraints over C is de�ned inductively by:

� ::= tt j x2d j x� y2d j (� ^ �) j (:�)

where d 2 IR�0, 2 2 f�;�g, and x; y 2 C. The abbreviations � , x = d, x � y < d,

� _ �0, etc. are de�ned as usual. Let var(�) be the set of clocks occurring in �.

3

A (clock) valuation is a function v : C ! IR�0. Let V denote the set of valuations.

Let C � C. We de�ne v[C a0] as v[C a0](x)
def
= if x 2 C then 0 else v(x). Let

d 2 IR�0. De�ne v + d as (v + d)(x)
def
= v(x) + d. Notice that for any valuation v and

for any clock constraint �, v(�) is a closed clock constraint, i.e., var(v(�)) = ;.

Given a valuation v, we de�ne the satisfaction predicate j= v(�) as follows

j= v(tt)
v(x)2d

j= v(x2d)

v(x)� v(y)2d

j= v(x� y2d)

j= v(�) j= v(�0)

j= v(� ^ �0)

6j= v(�)

j= v(:�)

We generalise j= to all clock constraints. Let � 2 �(C) then j= �
def
() 8v 2 V: j= v(�).

We de�ne the set �(C) � �(C) of past-closed constraints as � 2 �(C)
def
() (8v 2

V; d 2 IR�0: j= (v + d)(�) =) j= v(�)). Notice that this kind of constraints are such

that if they hold at time d, they hold at all d0 < d.

Timed Transition Systems. A timed transition system is a labelled transition system

that includes information about the time. We adopt the model of actions with time

stamps following the style of [17]

De�nition 2.1 Let A be a set of actions. A timed transition system (TTS) is a

structure L = (�;A� IR�0; �0;�!;U) where

� � is a set of states, with the initial state �0 2 �;

� �! � �� (A� IR�0)� � is the transition relation; and

� U � IR�0 � � is the until predicate.

We use the following notation: a(d) i� (a; d) 2 A� IR�0, �
a(d)
�!�0 i� h�; a(d); �0i 2 �! ,

Ud(�) i� hd; �i 2 U , �
a(d)
�! i� 9�0 2 �: �

a(d)
�! �0. In addition, L should satisfy the

following axioms:

Until 8d; d0 2 IR�0: Ud(�) ^ d
0 < d =) Ud0(�);

Delay 8d 2 IR�0: �
a(d)
�! =) Ud(�). 2

The intended meaning of a transition �
a(d)
�!�0 is that a system which is in state � can

change to be in state s0 by performing an action a at time d. Intuitively, Ud(�) together

with axiom Until, means that a system can idle in a state � at least d units of times.

Axiom Delay states that every time that an action may occur in a state � at time d,

the system must be idling at that time.

De�nition 2.2 Let Li = (�i;A� IR�0; �i0; �! i;U
i), i 2 f1; 2g, be two TTS. A timed

bisimulation is a relation R � �1 � �2 with �
1
0R�

2
0 satisfying, for all a(d) 2 A� IR�0,

the following transfer properties:

1. if �1R�2 and �1
a(d)
�! 1�

0
1, then 9�

0
2 2 �2: �2

a(d)
�!2�

0
2 and �

0
1R�

0
2;

2. if �1R�2 and �2
a(d)
�! 2�

0
2, then 9�

0
1 2 �1: �1

a(d)
�!1�

0
1 and �

0
1R�

0
2; and

4

3. if �1R�2, then U
1
d (�1) () U2

d (�2).

If such a relation exists, we say that L1 and L2 are timed bisimilar (notation L1 $ L2).

2

The kind of timed transition systems that we adopted has the same expressive power as

the time deterministic timed transition systems in the sense of [25] in which transitions

are labelled separatedly with actions and time. Translations from one to the other that

preserve bisimulation can be easily found.

Timed Automata. We consider a slight variation of timed safety automata [15] as it

was de�ned in [10]. It is straightforward to check that both approaches have the same

expressive power.

De�nition 2.3 A timed (safety) automaton is a structure (S;A; C; s0; -; @; �) where:

� S is a set of locations, with the initial location s0 2 S;

� C is a set of clocks;

� - � S �A� �(C)� S is the set of edges with labels in A;

� @ : S ! �(C) is the invariant assignment function;

� � : S ! }�n(C) is the clock resetting function.

Moreover, we say that a timed automata is �nite if it has �nitely many locations, clocks

and edges. 2

In this case, hs; a; �; s0i 2 - (notation s
a;�
- s0) intuitively means that when the

system is in location s, it can change to be in location s0 by performing an action a

provided that the clock constraint � holds. The clock resetting function states which

clocks should be reset as soon as a location is reached. The invariant assignment

function states that the system can idle in location s as long as @(s) holds. Formally

speaking, a timed automaton can be interpreted as a TTS as follows.

De�nition 2.4 Let T = (S;A; C; s0; -; @; �) be a timed automaton. Let v0 2 V be

any valuation. The interpretation of T with initial valuation v0 is given by the TTS

([T])v0
def
= (S � V;A� IR�0; (s0; v0); �! ;U) where �! and U are de�ned as the least

sets satisfying the following rules:

s
a;�
- s0 j= (v[�(s) a0] + d)(� ^ @(s))

(s; v)
a(d)
�!(s0; (v[�(s) a0] + d))

j= (v[�(s) a0] + d)(@(s))

Ud(s; v)
2

Since @(s) 2 �(C) for all s 2 S, it follows that ([T])v0 satis�es axiom Until. Moreover,

notice that if (s; v)
a(d)
�! then j= (v[�(s) a0] + d)(@(s)) and so Ud(s; v) which implies that

axiom Delay holds. Hence, ([T])v0 is indeed a TTS for any initial valuation v0.

5

3 A Process Algebra for Timed Automata

In this section we describe the process algebra introduced in [10, 9]. First, we introduce

the basic syntax of the process algebra with recursion. Afterwards, we describe the

semantics in terms of timed automata. Finally, we introduce the axiom system.

Syntax. The language is an extension of the basic CCS with operations to deal with

clocks. We do not introduce the extended language (i.e. parallel composition, hiding

operator) in this article since the new operators may be eliminated, that is, any term

in the extended language has an equivalent term in the basic language. In addition,

the basic language is su�cient for the purpose of this article. The complete language

can be found in [9].

De�nition 3.1 Let A be a set of actions, let C be a set of clocks, and let V be a set

of process variables. The language L is de�ned according to the following grammar:

p ::= stop j a; p j �7!7!p j p+ p j fjCjg p j �� p j X

where a 2 A, � 2 �(C), 2 �(C), C 2 }�n(C), and X 2 V. We refer to the elements

of L as processes.

A recursive speci�cation E is a set of recursive equations having the form X = p

for each X 2 V, where p 2 L. Every recursive speci�cation has a distinguished process

variable called root . 2

Process stop represents inaction; it is the process that cannot perform any action. The

intended meaning of a; p (named (action-)pre�xing) is that action a can be performed

at any time and then it behaves like p. �7!7!p, the guarding operation, can perform

any �rst action that p can do whenever � holds. fjCjg p, the clock resetting operation,

is a process that behaves like p, but resetting the clocks in C. We will often write

fjx1; : : : ; xnjg p instead of fjfx1; : : : ; xngjg p. �� p, the invariant operation, can idle

while holds or go on with the process p. p + q is the choice; it behaves either like p

or q. The choice between p and q can be made only by actions, not by the passage of

time. The meaning of a variable X depends on its de�nition in E. Thus, if X = p 2 E,

the behaviour of X is the same as p.

For the sake of completeness, we remark that a recursive speci�cation de�nes only

once each process variable (i.e. X = p;X = q 2 E implies p � q), and all the variables

that occur in any right-hand side of a recursive equation of E are de�ned in E (i.e. if

Y occurs in p and X = p 2 E, then Y = q 2 E for some q 2 L.)

De�nition 3.2 Let � : V ! }(C) be a function that assigns a set of clock variables

to each process variable. De�ne fv� inductively as follows,
fv�(stop) = ; fv�(fjCjg p) = fv�(p)nC

fv�(a; p) = fv�(p) fv�(�� p) = var() [fv�(p)

fv�(�7!7!p) = var(�) [fv�(p) fv�(X) = �(X)

fv�(p+ q) = fv�(p) [fv�(q)

6

The function fv : V ! }(C), that gives the set of free variables of a given process

variable, is de�ned as the least �xed point of the function F de�ned by

F (�) = �X:(�(X) [fv�(p))

provided that X = p 2 E. We extend the notion of free variables to every process p by

de�ning fv(p)
def
= fv fv(p). 2

Now fv can be calculated using the straightforward algorithm to obtain the least �xed

point of the monotonic function F . (See Appendix.)

As we already remarked in the introduction, the term fjCjg p binds clocks in C

which occur free in p. Thus, we have to avoid undesirable bindings and so, we would

like to characterise the con
icting terms like (1) or (2). Let Kp be the union of all

clock resettings in p which do not occur within the scope of a pre�xing, i.e., a subterm

a; q. For instance, if p � (fjxjg a; fjyjg �7!7!b;X) + (fjzjg �� c;Y), then Kp = fx; zg.

We say that a term does not have con
ict of variables if there is no subterm in it

that has con
ict of variables and, if it has the form p + q (respectively �� p) then

(fv(p) \ Kq) [(fv(q) \ Kp) = ; (respectively var() \ Kp = ;). In this work we will

generally assume processes which do not have con
ict of variables. This assumption

is harmless since we can always rename properly bound variables (i.e. to apply �-

conversion) in order to avoid this problem. In [9] we study �-conversion and con
ict of

variables extensively.

De�nition 3.3 An occurrence of X is guarded in a term p 2 L if p has a subterm

a; q such that this occurrence of X is in q. A process variable X is guarded in p if

every occurrence of it is guarded. A term p is guarded if all its process variables are

guarded. A recursive speci�cation E is strictly guarded if the righ-hand side of every

recursive equation in it is a guarded process, i.e., for all X = p 2 E, p is guarded.

A recursive speci�cation E is guarded if it can be rewritten into a strictly guarded

recursive speci�cation by properly unfolding the equations. (By \properly unfolding

the equations" we mean that whenever X = p 2 E and Y occurs unguarded in p,

then we take the new speci�cation E 0 = (EnfX = pg) [fX = p[Y=q]g provided that

Y = q 2 E.)

A recursive speci�cation E is regular if it is guarded and de�nes �nitely many

recursive equations. 2

Proposition 3.4 Let E be a recursive speci�cation with process variables in V. De�ne

the unguarded variable dependency graph G with nodes in V and edges X ! Y i� Y

is unguarded in X = p 2 E. Then E is guarded if and only if there is no in�nite chain

in G.

Associated timed automata. We can associate a timed automaton to a process ac-

cording to the following de�nition.

7

Table 1: Associated timed automata (X = p 2 E)

�(stop) = ; @(stop) = tt

�(a; p) = ; @(a; p) = tt

�(�7!7!p) = �(p) @(�7!7!p) = @(p)

�(p+ q) = �(p) [�(q) @(p + q) = @(p) _ @(q)

�(fjCjg p) = C [�(p) @(fjCjg p) = @(p)

�(�� p) = �(p) @(�� p) = ^ @(p)

�(X) = �(p) @(X) = @(p)

a; p
a;tt
- p

p
a;�
- p0 @(p) =

p+ q
a;�^
- p0

q + p
a;�^
- p0

p
a;�
- p0

fjCjg p
a;�
- p0

p
a;�
- p0

X
a;�
- p0

p
a;�0
- p0

�7!7!p
a;�^�0

- p0

p
a;�
- p0

 �� p
a;�
- p0

De�nition 3.5 Let p 2 L be a process without con
ict of variables. The timed au-

tomaton associated to p is de�ned by [[p]] = (L;A; C; p; - ; @; �) where -, @ and �

are de�ned inductively by the rules and equations in Table 1. 2

Rules in Table 1 capture the behaviour above described in terms of timed automata.

In particular, it deserves to notice that a process p+ q can idle as long as one of them

can. Thus @(p+ q) () @(p) _ @(q). Moreover, p+ q can execute any action of p or q

as long as it could be executed in its original process. Thus, since an action cannot be

executed after the idling time is �nished, we require that for the execution of an action,

the corresponding invariant must also hold.

Notice that @ and � are not always well-de�ned in case of (unguarded!) recursion.

For instance, take X = (x < 1)�� X, then @ and � are the completely unde�ned

functions because of nonterminating derivation. Nonetheless, we have the following

proposition.

Proposition 3.6 Let E be a guarded speci�cation without con
ict of variables, then

every process variable de�ned in E has an associated timed automata.

The proof of Proposition 3.6 follows by induction. In particular, notice that the de�ni-

tions of �, @ and - are not recursive for the base cases, namely stop and pre�xing.

We can de�ne the semantics of a process in terms of TTS by �rst associating a timed

automaton and then obtaining the interpretation of it in terms of TTS according to

De�nition 2.4. Thus, ([[[p]]])v0 is the interpretation of p with initial valuation v0. Now,

we can extend the notion of bisimilarity to processes: two process p and q are bisimilar

(notation p$ q) if for all valuations v0 2 V, ([[[p]]])v0 $ ([[[q]]])v0 .

8

Alternatively, the language has a direct semantics in terms of TTS that is equivalent

(modulo bisimulation) to the semantics in two steps given above [10]. We do not present

here such semantics since it is not relevant for obtaining the results in this article.

Nonetheless, it is essential that the reader understands that this semantics de�nes a

TTS for every guarded recursive speci�cation, including those with con
ict of variables.

The crucial point of this is that it is not clear whether expressions like (1) and (2) have

an associated timed automaton, although they have a clear meaning in terms of TTS.

Axiom system. We introduce a set of axioms for the language described above.

The axiom system is sound with respect to bisimulation. Since �-conversion implies

bisimulation, we consider terms modulo �-conversion without loss of generality.

Table 2: Axioms for L (a; b 2 A, C � C, x; y 2 C, �; �0 2 �(C), ; 0 2 �(C), d 2 IR�0)

Stp � 7!7!a; p = stop A3 �7!7!p+ �0 7!7!p = (� _ �0)7!7!p

A1 p+ q = q + p A30 �� p+ 0�� p = (_ 0)�� p

A2 (p+ q) + r = p+ (q + r) A4 a; p+ stop = a; p

G0 �7!7!stop = stop

G1 tt7!7!p = p

G2 �7!7!(�0 7!7!p) = (� ^ �0)7!7!p

G3 �7!7!(�� p) = �� (�7!7!p)

G4 �7!7!(fjCjg p) = fjCjg (�7!7!p) if var(�) \ C = ;

G5 �7!7!(p+ q) = �7!7!p+ �7!7!q

I1 tt�� p = p

I2 �� (0�� p) = (^ 0)�� p

I3 �� (fjCjg p) = fjCjg (�� p) if var() \ C = ;

I4 �� p+ �� q = �� (p+ q)

I5 �� (�7!7!a; p) + 0�� (�0 7!7!b; q) = (_ 0)�� ((^ �)7!7!a; p+ (0 ^ �0)7!7!b; q)

R1 fjCjg p = p if C \ fv(p) = ;

R2 fjC [fy; xgjg p = fjC [fygjg [x ay]p

R3 fjCjg fjC 0jg p = fjC [C 0jg p

R4 fjCjg p+ fjCjg q = fjCjg (p+ q)

D1 �7!7!a; (fjyjg p) = �7!7!a; (fjyjg (x� y2d)�� p) if j= (�) (x2d)) and x 6= y

D2 �7!7!a; p = �7!7!a; ((x� y2d)�� p) if j= (�) (x� y2d))

where 2 2 f�; <;�; >;=g

Axioms in Table 2 could be explained as follows. Axioms A1{A4 are the extension

of the CCS axioms. A4 needs special care. Since in our model we consider time

deadlock, it is not generally the case that stop is the neutral element for summation.

9

However, it is a neutral element only for processes with unbound idling. Stp states

that a pre�xed process which does not satis�es its guard condition cannot proceed with

its execution. Axioms G0{G5 state the way in which guards can be simpli�ed. Notice

that they cannot be eliminated except in the case of tt. In particular, axioms G3, G4

and G5 say how to move invariants, clock resettings and summations out of the scope

of a guard. Similarly, axioms I1{I5 state how to simplify the invariant operation. I3

says how to take clocks resettings out of the scope of an invariant, while I4 and I5

move the invariant out of the scope of a summation. R1 and R2 eliminate redundant

clocks. In particular, R2 implies that it is always possible to reduce the amount of

clocks to be reset to at most one for each clock resetting operation. R3 gathers all

the clocks resettings in only one operation and R4 moves clocks out of the scope of a

summation. Finally, D1 and D2 state that the di�erence between clocks is invariant

and thus it could be \transported" along the execution. In particular, D1 explains how

this di�erence is stated.

The term [x ay]p, which appears in axiomR2, is the renaming of the free occurrences

of x by y in p. It is de�ned recursively on the structure of p in the obvious way, although

for process variables it needs an additional explanation. Given a recursive equation

X = p, [x ay]X is a `new' process variable Y de�ned by the equation Y = [x ay]p.

Thus, given a recursive speci�cation E, we will usually need to extend it if axiom R2

is applied.

Theorem 3.7 [9] The axiom system of Table 2 is sound modulo bisimilarity. That is,

for all p; q 2 L, if p = q is deduced by means of equational reasoning using �-conversion

and axioms in Table 2, then p$ q.

4 Regular Processes and Finite Timed Automata

In this section we show that there exists a strong connection between �nite timed

automata and regular recursive speci�cations. We show indeed that not only any �nite

timed automata can be expressed by a regular speci�cation, but also that a regular

speci�cation always de�nes a �nite timed automaton up to bisimilarity. But, what is

more interesting in this last case is that the axiom system together with unfolding of

equations is enough to prove that fact1.

Although the case of obtaining a regular recursive speci�cation from a �nite timed

automata seems to be intuitively clear, it is not the same in the case in the other way

around due to processes that have con
ict of variables. Let us recall the examples of

the introduction. The �rst example was the following recursive equation

X = (x < 3)�� fjxjg (x < 2)�� a;X (1)

Notice that the x of (x < 3) should not be bound to the resetting that follows it. Thus,

the associated timed automaton is not obvious. Even less obvious is the case of our

1Actually, axioms D1 and D2 are not necessary.

10

second example,

Y = (fjxjg �(x; y)7!7!a;Y) + (fjyjg �0(x; y)7!7!b;Y) (2)

Notice here, that we can try to calculate �(Y) = fx; yg, but this is not correct since

we may bind some free occurrences of x and y. By the time being, we expect to have

motivated the reader and make him/her wonder about the associated timed automata

of such equations. We will come back later to these examples.

From �nite timed automata to regular recursive expressions. In this paragraph we

recall the result already presented in [10]. First, we borrow some de�nitions from

transition system theory into timed automaton theory. A timed automaton is image-

�nite if the set of outgoing edges of every state labelled with the same action is �nite,

i.e., for any a and any s, the set fs
a;�
- s0j s0 2 Sg is �nite. It is �nitely sorted if, for each

state s, the set of all actions labelling the outgoing edges, i.e., faj 9s0 2 S: s
a;�
- s0g

is �nite. A state s is (symbolically) reachable if there is a sequence of edges from the

initial state s0 to s, i.e., there are a1; : : : ; an, �1; : : : ; �n and s1; : : : ; sn (n � 0) such

that s0
a1;�1- s1 � � �

an;�n- sn = s. The reachable part of a timed automaton T is the

same timed automaton restricted to the set of states that are reachable. Notice that we

have a static view and not the usual dynamic notion of reachability in timed automata

theory (cf. [1]).

Theorem 4.1 For every image-�nite and �nitely sorted timed automaton T there is a

guarded recursive speci�cation E with root Xs0 such that the reachable part of T and

the reachable part of [[Xs0]] are isomorphic.

Proof (Sketch). The proof consists of associating a process variable to each state s of

T and de�ning each one of them as the term that resets the clocks of �(s) and has an

invariant @(s) over the summation of the outgoing edges represented by pre�xings with

its respective guard as follows. Let T = (S;A; C; s0; -; @; �). For each state s 2 S

de�ne a di�erent variable Xs. De�ne the recursive speci�cation E with root Xs0 and

recursive equations

Xs = fj�(s)jg @(s)��
�P

f�7!7!a;Xs0 j s
a;�
- s0g

�

where
P
fpi j i 2 f1 : : : ngg

def
= p1 + p2 + � � �+ pn. In particular,

P
;

def
= stop2.

Now, we restrict T and [[Xs0]] to their reachable parts, and the isomorphism is given

by the function that maps every state in T into its corresponding variable in [[Xs0]]. 2

The following corollary is immediate.

2Notice that we are using general summation only when the summands have the form �7!7!a; p. If we

considered general summation over any kind of processes, then stop would not be the best de�nition

for summations over an empty set (this is due to the fact that our model consider time deadlock).

11

Corollary 4.1.1 For every �nite timed automaton T there exists a regular speci�cation

E with root variable Xs0 such that T and [[Xs0]] are bisimilar.

From regular recursive expressions to �nite timed automata. In this paragraph, we

show how to come up with a timed automaton from a given regular recursive expression.

We use the following strategy to construct the timed automata. First, we rewrite

the recursive speci�cation into a new one such that each variable, according to the

new de�nition, can execute at most one action and move to another variable. We

say that this speci�cation is in one-step normal form. The second step translates

this last speci�cation into a recursive speci�cation that trivially resembles a timed

automaton. We say that this last speci�cation is in TA-normal form (TA stands for

\Timed Automata").

De�nition 4.2 A guarded recursive speci�cation E is in one-step normal form if for

every X = p 2 E, p is in the language de�ned by the following grammar,

p ::= stop j a;X j �7!7!p j p+ p j fjCjg p j �� p

where a 2 A, � 2 �(C), 2 �(C), C � C, and X 2 V. 2

Lemma 4.3 Any regular recursive speci�cation can be rewritten into a one-step nor-

mal form.

Proof. The proof follows by adding new process variables, and folding and unfolding

when needed. We do that in two steps. First, we reduce the original speci�cation

E0 into a new speci�cation E0 such that no pre�xing occurs in the scope of another

pre�xing. That is done by creating new recursive equations. In the second step, E0 is

taken into one-step normal form by unfolding all the variables that occur unguarded.

Let E0 be a regular recursive speci�cation. Let size(p) be the number of symbols

in p which are not process variables. Choose, if it exists, X = p 2 E0 such that p

has an occurrence a; q where q is not a process variable and size(p) � size(r) for all

Z = r 2 E0, i.e., p is maximal according to size. Choose a fresh process variable Y and

de�ne p0 to be p with the occurrence of a; q replaced by a;Y . De�ne

E1
def
= (E0nfX = pg) [fX = p0; Y = qg

Clearly E1 represents the same process than E0. Repeat the process until there is

no occurrence of a; q with q as before. The algorithm terminates since the function

hMAX(Ei);#fX = p 2 Eij size(p) = MAX(Ei)gi strictly decreases in each iteration ac-

cording to the lexicographical order. We have taken MAX(Ei) = maxfsize(p)j X =

p 2 Eig

Let E0 be the output of the previous algorithm. Obviously, E0 is also a regular

speci�cation. Notice that for every equation X = q 2 E0, by construction, q is in the

language de�ned by the grammar

p ::= stop j a;X j �7!7!p j p+ p j fjCjg p j �� p j X

12

that is, q is \almost" in one-step normal form since it still can have unguarded variables.

Construct the unguarded variable dependency graph G0 according to Proposition 3.4,

which implies that G0 does not have in�nite path and hence, it is acyclic. Chose a leaf

Y in G0 with Y = q 2 E0. For every X = p 2 E0 such that X ! Y de�ne p0 to be p

with every unguarded occurrence of Y replaced by q. De�ne

E1
def
= (E0n

[
fX = p j X ! Y g) [

[
fX = p0 j X ! Y g

Notice that the unguarded dependency graph G1 of E1 is the same as G0 where all

edges X ! Y were removed. So we can repeat the process and the algorithm eventually

terminates since the amount of edges is strictly decreasing in each iteration.

It is easy to check that the output of this last algorithm is a recursive speci�cation

in one-step normal form. 2

De�nition 4.4 A recursive speci�cation E is in TA-normal form if it is regular and

for every X = p 2 E, p has the form

fjxjg ��
�P

f�i 7!7!ai;Xi j i 2 Ig
�

where I is a �nite index set, 2 �(C), x 2 C, and for all i 2 I, ai 2 A, �i 2 �(C), and

Xi 2 V. 2

Notice that a recursive speci�cation in TA-normal form represents a �nite timed

automaton. Notice that each variable represents a location and for each of them we

have de�ned only one resetting and one invariant. Moreover, the summation de�nes

the outgoing edges labelled with the respective guard and action. (See the proof of

Theorem 4.1.)

Theorem 4.5 Any regular speci�cation can be rewritten into a TA-normal form by

using foldings, unfoldings, renaming of clock variables and axioms in Table 2.

Proof. Let E be a regular speci�cation with root X0. Because of Lemma 4.3, we may

assume that E is already in one-step normal form. Let E 0 be the recursive speci�cation

de�ned as follows. For every process variableX de�ned in E with free variables fv(X) =

fx1; : : : ; xng, de�ne a process variableXx1;:::;xn. Obviously, such a relation is a bijection.

Now, for every X = p 2 E de�ne Xx1;:::;xn = p0 2 E 0 where p0 is the same as p but with

all process variables replaced by their respective images. De�ne the root of E 0 as the

image of X0. So, E
0 is the same as E with the names of the process variables changed.

We will need to consider renaming of clock variables. We do that in the expected

way, except that in the case of process variables, instead of propagating the renaming

in the de�nition of the variable, we will just rearrange the subindex. Thus,

[xi ay]Xx1;:::;xi;:::;xn
def
= Xx1;:::;y;:::;xn (3)

13

In such a case, we need to consider an extended set of process variables. Let C be the

set of clocks occurring in E (or similarly, in E 0). Let x =2 C be a new clock. Let V be

the original set of process variables de�ned in E. We de�ne

V0
def
= fXx1;:::;xn j X 2 V ^ n = #fv(X) ^ 8i 2 f1; : : : ; ng: xi 2 C [fxgg

From now on, we will denote with X;Xi; : : : the variables in V0. The necessity of the

new clock x will be clear in the following calculations, since sometimes we will need to

chose a fresh clock variable.

For each Xx1;:::;xn = p 2 E 0 we proceed by induction according to De�nition 4.2.

More precisely, we will show that p has the form

fjxjg ��
P
i2I �i 7!7!ai;Xi

(Here
P
i2I pi abbreviates

P
fpi j i 2 Ig.)

Case stop.

stop
R1,I1
= fjxjg tt�� stop

Case a;X.

a;X
G1
= tt7!7!a;X

R1,I1
= fjxjg tt�� (tt7!7!a;X)

Case �7!7!p. By induction hypothesis assume p = fjxjg ��
P
i2I �i 7!7!ai;Xi. Since x is

fresh, x =2 var(�). If I 6= ; we proceed as follows.

�7!7!p
G4,G3
= fjxjg �� �7!7!

P
i2I �i 7!7!ai;X i

G5,G2
= fjxjg ��

P
i2I � ^ �i 7!7!ai;Xi

If I = ;, then

�7!7!p
G4,G3
= fjxjg �� �7!7!stop

G0
= fjxjg �� stop

Case p + q. By induction hypothesis assume p = fjxjg ��
P
i2I �i 7!7!ai;Xi and q =

fjxjg 0��
P
j2J �

0
j 7!7!bj;Y j. If I 6= ; and J 6= ;, then

p+ q
IH
=

�
fjxjg ��

P
i2I �i 7!7!ai;X i

�
+
�
fjxjg 0��

P
j2J �

0
j 7!7!bj;Y j

�

R4,I4
= fjxjg

��P
i2I �� �i 7!7!ai;X i

�
+
�P

j2J
0
�� �0j 7!7!bj;Y j

��

A1,A2,A3
= fjxjg

��P
i2I(�� �i 7!7!ai;Xi) + (0�� �01 7!7!bj;Y 1)

�

+
�P

j2J(
0
�� �0j 7!7!bj;Y j) + (�� �1 7!7!ai;X1)

��

I5
= fjxjg

��P
i2I(_

0)�� ((^ �i)7!7!ai;X i + (0 ^ �01)7!7!bj;Y 1)
�

+
�P

j2J(_
0)�� ((�0j ^

0)7!7!bj;Y j + (^ �1)7!7!ai;X1)
��

I4
= fjxjg (_ 0)��

��P
i2I(^ �i)7!7!ai;Xi + (0 ^ �01)7!7!bj;Y 1

�

+
�P

j2J(�
0
j ^

0)7!7!bj;Y j + (^ �1)7!7!ai;X1

��

A1,A2,A3
= fjxjg (_ 0)��

��P
i2I(^ �i)7!7!ai;Xi

�

+
�P

j2J(�
0
j ^

0)7!7!bj;Y j

��

14

If I = ; and J 6= ;, then, for some a 2 A and Z 2 V0, we have

p+ q
IH
= (fjxjg �� stop) +

�
fjxjg 0��

P
j2J �

0
j 7!7!bj;Y j

�

Stp
=

�
fjxjg �� � 7!7!a;Z

�
+
�
fjxjg 0��

P
j2J �

0
j 7!7!bj;Y j

�

Now, we follows as before and we obtain

= fjxjg (_ 0)��
��
� 7!7!a;Z

�
+
�P

j2J(�
0
j ^

0)7!7!bj;Y j

��

Stp,A4
= fjxjg (_ 0)��

�P
j2J(�

0
j ^

0)7!7!bj;Y j

�

The other cases are similar.

Case fjCjg p. By induction hypothesis assume p = fjxjg ��
P
i2I �i 7!7!ai;X i. Then

fjCjg p
IH
= fjCjg fjxjg ��

P
i2I �i 7!7!ai;X i

R3
= fjC [fxgjg ��

P
i2I �i 7!7!ai;X i

R2
= fjxjg ([C ax])��

P
i2I([C ax]�i)7!7!ai; [C ax]X i

Case �� p. By induction hypothesis assume p = fjxjg 0��
P
i2I �i 7!7!ai;X i. Since x is

fresh, x =2 var(). Then

 �� p
IH
= �� fjxjg 0��

P
i2I �i 7!7!ai;X i

I3,I2
= fjxjg (^ 0)��

P
i2I �i 7!7!ai;X i

Now, the obtained recursive equations are in TA-normal form, i.e.,

Xx1;:::;xn = fjxjg 0��
X

i2I

�i 7!7!ai;X i (4)

However, we have been a bit sloppy since now we have a lot of process variables which

have not been de�ned. They come from Case fjCjg p when we had to rename clock

variables by applying axiom R2. We are going to de�ne those variables.

Suppose that the variable Xy1;:::;yn is unde�ned. We de�ne it as the appropriate

renaming of Xx1;:::;xn already de�ned in (4). First, notice that for each equation like (4)

we need n + 1 clock variables: n is the amount of free variables and the other one is

the clock resetting of x. Now, suppose that some of y1; : : : ; yn are x, so there must be a

clock y not in fy1; : : : ; yng. If none of y1; : : : ; yn is x, then we take y = x. Now, Xy1;:::;yn

is de�ned as follows

Xy1;:::;yn = fjyjg ([X aY] 0)��
P
i2I([X aY]�i)7!7!ai; [X aY]X i (5)

where [X aY] is the simultaneous substitution [x1 ay1; : : : ; xn ayn; x ay]. This last re-

cursive speci�cation that extends E 0 by de�ning all variables in V0 and has as a root

variable the image of X0, is equivalent to E and is in TA-normal form. 2

15

As an example of the proof of Theorem 4.5, we will translate the recursive equa-

tion (2) into TA-normal form. First we de�ne the new equation

Yx;y = (fjxjg �(x; y)7!7!a;Yx;y) + (fjyjg �0(x; y)7!7!b;Yx;y)

according to the �rst part of the proof. We consider a new clock z and hence V0 =

fYu;v j u; v 2 fx; y; zgg. Following the inductive deduction, we calculate

Yx;y = (fjxjg �(x; y)7!7!(fjzjg tt�� tt7!7!a;Yx;y))

+(fjyjg �0(x; y)7!7!(fjzjg tt�� tt7!7!b;Yx;y))

= (fjxjg (fjzjg tt�� �(x; y)7!7!a;Yx;y)) + (fjyjg (fjzjg tt�� �0(x; y)7!7!b;Yx;y))

= (fjzjg tt�� �(z; y)7!7!a;Yz;y) + (fjzjg tt�� �0(x; z)7!7!b;Yx;z))

= fjzjg tt�� (�(z; y)7!7!a;Yz;y + �0(x; z)7!7!b;Yx;z)

Now, according to (5), we can calculate, for instance

Yz;x = fjyjg tt�� (�(y; x)7!7!a;Yy;x + �0(z; y)7!7!b;Yz;y)

Notice that, in this case, variables Yx;x, Yy;y, and Yz;z are redundant, i.e., never reached

from the root. At this point the reader should not �nd di�culties to check that the

associated timed automaton is the one depicted in Figure 1. Locations are represented

by circles. � and @ are respectively written in the upper and lower part of the circle,

and edges are represented by the arrows.

Figure 1: Y = (fjxjg �(x; y)7!7!a;Y) + (fjyjg �0(x; y)7!7!b;Y)

z

x y

z

y

a; �(x; z)

a; �(x; y)

a; �(y; x)

a; �(y; z)

b; �0(z; x)

b; �0(z; y)

b; �0(y; z)

b; �0(x; z)

x

tt

tt tt

tt

tttt

b; �0(x; y)

a; �(z; y)

a; �(z; x)

b; �0(y; x)

Since any regular speci�cation can be rewritten into TA-normal form according to

Theorem 4.5, and any recursive speci�cation in TA-normal form de�nes trivially a �nite

timed automata, as it was already observed, we obtain the following corollary.

16

Corollary 4.5.1 Any regular recursive speci�cation can be proven bisimilar to a �nite

timed automaton.

As a second corollary we have that the same expressive power of the timed au-

tomata is preserved if we restrict to those automata that reset only one clock in each

location, i.e., #�(s) � 1. So, by Corollary 4.1.1, Theorem 4.5 and the observation after

De�nition 4.4, we have:

Corollary 4.5.2 Every �nite timed automaton T is bisimilar to some �nite timed au-

tomaton T 0 such that at most one clock is reset in every location of T 0.

A detail to remark is that regular speci�cations may need fewer clocks than �nite

timed automata in order to represent the same process. A clear example showing that

fact is the expression (1) given above. The corresponding timed automaton is depicted

in Figure 2. Notice that both clocks x and y are necessary.

Figure 2: X = (x < 3)�� fjxjg (x < 2)�� a;X

xy

x < 3
y < 2

y < 3
x < 2

a; tt

a; tt

However, we have the interesting result that, for going from a regular speci�cation

to a �nite timed automaton, we need to add at most one new clock. This follows from

the observation that in Lemma 4.3 we do not modify the set C and to prove Theorem 4.5

we only require to consider only one extra clock. Thus, we have proved the following.

Corollary 4.5.3 Let E be a regular recursive speci�cation with clocks in C. Then, there

exists a �nite timed automaton T with clocks in C 0 such that T can be proven bisimilar

to E and #C 0 � 1 + #C

Appendix: Calculating fv

We have claimed that the proofs in Section 4 are algorithms. In particular, the proof of

Theorem 4.5 needs to know which is the set of free variables of a given process variable.

Thus, for the sake of completeness, we give an algorithm to calculate the free variables

of a process variable.

The algorithm terminates since the function
P
i2I #�(Xi) strictly increases in each

iteration and it is bounded by the amount of clock variables times the amount of process

variables.

17

Figure 3: Algorithm for computing fv

input fXi = pi j i 2 Ig

output fv := �

for all i 2 I do

�(Xi) := ;

od

repeat

for all i 2 I do

prev(Xi) := �(Xi)

�(Xi) := prev(Xi) [fv�(pi)

od

until
^

i2I

prev(Xi) = �(Xi)

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, D. Dill, and H. Wong-Toi. Minimization of

timed transition systems. In W.R. Cleaveland, editor, Proceedings CONCUR 92, Stony

Brook, NY, USA, volume 630 of Lecture Notes in Computer Science, pages 340{354.

Springer-Verlag, 1992.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin, A. Oliv-

ero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical

Computer Science, 138:3{34, 1995.

[3] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,

126:183{235, 1994.

[4] E. Asarin, P. Caspi, and O. Maler. A Kleene theorem for timed automata, April 1996.

Unpublished Manuscript.

[5] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Formal Aspects of Com-

puting, 3(2):142{188, 1991.

[6] J.C.M. Baeten and J.A. Bergstra. Real time process algebra with in�nitesimals. In

A. Ponse, C. Verhoef, and S.F.M. van Vlijmen, editors, Algebra of Communicating Pro-

cesses, Utrecht, 1994, Workshops in Computing, pages 148{187. Springer-Verlag, 1995.

[7] J.C.M. Baeten and J.W. Klop, editors. Proceedings CONCUR 90, Amsterdam, volume

458 of Lecture Notes in Computer Science. Springer-Verlag, 1990.

18

[8] T. Bolognesi and F. Lucidi. Timed process algebras with urgent interactions and a unique

powerful binary operator. In de Bakker et al. [13], pages 124{148.

[9] P.R. D'Argenio and E. Brinksma. A calculus for timed automata. Technical Report

CTIT 96-13, Department of Computer Science, University of Twente, 1996.

[10] P.R. D'Argenio and E. Brinksma. A calculus for timed automata (Extended abstract).

In B. Jonsson and J. Parrow, editors, Proceedings of the 4th International School and

Symposium on Formal Techniques in Real Time and Fault Tolerant Systems, Uppsala,

Sweden, volume 1135 of Lecture Notes in Computer Science, pages 110{129. Springer-

Verlag, 1996.

[11] J. Davies et al. Timed CSP: Theory and practice. In de Bakker et al. [13], pages 640{675.

[12] C. Daws, A. Olivero, and S. Yovine. Verifying ET-LOTOS programs with kronos. In

Hogrefe and Leue [16], pages 207{222.

[13] J.W. de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg, editors. Proceedings

REX Workshop on Real-Time: Theory in Practice, Mook, The Netherlands, June 1991,

volume 600 of Lecture Notes in Computer Science. Springer-Verlag, 1992.

[14] W.J. Fokkink. Clocks, Trees and Stars in Process Theory. PhD thesis, University of

Amsterdam, December 1994.

[15] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for

real-time systems. Information and Computation, 111:193{244, 1994.

[16] D. Hogrefe and S. Leue, editors. Proceedings of the 7 th International Conference on

Formal Description Techniques, FORTE'94. North-Holland, 1994.

[17] A.S. Klusener. Models and axioms for a fragment of real time process algebra. PhD

thesis, Department of Mathematics and Computing Science, Eindhoven University of

Technology, December 1993.

[18] G. Leduc and L. L�eonard. A formal de�nition of time in LOTOS. In Revised draft on en-

hancements to LOTOS, 1994. Annex G of document ISO/IEC JTC1/SC21/WG1/Q48.6.

[19] R. Milner. Communication and Concurrency. Prentice-Hall International, Englewood

Cli�s, 1989.

[20] F. Moller and C. Tofts. A temporal calculus of communicating systems. In Baeten and

Klop [7], pages 401{415.

[21] X. Nicollin and J. Sifakis. The algebra of timed processes ATP: Theory and application.

Information and Computation, 114(1):131{178, 1994.

[22] X. Nicollin, J. Sifakis, and S. Yovine. Compiling real-time speci�cations into extended

automata. IEEE Transactions on Software Engineering, 18(9):794{804, September 1992.

[23] X. Nicollin, J. Sifakis, and S. Yovine. From ATP to timed graphs and hybrid systems.

Acta Informatica, 30(2):181{202, 1993.

19

[24] W. Yi. Real-time behaviour of asynchronous agents. In Baeten and Klop [7], pages

502{520.

[25] W. Yi. CCS + Time = an interleaving model for real time systems. In J. Leach Albert,

B. Monien, and M. Rodr��guez, editors, Proceedings 18th ICALP, Madrid, volume 510 of

Lecture Notes in Computer Science, pages 217{228. Springer-Verlag, 1991.

[26] W. Yi, P. Pettersson, and M. Daniels. Automatic veri�cation of real-time communicating

systems by constraint-solving. In Hogrefe and Leue [16], pages 223{238.

20

