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Regular pseudo-hyperovals and regular pseudo-ovals

in even characteristic

Joseph A. Thas

S. Rottey and G. Van de Voorde characterized regular pseudo-ovals of PG(3n−1, q),

q = 2h , h > 1 and n prime. Here an alternative proof is given and slightly stronger

results are obtained.

1. Introduction

Pseudo-ovals and pseudo-hyperovals were introduced in [Thas 1971]; see also

[Thas et al. 2006]. These objects play a key role in the theory of translation gen-

eralized quadrangles [Payne and Thas 2009; Thas et al. 2006]. Pseudo-hyperovals

only exist in even characteristic. A characterization of regular pseudo-ovals in odd

characteristic was given in [Casse et al. 1985]; see also [Thas et al. 2006]. In

[Rottey and Van de Voorde 2015] a characterization of regular pseudo-ovals and

regular pseudo-hyperovals in PG(3n−1, q), q even, q 6= 2 and n prime, is obtained.

Here a shorter proof is given and slightly stronger results are obtained.

2. Ovals and hyperovals

A k-arc in PG(2, q) is a set of k points, k ≥ 3, no three of which are collinear.

Any nonsingular conic of PG(2, q) is a (q + 1)-arc. If K is any k-arc of PG(2, q),

then k ≤ q + 2. For q odd k ≤ q + 1, and for q even a (q + 1)-arc extends to a

(q + 2)-arc; see [Hirschfeld 1998]. A (q + 1)-arc is an oval; a (q + 2)-arc, q even,

is a complete oval or hyperoval.

A famous theorem of B. Segre [1954] tells us that for q odd every oval of PG(2, q)

is a nonsingular conic. For q even, there are many ovals that are not conics

[Hirschfeld 1998]; also, there are many hyperovals that do not contain a conic

[loc. cit.].
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3. Generalized ovals and hyperovals

Arcs, ovals and hyperovals can be generalized by replacing their points with m-

dimensional subspaces to obtain generalized k-arcs, generalized ovals and general-

ized hyperovals. These objects have strong connections to generalized quadrangles,

projective planes, circle geometries, flocks and other structures. See [Payne and

Thas 2009; Thas et al. 2006; Thas 1971; 2011; Casse et al. 1985; Penttila and

Van de Voorde 2013]. Below, some basic definitions and results are formulated;

for an extensive study, many applications and open problems, see [Thas et al.

2006].

A generalized k-arc of PG(3n − 1, q), n ≥ 1, is a set of k (n − 1)-dimensional

subspaces of PG(3n − 1, q), every three of which generate PG(3n − 1, q). If q is

odd, then k ≤ qn + 1; if q is even, then k ≤ qn + 2. Every generalized (qn + 1)-arc

of PG(3n − 1, q), q even, can be extended to a generalized (qn + 2)-arc.

If O is a generalized (qn + 1)-arc in PG(3n − 1, q), then it is a pseudo-oval

or generalized oval or [n − 1]-oval of PG(3n − 1, q). For n = 1, a [0]-oval is

just an oval of PG(2, q). If O is a generalized (qn + 2)-arc in PG(3n − 1, q),

q even, then it is a pseudo-hyperoval or generalized hyperoval or [n − 1]-hyperoval

of PG(3n − 1, q). For n = 1, a [0]-hyperoval is just a hyperoval of PG(2, q).

If O= {π0, π1, . . . , πqn } is a pseudo-oval of PG(3n −1, q), then πi is contained

in exactly one (2n − 1)-dimensional subspace τi of PG(3n − 1, q) which has no

point in common with (π0 ∪π1 ∪· · ·∪πqn )\πi , with i = 0, 1, . . . , qn; the space τi

is the tangent space of O at πi . For q even the qn + 1 tangent spaces of O contain

a common (n − 1)-dimensional space πqn+1, the nucleus of O; also, O∪ {πqn+1} is

a pseudo-hyperoval of PG(3n − 1, q). For q odd, the tangent spaces of a pseudo-

oval O are the elements of a pseudo-oval O∗ in the dual space of PG(3n − 1, q).

4. Regular pseudo-ovals and pseudo-hyperovals

In the extension PG(3n − 1, qn) of PG(3n − 1, q), we consider n planes ξi ,

i = 1, 2, . . . , n, that are conjugate in the extension Fqn of Fq and which span

PG(3n − 1, qn). This means that they form an orbit of the Galois group corre-

sponding to this extension and span PG(3n − 1, qn).

In ξ1 consider an oval O1 = {x
(1)
0 , x

(1)
1 , . . . , x

(1)
qn }. Further, let x

(1)
i , x

(2)
i , . . . , x

(n)
i ,

with i = 0, 1, . . . , qn , be conjugate in Fqn over Fq . The points x
(1)
i , x

(2)
i , . . . , x

(n)
i

define an (n − 1)-dimensional subspace πi over Fq for i = 0, 1, . . . , qn . Then,

O = {π0, π1, . . . , πqn } is a generalized oval of PG(3n − 1, q). These objects are

the regular or elementary pseudo-ovals. If O1 is replaced by a hyperoval, and so

q is even, then the corresponding O is a regular or elementary pseudo-hyperoval.

All known pseudo-ovals and pseudo-hyperovals are regular.



REGULAR PSEUDO-HYPEROVALS AND PSEUDO-OVALS IN EVEN CHARACTERISTIC 79

5. Characterizations

Let O = {π0, π1, . . . , πqn } be a pseudo-oval in PG(3n − 1, q). The tangent space

of O at πi will be denoted by τi , with i = 0, 1, . . . , qn . Choose πi , i ∈{0, 1, . . . , qn},

and let PG(2n −1, q) ⊆ PG(3n −1, q) be skew to πi . Let τi ∩ PG(2n −1, q) = ηi

and 〈πi , π j 〉 ∩ PG(2n − 1, q) = η j , with j 6= i . Then {η0, η1, . . . , ηqn } = 1i is an

(n − 1)-spread of PG(2n − 1, q).

Now, let q be even and π the nucleus of O. Let PG(2n −1, q) ⊆ PG(3n −1, q)

be skew to π . If ζ j = PG(2n − 1, q) ∩ 〈π, π j 〉, then {ζ0, ζ1, . . . , ζqn } = 1 is an

(n − 1)-spread of PG(2n − 1, q).

Next, let q be odd. Choose τi , with i ∈ {0, 1, . . . , qn}. If τi ∩τ j = δ j , with j 6= i ,

then {δ0, δ1, . . . , δi−1, πi , δi+1, . . . , δqn } = 1⋆
i is an (n − 1)-spread of τi .

Finally, let q be even and let O = {π0, π1, . . . , πqn+1} be a pseudo-hyperoval in

PG(3n − 1, q). Choose πi , with i ∈ {0, 1, . . . , qn + 1}, and let PG(2n − 1, q) ⊆

PG(3n −1, q) be skew to πi . Let 〈πi , π j 〉∩ PG(2n −1, q) = η j , with j 6= i . Then

{η0, η1, . . . , ηi−1, ηi+1, . . . , ηqn+1} = 1i is an (n − 1)-spread of PG(2n − 1, q).

Theorem 5.1 [Casse et al. 1985]. Consider a pseudo-oval O with q odd. Then at

least one of the (n − 1)-spreads 10, 11, . . . ,1qn , 1⋆
0, 1

⋆
1, . . . ,1

⋆
qn is regular if

and only if they all are regular if and only if the pseudo-oval O is regular. In such

a case O is essentially a conic over Fqn .

Theorem 5.2 [Rottey and Van de Voorde 2015]. Consider a pseudo-oval O in

PG(3n − 1, q) with q = 2h , h > 1 and n prime. Then O is regular if and only if all

(n − 1)-spreads 10, 11, . . . ,1qn are regular.

6. Alternative proof and improvements

Theorem 6.1. Consider a pseudo-hyperoval O in PG(3n − 1, q), q = 2h, h > 1

and n prime. Then O is regular if and only if all (n − 1)-spreads 1i , with i =

0, 1, . . . , qn + 1, are regular.

Proof. If O is regular, then clearly all (n −1)-spreads 1i , with i = 0, 1, . . . , qn +1,

are regular.

Conversely, assume that the (n − 1)-spreads 10, 11, . . . ,1qn+1 are regular. Let

O = {π0, π1, . . . , πqn+1}, and let Ô = {β0, β1, . . . , βqn+1} be the dual of O, with

βi being the dual of πi .

Choose βi , i ∈ {0, 1, . . . , qn + 1}, and let βi ∩ β j = αi j , j 6= i . Then

{αi0, αi1, . . . , αi,i−1, αi,i+1, . . . , αi,qn+1} = Ŵi (1)

is an (n − 1)-spread of βi .

Now consider βi , β j , Ŵi , Ŵ j , αi j , j 6= i . In Ŵ j we next consider an (n − 1)-

regulus γ j containing αi j . The (n − 1)-regulus γ j is a set of maximal spaces



80 JOSEPH A. THAS

of a Segre variety S1;n−1; see Section 4.5 in [Hirschfeld and Thas 2016]. The

(n −1)-regulus γ j and the (n −1)-spread Ŵi of βi generate a regular (n −1)-spread

6(γ j , Ŵi ) of PG(3n −1, q). This can be seen as follows. The elements of Ŵi inter-

sect n lines U1, U2, . . . , Un which are conjugate in Fqn over Fq ; that is, they form an

orbit of the Galois group corresponding to this extension. Let αi j ∩ Ul = {ul}, with

l = 1, 2, . . . , n. Now consider the transversals T1, T2, . . . , Tn of the elements of γ j ,

with Tl containing ul . The n planes TlUl = θl intersect all elements of γ j and Ŵi .

The (n −1)-dimensional subspaces of PG(3n −1, q) intersecting θ1, θ2, . . . , θn are

the elements of the regular (n − 1)-spread 6(γ j , Ŵi ). The elements of this spread

correspond to the points of a plane PG(2, qn), with its lines corresponding to the

(2n − 1)-dimensional spaces containing at least two (and then qn + 1) elements

of the spread. Hence, the q + 2 elements of Ô containing an element of γ j , say

βi = βi1
, βi2

, . . . , βiq+1
, βiq+2

= β j , correspond to lines of PG(2, qn). Dualizing,

the elements πi1
, πi2

, . . . , πiq+2
correspond to points of PG(2, qn).

Now consider βi2
and γ j , and repeat the argument. Then there arise n planes θ ′

l

intersecting all elements of γ j and Ŵi2
. The (n − 1)-dimensional subspaces of

PG(3n − 1, q) intersecting θ ′
1, θ

′
2, . . . , θ

′
n are the elements of the regular (n − 1)-

spread 6(γ j , Ŵi2
). The elements of this spread correspond to the points of a plane

PG′(2, qn), and the lines of this plane correspond to the (2n − 1)-dimensional

spaces containing qn + 1 elements of the spread. Hence, βi1
, βi2

, . . . , βiq+2
cor-

respond to lines of PG′(2, qn). Dualizing, the elements πi1
, πi2

, . . . , πiq+2
corre-

spond to points of PG′(2, qn).

First, assume that {θ1, θ2, . . . , θn} ∩ {θ ′
1, θ

′
2, . . . , θ

′
n} = ∅. Consider πi1

, πi2
,

πi3
, πi4

. The planes of PG(3n − 1, qn) intersecting these four spaces constitute

a set M of maximal spaces of a Segre variety S2;n−1 [Burau 1961]. The planes

θ1, θ2, . . . , θn, θ
′
1, θ

′
2, . . . , θ

′
n are elements of M. It follows that (θ1 ∪ θ2 ∪ · · · ∪

θn) ∩ (θ ′
1 ∪ θ ′

2 ∪ · · · ∪ θ ′
n) = ∅.

Now consider any (n − 1)-dimensional subspace π ∈ {πi5
, πi6

, . . . , πiq+2
} of

PG(3n − 1, q). We will show that π is a maximal subspace of S2;n−1. Let

θi ∩ π j = {ti j }, θ ′
i ∩ π j = {t ′

i j }, i = 1, 2, . . . , n and j = i1, i2, . . . , iq+2. If

ti j1 ti j2 ∩ ti j3 ti j4 = {vi } and t ′
i j1

t ′
i j2

∩ t ′
i j3

t ′
i j4

= {v′
i }, with j1, j2, j3, j4 distinct, then

v1, v2, . . . , vn are conjugate and similarly v′
1, v

′
2, . . . , v

′
n are conjugate. Hence,

〈v1, v2, . . . , vn〉 = 〈v′
1, v

′
2, . . . , v

′
n〉 defines an (n − 1)-dimensional space over Fq

which intersects θ1, θ2, . . . , θ
′
n (over Fqn ). The points ti j , with j = i1, i2, . . . , iq+2,

generate a subplane of θi , and the points t ′
i j , with j = i1, i2, . . . , iq+2, generate

a subplane of θ ′
i , with i = 1, 2, . . . , n. Let q = 2h , and let F2v be the subfield

of Fqn = F2hn over which these subplanes are defined, so v | hn. Then v < hn as

otherwise the spreads of PG(3n −1, q) defined by θ1, θ2, . . . , θn and θ ′
1, θ

′
2, . . . , θ

′
n

coincide, which is clearly not possible. The (n − 1)-regulus γ j implies that the

subplanes contain a line over Fq , so h | v. As n is prime we have v = h, so 2v = q .
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Hence, the 2n subplanes are defined over Fq . It follows that the q + 2 elements

πi1
, πi2

, . . . , πiq+2
are maximal subspaces of the Segre variety S2;n−1. Hence, π

is a maximal subspace of S2;n−1. It follows that π1, π2, . . . , πq+2 are maximal

subspaces of S2;n−1.

Now consider a PG(2, q) intersecting πi1
, πi2

, πi3
, πi4

. The (n −1)-dimensional

spaces πi1
, πi2

, . . . , πiq+2
are maximal spaces of S2;n−1 intersecting PG(2, q); they

are maximal spaces of the Segre variety S2;n−1 ∩ PG(3n−1, q) of PG(3n−1, q).

Consider πi1
and also a PG(2n−1,q) skew to πi1

. If we project πi2
,πi3

, . . . ,πiq+2

from πi1
onto PG(2n −1, q), then by the foregoing paragraph the q +1 projections

constitute an (n − 1)-regulus of PG(2n − 1, q). We arrive at a similar conclusion

if we project from πis
, s any element of {1, 2, . . . , q + 2}. Equivalently, if s ∈

{1, 2, . . . , q +2}, then the spaces βis
∩βit

, with t = 1, 2, . . . , s −1, s +1, . . . , q +2,

form an (n − 1)-regulus of βis
.

Now assume that the condition {θ1, θ2, . . . , θn}∩{θ ′
1, θ

′
2, . . . , θ

′
n} =∅ is satisfied

for any choice of βi , β j , γ j , βi2
. In such a case every (n − 1)-regulus contained

in a spread Ŵs defines a Segre variety S2;n−1 over Fq . Let us define the following

design D. Points of D are the elements of Ô, a block of D is a set of q +2 elements

of Ô, containing at least one space of an (n − 1)-regulus contained in some regular

spread Ŵs , and incidence is containment. Then D is a 4 − (qn + 2, q + 2, 1) design.

By Kantor [1974] this implies that q = 2, a contradiction.

Consequently, we may assume that for at least one quadruple βi , β j , γ j , βi2
,

{θ1, θ2, . . . , θn} = {θ ′
1, θ

′
2, . . . , θ

′
n}. (2)

In such a case the qn +2 elements of Ô correspond to lines of the plane PG(2, qn).

It follows that O is regular. �

Theorem 6.2. Consider a pseudo-oval O in PG(3n − 1, q), with q = 2h, h > 1

and n prime. Then O is regular if and only if all (n − 1)-spreads 10, 11, . . . ,1qn

are regular.

Proof. If O is regular, then clearly all (n − 1)-spreads 10, 11, . . . ,1qn are regular.

Conversely, assume that the (n − 1)-spreads 10, 11, . . . ,1qn are regular. Let

O = {π0, π1, . . . , πqn }, let πqn+1 be the nucleus of O, let O = O∪ {πqn+1}, let Ô

be the dual of O, let
̂
O be the dual of O, and let βi be the dual of πi .

Choose βi , i ∈ {0, 1, . . . , qn + 1}, and let βi ∩ β j = αi j , j 6= i . Then

{αi0, αi1, . . . , αi,i−1, αi,i+1, . . . , αi,qn+1} = Ŵi (3)

is an (n − 1)-spread of βi .

Now consider βi , β j , Ŵi , Ŵ j , αi j , with j 6= i and i, j ∈ {0, 1, . . . , qn}. In Ŵ j we

next consider an (n −1)-regulus γ j containing αi j and α j,qn+1. The (n −1)-regulus
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γ j is a set of maximal spaces of a Segre variety S1;n−1. The (n − 1)-regulus γ j

and the (n − 1)-spread Ŵi of βi generate a regular (n − 1)-spread 6(γ j , Ŵi ) of

PG(3n − 1, q). Such as in the proof of Theorem 6.1 we introduce the elements

Ul, ul, Tl, θl , l = 1, 2, . . . , n, and the plane PG(2, qn). The q + 2 elements of
̂
O containing an element of γ j , say βi = βi1

, βi2
, . . . , βiq

, β j = βiq+1
, βqn+1, cor-

respond to lines of PG(2, qn). Dualizing, the elements πi1
, πi2

, . . . , πiq+1
, πqn+1

correspond to points of PG(2, qn).

Now consider βi2
and γ j , and repeat the argument. Then there arise n planes θ ′

l

of PG(3n − 1, qn) intersecting all elements of γ j and Ŵi2
, and an (n − 1)-spread

6(γ j , Ŵi2
) of PG(3n − 1, q). The elements of this spread correspond to the points

of a plane PG′(2, qn). The spaces βi1
, βi2

, . . . , βiq+1
, βqn+1 correspond to lines

of PG′(2, qn). Dualizing, the elements πi1
, πi2

, . . . , πiq+1
, πqn+1 correspond to

points of PG′(2, qn).

First, assume {θ1, θ2, . . . , θn} ∩ {θ ′
1, θ

′
2, . . . , θ

′
n} = ∅. Consider πi1

, πi2
, πi3

, πi4
.

The planes of PG(3n − 1, qn) intersecting these four spaces constitute a set M of

maximal spaces of a Segre variety S2;n−1. The planes θ1, θ2, . . . , θn, θ
′
1, θ

′
2, . . . , θ

′
n

are elements of M. It follows that (θ1 ∪ θ2 ∪ · · · ∪ θn) ∩ (θ ′
1 ∪ θ ′

2 ∪ · · · ∪ θ ′
n) = ∅.

Let π ∈ {πi5
, πi6

, . . . , πiq+1
, πqn+1}. As in the proof of Theorem 6.1 one shows

that π is a maximal subspace of S2;n−1. It follows that πi1
, πi2

, . . . , πiq+1
, πqn+1

are maximal subspaces of S2;n−1.

Next consider a PG(2,q) that intersects πi1
,πi2

,πi3
,πi4

. The (n−1)-dimensional

spaces πi1
, πi2

, . . . , πiq+1
, πqn+1 are maximal spaces of S2;n−1 which intersect the

plane PG(2,q); they are maximal spaces of the Segre variety S2;n−1∩ PG(3n−1,q)

of PG(3n − 1, q). As in the proof of Theorem 6.1 it follows that the spaces

βqn+1 ∩ βit
, with t = 1, 2, . . . , q + 1, form an (n − 1)-regulus of βqn+1.

Now assume that the condition {θ1, θ2, . . . , θn}∩{θ ′
1, θ

′
2, . . . , θ

′
n} =∅ is satisfied

for any choice of βi , β j , γ j , βi2
, j 6= i and i, j ∈ {0, 1, . . . , qn}. Let α1, α2, α3 be

distinct elements of Ŵqn+1. Then βi , β j , γ j , βi2
can be chosen in such a way that

α1 ∈ βi , α2 ∈ β j , α2 ∈ γ j and βi2
∩ β j ∈ γ j with α3 ∈ βi2

. Hence, the (n − 1)-

regulus in βqn+1 defined by α1, α2, α3 is a subset of Ŵqn+1. From [Hirschfeld and

Thas 2016, Theorem 4.123] now follows that the (n − 1)-spread Ŵqn+1 of βqn+1 is

regular. By Theorem 6.1 the pseudo-hyperoval O is regular, and so O is regular.

But in such a case the condition {θ1, θ2, . . . , θn} ∩ {θ ′
1, θ

′
2, . . . , θ

′
n} = ∅ is never

satisfied, a contradiction.

Consequently, we may assume that for at least one quadruple βi , β j , γ j , βi2
we

have {θ1, θ2, . . . , θn} = {θ ′
1, θ

′
2, . . . , θ

′
n}. In such a case the qn + 2 elements of

̂
O

correspond to lines of the plane PG(2, qn). It follows that O, and hence also O, is

regular. �

Theorem 6.3. A pseudo-hyperoval O in PG(3n −1, q), q = 2h , h > 1 and n prime,

is regular if and only if at least qn−1 elements of {10,11, . . . ,1qn+1} are regular.
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Proof. If O is regular, then clearly all (n −1)-spreads 1i , with i = 0, 1, . . . , qn +1,

are regular.

Conversely, assume that ρ, with ρ ≥ qn − 1, elements of {10, 11, . . . ,1qn+1}

are regular.

If ρ = qn + 2, then O is regular by Theorem 6.1; if ρ = qn + 1, then O is regular

by Theorem 6.2.

Now assume that ρ = qn and that 12, 13, . . . ,1qn+1 are regular. We have to

prove that 10 is regular. We use the arguments in the proof of Theorem 6.2. If one

of the elements α1, α2, α3, say α1, in the proof of Theorem 6.2 is β0 ∩β1, then let

γ j contain β j ∩βi , β j ∩β0, β j ∩β1 and let βi2
6= β1, with i, j ∈ {2, 3, . . . , qn + 1}.

Now see the proof of the preceding theorem.

Finally, assume that ρ = qn −1 and that 13, 14, . . . ,1qn+1 are regular. We have

to prove that 10 is regular. We use the arguments in the proof of Theorem 6.2. If

exactly one of the elements α1, α2, α3, say α1, in the proof of Theorem 6.2 is

β0 ∩ β1 or β0 ∩ β2, then proceed as in the preceding paragraph with βi2
6= β1, β2.

Now assume that two of the elements α1, α2, α3, say α1 and α2, are β0 ∩ β1 and

β0 ∩β2. Now consider all (n−1)-reguli in 10 containing α1 and α3, and assume, by

way of contradiction, that no one of these (n − 1)-reguli contains α2. The number

of these (n −1)-reguli is (qn −2)/(q −1), and so q = 2, a contradiction. It follows

that the (n − 1)-regulus in β0 defined by α1, α2, α3 is contained in 10. Now we

proceed as in the proof of Theorem 6.2. �

7. Final remarks

The cases q = 2 and n not prime. For q = 2 or n not prime other arguments have

to be developed.

Improvement of Theorem 6.3. Let D = (P, B, ∈) be an incidence structure satis-

fying the following conditions:

(i) |P| = qn + 1, q even, q 6= 2,

(ii) the elements of B are subsets of size q + 1 of P and every three distinct

elements of P are contained in at most one element of B, and

(iii) Q is a subset of size δ of P such that any triple of elements in P with at most

one element in Q is contained in exactly one element of B.

Assumption. Any such D is a 3 − (qn + 1, q + 1, 1) design whenever δ ≤ δ0 with

δ0 ≤ q − 2.

Theorem 7.1. Consider a pseudo-hyperoval O in PG(3n − 1, q), q = 2h, h > 1

and n prime. Then O is regular if and only if at least qn + 1 − δ0 elements of

{10, 11, . . . ,1qn+1} are regular.

Proof. Similar to the proof of Theorem 6.3. �
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