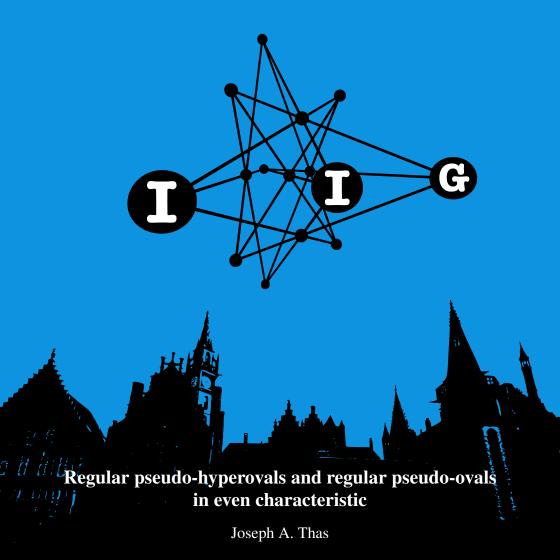
Innovations in Incidence Geometry

Algebraic, Topological and Combinatorial



Regular pseudo-hyperovals and regular pseudo-ovals in even characteristic

Joseph A. Thas

S. Rottey and G. Van de Voorde characterized regular pseudo-ovals of PG(3n-1, q), $q = 2^h$, h > 1 and n prime. Here an alternative proof is given and slightly stronger results are obtained.

1. Introduction

Pseudo-ovals and pseudo-hyperovals were introduced in [Thas 1971]; see also [Thas et al. 2006]. These objects play a key role in the theory of translation generalized quadrangles [Payne and Thas 2009; Thas et al. 2006]. Pseudo-hyperovals only exist in even characteristic. A characterization of regular pseudo-ovals in odd characteristic was given in [Casse et al. 1985]; see also [Thas et al. 2006]. In [Rottey and Van de Voorde 2015] a characterization of regular pseudo-ovals and regular pseudo-hyperovals in PG(3n-1,q), q even, $q \neq 2$ and n prime, is obtained. Here a shorter proof is given and slightly stronger results are obtained.

2. Ovals and hyperovals

A k-arc in PG(2, q) is a set of k points, $k \ge 3$, no three of which are collinear. Any nonsingular conic of PG(2, q) is a (q + 1)-arc. If $\mathcal K$ is any k-arc of PG(2, q), then $k \le q + 2$. For q odd $k \le q + 1$, and for q even a (q + 1)-arc extends to a (q + 2)-arc; see [Hirschfeld 1998]. A (q + 1)-arc is an oval; a (q + 2)-arc, q even, is a $complete \ oval$ or hyperoval.

A famous theorem of B. Segre [1954] tells us that for q odd every oval of PG(2, q) is a nonsingular conic. For q even, there are many ovals that are not conics [Hirschfeld 1998]; also, there are many hyperovals that do not contain a conic [loc. cit.].

MSC2010: 05B25, 51E20, 51E21, 51E23.

Keywords: pseudo-hyperovals, pseudo-ovals, generalized arcs.

3. Generalized ovals and hyperovals

Arcs, ovals and hyperovals can be generalized by replacing their points with *m*-dimensional subspaces to obtain generalized *k*-arcs, generalized ovals and generalized hyperovals. These objects have strong connections to generalized quadrangles, projective planes, circle geometries, flocks and other structures. See [Payne and Thas 2009; Thas et al. 2006; Thas 1971; 2011; Casse et al. 1985; Penttila and Van de Voorde 2013]. Below, some basic definitions and results are formulated; for an extensive study, many applications and open problems, see [Thas et al. 2006].

A generalized k-arc of PG(3n-1,q), $n \ge 1$, is a set of k (n-1)-dimensional subspaces of PG(3n-1,q), every three of which generate PG(3n-1,q). If q is odd, then $k \le q^n + 1$; if q is even, then $k \le q^n + 2$. Every generalized $(q^n + 1)$ -arc of PG(3n-1,q), q even, can be extended to a generalized $(q^n + 2)$ -arc.

If \mathcal{O} is a generalized $(q^n + 1)$ -arc in PG(3n - 1, q), then it is a *pseudo-oval* or *generalized oval* or [n - 1]-oval of PG(3n - 1, q). For n = 1, a [0]-oval is just an oval of PG(2, q). If \mathcal{O} is a generalized $(q^n + 2)$ -arc in PG(3n - 1, q), q even, then it is a *pseudo-hyperoval* or *generalized hyperoval* or [n - 1]-hyperoval of PG(3n - 1, q). For n = 1, a [0]-hyperoval is just a hyperoval of PG(2, q).

If $\mathcal{O} = \{\pi_0, \pi_1, \dots, \pi_{q^n}\}$ is a pseudo-oval of $\mathbf{PG}(3n-1,q)$, then π_i is contained in exactly one (2n-1)-dimensional subspace τ_i of $\mathbf{PG}(3n-1,q)$ which has no point in common with $(\pi_0 \cup \pi_1 \cup \dots \cup \pi_{q^n}) \setminus \pi_i$, with $i=0,1,\dots,q^n$; the space τ_i is the *tangent space* of \mathcal{O} at π_i . For q even the q^n+1 tangent spaces of \mathcal{O} contain a common (n-1)-dimensional space π_{q^n+1} , the *nucleus* of \mathcal{O} ; also, $\mathcal{O} \cup \{\pi_{q^n+1}\}$ is a pseudo-hyperoval of $\mathbf{PG}(3n-1,q)$. For q odd, the tangent spaces of a pseudo-oval \mathcal{O} are the elements of a pseudo-oval \mathcal{O}^* in the dual space of $\mathbf{PG}(3n-1,q)$.

4. Regular pseudo-ovals and pseudo-hyperovals

In the extension $PG(3n-1,q^n)$ of PG(3n-1,q), we consider n planes ξ_i , $i=1,2,\ldots,n$, that are conjugate in the extension \mathbb{F}_{q^n} of \mathbb{F}_q and which span $PG(3n-1,q^n)$. This means that they form an orbit of the Galois group corresponding to this extension and span $PG(3n-1,q^n)$.

In ξ_1 consider an oval $\mathcal{O}_1 = \{x_0^{(1)}, x_1^{(1)}, \dots, x_{q^n}^{(1)}\}$. Further, let $x_i^{(1)}, x_i^{(2)}, \dots, x_i^{(n)}$, with $i = 0, 1, \dots, q^n$, be conjugate in \mathbb{F}_{q^n} over \mathbb{F}_q . The points $x_i^{(1)}, x_i^{(2)}, \dots, x_i^{(n)}$ define an (n-1)-dimensional subspace π_i over \mathbb{F}_q for $i = 0, 1, \dots, q^n$. Then, $\mathcal{O} = \{\pi_0, \pi_1, \dots, \pi_{q^n}\}$ is a generalized oval of $\mathbf{PG}(3n-1,q)$. These objects are the *regular* or *elementary pseudo-ovals*. If \mathcal{O}_1 is replaced by a hyperoval, and so q is even, then the corresponding \mathcal{O} is a *regular* or *elementary pseudo-hyperoval*.

All known pseudo-ovals and pseudo-hyperovals are regular.

5. Characterizations

Let $\mathcal{O} = \{\pi_0, \pi_1, \dots, \pi_{q^n}\}$ be a pseudo-oval in $\mathbf{PG}(3n-1,q)$. The tangent space of \mathcal{O} at π_i will be denoted by τ_i , with $i=0,1,\dots,q^n$. Choose π_i , $i\in\{0,1,\dots,q^n\}$, and let $\mathbf{PG}(2n-1,q)\subseteq \mathbf{PG}(3n-1,q)$ be skew to π_i . Let $\tau_i\cap\mathbf{PG}(2n-1,q)=\eta_i$ and $\langle \pi_i, \pi_j \rangle \cap \mathbf{PG}(2n-1,q)=\eta_j$, with $j\neq i$. Then $\{\eta_0, \eta_1, \dots, \eta_{q^n}\}=\Delta_i$ is an (n-1)-spread of $\mathbf{PG}(2n-1,q)$.

Now, let q be even and π the nucleus of \emptyset . Let $PG(2n-1,q) \subseteq PG(3n-1,q)$ be skew to π . If $\zeta_j = PG(2n-1,q) \cap \langle \pi, \pi_j \rangle$, then $\{\zeta_0, \zeta_1, \dots, \zeta_{q^n}\} = \Delta$ is an (n-1)-spread of PG(2n-1,q).

Next, let q be odd. Choose τ_i , with $i \in \{0, 1, ..., q^n\}$. If $\tau_i \cap \tau_j = \delta_j$, with $j \neq i$, then $\{\delta_0, \delta_1, ..., \delta_{i-1}, \pi_i, \delta_{i+1}, ..., \delta_{q^n}\} = \Delta_i^*$ is an (n-1)-spread of τ_i .

Finally, let q be even and let $0 = \{\pi_0, \pi_1, \dots, \pi_{q^n+1}\}$ be a pseudo-hyperoval in PG(3n-1,q). Choose π_i , with $i \in \{0, 1, \dots, q^n+1\}$, and let $PG(2n-1,q) \subseteq PG(3n-1,q)$ be skew to π_i . Let $\langle \pi_i, \pi_j \rangle \cap PG(2n-1,q) = \eta_j$, with $j \neq i$. Then $\{\eta_0, \eta_1, \dots, \eta_{i-1}, \eta_{i+1}, \dots, \eta_{q^n+1}\} = \Delta_i$ is an (n-1)-spread of PG(2n-1,q).

Theorem 5.1 [Casse et al. 1985]. Consider a pseudo-oval \mathfrak{O} with q odd. Then at least one of the (n-1)-spreads $\Delta_0, \Delta_1, \ldots, \Delta_{q^n}, \Delta_0^{\star}, \Delta_1^{\star}, \ldots, \Delta_{q^n}^{\star}$ is regular if and only if they all are regular if and only if the pseudo-oval \mathfrak{O} is regular. In such a case \mathfrak{O} is essentially a conic over \mathbb{F}_{q^n} .

Theorem 5.2 [Rottey and Van de Voorde 2015]. *Consider a pseudo-oval* \odot *in* PG(3n-1,q) *with* $q=2^h$, h>1 *and n prime. Then* \odot *is regular if and only if all* (n-1)-spreads $\Delta_0, \Delta_1, \ldots, \Delta_{q^n}$ are regular.

6. Alternative proof and improvements

Theorem 6.1. Consider a pseudo-hyperoval 0 in PG(3n-1,q), $q=2^h$, h>1 and n prime. Then 0 is regular if and only if all (n-1)-spreads Δ_i , with $i=0,1,\ldots,q^n+1$, are regular.

Proof. If $\mathbb O$ is regular, then clearly all (n-1)-spreads Δ_i , with $i=0,1,\ldots,q^n+1$, are regular.

Conversely, assume that the (n-1)-spreads $\Delta_0, \Delta_1, \ldots, \Delta_{q^n+1}$ are regular. Let $\mathbb{O} = \{\pi_0, \pi_1, \ldots, \pi_{q^n+1}\}$, and let $\widehat{\mathbb{O}} = \{\beta_0, \beta_1, \ldots, \beta_{q^n+1}\}$ be the dual of \mathbb{O} , with β_i being the dual of π_i .

Choose β_i , $i \in \{0, 1, ..., q^n + 1\}$, and let $\beta_i \cap \beta_j = \alpha_{ij}$, $j \neq i$. Then

$$\{\alpha_{i0}, \alpha_{i1}, \dots, \alpha_{i,i-1}, \alpha_{i,i+1}, \dots, \alpha_{i,q^n+1}\} = \Gamma_i$$
 (1)

is an (n-1)-spread of β_i .

Now consider β_i , β_j , Γ_i , Γ_j , α_{ij} , $j \neq i$. In Γ_j we next consider an (n-1)-regulus γ_j containing α_{ij} . The (n-1)-regulus γ_j is a set of maximal spaces

of a Segre variety $S_{1;n-1}$; see Section 4.5 in [Hirschfeld and Thas 2016]. The (n-1)-regulus γ_j and the (n-1)-spread Γ_i of β_i generate a regular (n-1)-spread $\Sigma(\gamma_j,\Gamma_i)$ of PG(3n-1,q). This can be seen as follows. The elements of Γ_i intersect n lines U_1,U_2,\ldots,U_n which are conjugate in \mathbb{F}_{q^n} over \mathbb{F}_q ; that is, they form an orbit of the Galois group corresponding to this extension. Let $\alpha_{ij} \cap U_l = \{u_l\}$, with $l=1,2,\ldots,n$. Now consider the transversals T_1,T_2,\ldots,T_n of the elements of γ_j , with T_l containing u_l . The n planes $T_lU_l=\theta_l$ intersect all elements of γ_j and γ_i . The (n-1)-dimensional subspaces of PG(3n-1,q) intersecting γ_j and γ_i are the elements of the regular γ_j and γ_j are the elements of the regular γ_j and γ_j are the elements of the regular γ_j and γ_j are the elements of the regular γ_j and γ_j are the elements of the regular γ_j and γ_j are the elements of the regular γ_j and γ_j are the elements of the regular γ_j and γ_j are the elements of the regular γ_j and γ_j are the elements of the regular γ_j and γ_j are the elements of the regular γ_j and γ_j are the elements of the regular γ_j and γ_j are the elements of the regular γ_j and γ_j are the elements of the regular γ_j are the elements of the regular γ_j and γ_j are the elements of the regular γ_j and γ_j are the elements of the regular γ_j are the elements of the regular γ_j and γ_j are the elements of the regular γ_j and γ_j are the elements of the regular γ_j and γ_j are the elements of the regular γ_j and γ_j are the elements of the regular γ_j and γ_j are the elements of the regular γ_j and γ_j are the elements γ_j are th

Now consider β_{i_2} and γ_j , and repeat the argument. Then there arise n planes θ'_l intersecting all elements of γ_j and Γ_{i_2} . The (n-1)-dimensional subspaces of PG(3n-1,q) intersecting $\theta'_1,\theta'_2,\ldots,\theta'_n$ are the elements of the regular (n-1)-spread $\Sigma(\gamma_j,\Gamma_{i_2})$. The elements of this spread correspond to the points of a plane $PG'(2,q^n)$, and the lines of this plane correspond to the (2n-1)-dimensional spaces containing q^n+1 elements of the spread. Hence, $\beta_{i_1},\beta_{i_2},\ldots,\beta_{i_{q+2}}$ correspond to lines of $PG'(2,q^n)$. Dualizing, the elements $\pi_{i_1},\pi_{i_2},\ldots,\pi_{i_{q+2}}$ correspond to points of $PG'(2,q^n)$.

First, assume that $\{\theta_1, \theta_2, \dots, \theta_n\} \cap \{\theta'_1, \theta'_2, \dots, \theta'_n\} = \emptyset$. Consider $\pi_{i_1}, \pi_{i_2}, \pi_{i_3}, \pi_{i_4}$. The planes of $\mathbf{PG}(3n-1, q^n)$ intersecting these four spaces constitute a set \mathbb{M} of maximal spaces of a Segre variety $S_{2;n-1}$ [Burau 1961]. The planes $\theta_1, \theta_2, \dots, \theta_n, \theta'_1, \theta'_2, \dots, \theta'_n$ are elements of \mathbb{M} . It follows that $(\theta_1 \cup \theta_2 \cup \dots \cup \theta_n) \cap (\theta'_1 \cup \theta'_2 \cup \dots \cup \theta'_n) = \emptyset$.

Now consider any (n-1)-dimensional subspace $\pi \in \{\pi_{i_5}, \pi_{i_6}, \ldots, \pi_{i_{q+2}}\}$ of PG(3n-1,q). We will show that π is a maximal subspace of $S_{2;n-1}$. Let $\theta_i \cap \pi_j = \{t_{ij}\}, \ \theta_i' \cap \pi_j = \{t_{ij}'\}, \ i=1,2,\ldots,n \ \text{and} \ j=i_1,i_2,\ldots,i_{q+2}.$ If $t_{ij_1}t_{ij_2} \cap t_{ij_3}t_{ij_4} = \{v_i\}$ and $t_{ij_1}'t_{ij_2}' \cap t_{ij_3}'t_{ij_4}' = \{v_i'\}$, with j_1, j_2, j_3, j_4 distinct, then v_1, v_2, \ldots, v_n are conjugate and similarly v_1', v_2', \ldots, v_n' are conjugate. Hence, $\langle v_1, v_2, \ldots, v_n \rangle = \langle v_1', v_2', \ldots, v_n' \rangle$ defines an (n-1)-dimensional space over \mathbb{F}_q which intersects $\theta_1, \theta_2, \ldots, \theta_n'$ (over \mathbb{F}_{q^n}). The points t_{ij} , with $j=i_1, i_2, \ldots, i_{q+2}$, generate a subplane of θ_i , and the points t_{ij}' , with $j=i_1, i_2, \ldots, i_{q+2}$, generate a subplane of θ_i' , with $i=1,2,\ldots,n$. Let $q=2^h$, and let \mathbb{F}_{2^v} be the subfield of $\mathbb{F}_{q^n}=\mathbb{F}_{2^{hn}}$ over which these subplanes are defined, so $v\mid hn$. Then v< hn as otherwise the spreads of PG(3n-1,q) defined by $\theta_1,\theta_2,\ldots,\theta_n$ and $\theta_1',\theta_2',\ldots,\theta_n'$ coincide, which is clearly not possible. The (n-1)-regulus γ_j implies that the subplanes contain a line over \mathbb{F}_q , so $h\mid v$. As n is prime we have v=h, so $2^v=q$.

Hence, the 2n subplanes are defined over \mathbb{F}_q . It follows that the q+2 elements $\pi_{i_1}, \pi_{i_2}, \ldots, \pi_{i_{q+2}}$ are maximal subspaces of the Segre variety $\$_{2;n-1}$. Hence, π is a maximal subspace of $\$_{2;n-1}$. It follows that $\pi_1, \pi_2, \ldots, \pi_{q+2}$ are maximal subspaces of $\$_{2;n-1}$.

Now consider a PG(2, q) intersecting $\pi_{i_1}, \pi_{i_2}, \pi_{i_3}, \pi_{i_4}$. The (n-1)-dimensional spaces $\pi_{i_1}, \pi_{i_2}, \ldots, \pi_{i_{q+2}}$ are maximal spaces of $S_{2;n-1}$ intersecting PG(2, q); they are maximal spaces of the Segre variety $S_{2;n-1} \cap PG(3n-1, q)$ of PG(3n-1, q).

Consider π_{i_1} and also a PG(2n-1,q) skew to π_{i_1} . If we project $\pi_{i_2}, \pi_{i_3}, \ldots, \pi_{i_{q+2}}$ from π_{i_1} onto PG(2n-1,q), then by the foregoing paragraph the q+1 projections constitute an (n-1)-regulus of PG(2n-1,q). We arrive at a similar conclusion if we project from π_{i_s} , s any element of $\{1,2,\ldots,q+2\}$. Equivalently, if $s \in \{1,2,\ldots,q+2\}$, then the spaces $\beta_{i_s} \cap \beta_{i_t}$, with $t=1,2,\ldots,s-1,s+1,\ldots,q+2$, form an (n-1)-regulus of β_{i_s} .

Now assume that the condition $\{\theta_1, \theta_2, \dots, \theta_n\} \cap \{\theta'_1, \theta'_2, \dots, \theta'_n\} = \emptyset$ is satisfied for any choice of β_i , β_j , γ_j , β_{i_2} . In such a case every (n-1)-regulus contained in a spread Γ_s defines a Segre variety $S_{2;n-1}$ over \mathbb{F}_q . Let us define the following design \mathbb{D} . Points of \mathbb{D} are the elements of $\widehat{\mathbb{O}}$, a block of \mathbb{D} is a set of q+2 elements of $\widehat{\mathbb{O}}$, containing at least one space of an (n-1)-regulus contained in some regular spread Γ_s , and incidence is containment. Then \mathbb{D} is a $4-(q^n+2,q+2,1)$ design. By Kantor [1974] this implies that q=2, a contradiction.

Consequently, we may assume that for at least one quadruple β_i , β_j , γ_i , β_{i_2} ,

$$\{\theta_1, \theta_2, \dots, \theta_n\} = \{\theta'_1, \theta'_2, \dots, \theta'_n\}. \tag{2}$$

In such a case the $q^n + 2$ elements of $\widehat{\mathbb{O}}$ correspond to lines of the plane $PG(2, q^n)$. It follows that \mathbb{O} is regular.

Theorem 6.2. Consider a pseudo-oval \mathbb{O} in PG(3n-1,q), with $q=2^h, h>1$ and n prime. Then \mathbb{O} is regular if and only if all (n-1)-spreads $\Delta_0, \Delta_1, \ldots, \Delta_{q^n}$ are regular.

Proof. If O is regular, then clearly all (n-1)-spreads $\Delta_0, \Delta_1, \ldots, \Delta_{q^n}$ are regular. Conversely, assume that the (n-1)-spreads $\Delta_0, \Delta_1, \ldots, \Delta_{q^n}$ are regular. Let $O = \{\pi_0, \pi_1, \ldots, \pi_{q^n}\}$, let π_{q^n+1} be the nucleus of O, let $\overline{O} = O \cup \{\pi_{q^n+1}\}$, let \widehat{O} be the dual of O, let \overline{O} be the dual of \overline{O} , and let β_i be the dual of π_i .

Choose β_i , $i \in \{0, 1, ..., q^n + 1\}$, and let $\beta_i \cap \beta_j = \alpha_{ij}$, $j \neq i$. Then

$$\{\alpha_{i0}, \alpha_{i1}, \dots, \alpha_{i,i-1}, \alpha_{i,i+1}, \dots, \alpha_{i,q^n+1}\} = \Gamma_i$$
 (3)

is an (n-1)-spread of β_i .

Now consider β_i , β_j , Γ_i , Γ_j , α_{ij} , with $j \neq i$ and $i, j \in \{0, 1, ..., q^n\}$. In Γ_j we next consider an (n-1)-regulus γ_j containing α_{ij} and α_{j,q^n+1} . The (n-1)-regulus

 γ_j is a set of maximal spaces of a Segre variety $S_{1;n-1}$. The (n-1)-regulus γ_j and the (n-1)-spread Γ_i of β_i generate a regular (n-1)-spread $\Sigma(\gamma_j, \Gamma_i)$ of PG(3n-1,q). Such as in the proof of Theorem 6.1 we introduce the elements $U_l, u_l, T_l, \theta_l, l=1,2,\ldots,n$, and the plane $PG(2,q^n)$. The q+2 elements of $\overline{\mathbb{O}}$ containing an element of γ_j , say $\beta_i=\beta_{i_1},\beta_{i_2},\ldots,\beta_{i_q},\beta_j=\beta_{i_{q+1}},\beta_{q^n+1}$, correspond to lines of $PG(2,q^n)$. Dualizing, the elements $\pi_{i_1},\pi_{i_2},\ldots,\pi_{i_{q+1}},\pi_{q^n+1}$ correspond to points of $PG(2,q^n)$.

Now consider β_{i_2} and γ_j , and repeat the argument. Then there arise n planes θ'_l of $PG(3n-1,q^n)$ intersecting all elements of γ_j and Γ_{i_2} , and an (n-1)-spread $\Sigma(\gamma_j,\Gamma_{i_2})$ of PG(3n-1,q). The elements of this spread correspond to the points of a plane $PG'(2,q^n)$. The spaces $\beta_{i_1},\beta_{i_2},\ldots,\beta_{i_{q+1}},\beta_{q^n+1}$ correspond to lines of $PG'(2,q^n)$. Dualizing, the elements $\pi_{i_1},\pi_{i_2},\ldots,\pi_{i_{q+1}},\pi_{q^n+1}$ correspond to points of $PG'(2,q^n)$.

First, assume $\{\theta_1, \theta_2, \dots, \theta_n\} \cap \{\theta'_1, \theta'_2, \dots, \theta'_n\} = \varnothing$. Consider $\pi_{i_1}, \pi_{i_2}, \pi_{i_3}, \pi_{i_4}$. The planes of $\mathbf{PG}(3n-1,q^n)$ intersecting these four spaces constitute a set \mathfrak{M} of maximal spaces of a Segre variety $S_{2;n-1}$. The planes $\theta_1, \theta_2, \dots, \theta_n, \theta'_1, \theta'_2, \dots, \theta'_n$ are elements of \mathfrak{M} . It follows that $(\theta_1 \cup \theta_2 \cup \dots \cup \theta_n) \cap (\theta'_1 \cup \theta'_2 \cup \dots \cup \theta'_n) = \varnothing$. Let $\pi \in \{\pi_{i_5}, \pi_{i_6}, \dots, \pi_{i_{q+1}}, \pi_{q^n+1}\}$. As in the proof of Theorem 6.1 one shows that π is a maximal subspace of $S_{2;n-1}$. It follows that $\pi_{i_1}, \pi_{i_2}, \dots, \pi_{i_{q+1}}, \pi_{q^n+1}$ are maximal subspaces of $S_{2;n-1}$.

Next consider a PG(2,q) that intersects $\pi_{i_1}, \pi_{i_2}, \pi_{i_3}, \pi_{i_4}$. The (n-1)-dimensional spaces $\pi_{i_1}, \pi_{i_2}, \ldots, \pi_{i_{q+1}}, \pi_{q^n+1}$ are maximal spaces of $S_{2;n-1}$ which intersect the plane PG(2,q); they are maximal spaces of the Segre variety $S_{2;n-1} \cap PG(3n-1,q)$ of PG(3n-1,q). As in the proof of Theorem 6.1 it follows that the spaces $\beta_{q^n+1} \cap \beta_{i_t}$, with $t=1,2,\ldots,q+1$, form an (n-1)-regulus of β_{q^n+1} .

Now assume that the condition $\{\theta_1, \theta_2, \dots, \theta_n\} \cap \{\theta'_1, \theta'_2, \dots, \theta'_n\} = \emptyset$ is satisfied for any choice of β_i , β_j , γ_j , β_{i_2} , $j \neq i$ and $i, j \in \{0, 1, \dots, q^n\}$. Let $\alpha_1, \alpha_2, \alpha_3$ be distinct elements of Γ_{q^n+1} . Then β_i , β_j , γ_j , β_{i_2} can be chosen in such a way that $\alpha_1 \in \beta_i$, $\alpha_2 \in \beta_j$, $\alpha_2 \in \gamma_j$ and $\beta_{i_2} \cap \beta_j \in \gamma_j$ with $\alpha_3 \in \beta_{i_2}$. Hence, the (n-1)-regulus in β_{q^n+1} defined by $\alpha_1, \alpha_2, \alpha_3$ is a subset of Γ_{q^n+1} . From [Hirschfeld and Thas 2016, Theorem 4.123] now follows that the (n-1)-spread Γ_{q^n+1} of β_{q^n+1} is regular. By Theorem 6.1 the pseudo-hyperoval $\overline{\mathbb{O}}$ is regular, and so \mathbb{O} is regular. But in such a case the condition $\{\theta_1, \theta_2, \dots, \theta_n\} \cap \{\theta'_1, \theta'_2, \dots, \theta'_n\} = \emptyset$ is never satisfied, a contradiction.

Consequently, we may assume that for at least one quadruple β_i , β_j , γ_j , β_{i_2} we have $\{\theta_1, \theta_2, \dots, \theta_n\} = \{\theta'_1, \theta'_2, \dots, \theta'_n\}$. In such a case the $q^n + 2$ elements of $\overline{\mathbb{O}}$ correspond to lines of the plane $PG(2, q^n)$. It follows that $\overline{\mathbb{O}}$, and hence also \mathbb{O} , is regular.

Theorem 6.3. A pseudo-hyperoval \mathfrak{O} in PG(3n-1,q), $q=2^h$, h>1 and n prime, is regular if and only if at least q^n-1 elements of $\{\Delta_0, \Delta_1, \ldots, \Delta_{q^n+1}\}$ are regular.

Proof. If O is regular, then clearly all (n-1)-spreads Δ_i , with $i=0,1,\ldots,q^n+1$, are regular.

Conversely, assume that ρ , with $\rho \ge q^n - 1$, elements of $\{\Delta_0, \Delta_1, \ldots, \Delta_{q^n + 1}\}$ are regular.

If $\rho = q^n + 2$, then \emptyset is regular by Theorem 6.1; if $\rho = q^n + 1$, then \emptyset is regular by Theorem 6.2.

Now assume that $\rho = q^n$ and that $\Delta_2, \Delta_3, \ldots, \Delta_{q^n+1}$ are regular. We have to prove that Δ_0 is regular. We use the arguments in the proof of Theorem 6.2. If one of the elements $\alpha_1, \alpha_2, \alpha_3$, say α_1 , in the proof of Theorem 6.2 is $\beta_0 \cap \beta_1$, then let γ_j contain $\beta_j \cap \beta_i, \beta_j \cap \beta_0, \beta_j \cap \beta_1$ and let $\beta_{i_2} \neq \beta_1$, with $i, j \in \{2, 3, \ldots, q^n+1\}$. Now see the proof of the preceding theorem.

Finally, assume that $\rho = q^n - 1$ and that $\Delta_3, \Delta_4, \ldots, \Delta_{q^n+1}$ are regular. We have to prove that Δ_0 is regular. We use the arguments in the proof of Theorem 6.2. If exactly one of the elements $\alpha_1, \alpha_2, \alpha_3$, say α_1 , in the proof of Theorem 6.2 is $\beta_0 \cap \beta_1$ or $\beta_0 \cap \beta_2$, then proceed as in the preceding paragraph with $\beta_{i_2} \neq \beta_1, \beta_2$. Now assume that two of the elements $\alpha_1, \alpha_2, \alpha_3$, say α_1 and α_2 , are $\beta_0 \cap \beta_1$ and $\beta_0 \cap \beta_2$. Now consider all (n-1)-reguli in Δ_0 containing α_1 and α_3 , and assume, by way of contradiction, that no one of these (n-1)-reguli contains α_2 . The number of these (n-1)-reguli is $(q^n-2)/(q-1)$, and so q=2, a contradiction. It follows that the (n-1)-regulus in β_0 defined by $\alpha_1, \alpha_2, \alpha_3$ is contained in Δ_0 . Now we proceed as in the proof of Theorem 6.2.

7. Final remarks

The cases q = 2 and n not prime. For q = 2 or n not prime other arguments have to be developed.

Improvement of Theorem 6.3. Let $\mathcal{D} = (P, B, \in)$ be an incidence structure satisfying the following conditions:

- (i) $|P| = q^n + 1$, q even, $q \neq 2$,
- (ii) the elements of B are subsets of size q+1 of P and every three distinct elements of P are contained in at most one element of B, and
- (iii) Q is a subset of size δ of P such that any triple of elements in P with at most one element in Q is contained in exactly one element of B.

Assumption. Any such \mathcal{D} is a $3-(q^n+1,q+1,1)$ design whenever $\delta \leq \delta_0$ with $\delta_0 \leq q-2$.

Theorem 7.1. Consider a pseudo-hyperoval \mathfrak{O} in PG(3n-1,q), $q=2^h$, h>1 and n prime. Then \mathfrak{O} is regular if and only if at least $q^n+1-\delta_0$ elements of $\{\Delta_0, \Delta_1, \ldots, \Delta_{q^n+1}\}$ are regular.

Proof. Similar to the proof of Theorem 6.3.

Acknowledgements

We thank S. Rottey and G. Van de Voorde for several helpful discussions.

References

[Burau 1961] W. Burau, *Mehrdimensionale projektive und höhere Geometrie*, Mathematische Monographien **5**, VEB Deutscher Verlag der Wissenschaften, Berlin, 1961. MR Zbl

[Casse et al. 1985] L. R. A. Casse, J. A. Thas, and P. R. Wild, " $(q^n + 1)$ -sets of PG(3n - 1, q), generalized quadrangles and Laguerre planes", Simon Stevin **59**:1 (1985), 21–42. MR Zbl

[Hirschfeld 1998] J. W. P. Hirschfeld, *Projective geometries over finite fields*, 2nd ed., Oxford University, 1998. MR Zbl

[Hirschfeld and Thas 2016] J. W. P. Hirschfeld and J. A. Thas, *General Galois geometries*, 2nd ed., Springer, 2016. MR Zbl

[Kantor 1974] W. M. Kantor, "Dimension and embedding theorems for geometric lattices", *J. Combin. Theory Ser. A* 17 (1974), 173–195. MR Zbl

[Payne and Thas 2009] S. E. Payne and J. A. Thas, *Finite generalized quadrangles*, 2nd ed., European Mathematical Society, Zürich, 2009. MR Zbl

[Penttila and Van de Voorde 2013] T. Penttila and G. Van de Voorde, "Extending pseudo-arcs in odd characteristic", *Finite Fields Appl.* **22** (2013), 101–113. MR Zbl

[Rottey and Van de Voorde 2015] S. Rottey and G. Van de Voorde, "Pseudo-ovals in even characteristic and ovoidal Laguerre planes", *J. Combin. Theory Ser. A* **129** (2015), 105–121. MR Zbl

[Segre 1954] B. Segre, "Sulle ovali nei piani lineari finiti", Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 17 (1954), 141–142. MR Zbl

[Thas 1971] J. A. Thas, "The m-dimensional projective space $S_m(M_n(GF(q)))$ over the total matrix algebra $M_n(GF(q))$ of the $n \times n$ -matrices with elements in the Galois field GF(q)", R and M at. (6) 4 (1971), 459–532. MR

[Thas 2011] J. A. Thas, "Generalized ovals in PG(3n-1,q), with q odd", Pure Appl. Math. Q. 7:3, Special Issue: In honor of Jacques Tits (2011), 1007–1035. MR Zbl

[Thas et al. 2006] J. A. Thas, K. Thas, and H. Van Maldeghem, *Translation generalized quadrangles*, Series in Pure Mathematics **26**, World Scientific, Hackensack, NJ, 2006. MR Zbl

Received 11 Dec 2017.

JOSEPH A. THAS:

thas.joseph@gmail.com

Department of Mathematics, Ghent University, Ghent, Belgium

