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REGULAR SEMIGROUPS WHOSE IDEMPOTENTS
SATISFY PERMUTATION IDENTITIES

Miyukr YAMADA

This paper is concerned with a certain class of regular
semigroups. It is well-known that a regular semigroup in
which the set of idempotents satisfies commutativity x,x, =
2,%, is an inverse semigroup firstly introduced by V.V, Vagner,
and the structure of inverse semigroups was clarified by A. E,
Liber, W. D. Munn, G. B. Preston and V. V. Vagner, etc,
By a generalized inverse semigroup is meant a regular semi-
group in which the set of idempotents satisfies a permutation
identity .2, - - - %, = @ %p, -+ - ¥p, (Where (pi, s, -+, Da) is @
nontrivial permutation of (1,2, ---,#)). N. Kimura and the
author proved in a previous paper that any band B satisfying
a permutation identity satisfies normality z,X.%:x, = Z,%:%:%,.
Such a B is called a normal band, and the structure of normal
bands was completely determined. In this paper, first a
structure theorem for generalized inverse semigroups is es-
tablished. Next, as a special case, it is proved that a regular
semigroup is isomorphic to the spined product (a special sub-
direct product) of a normal band and a commutative regular
semigroup if and only if it satisfies a permutation identity.
The problem of classifying all permutation identities on regular
semigroups into equivalence classes is also solved. Finally,
some theorems are given to clarify the mutual relations
between several conditions on semigroups. In particular, it
is proved that an inverse semigroup satisfying a permutation
identity is necessarily commutative,

A semigroup S is called regular if it satisfies the following:

(1.1) For any element a of S, there exists an element a* such that
aag*a = a .

A semigroup G admitting relative inverses introduced by Clifford [1],
i.e., a semigroup G satisfying the following condition (1.2) is clearly
regular:

(1.2) For any element a of G, there exists an element a* such that
a*a = aa® and aa*a = a .

However, the converse is not true. It is well-known that a semigroup
is a semigroup admitting relative inverses if and only if it is a union
of groups. Consider the symmetric inverse semigroup on the set {1, 2}
(for definition, see [3], p. 29). Then this semigroup is regular but
not a union of groups.
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Next, we define a (polynomial) identity as follows: Let X =
{%,, %, ++-, x,} be a set in which each element z; is called a variable.
Let Wiz, ,, -+, 2,) and Wiz, 2, --+, 2, be two words consisting
of elements of X (each of Wix, %, ---,x,) and Wyx, %, -+, 2,)
need not contain all letters x,, «,, -+, @,). Then the pair of the two
words Wiz, x,, + -+, x,) and W,(x, @,, -+, x,) is called an identity in
the variables x,, x,, -+-, 2, and is usually written in the form

(13) Wl(wly Loy ey xn) - Wz(f’:u Loy * vy a/n) .

By a permutation identity in the variables «,x,, --.,2,, we shall
mean an identity

(1.4) By = v e By = By By v+ 0 Ty s

where (p,, p,, - -+, p.) is a nontrivial permutation of (1,2, ---, n).
For example, the identities

(C) commutativity x.x, = x,2,; (L.N) left normality z.x.x, = x,2,%,;
(R.N) right normality x.2.2%; = x,2,2,;; and (N) normality =222, =
X5,

are all permutation identities, while each of the identities

(L.S) left singularity z,x, = z,;; (R.S) right singularity xx, = 2.;
and (R) rectangularity x.@,2; = 2,2,

is not a permutation identity.
If a subset M of a semigroup G satisfies the following condition
(1.5), then we shall say that M satisfies the identity (1.8) (in G):

(1.5) For any mapping @ of X into M, the equality W.(p(z), p(x,), * -,
p(x,)) = Wip(@), p(@,), -+, p(x,)) holds in G .

For example, a regular semigroup in which the set of idempotents
satisfies eommutativity is an inverse semigroup firstly introduced by
Vagner [9] under the term “generalized group” (see also [3], p. 25),
and the structure of inverse semigroups was clarified by Preston [6]
and [7]. A band (i.e., an idempotent semigroup) satisfying the identity
(©), (L.S), (R.S), (R), (L.N), (R.N) or (N) is called a semilattice,
left singular band, right singular band, rectangular band, left normal
band, right normal band or normal band respectively, and the structure
of these bands is completely determined by Kimura [4], McLean [5],
Kimura and the author [17] and the author [12].

Now, we define an inversive semigroup as follows: A semigroup
G is called inversive if it satisfies the condition (1.2) and the following:

(1.6) The set I of all idempotents of G is a subsemigroup of G .
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Of course, it is obvious that the set of idempotents of an inversive
semigroup is a band. A semigroup satisfying the condition (1.2) is
not necessarily a semigroup satisfying the condition (1.6). For example,
a completely simple semigroup (for definition, see [3], p. 76) is a union
of groups and hence is a semigroup satisfying the condition (1.2), but
not necessarily a semigroup satisfying the condition (1.6). However,
it should be noted that for commutative semigroups the condition (1.1)
implies both the conditions (1.2) and (1.6) (hence, of course, the
condition (1.2) implies the condition (1.6)). In other words, a commutative
regular semigroup is inversive. Clifford [1] and the author [11]
completely determined the structure of commutative regular semigroups
and gave an explicit description of a method of constructing all possible
commutative regular semigroups. It should be also noted that a
noncommutative band (for example, a left singular band) is inversive
but not an inverse semigroup. Now, each of an inverse semigroup, a
commutative regular semigroup and a [left, right] normal band is of
course a regular semigroup in which the set of idempotents satisfies
a permutation identity. By a generalized inverse semigroup, hereafter
we shall mean a regular semigroup in which the set of idempotents
satisfles a permutation identity. Special kinds of generalized inverse
semigroups have been studied by many papers, but no general structure
theorem for generalized inverse semigroups has been established so
far as we know. In the following sections we shall study generalized
inverse semigroups, and establish a structure theorem for these semi-
groups and also present some relevant matters. Any notation and
terminology should be referred to {3], unless otherwise stated.

2. Generalized inverse semigroups. Let S be a regular semi-
group. Then for each element a of S, there exists an element a* such
that ae*a = a and a*aa* = a* (see [3], p. 27). Such an element «*
is called an inverse of a. For a given element a of S, an inverse of
a is not necessarily unique. An inverse of a is unique for every
element @ of S if and only if S is an inverse semigroup (see [3], p.
28). In this case, we shall denote the inverse of a by a='. At first
we shall show several lemmas,

LEMMA 1. Let S be a regular semigroup in which the set B of
idempotents is a normal band. Then for any elements a,b of S and
for any elements e, f of B, aefb = afeb.

Proof, Let a*, b* be inverses of a, b respectively. Then, a*a and
bb* are idempotents. Hence,

aefb = a((a*a)ef(bb*))b = a{(a*a)fe(bb*))b = (aa*a)fe(bb*b) = afed .
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Lemma 2. (1) If a regular semigroup S satisfies the following
condition (2.1), then the set of idempotents of S is a band:

(2.1) For any elements a,b of S and for any inverses a* of a and
b* of b, the element b*a* is an inverse of ab .

(2) If the set of idempotents of a regular semigroup S 1is a
normal band, then S satisfies the condition (2.1).

Proof. (1) Let e, f be idempotents of S. Since ¢, f are inverses
of ¢, f themselves respectively, by the assumption the element fe is
an inverse of ef. Hence, efef = effeef = ¢f. That is, e¢f is an idem-
potent., Therefore, the set of idempotents of S is a subsemigroup of
S.

(2) Let a,b be elements of S, and a*, b* inverses of a,b res-
pectively. Then, aa*, a*a, bb*, b*b are idempotents of S. Since the
set B of idempotents of S is a normal band, it follows from Lemma
1 that abb*a*ab = aa*abb*b = ab and b*a*abb*a* = b*bb*a*aa* = b*a*.
Hence b*a* is an inverse of ab.

LeMMA 3. If the set B of idempotents of a regular semigroup
S satisfies a permutation identity, then B is o normal band.

Proof. Let S be a regular semigroup in which the set B of
idempotents satisfies a permutation identity

(2.2) Lyly voe &y = L, Ly v0 0 X

1™ Py Py *

Since (p., Pz, +++, P,) I8 a nontrivial permutation of (1, 2, -+, n), there
exists 7 such that p, 7 and p;, =4 for all ¢ <j. Let p, =s and
J = v,. Then, clearly s > j (7, s might be 1, n respectively). There-
fore, (2.2) has a form

xlmz...mj_lxj...xs..«xn:xplxp2...xpj_lxpj...xpk...xpn_

At first, we prove that B is a band. Let ¢, f be elements of B.
Consider the mapping ¢: {x,, %, ---, z,} — B such that ¢(x,) = e for
1<¢t<7 and p(x,) = fforj +1 <t <mn. Then, pa)p(,) -+ o(x,) =
p(x, )p(%,,) -+ - p(x, ) becomes ef = efef, ef = fef,ef = efeor ef = fe.
If ef = efe or ef = fef, then ef = efef. Therefore, in all cases ef is
an idempotent. Hence, B is a band. Since B satisfies the permutation
identity (2.2), B is normal (see [12] or [17]).

The following is a special case of a theorem given by Clifford [1]
(see also McLean [5]):
For any band B, there exist a semilattice I" and a collection of
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rectangular bands, {B,:ve '}, such that

(1) B= U{Bgrel},

(2) B,NBg= 1 for a + B and

(3) B,Byc B, for all a, 8¢
Further such a decomposition of B is unique. Accordingly I" is unique
up to isomorphism, and so are the B,’s.

The I" above is called the structure semilattice of B, and B, is
called the v-kernel of B. Further, this decomposition is called the
structure decomposition of B, and denoted by B ~ >\ {B,:vel}.

Now it ecan be proved that a band B is normal if and only if it
satisfies the identity xyze = xzyx or zyxzx = zzzyx. The “only if”
part is obvious. Assume that B satisfies the identity ayxza — xzayzx.
Let B~ > {B,,vel'} be the structure decomposition of B. Take
elements e, f, » from B, and suppose that ee B,, fe B; and he B,.
Since B satisfies the identity zywxza = xzayx, we have e(fhf)e(hfh)e =
e(hfh)e(fhf)e. Since efhfe,ehf, fhee B,gy and since B,, is rect-
angular,

e(fhe(hfhle = efhfe(ehf)fhe = e(fhfef)he = e(fefhf)he = efhe .

Similarly, we have e(hfh)e(fhf)e = ehfe. Hence, e¢fhe = ehfe for any
elements e, f, » of B. Thus, B satisfies the identity xyzz = xzyx.
Take any elements a, b, ¢, d from B, and suppose that ae B,, be By,
ce B, de B;, Then, abed = abcabed = acbabed = acbbacd = acbacd =
acbacddbacd = acbdacdbacd = acbdacdbbacd = acbdacdbacbd. Since acbd
and acdb are contained in the same kernel B,gs and since B,gys 1S
rectangular, acbdacdbacbd = acbdacbd = acbd. Hence, abed = acdbd.
This means that B is normal.

LevMMA 4. Let S be a regular semigroup in which the set B of
idempotents is a band.

(1) If B is a normal band, then the intersection aS N Sb (=aSh)
of a principal right ideal aS and a principal left ideal Sb is a
subsemigroup in which any two of the idempotents commute. In
particular, eSe 1s an inverse semigroup for any idempotent e of S.

(2) If every efe, where e, f are elements of B, has precisely
one inverse in eSe, then B is a mormal band.

Proof. (1) Let xeaS (1 Sbh. Then, there exist z,, x, such that
z = awx, and ¢ = x,b. Let a*, b* be inverses of a, b respectively. Then,
aa*x = aa*ax, = ax, = x and xb*b = x,b0*b = x,b = x. Hence, z =
aa*xb*b e aSbh., Since aSbc aS N Sb is obvious, we obtain aS N Sb =
aSb. Let aa* = ¢ and b*b = f. Then, ¢ and f are idempotents and
aSbh = e¢Sf. Let egf and ehf be any two idempotents of eSf. Then
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egfehf = e(egf)ehf)f = e(ehf)egf)f = ehfegf. Hence, any two idem-
potents of aSbh commute. Next, we prove that eSe is an inverse semi-
group for an idempotent ¢ of S. Let exe be an element of ¢Se, and 2*
an inverse of = in S. Then, x*exx*ex = a*xr*eexr = x*ex since zx* is
an idempotent and since B is normal. Hence, x*ex is an idempotent,
Now, exeex*eexe = e(wer™)exe = ee(vex™)xe = exe(x*x)e = exx*xe = exe.
Hence ¢Se¢ is a regular semigroup. Since e¢Se is a regular semigroup
in which any two idempotents commute, it is an inverse semigroup
(see [3], p. 28).

(2) Let B ~ > {By,:vel} be the structure decomposition of B.
Take elements e, f, & from B, and suppose that e B,, fe B; and h ¢ B,.
Then both the elements efhe and ehfe are contained in B,,. Since
B,., is rectangular, efheehfecfhe = efhe and ehfeef heehfe = ¢hfe, that
is, ehfe is an inverse of efhe. Since efhe is an idempotent, efhe itself
is an inverse of efhe. Hence efhe = ehfe follows from our assumption
that efhe has precisely one inverse in eSe.

THEOREM 1. The following five conditions on a regular semigrouwp
S are equivalent:

(1) S s a generalized inverse semigroup;

(2) The set of idempotents of S is a normal band;

(8) The set of idempotents of S is a band, and the intersection
aS N Sb (=aSh) of a principal right ideal aS and a principal left
ideal Sb is a subsemigroup in which any two of the idempotents
commute;

(4) The set of idempotents of S is a band, and eSe s an inverse
subsemigroup for any idempotent e of S;

(5) S satisfies the condition (2.1). Further every efe, where
e, [ are idempotents of S, has precisely one inverse in eSe,

Proof. By Lemma 3, clearly (1) is equivalent to (2). Further,
by Lemms 4, (2) implies (3) and (4). Conversely, suppose that S
satisfies (8). Let B be the set of idempotents of S, and e, f, 5 any
elements of B. Then since e¢fe and e¢he are elements of eSe and since
any two of the idempotents of eSe commute, we have efeehe = eheefe,
that is, efehe = ehefe. Hence B is normal. Similarly, we can prove
that (4) implies (2). Next, suppose that S satisfies (2). By (2) of
Lemma 2, S satisfies the condition (2.1). Since S satisfies (2), it
satisfies also (4). Hence, ¢Se is an inverse semigroup for any idem-
potent ¢ of S. Let f be any idempotent of S. Since eSe is an inverse
semigroup and since efe is an element of eSe, the element efe has
precisely one inverse in eSe. Thus, (2) implies (5). Conversely, let
S satisfy (5). It follows from (1) of Lemma 2 that the set B of
idempotents of S is a band. Hence by (2) of Lemma 4, B is a normal
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band. Therefore, (5) implies (2).

Next, we shall present a structure theorem for generalized inverse
semigroups. At first, we introduce the concept of a quasi-direct
product: Let 2 be an inverse semigroup, and I” the set of idempotents
of 2. Then I" is a commutative idempotent subsemigroup, i.e., a
semilattice contained in 2. Hereafter, we shall call I" the basic
semilattice of £. Let L and R be a left normal band and a right
normal band, having structure decompositions L ~ > {L,:ve I} and
R ~ 3 {R,:ve '} respectively. In this case, each L, is a left singular
band and each R, is a right singular band (see [12] and [17]). Let
S ={(e8 f):ten ee Ly, fc R}, and define multiplication ¢ in S
as follows:

(e, &, f)olg, n, h) = (ew, &n, vh) ,
where w € L;, -1 and v € R ;,-1,,. Such multiplication o is well-defined.
In fact;
e € eLiyyeq—1 C Lgg—1Ligyeny—1 C Lee—t1eym—10-1 = Liggy—1e-1 = Ligyeny—1
and
vh € R(En)—lenh [ R,,~15—157,R,,—17, [ Rn—lf_lénn—lﬂ = }3,,—15—15,7 = R(e,,)—ie,,, .

Hence, (eu, én, vh)e S. Let u,€ Ly -1 and v, € Bp-1,. Since eu and
eu, are contained in L., .,)—1, Leyen—: 1S left singular and L is left
normal, we have eu = eueu, = eeu,u = eu,u = eu,. Similarly, we have
v,h = vh., Hence (eu, &y, vh) = (eu,, &n, v.h), that is, (e, & f)o (9,1, k)
is uniquely determined by (e, &, f) and (g, 7, k).

Now by simple calculation we can easily prove the following lemma;

LEeMMA 5. The resulting system S(o) is a regular semigroup in
which the set of idempotents is a normal band. Hence, S() is a
generalized inverse semigroup.

Proof. At first, we shall show that S(o) satisfies the associative
law and hence is a semigroup. Let (e, &, f), (g9, %, 2) and (¢, 0,7) be
elements of S(c). Then,

{(e, & f)olg, 1, W} (4, p,9) = (ew, &, vh)o (i, 0, J) = (euw, &np, xJ) ,

where u € L1, ¥ € Riyy—1en, W E€ Lignpyieno—1 a0 & € Ripp—1pyp.  Since L
is left normal, euw = e(uw)w = ew(uw). Further,

ew e Lee—lL(fvp)(fnp)—l = LeE‘lénp(an)—l = Lfnp(enp)—l

and
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ww € Lén(fn)‘lL(Er;p)(fvzp)—l = Lénvz—lf_lénp(erm)”l - Lfé—lewn"lnp(fnp)"l - Lfﬂplémﬂ‘i .

Since L., 0~ is left singular, euw = (ew)(uw) = ew. Hence,

e, & 1) olg, p, W} (4, 0,7) = (ew, &7p, @) .
On the other hand,

(e, & f)ellg, 7, B)o (i, 0, 0)} = (e, &, f)e gk, 10, s7) = (ew, &np, x57) ,

where ke L, .- and se R,,-1,,. By the same method used above,
we can easily prove that xsj = xj. Hence,

(6, E,f)O{(gﬂ?, ]’L)O(’L,‘O,j)} = (G’LU, 577[09 90,7) = {(6a &, f)o(g, 7, }’L)}O(”l:, 0, -7) .

Thus S(¢) is a semigroup. Take (¢, &, f) and (g, &7, k) from S(o).
Then,

(€, &, /)9, 67 )ele, &, ) = (et, §67°¢, mf)

where t€ Li—1p00-15-1 = L1 and 5 € Bp1p)~10-1, = R, Since e, t e
L1, n, f€ R—1. and since L1, R,-1, are left singular and right singu-
lar respectively, it follows that ¢t = ¢ and nf = f. Therefore,

(e, &, /)o(g, & h)ele, &, 1) = (e, &, f) .

This means that S(o) is a regular semigroup. Next, we prove that
the set B of idempotents of S(c) is a normal band. If (e, &, f) is an
element of B, then (e, &, 1) = (e, & fele, & f) = (eu, &, vf), where
U € Ly and ve Re—1,2. Hence & =&, Conversely, let ¢ be an
idempotent of 2 and e, f elements of L.-«(=L, and R, (=R, res-
pectively. Then (e, &, f)o(e, & f) = (eu, &, vf), where uc L,-(=L,)
and ve R~ .(=R,). Since ¢,uc L, and v, fe R,, we have e = ¢ and
vf = f. Therefore (e, &, flo(e, & f) = (¢, & f), that is, (¢, &, f) is an
idempotent of S(c). Hence, B = {(¢, &, f):éel",ec L, fecR)}. It is
obvious that B is a band. Take three elements (e, &, f), (e, &, f2)
and (e, &, f3) from B. Since I" is a semilattice, we have

(617 Ely fl) ° (62a EZ: fz) °© (63, §3y f‘3) ° (ely Ely fl) - (eluy 51‘525361’ ,vfl)
- (eluy 515352517 /vfl) = (6ly Ely .fl) ° (@3, EB) .f3) ° (62: EZ! fz) ° (ely Ely fl) ’

where u e L; e (= L) and ve R oo (=R re). This means that
B is normal.

We shall call S(¢) in Lemma 5 the quasi-direct product of L,2Q
and R with respect to 1", and denote it by QUL K 2R R;I"). Now,
let S be a generalized inverse semigroup and let B be the normal band
consisting of all idempotents of S. Let B~ > {B:vel} be the
structure decomposition of B.
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Let us define a relation © on S as follows:

(2.3) 2Dy if and only if {x*;2*e¢ S and a* is an inverse of x}
= {y*:y*e S and y* is an inverse of y} .

Then D is a congruence on S, In fact: ® is clearly an equivalence
relation on S, Suppose that xDy and ¢ is an element of S. Suppose
also that ¢ is an inverse of e¢x. Let z* be an inverse of x. Since
xDy, x* is also an inverse of y. Therefore, yx*y = y, x*yx* = 2* and
each of the elements yx*, z*y, xz* and 2*x is an idempotent. Now,

extex = cax*xtexy™x = cxx*yx*atcxx*yr*r = cyxr*xx*rtcyr*raty

= cyx*ateyxr*x = cyx*yx*ricyr*x = cyx*xxFyteyr*x = cyteyr*x .
Since catex = cx, cyteyx*x = cx. Hence,
cytey = cyteyx*xr*y = cxx*y = cxx*yx*y = eyx*xrty = cy .
Further,

teyt = teyx*yt = teyx*xa*yt = texx*yx*yt = texx*yt
= texa*xr*yt = texx*yx*al = fext = ¢ .

Hence, ¢ is an inverse of cy. Similarly, any inverse of cy is also an
inverse of e¢x. This means that cx®ey. By the same method, we
can prove that x®y implies xcDye for any element ¢ of S. That is,
D is a congruence on S.

Next, consider the restriction D, of D to B. Let ¢, f be elements
of B. It is clear that e®,f implies efe = ¢ and fef = f. Conversely,
suppose that efe = ¢ and fef = f. For any inverse f* of f,ef*e =
efef*efe = eeff*fee (by Lemma 1) = efe = ¢ and f*ef* = f*efef* =
frefffef* = f*fefeff* (by Lemma 1) = f*fff* = f*ff* = f*. Hence,
f* is also an inverse of e. Similarly, any inverse of ¢ is also an
inverse of f. Hence ¢D,f. Thus for any e, fe B, e®,f if and only
if efe =¢ and fef = f. This means that D, gives the structure
decomposition of B and that the factor semigroup B/®; of B mod D,
is {By: ve I'} (hence of course, B/®, is a semilattice such that, for
any «, 8¢ I, B,- By = B,s, where - is multiplication in B/®,; see [1],
[5] and [12]). We also define relations R, & on B as follows:

(2.4) eRf if and only if ¢f = fand fe=-c¢.
(2.5) e¥f if and only if ¢f = ¢ and fe = f.

Then R and L are clearly congruences on B satisfying R, & < D;, and
the factor semigroups B/R, B/Q are bands, having B/R ~ >\ {B,/R.: B, ¢
B/®;} and B/8 ~ ¥ {B,/%,: B,c B/®;} as their structure decompositions
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respectively, where R, and £, are the restrictions of R and & to the
v-kernel B, of B.
By using these results, we obtain the following

LEMMA 6. Let S be a generalized inverse semigroup, and B the
normal band consisting of all idempotents of S. Let B~ >, {By:vel}
be the structure decomposition of B, Let ©, R and L be the congru-
ences defined by (2.8), (2.4) and (2.5) respectively. Let Dy be the
restriction of D to B, and for any v of I' let R, and L, be the
restrictions of N and L to the v-kernel B, of B respectively. Then,

(1) S/® is an inverse semigroup having B/Dy (={By;~vel})
as its bastc semilaitice, and B/R and B/% are a left mormal band
and o right normal band, having B/R ~ > {B,/R,: B,e B/®;} and
B/& ~ S\ {B,/%,: Bye B/D;} as thetr structure decompositions; and

(2) S s isomorphic to the quasi-direct product @(B/R X S/D X
B/g; B/Dy).

Proof., (1) Let T denote the congruence class containing =
mod ®, and let &, ¢ denote the congruence classes containing ¢ mod
R, & respectively. At first, we prove that S/® is an inverse semigroup
and has B/®; as its basic semilattice. Let @ be an element of S,
and a* an inverse of a. Then, @a*@ = aa*a = @. Hence S/D is a
regular semigroup. Suppose that Z is an idempotent of S/®. Then
7' = %, that is, 2*®z. Let z* be an inverse of #. Then z*xx* = x*,
and hence xx*wyr*x = ax*x, that is, 2> = x. Therefore, z is an
idempotent of S. Conversely, Z is an idempotent if x is an idempotent.
Hence, it follows that the set of idempotents of S/® is B/D, =
{By:vel'}. Since B/®, is a semilattice, S/D is an inverse semigroup
and has B/®, as its basic semilattice. Next, we prove that B/R is
a left normal band having B/ft ~ 3\ {B,/R,: B,c B/®;} as its structure
decomposition. As was shown above, B/R is a band having B/R ~
S {B,/R,: B,c B/D,} as its structure decomposition. Let &, 7, & be
elements of B/R. efhehf = efehf = ehf and ehfefh = ehefh = efh.
Hence efhRehf, and hence &7% = efh = ehf —&hf. This means that
B/R is left normal. Similarly, we can prove that B/2 is a right normal
band having {B,/%,: B, € B/®;} as its structure decomposition.

(2) Since the bagic semilattice of S/® is B/®; and since each
of the structure semilattices of B/R and B/ is B/®;, we can consider
the quasi-direct product Q(B/R X S/D R B/¥; B/D;). Now, define a
mapping +: S — QB/RKQ S/D K B/¥; B/D;) as follows:

~ =
P(x) = (xa™, X, v*w) ,

where 2* is an inverse of .
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This mapping « is well-defined. It can be proved as follows:
Let z* be an inverse of . Then Z* is the inverse of Z in the inverse
semigroup S/®, and accordingly Zz*, Z*Z are elements of B/®,. Let
Tx* = B, and Z*Z = B,. Since R £ Dy and L = @B, it follows that

7o+ e BN, and z°ze B,/S,. Therefore, (xa~, &, #7%) ABR® S/D®
E/_E/é; B/Ef)' Next, let «¥, v} be inverses of . Then mcl = mcz and
:::1;'92 = 9/0'2;9/0 Hence +(x) is uniquely determined for every « of S, that
is, v is a mapping of S to QB/R R S/D R B/E; B/D;). Take any
element (2, &, f) from QBIRR S/DR BIE; B/D,). Let 2* be an inverse
of », and let #%* = B, and %*Z = B,. Since &e B,/R. and fe B,/%,,
it follows that e,xx*e B, and f,a*x¢ B,. exf = e&f = za*io e =
xe*ex¥y = I, Since fx*e is an inverse of exf, we have

D e s / / ~/
exffr*e = exfa*e = oaw *efe*xrte = exarar arte = exaie = € .

S ———

Hence, (exf)(exf)* = € for any inverse (exf)* of exf. Similarly, we can
A=

prove that (exf)*(exf) = f for any inverse (exzf)* of exf. Therefore,

~
~

ylexf) = ((exf)exf)*, exf, (exf)*(exf)) = (¢,%, f) .

This means that + is onto. Next, suppose that (’on/*, Z, 9?50’) = (fy\@/*, 7,
Vo o~

= ; —~ A~ o~ ~ _ _ .
y*y). Since xx* = yy*, x*x = y*y and T = ¥, we have yy*za* = xx*,
a*ry*y = o*2 and y*axy* = y*. Hence,

@ = arte = (yyrerT)e = yyre(rte) = yyre(eteyty) = yyt@ato)yty

=y eyt = yy'y = v.
TN rsis—
This means that + is one-to-one, Finally, ¥ (zy) = ((ey)(xy)*, z¥y, (xy)*(xy))

where (xy)* is an inverse of xy. Since y*x*, where y* and z* are
inverses of 4 and & respectively, is an inverse of xy, we have
— | e —_—~
((xy)(zy)*, zy, (2y)*(@y)) = (vyy*a*, vy, y*z*zy) ,
— =
= (xx*xyy*z*, xy, y* o ryy*y)
~ 5= o~
= (xa*, &, 2*x) o (Yy™, ¥, ¥*y) = ¥v(@) o ¥ (y) .

Hence, + is an isomorphism of S onto Q(B/RQ S/D K B/L; B/D;).
Summarizing Lemmas 5 and 6, we obtain the following theorem:
THEOREM 2. A semigroup is a generalized inverse semigroup if

and only if it is isomorphic to the quasi-direct product of a left
normal band, an inverse semigroup and a right normal band.
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3. A structure theorem for N-inversive semigroups. As a
special case of the §2, in this section we shall study the structure of
regular semigroups satisfying permutation identities.

Let S be a regular semigroup satisfying a permutation identity

3.1) By v oe By = Tp Ty 2o 0 Ty

There exists j such that p; = j and p, = ¢ for all ¢+ < j. Let p, =s
and j = p,. Then, clearly s > j (J, s might be 1, n respectively).
At first, we have:

LEMMA 7. S 4s an inversive semigroup in which the set of
idempotents is a normal band.

Proof. It follows from Lemma 3 that the set of idempotents of
S is a normal band. Let a* be an inverse of an element a of S.
Put aa* = ¢ and a*a = f. Then, ¢ and f are idempotents. We put
a* and a to the places «, and z,_, of (3.1) respectively, and ¢ to the
other places x;,. Then, exx,.---2x;-++®, - x,6 becomes eaa*¢ and
€, Ty, *** Ly, =0 v By +++ T, € becomes ea*ae or ea*eae. Since both
ea*ae and ea*eae are equal to efe, we have ¢ = ¢fe. Similarly, if we
put @ and a* to the places », and z,_, and f to the other places =z,
then we have fef = f. Let ea*f = x. Then,

ax = alea*f) = (af)e(fa*)f = a(fef)a*f = afa*f = aa*f = ef,

xa = (ea*f)a = e(a*e)f(ea) = ea*(efe)a = ea*ea = ea*a = ef

and axa = a(ea*f)a = efa = ef(ea) = (efe)a = ea = a. Hence, S is in-
versive.

Let G be an inversive semigroup. For any element x of GG, there
exists an element z such that xz = 2z and xzex = x. Further, we can
prove that there exists one and only one element y such that 2y = yz,
xyxr =« and yxy — y. In fact: Let y = xzz. Then, 2y = x(x22) =
XzwZ = T2, Yr = (XRR)X = x2xz = X2, xyr = x2x = 2 and yry = (¥2R)xz =
xzxzz = 222 = y. Next, suppose that there exists another element w
such that aw = wz, 2wz = 2 and wzw = w. Then, zy = (rwx)y =
wryx = w(ryr) = we = xw, and hence y = yxy = yow = cyw = TWW =
wxw = w, Therefore, such an element y is unique. This y is called
the strict tnverse of x, and is denoted by «’.

For an inversive semigroup M in which the set N of idempotents
is a normal band, we have the following lemmas:

LEMMA 8. If x2’ = e and tf f ts an tdempotent such that f < e

(t.e., fe =ef = f), then fr = zf.
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Proof. Let fx(fxy =u and zf(xf) =v. Then fu =u, ue=eu=u,
vf = v and ev = ve = v. Now, by using the normality of N, we have
fe = faou = frefue = freufe = fxfand xf = vaf = evfexf = efvexf =
Jxf. Hence fx = zf.

LEMMA 9. Ifaa’ = e and bb = f, then (ab) = eb'a’f and (ab)(ab) =
ef.

Proof.

ableb'a’f) = abfefb'a’ f = afefbb'a’f = aefefea’f
= efefeaa’f = efefef = ef ;
(eb'a’f)ab = eb'a’efeab = eb'a’aefeb = eb' fefefd
= eb'bfefef = efefef = ef ;
ableb'a’ flab = efab = efeab = aefeb = aefefb = aefb = ab ;

and
(e’ fableb'a’f) = ef(eb'a’f) = efefb'a’f =efba’'f = eba'f .
Hence, (ab) = eb'a’f and (ab)(ab)’ = ef.

LEMMA 10, Let S be a regular semigroup satisfying o permi-
tation identity. Then xy = eyxf for any elements x,y of S, where
xx’ = e and yy' = f.

Proof. Let S satisfy the above-mentioned identity (3.1). Putting
z and y to the places x; and x,, of (3.1) respectively and ef to the
other places, efx,x, «-« @, x; -+ @, - - - z,ef becomes efxyef or efrefyef,
while efz, @, -+ %, @, -+ @, -+ x,ef becomes efyvef or efyefuef.
Since efxefyef = efxyef = xy follows from Lemma 8 and since

efyefxef = efyfefexef = efyxef = eyxf,

we have zy = eyxf.

Now, we shall define some special inversive semigroups. Let G
be an inversive semigroup and I the set of idempotents of G. Then
G is said to be R-tnversive, C-inversive, L. N-inversive, R.N-inversive
or N-inversive respectively, if it satisfies the corresponding identity
(R), (O), (L.N), (R.N) or (N) given in §1., Moreover, G is said to be
weakly B-inversive, weakly C-inversive, weakly L.N-inversive, weakly
R.N-inversive or weakly N-inversive respectively, if I satisfies the
corresponding identity (R), (C), (L.N), (R.N) or (N).
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REMARK. The structure of [weakly] C-inversive semigroups was
completely determined by Clifford [1] and the author [11], while the
structure of weakly R-inversive semigroups was determined by the
author [10] (see also Thierrin [8]). In particular, the following is
due to [10]: A semigroup is weakly R-inversive if and only if it
18 1somorphic to the direct product of a group and a rectangular
band. Let M be an R-inversive semigroup. Then M = G x T, where
G is a group and T is a rectangular band., Since M satisfies rectangu-
larity (accordingly G x T satisfies rectangularity),

(9, =@, 0(g, 01, ¢) = (1, 1)

for elements (1, ¢), (g, t) of G x T where 1 is the identity element of
G. Hence (1,t) = (g, t), and hence 1 = ¢g. This means that G consists
of a single element, that is, the element 1. Consequently, M is a
rectangular band. Conversely, any rectangular band is clearly an
R-Inversive semigroup. Therefore, we have the following result: A
semigroup s R-inversive if and only tf it is a rectangular band.

It is obvious that any group satisfying a permutation identity is
commutative. Further, any semigroup with an identity element is
commutative if it satisfies a permutation identity. However, a regular
semigroup satisfying a permutation identity is not necessarily commu-
tative and is in general quite different from a commutative semigroup.
This is easily seen from the fact that a rectangular band R is an
N-inversive semigroup (hence a regular semigroup satisfying a permu-
tation identity), but any two elements of R do not commute (see [3],
p. 25). Now, there arises a question whether a regular semigroup
satisfying a permutation identity is N-inversive. Next, we shall show
that the answer to this question is in the affirmative, that is, that
a regular semigroup satisfying a permutation identity is necessarily
N-inversive. Accordingly, the concept of “N-inversive semigroup”
coincides with the concept of “regular semigroup satisfying a permu-
tation identity”.

THEOREM 3. For a semigroup S, the following two conditions
are equivalent:

(1) S is regular and satisfies a permutation identity.

(2) S is N-inversive,

Proof. Let S be a regular semigroup satisfying a permutation
identity. Let @, v,z and w be elements of S. By Lemma 7, S is
weakly N-inversive. Let zx’ = ¢, yy' = f, 27 = g and ww' = k. Then,
zxyw = zefaxyefw (by Lemma 9) = ze( faye)fw = zeyxfw (by Lemma 10) =
zefyxefw = zgeffyxeefhw = zgfefyxefehw (by the normality of the
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idempotents of S) = zfeyxfew. By Lemma 9, yx(yx) = fe and hence
yxfe = feyx = yx. Therefore, zfeyxfew = zyxw. Hence zayw = zyxw,
This means that S is N-inversive. It is obvious that the condition
(2) implies the condition (1).

COROLLARY. For regular semigroups, any permutation identity
implies normality xyzw = xRyw.

REMARK. A semigroup satisfying a permutation identity is not
necessarily a semigroup satisfying normality ayzw = xzyw. This can
be seen from the following example: Let a,b,c,d be four letters.
Consider the set & = {(aa, ---a,):r =4, a;, #a; if 17,0, =a,b,c¢
or d for all 1 <k < »} U {0}. Define multiplication - in & as follows:

(1) Qo = a@o0 =0 for all ac &,
(2) (aa,---a,)o(bb,---0) = (@ ++- abb,---b) if
J (a.ay -+ a,), (bib, -+ - b,) e &\0 and
Gy Gy, + =+ Uy by byy oo, b,
are all different,
= 0, otherwise.

Then, &(¢) is a semigroup which satisfies any permutation identity
LTy * 20 By = By By, o+ X, With n > 4; since oo ---oa, =0 for
any elements a,a,, ---,a,c® if n >4, However &(c) does not
satisfy normality, since

(@) (b) 2 (¢) = (d) = (abed) = (achd) = (a)o(c)=(b)=(d) .

For inversive semigroups, we have the following:

THEOREM 4. An inversive semigrouwp G is expressitble as a semi-
lattice of weakly R-inwversive semigroups. That is, there exist a
semilattice I" and a collection {G,:ve '} of weakly R-inversive sub-
semigroups G, such that

(1) G=U{Gyvell,

(2) G.NGg=T11 for a = B, and

(3) G.Gs Gy for all a,Bel,

Further I' is determined uniquely up to isomorphism, and accordingly
so are the G, s.

Proof. From Clifford |1], an inversive semigroup G is a semilattice
I of completely simple semigroups; that is,
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(1) G=U{Guvel},
(I) {(2) G.NGg=1 for a = B,
(3) G.GeCGug,cx,Bel,

where each G, is a completely simple semigroup. Let E, be the totality
of idempotents of G,. Then, E, is a subband of G,. Since a completely
simple semigroup in which the set of idempotents is a band is isomorphic
to the direct product of a group and a rectangular band and since a
semigroup is isomorphic to the direct product of a group and a
rectangular band if and only if it is weakly R-inversive, each G, is
a weakly R-inversive subsemigroup of G (see [3] and [10[). Next
suppose that there exists another decomposition of G into a semilattice
of weakly R-inversive semigroups, say

(1) G=U{Gs:é&el™},
(II)y (2) G¢nGF =0 for { -7,
(3) GiGfCGE, L, rel™,

where each G¥ is a weakly R-inversive subsemigroup and I™* is a
semilattice,

Let EX be the totality of idempotents of G¥. Then, EF is a
rectangular band contained in G¥. Let I be the band of idempotents
of G. Then,

(1) I=U{E,:vel},
(2) E,NE;,=0 for a =45,
(3) E,E;C FE.,

and

(1) I=U{Ernéel™},
(2) EfNEFr =0 for { +#7,
(3) EfEr*CE:

are semilattice decompositions of I into rectangular bands. According
to McLean [3], such a decomposition of I is unique. Hence, we can
assume that I" =7I'* and E, = E} for all yelI’. Now since two
decompositions (I) and (II) are different, there exists aeI” such that
G. #= G¥. Hence, there exists BSel" (a # B) such that G} NG = I
or G,NGs = 0. If GENGszdow, then o' € GENGe. Hence xa’ € G NGy,
and hence zz’ € E, N Es. Similarly, G, N G§ = O implies £, N Ep = 1.
This is a contradiction. Hence, such a decomposition of G is unique.

We shall call " in Theorem 4 the structure semilatiice of G,
and G, the v-kernel of G. This is a generalization of the concepts
of the structure semilattice and a kernel of a band defined in §2.
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Also, in this case we write G ~ > {G,: v€ I'} and call it the structure
decomposition of G.

According to [1], it follows that a [weakly] C-inversive semigroup
M is expressible as a semilattice 4 of commutative groups [groups]
M, (for a band of semigroups, see [2]). Therefore, in this case the
structure semilattice of M is A and the A-kernel of M is the group
M,. Further, the structure decomposition of M is M ~ 3 {M;: ne d}.
Let Gy, G, be inversive semigroups having I” as their structure semi-
lattices, and let G, ~ 3 {GY:veI'} and G,~ 3{G}:veI'} be the
structure decompositions of G, and G, respectively. Then the set
G=U/{G! x Gl:ve I}, where GY x G} is the direct product of G}
and G, becomes a subdirect product of G; and G,. Such a G is called
the spined product of G, and G, with respect to I", and denoted by
G, G, ().

Under these definitions, we have the following

LEMMA 11. Let S be an N-inversive semigroup having I' as its
structure semilattice. Let B be the normal band consisting of all
idempotents of S. Then

(1) B has I" as its structure semilatiice, and

(2) there exists a C-inversive semigroup, having I° as 1its
structure semilattice, such that S is isomorphic to C oo B (I').

Proof. Let S~ > {S,:vel} be the structure decomposition of
S. Let E, be the totality of all idempotents of S,. The structure
decomposition of B is clearly B~ > {E,:vel'}. Now, we introduce
a relation R on S as follows: xRy if and only if z,y ¢S, for some
ve I and =y’ € E,. Then, it is easy to see that R is a congruence on
S. Therefore, we can consider the factor semigroup S/E of S mod
R. We denote the congruence class containing « by Z, and put {Z,
zye Sy} = Gy, Then, S/R = U {Gy,:vel'} and G, N Gz = O for a + B.
It is easy to see that G, is a group having ¢, e,c F,, as its identity
element. Let %, ¥; be elements of G, and Gz, Clearly, %%, = %,25.
Since ®,ws€ S,p, .2 is an element of G,z. Hence, G,Gs C G,s. Thus,
the structure decomposition of S/R is S/R ~ >, {G,: veI'}. Next, we
shall prove that S/R is commutative. Let Z,, %s be elements of S/R
where Z,c G, and J,€ Gz. Let z,2, = ¢ and yuy; = f. The elements
xYs and ygw, are contained in S,s and x,yp(Ypt.) = T.Ysfroyse =
T Yp¥eYpe = L. 2oYgYpe = efec K,z Hence 2,ysRysx,, and hence Z,%,; =
Yo%, Thus, S/R is commutative. Since S/R is inversive and com-
mutative, S/R is C-inversive. Next, consider the spined product
S/R > B(I"): S|R = B= U {G, X E,;veI'}. Define a mapping ¢ of S
into S/R o= B (I") as follows: o(z) = (%, xx"), 2 S. Then, p(xy) = (xy,
wy(yx)) = (@Y, xx'yy’) (by Lemma 9) = (Z, 22')(¥, y¥') = @(@)p(y). Let
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(7, e.), e, € E,, be any element of S/R <« B(["). Then, z¢S,. Let
xx’ = fe K, Since e, is the identity element of G,, we have ¢ xe, =

g, te, = % and
e.xe.(e.xe,) = e xe.e.(xe,)enfe, = e e, ferx'e, fe,

= e, xe,x’e, = e, xx'e, = e, .

Hence, p(e.xe,) = (e e, ¢.2e.(e.2e,)) = (X, e,). This means that ¢ is
an onto-mapping. Next, suppose that o(x) = ¢(y). Then, (&, zx’) =
(#, yvy'). Hence, xx’ = yy' and there exists S, such that z,y¢ S, and
xy'c E,. Letxx’' = yy' = eand xy" = e,. Then (y2') = exy'e = ee,e =
e. Hence yx' = e. Similarly, (xy') = eyx’e = eee = e. Hence, zy’ = e.
Therefore, 22" = yy' implies ex = xz'c = xy'y = ey, and hence z = v,
Thus, ¢ is an isomorphism of S onto S/R « B(I).
Using Lemma 11, we obtain the following main theorem:

THEOREM 5. (Structure theorem). A semigroup S is isomorphic
to the spined product of a C-inversive semigroup and a normal band
if and only if S is N-inversive.

Proof. The “if” part was proved in Lemma 11, We shall prove
the “only if” part. Let C be a C-inversive semigroup having structure
decomposition C ~ > {C,:vel'}. Let B be a normal band having
structure decomposition B ~ >\ {E,:veI'}. Since the spined product
of any two inversive semigroups is also inversive, the spined product
C o B(I') is inversive, Now, Coo B(I) = U{C, X Ey:vel}. Let
(@4, &), (Qu ,€4), (g, €p), (a5, €5) be four elements of C oo B(I'). Then,

(a7y e‘y)(aa) ea)(aﬁ’ 63)(0’81 68) = (avaaa.ﬁafﬁy 87606568) = (a/'yalﬁaaa’sy e'yeBeaes)
(by the normality of B and the commutativity of C)

- (aw e‘Y)(aBy GB)(a’ay ea)(CLSy 66) .

Therefore, C « B([") is N-inversive.

REMARKS 1. For L.N [R.N]-inversive semigroup, we can establish
an analogous result to Theorem 5. We present it without proof.

THEOREM. A semigroup is tsomorphic to the spined product of
a C-inversive semigroun and a left [right] normal band if and only
if S ©s L.N [R.N]-tnversive.

2. It is also true that a semigroup S is isomorphic to the spined
product of a weakly C-inversive semigroup and a [left, right] normal
band if and only if S is weakly N [L.N, R.N]-tnversive. We also
omit its proof.
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4. Classification of permutation idetities. Let 2 be the collec-
tion of all semigroups having type T.' Let P, = P, and Q, = @, be
permutation identities. If every semigroup of 2 satisfying P, = P,
satisfies @, = @, and conversely every semigroup of 2 satisfying @, = Q,
satisfies P, = P,, then P, = P, and @, = @, are said to be equivalent
with respect to 2. It was shown by Kimura and the author [17]
(the proof is given by [12]) that the permutation identities are classified
into four distinet equivalence classes with respect to the collection of
bands. That is; let @, - -+ @, = @, %,, -+ - %, be a permutation identity.
Then, the following proposition is true with respect to the collection
of bands:

Ly v e &y = Xy &y, v o0 X, IS equivalent to
(I) commutativity if p, =« 1 and p, # n ;
4.1) (II) left normality if », =1 and p, # n ;
(III) right normality if p, == 1 and », = n ;
V(IV) normality if P,=1 and p, =% .

In this section, we shall show that (4.1) is also true with respect to
the collection of regular semigroups.

THEOREM 6. Let #,2.++ %, = %, %, -+ - &, be a permutation iden-
tity. Then the proposition (4.1) is true with respect to the collection
of regular semigroups.

Proof. Suppose that a regular semigroup S satisfies a permutation
identity ., .- ®, = «,,, --- 2, . Since S is N-inversive, the set B
of idempotents of S is a band.

(I) If p, %1 and p, # n, then by the above-mentioned result
of [17] the band B is commutative and hence S is weakly C-inversive,
Let vo’ = e and yy' = f. Then, zy = exyf = eyxs (by the normality
of S) = efyxef = feyxfe = yx (by Lemma 9). Hence, S satisfies com-
mutativity.

(II) If p, =1 and p, # n, then the band B is left normal and
hence S is weakly L.N-inversive, Let za’ = ¢, yy = f and 2z = g.
Then, xyz = xfyzg = xfzyg (by the normality of S) = xfgzyffg =
xgfzyfof (by the normality of S and the left normality of B) =
xgfzygf = xzy (by Lemma 9). Hence, S satisfies left normality.

(III) Similarly, in the case p, = 1 and p, = » it is eagily proved
that S satisfies right normality.

(Iv) In the case p, = 1 and p, = n, it is obvious that S satisfies

! T is a type of semigroup such that if one of two isomorphic semigroups has
type T, then so also has the other.
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normality.

Conversely, it is also obvious that a regular semigroup satisfying
commutativity [left normality; right normality; or normality] satisfies
any permutation identity zw,.--x, = %,%,, -+ %, with p, 1 and
o #=n |po=1and p,=n;p, #1and p,=n; or p,=1 and p, =n
respectively].

REMARK. Since commutativity, left normality, right normality
and normality are nonequivalent to each other with respect to the
collection of bands, they are also nonequivalent with respect to the
collection of regular semigroups.

5. Characterizations of N[L.N, E.N, Cl-inversive semigroups.
From Theorems 3 and 5, we obtain the following

COROLLARY 1. For a semigroup S, the following conditions are
equivalent:

(1) S is regular and satisfies a permutation identity.

(2) S s N-inversive.

(3) S 1is isomorphic to the spined product of a C-inversive
semigroup and a normal band.
Further, in this case S is a band of groups and accordingly S is
both left and right regular (in the semse of [3], p. 121).

Also, we have

COROLLARY 2. For a semigroup S, the following conditions are
equivalent:

(1) S is regular and satisfies left [right] normality xyz = xry
[xyz = yaz].

(2) S 4s L.N [R.N]-inversive.

(3) S is isomorphic to the spined product of a C-inversive
semigroup and a left [right] normal band.

Proof. It is obvious that the conditions (1) and (2) are equivalent
to each other. The equivalence of the conditions (2) and (3) follows
from Remark 1 of Theorem 5.

As was stated in the §3, it is easy to see that a semigroup with
an identity element is commutative if it satisfies a permutation identity.
Therefore, especially a group satisfying a permutation identity is com-
mutative. Further, the following shows that an inverse semigroup
satisfying a permutation identity is necessarily commutative.
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COROLLARY 3. For a semigroup S, the following conditions are
equivalent:

(1) 8 is regular and commutative.

(2) S is an inverse semigroup satisfying a permutation iden-
tity.

(3) S is C-inversive.

(4) S is a commutative compound semigroup of a collection of
commutative groups having o semilattice as its index set.?

Proof. It is easy to see that the condition (1) implies the condition
(2). Let S be an inverse semigroup satisfying a permutation identity.
Since S is regular, it is N-inversive. Also, since S is an inverse
semigroup any two idempotents of S commute. Take any elements
xz,y of S, and let 22’ = ¢ and yy = f. Then ay = exyf = eyxf (by
the normality of S) = efyxef = feyxfe (by the commutativity of
idempotents of S) = yx (since (yx)(yx) = fe). Hence, S is commutative.
Since a C-inversive semigroup is commutative and is a semilattice of
commutative groups, it is obvious that the condition (3) implies the
condition (4). Finally, it is also obvious that the condition (4) implies
the condition (1).
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