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Regular pseudo-hyperovals and regular pseudo-ovals
in even characteristic

Joseph A. Thas

S. Rottey and G. Van de Voorde characterized regular pseudo-ovals of PG(3n—1, g),
g =2", h > 1 and n prime. Here an alternative proof is given and slightly stronger
results are obtained.

1. Introduction

Pseudo-ovals and pseudo-hyperovals were introduced in [Thas 1971]; see also
[Thas et al. 2006]. These objects play a key role in the theory of translation gen-
eralized quadrangles [Payne and Thas 2009; Thas et al. 2006]. Pseudo-hyperovals
only exist in even characteristic. A characterization of regular pseudo-ovals in odd
characteristic was given in [Casse et al. 1985]; see also [Thas et al. 2006]. In
[Rottey and Van de Voorde 2015] a characterization of regular pseudo-ovals and
regular pseudo-hyperovals in PG(3n—1, q), g even, g # 2 and n prime, is obtained.
Here a shorter proof is given and slightly stronger results are obtained.

2. Ovals and hyperovals

A k-arc in PG (2, gq) is a set of k points, k > 3, no three of which are collinear.
Any nonsingular conic of PG (2, q) is a (¢ + 1)-arc. If K is any k-arc of PG (2, q),
then k < g +2. For g odd k < g + 1, and for g even a (g + 1)-arc extends to a
(g + 2)-arc; see [Hirschfeld 1998]. A (g + 1)-arc is an oval; a (g + 2)-arc, g even,
is a complete oval or hyperoval.

A famous theorem of B. Segre [1954] tells us that for g odd every oval of PG (2, q)
is a nonsingular conic. For g even, there are many ovals that are not conics
[Hirschfeld 1998]; also, there are many hyperovals that do not contain a conic
[loc. cit.].
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3. Generalized ovals and hyperovals

Arcs, ovals and hyperovals can be generalized by replacing their points with m-
dimensional subspaces to obtain generalized k-arcs, generalized ovals and general-
ized hyperovals. These objects have strong connections to generalized quadrangles,
projective planes, circle geometries, flocks and other structures. See [Payne and
Thas 2009; Thas et al. 2006; Thas 1971; 2011; Casse et al. 1985; Penttila and
Van de Voorde 2013]. Below, some basic definitions and results are formulated;
for an extensive study, many applications and open problems, see [Thas et al.
2006].

A generalized k-arc of PG(3n — 1, q), n > 1, is a set of k (n — 1)-dimensional
subspaces of PG(3n — 1, q), every three of which generate PG(3n — 1, q). If g is
odd, then k < g" + 1; if g is even, then k < ¢" 4 2. Every generalized (¢" + 1)-arc
of PG(3n — 1, g), q even, can be extended to a generalized (¢" + 2)-arc.

If O is a generalized (¢" + 1)-arc in PG(3n — 1, q), then it is a pseudo-oval
or generalized oval or [n — 1]-oval of PG(3n — 1, q). For n = 1, a [0]-oval is
just an oval of PG(2, g). If O is a generalized (¢" + 2)-arc in PG(3n — 1, q),
q even, then it is a pseudo-hyperoval or generalized hyperoval or [n — 1]-hyperoval
of PG(3n—1, q). For n =1, a [0]-hyperoval is just a hyperoval of PG(2, g).

If O ={mo, 71, ..., myn} is a pseudo-oval of PG(3n—1, q), then m; is contained
in exactly one (2n — 1)-dimensional subspace t; of PG(3n — 1, g) which has no
point in common with (moUm U---Umgn) \7;, withi =0, 1, ..., g"; the space t;

is the tangent space of O at ;. For g even the ¢" + 1 tangent spaces of O contain
a common (n — 1)-dimensional space 41, the nucleus of O; also, O U {myn11} is
a pseudo-hyperoval of PG(3n — 1, ¢g). For g odd, the tangent spaces of a pseudo-
oval O are the elements of a pseudo-oval O* in the dual space of PG(3n — 1, gq).

4. Regular pseudo-ovals and pseudo-hyperovals

In the extension PG(3n — 1,4¢") of PG(3n — 1, q), we consider n planes &;,
i=1,2,...,n, that are conjugate in the extension [, of [, and which span
PG(3n — 1, ¢"). This means that they form an orbit of the Galois group corre-

sponding to this extension and span PG(3n — 1, g").

1 (@ (€)) ) (@) (n)

In &; consider an oval O; ={x; ", x, ’, R }. Further, let xl.(1 ,xl.( D A
withi =0, 1,...,¢", be conjugate in [, over [,. The points xl.(l), xl@, e xi(")
define an (n — 1)-dimensional subspace 7; over [, for i =0,1,...,¢". Then,
O = {mo, 71, ..., myn} is a generalized oval of PG(3n — 1, q). These objects are

the regular or elementary pseudo-ovals. If O is replaced by a hyperoval, and so
q is even, then the corresponding O is a regular or elementary pseudo-hyperoval.
All known pseudo-ovals and pseudo-hyperovals are regular.
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5. Characterizations

Let O = {mo, 71, ..., myn} be a pseudo-oval in PG(3n — 1, g). The tangent space
of O at ;r; will be denoted by 7;, withi =0, 1, ..., ¢". Choose ;,i € {0, 1, ..., ¢"},
andlet PG2n—1,q) S PGBn—1,qg) beskewtom;. Let ; N PG2n—1,q) =n;
and (7r;, w;) N PG(2n — 1, q) = n;, with j #i. Then {no, n1, ..., 04} = A; is an
(n — 1)-spread of PG(2n —1, q).

Now, let g be even and 7 the nucleus of O. Let PG(2n—1,q) € PG(3n—1, q)
be skew to . If {; = PG(2n — 1, q) N (m, 7r;), then {Lo, &1, ..., {pn} = Ais an
(n — 1)-spread of PG(2n —1, q).

Next, let ¢ be odd. Choose 7;, withi € {0, 1, ...,¢"}. If ; Nt; =§;, with j #1,
then {8o, 81, ..., 8i—1, 7, Siy1, ..., 842} = AT is an (n — 1)-spread of ;.

Finally, let g be even and let O = {mq, 7y, ..., w441} be a pseudo-hyperoval in
PG(3n—1, q). Choose ;, withi € {0, 1,...,¢" + 1}, and let PG2n —1,q) C
PG(3n—1, q) be skew to ;. Let (7;, ;) N PG(2n —1, q) = nj, with j #i. Then
{no, M, ...  Mi=1, Mit1, ..., Ngnp1} = A; is an (n — 1)-spread of PG(2n — 1, q).

Theorem 5.1 [Casse et al. 1985]. Consider a pseudo-oval O with q odd. Then at
least one of the (n — 1)-spreads Ao, Ay, ..., Agn, Aj, AT, ..., A;” is regular if
and only if they all are regular if and only if the pseudo-oval O is regular. In such

a case O is essentially a conic over Fyn.

Theorem 5.2 [Rottey and Van de Voorde 2015]. Consider a pseudo-oval O in
PG(3n—1, q) withq =2", h > 1 and n prime. Then O is regular if and only if all
(n — 1)-spreads Ao, Ay, ..., Agn are regular.

6. Alternative proof and improvements

Theorem 6.1. Consider a pseudo-hyperoval O in PG(3n —1,q), q =2",h > 1
and n prime. Then O is regular if and only if all (n — 1)-spreads A;, with i =
0,1,...,q9" + 1, are regular.

Proof. If O is regular, then clearly all (n — 1)-spreads A;, withi =0,1,...,¢" +1,
are regular.

Conversely, assume that the (n — 1)-spreads Ag, Ay, ..., Ay are regular. Let
O = {mo, 71, ..., mynq1}, and let 0= {Bo, Bi - .., Bgny1} be the dual of O, with
B being the dual of ;.

Choose B;,i €{0,1,...,4" +1},and let B; N B; = a;;, j #i. Then

{aio, oty ooy 01, A igts o gy} =T (D

is an (n — 1)-spread of ;.
Now consider 8;, B;, I';,I'j, ajj, j #i. In I'; we next consider an (n — 1)-
regulus y; containing o;;. The (n — 1)-regulus y; is a set of maximal spaces
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of a Segre variety 8;.,_;; see Section 4.5 in [Hirschfeld and Thas 2016]. The
(n —1)-regulus y; and the (n — 1)-spread I'; of B; generate a regular (n — 1)-spread
Y (yj, T'i) of PG(3n —1, g). This can be seen as follows. The elements of I'; inter-
sect n lines Uy, Uy, ..., U, which are conjugate in [,» over F; that is, they form an
orbit of the Galois group corresponding to this extension. Let a;; N U; = {u;}, with
I=1,2,...,n. Now consider the transversals Ti, 1>, ..., T, of the elements of y;,
with 7; containing u;. The n planes T;U; = 6, intersect all elements of y; and I';.
The (n — 1)-dimensional subspaces of PG (3n — 1, q) intersecting 61, 65, ..., 6, are
the elements of the regular (n — 1)-spread X (y;, I';). The elements of this spread
correspond to the points of a plane PG(2, g"), with its lines corresponding to the
(2n — 1)-dimensional spaces containing at least two (and then ¢” + 1) elements
of the spread. Hence, the ¢ + 2 elements of o} containing an element of y;, say
Bi = Biys Biys - -+ Biy1s Bigyn = Bj» correspond to lines of PG (2, ¢"). Dualizing,
the elements m;,, 7j,, ..., Tigi correspond to points of PG (2, g").

Now consider f;, and y;, and repeat the argument. Then there arise n planes 6,
intersecting all elements of y; and I';,. The (n — 1)-dimensional subspaces of
PG(3n — 1, q) intersecting 6y, 6, ..., 6, are the elements of the regular (n — 1)-
spread X(y;, I';,). The elements of this spread correspond to the points of a plane
PG'(2, g"), and the lines of this plane correspond to the (2n — 1)-dimensional

spaces containing ¢" + 1 elements of the spread. Hence, B;,, Bi,, - ., Bi, ., cor-
respond to lines of PG'(2, ¢"). Dualizing, the elements 7; , 7;,, ..., m;,,, corre-
spond to points of PG'(2, ¢g").

First, assume that {01, 6>,...,60,} N {0],6,,...,6,} = @. Consider m;,, m;,,

7y, i,. The planes of PG(3n — 1, ¢™) intersecting these four spaces constitute
a set M of maximal spaces of a Segre variety Sy.,_; [Burau 1961]. The planes
01,02, ...,0,,0],6;,...,0, are elements of M. It follows that (6; U6, U---U
O,)N O UBU-- U6 =0,

Now consider any (n — 1)-dimensional subspace 7 € {m;, mj, ..., T, o) of
PG(3n — 1,q). We will show that 7 is a maximal subspace of 8,.,_;. Let
0; ﬂT[j = {tij}’ 91-/ ﬂﬂj = {ti,j}’ i=1,2,...,n and j = i],ig,...,iq+2. If
tijtij, Ntijstij, = {vi} and tl./j1 ti’j2 N tlfj3t£/4 = {v}}, with ji, jo, 3, js distinct, then
Vi, V2, ..., U, are conjugate and similarly v, v}, ..., v, are conjugate. Hence,
(vi,v2, ..., vy) = (V], V), ..., v,) defines an (n — 1)-dimensional space over [,
which intersects 61, 6, .. ., 9,2 (over Fyn). The points #;;, with j =iy, iz, ..., 1442,
generate a subplane of 6;, and the points #/ i with j =iy, iz, ..., 1442, generate
a subplane of 0/, withi =1,2,...,n. Let g = 2" and let Fov be the subfield
of Fy» = Fom over which these subplanes are defined, so v | An. Then v < hn as
otherwise the spreads of PG(3n—1, q) defined by 0y, 6,,...,6, and 0,6;,...,0,
coincide, which is clearly not possible. The (n — 1)-regulus y; implies that the
subplanes contain a line over [, so & | v. As n is prime we have v = h, s0 2V =g.
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Hence, the 2n subplanes are defined over [,. It follows that the g + 2 elements
Tliys Tigs « -+ 5 Wiy, ALC maximal subspaces of the Segre variety $,.,—;. Hence, &
is a maximal subspace of 8.,_1. It follows that 7y, m2, ..., 7,42 are maximal
subspaces of 83.,_1.

Now consider a PG (2, g) intersecting m;,, 7;,, i,, 7i,. The (n — 1)-dimensional

Spaces T, Wiy, - - - , i, , are maximal spaces of 8., intersecting PG (2, q); they
are maximal spaces of the Segre variety 82.,—1 N PG(3n—1, q) of PG(3n—1, q).
Consider 7r;, and alsoa PG (2n—1, q) skew to m;,. If we project r;,, 75, . . ., Tiy s

from m;, onto PG(2n —1, q), then by the foregoing paragraph the g 41 projections
constitute an (n — 1)-regulus of PG(2n — 1, g). We arrive at a similar conclusion
if we project from m; , s any element of {1, 2, ..., g 4+ 2}. Equivalently, if s €
{1,2,...,q+2}, then the spaces B; NB;,witht=1,2,...,s—1,s+1,...,9+2,
form an (n — 1)-regulus of g; .

Now assume that the condition {6y, 65, ..., 6,}N{6;,6;, ..., 0,} = @ is satisfied
for any choice of B;, B;, v;, Bi,- In such a case every (n — 1)-regulus contained
in a spread I'y defines a Segre variety 8,.,—1 over [F,. Let us define the following
design D. Points of D are the elements of 0, a block of D is a set of q +2 elements
of O, containing at least one space of an (n — 1)-regulus contained in some regular
spread I'y, and incidence is containment. Then D is a 4 — (¢" +2, g +2, 1) design.
By Kantor [1974] this implies that ¢ = 2, a contradiction.

Consequently, we may assume that for at least one quadruple B;, B;, v}, Bi,»

{6179299011}:{9]/795979;1} (2)

In such a case the ¢" + 2 elements of 0] correspond to lines of the plane PG(2, g").
It follows that O is regular. ]

Theorem 6.2. Consider a pseudo-oval O in PG(3n —1,q), withq =2" h > 1
and n prime. Then O is regular if and only if all (n — 1)-spreads Ay, Ay, ..., Agn
are regular.

Proof. 1f O is regular, then clearly all (n — 1)-spreads Ag, Ay, ..., Ay are regular.
Conversely, assume that the (n — 1)-spreads Ao, Ay, ..., Ay are regular. Let
O = {mo, 1, ..., g}, let mynyq be the nucleus of O, let 0O=0U (g1}, let 0
be the dual of O, let O be the dual of O, and let 8; be the dual of 7;.
Choose B;,i €{0,1,...,4" +1},and let B; N B; = a;;, j #i. Then

{aio, oty ooy 01, A igts o gy} =T 3)

is an (n — 1)-spread of ;.
Now consider g;, B;, I';, I'j, a;;, with j i and i, j €{0,1,...,4"}. InT"; we
next consider an (n — 1)-regulus y; containing «;; and oj 4n 1. The (n — 1)-regulus
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y;j is a set of maximal spaces of a Segre variety 81,,—1. The (n — 1)-regulus y;
and the (n — 1)-spread I'; of B; generate a regular (n — 1)-spread X(y;, I';) of
PG(3n —1, g). Such as in the proof of Theorem 6.1 we introduce the elements
Unu, 11,6, 1 =1,2,...,n, and the plane PG(2, g"*). The g + 2 elements of
R) containing an element of y;, say B; = B, Bi, - - -, ,Biq, Bj = 5iq+1 , Bgn+1, cor-
respond to lines of PG(2, g"). Dualizing, the elements 7;,, 7;,, . .., Tigpr» Tgntl
correspond to points of PG (2, g™).

Now consider 8;, and y;, and repeat the argument. Then there arise n planes 6,
of PG(3n — 1, g") intersecting all elements of y; and I';,, and an (n — 1)-spread
X (yj, I'i,) of PG(3n — 1, q). The elements of this spread correspond to the points
of a plane PG’(2, ¢q"). The spaces Bi,, Biy, - - - » Bi, s Bgn+1 correspond to lines
of PG'(2,4q"). Dualizing, the elements 7;,, 7;,, .. ., Tligers Tgn+1 correspond to
points of PG'(2, g™).

First, assume {0y, 02, ...,6,}N{6],6,,...,0,} = @. Consider r;,, ;,, 75, ;.
The planes of PG (3n — 1, ¢") intersecting these four spaces constitute a set M of
maximal spaces of a Segre variety 8y,,—1. The planes 6,65, ...,6,,0,65,...,0,
are elements of M. It follows that (6; UG, U---UB,) N (O UG, U---Ub) = @.
Let w € {mi5, mig, .. ., iy 7gn+1}. As in the proof of Theorem 6.1 one shows
that 7 is a maximal subspace of 8,.,_1. It follows that m;,, 7;,, ..., Tligprs Tgn1
are maximal subspaces of 8y.,_.

Next consider a PG (2, g) that intersects n;,, 7;,, i, 7i,. The (n—1)-dimensional
SPACES iy, iy, -+ - Wiy, y s Tgn1 AI€ maximal spaces of 8., which intersect the
plane PG (2, ¢); they are maximal spaces of the Segre variety S,.,_1NPG(3n—1, q)
of PG(3n — 1,q). As in the proof of Theorem 6.1 it follows that the spaces
Byy1NBi, witht=1,2,...,q+1, form an (n — 1)-regulus of Byn .

Now assume that the condition {61, 6, ..., 8,}N{0],0;, ..., 0,} = @ is satisfied
for any choice of B;, B, vj, Bi,» j #iand i, j €{0,1,...,q"}. Let ay, a2, a3 be
distinct elements of I'y» 1. Then B;, B;, ¥, Bi, can be chosen in such a way that
aj € Bi, az € Bj, ax € yj and B;, N B; € y; with a3 € B;,. Hence, the (n — 1)-
regulus in B,» 1 defined by a1, a2, a3 is a subset of I'yn . From [Hirschfeld and
Thas 2016, Theorem 4.123] now follows that the (n — 1)-spread I'yn 1 of Bynqq is
regular. By Theorem 6.1 the pseudo-hyperoval O is regular, and so O is regular.
But in such a case the condition {61, 6, ...,6,} N {0],6),...,6,} = @ is never
satisfied, a contradiction.

Consequently, we may assume that for at least one quadruple B;, B;, v;, Bi, we
have {01,602, ...,6,} ={60],6;,...,6,}. In such a case the g" + 2 elements of Q)
correspond to lines of the plane PG (2, g"). It follows that 6, and hence also O, is
regular. U

Theorem 6.3. A pseudo-hyperoval © in PG(3n—1, q), g =2", h > 1 and n prime,
is regular if and only if at least q" —1 elements of {Ao, A1, ..., Ayny1} are regular.
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Proof. If O is regular, then clearly all (n — 1)-spreads A;, withi =0,1,..., 4" +1,
are regular.

Conversely, assume that p, with p > ¢" — 1, elements of {Ag, Ay, ..., Aynyq})
are regular.

If p =¢q" +2, then O is regular by Theorem 6.1; if p = ¢g" + 1, then O is regular
by Theorem 6.2.

Now assume that p = ¢" and that A, A3z, ..., Ay are regular. We have to
prove that A is regular. We use the arguments in the proof of Theorem 6.2. If one
of the elements o, a2, a3, say «y, in the proof of Theorem 6.2 is By N B, then let
y;j contain 8; N B;, B; N Po, B; N By and let B, # B1, with i, j € {2,3,..., 4" +1}.
Now see the proof of the preceding theorem.

Finally, assume that p = q" — 1 and that A3, Ay, ..., Ay are regular. We have
to prove that A is regular. We use the arguments in the proof of Theorem 6.2. If
exactly one of the elements «p, oy, a3, say «q, in the proof of Theorem 6.2 is
Bo N B1 or Bo N B, then proceed as in the preceding paragraph with §;, # B1, Ba.
Now assume that two of the elements o, a3, a3, say «; and a3, are By N B; and
BoN B>. Now consider all (n—1)-reguli in Ag containing o and o3, and assume, by
way of contradiction, that no one of these (n — 1)-reguli contains «;. The number
of these (n — 1)-reguli is (¢" —2)/(q — 1), and so g = 2, a contradiction. It follows
that the (n — 1)-regulus in By defined by o, ap, 3 is contained in Ag. Now we
proceed as in the proof of Theorem 6.2. U

7. Final remarks

The cases q = 2 and n not prime. For g =2 or n not prime other arguments have
to be developed.

Improvement of Theorem 6.3. Let D = (P, B, €) be an incidence structure satis-
fying the following conditions:
(@) [P=q"+1,qeven, q #2,
(i1) the elements of B are subsets of size ¢ + 1 of P and every three distinct
elements of P are contained in at most one element of B, and
(iii) Q is a subset of size § of P such that any triple of elements in P with at most
one element in Q is contained in exactly one element of B.
Assumption. Any such Disa3 —(¢g"+1,q+1, 1) design whenever § < §y with
So<q-—2
Theorem 7.1. Consider a pseudo-hyperoval O in PG(3n —1,q),q =2",h > 1

and n prime. Then O is regular if and only if at least q" + 1 — &y elements of
{Ao, A1, ..., Agny1} are regular.

Proof. Similar to the proof of Theorem 6.3. (]
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