
 Open access Book Chapter DOI:10.1007/978-3-319-11439-2_5

Regular Strategies in Pushdown Reachability Games — Source link

Arnaud Carayol, Arnaud Carayol, Matthew Hague, Matthew Hague

Institutions: Royal Holloway, University of London, University of Paris

Published on: 22 Sep 2014 - International Workshop on Reachability Problems

Topics: Deterministic pushdown automaton, Pushdown automaton, Embedded pushdown automaton, Nested word and
Deterministic context-free grammar

Related papers:

 Positional Strategies for Higher-Order Pushdown Parity Games

 Regularity problems for weak pushdown ω -automata and games

 Regular ArticlePushdown Processes: Games and Model-Checking☆

 Pushdown Processes: Games and Model Checking

 Winning Regions of Higher-Order Pushdown Games

Share this paper:

View more about this paper here: https://typeset.io/papers/regular-strategies-in-pushdown-reachability-games-
4peh96lbxu

https://typeset.io/
https://www.doi.org/10.1007/978-3-319-11439-2_5
https://typeset.io/papers/regular-strategies-in-pushdown-reachability-games-4peh96lbxu
https://typeset.io/authors/arnaud-carayol-27zhrb1fbl
https://typeset.io/authors/arnaud-carayol-27zhrb1fbl
https://typeset.io/authors/matthew-hague-2f5h85bvf8
https://typeset.io/authors/matthew-hague-2f5h85bvf8
https://typeset.io/institutions/royal-holloway-university-of-london-zwblhonl
https://typeset.io/institutions/university-of-paris-3fpqqchm
https://typeset.io/conferences/international-workshop-on-reachability-problems-pis4hrcu
https://typeset.io/topics/deterministic-pushdown-automaton-1fj6ef1w
https://typeset.io/topics/pushdown-automaton-3hmg6gj9
https://typeset.io/topics/embedded-pushdown-automaton-so805cma
https://typeset.io/topics/nested-word-zhb19he2
https://typeset.io/topics/deterministic-context-free-grammar-28elszrm
https://typeset.io/papers/positional-strategies-for-higher-order-pushdown-parity-games-myyshpf9cv
https://typeset.io/papers/regularity-problems-for-weak-pushdown-o-automata-and-games-47ids69rf0
https://typeset.io/papers/regular-articlepushdown-processes-games-and-model-checking-23g29op9bk
https://typeset.io/papers/pushdown-processes-games-and-model-checking-1byora4qmv
https://typeset.io/papers/winning-regions-of-higher-order-pushdown-games-12v3bt4ycy
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/regular-strategies-in-pushdown-reachability-games-4peh96lbxu
https://twitter.com/intent/tweet?text=Regular%20Strategies%20in%20Pushdown%20Reachability%20Games&url=https://typeset.io/papers/regular-strategies-in-pushdown-reachability-games-4peh96lbxu
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/regular-strategies-in-pushdown-reachability-games-4peh96lbxu
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/regular-strategies-in-pushdown-reachability-games-4peh96lbxu
https://typeset.io/papers/regular-strategies-in-pushdown-reachability-games-4peh96lbxu

HAL Id: hal-01719810
https://hal-upec-upem.archives-ouvertes.fr/hal-01719810

Submitted on 28 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Regular Strategies In Pushdown Reachability Games
Arnaud Carayol, Matthew Hague

To cite this version:
Arnaud Carayol, Matthew Hague. Regular Strategies In Pushdown Reachability Games. RP 2014,
2014, Oxford, United Kingdom. pp.58-71, 10.1007/978-3-319-11439-2_5. hal-01719810

https://hal-upec-upem.archives-ouvertes.fr/hal-01719810
https://hal.archives-ouvertes.fr

Regular Strategies In Pushdown Reachability

Games

A. Carayol and M. Hague

LIGM, Université Paris-Est & CNRS and Royal Holloway University of London

Abstract. We show that positional winning strategies in pushdown
reachability games can be implemented by deterministic finite state au-
tomata of exponential size. Such automata read the stack and control
state of a given pushdown configuration and output the set of winning
moves playable from that position.
This result can originally be attributed to Kupferman, Piterman and
Vardi using an approach based on two-way tree automata. We present a
more direct approach that builds upon the popular saturation technique.
Saturation for analysing pushdown systems has been successfully imple-
mented by Moped and WALi. Thus, our approach has the potential for
practical applications to controller-synthesis problems.

1 Introduction

Pushdown systems are well-studied in the software verification community. Their
stack mirrors the call stack of a first-order recursive program, and, as such, the
control flow of such programs (for instance C and Java programs) can be ac-
curately modelled [10]. These models have been a major part of the automata-
theoretic approach to software model checking and considerable progress has
been made in the implementation of scalable model checkers of pushdown sys-
tems. These tools (e.g. Bebop [2] and Moped [7, 13, 17, 18, 16]) are an essential
back-end components of high-profile model checkers such as SLAM [1].

Verification instances are often simple reachability properties. That is, is
there a path in the system leading to some designated “error” state? A richer
model is that of games where two players (Éloise and Abelard) compete to
meet a certain goal. Often these players model the system (Éloise) running in
an antagonistic environment (Abelard). In a reachability game, one might ask
whether it’s possible for the system to eventually reach a desired state, regardless
of the environmental input. More complex winning conditions, such as Büchi
or parity conditions, allow games equivalent to verification against expressive
temporal logics such as µLTL or the modal µ-calculus (e.g. [6]).

In a seminal paper [20], Walukiewicz showed that determining the winner
of a pushdown parity game is EXPTIME-complete. Cachat [5] and Serre [14]
have independently generalised Walukiewicz’s algorithm to compute the winning
regions of these games. That is, the set of all positions in the game where a
given player can force a win. They use Walukiewicz’s algorithm as an oracle
to guide the construction of a finite-state automaton recognising the winning

region. Another approach, introduced by Piterman and Vardi [12], uses two-way
alternating tree automata to navigate a tree representing all possible stacks:
after several reductions, including the complementation of Büchi automata, an
automaton accepting the winning region can be constructed.

An alternative approach, saturation, was popularised as a model-checking
algorithm for pushdown systems by Bouajjani et al. [3] and independently by
Finkel et al. [8]. The algorithm was extended to constructing the winning re-
gions of pushdown reachability games by Bouajjani et al. [3], Büchi games by
Cachat [4], and parity games by Hague and Ong [9].

As well as constructing the winning region, one may also wish to construct
a representation of a player’s winning strategy. A winning strategy monitors the
progression of the play of a game and, when a state is in the player’s winning
region, advises which of a range of possible moves should be played in order to
win the game. When the players are the system and the environment, a winning
strategy describes how to control the system to ensure correctness. This is the
controller-synthesis problem: given a system and a specification, construct a
controller of the system that behaves according to the specification.

In the case of pushdown reachability, Büchi, or parity games, it is known that
the players have positional winning strategies. That is, in order to prescribe the
next winning move, a strategy needs only to have access to the current state of
the game (as opposed to the entire history of play) [21].

Cachat has given two realisations of Éloise’s winning strategy in a pushdown
reachability game [4]. The first is a positional strategy, constructed via the sat-
uration technique, that requires space linear in the size of the stack to compute
the possible next moves. Alternatively, Cachat presents a strategy implemented
by a pushdown automaton that tracks the moves of Abelard and recommends
moves to Éloise. Since the automaton tracks the game, the strategy is not posi-
tional. However, prescribing the next move requires only constant time. Cachat
also argues that similar strategies can be computed for Abelard for positions in
his winning region [5].

In the case of Büchi games Cachat also showed that it is possible to construct
a linear space positional strategy and a constant time (though not positional)
pushdown strategy for Éloise. However, Cachat also observes that adopting his
techniques for computing strategies for Abelard is not clear [5]. However, it is
known that, even for the full case of parity games, a pushdown strategy exists
using different techniques due to Walukiewicz [20] and Serre [15].

The above results use relatively complex systems to define winning strate-
gies. One of the simplest representations of a positional winning strategy over a
pushdown game is a regular strategy. In this case, the stack and control state
of the current position in the game are read by a finite-state automaton which
then outputs the next possible winning moves.

It can be shown that a positional strategy for pushdown parity games can
be defined as a regular automaton, exponential in size. Kupferman et al. [11]
obtain this result from Piterman and Vardi [12]. Essentially, the two-way tree
automaton can be reduced to a one-way tree automaton of exponential size, and

2

from this a deterministic automaton reading each branch of the tree (where each
branch represents a stack) and recommending next moves can be derived.

However, as mentioned above, this tree automaton approach requires several
involved reductions and it is unclear how such a technique may be implemented
in practice. The saturation algorithm, however, lends itself readily to implemen-
tations computing the winning regions (e.g. Moped [7, 13, 17] and WALi [19] for
single-player and Moped for two-player [18] reachability games).

In this work we show how regular positional strategies can be constructed
for Éloise in a pushdown reachability game. In Cachat’s technique, weights are
assigned to runs of the winning region automaton. Éloise’s strategy is to take the
minimal accepting run of the current configuration and play the move associated
to its first transition. Following this strategy the reachability goal will eventually
be satisfied. However, this does not provide a regular positional strategy because
the weights require space linear in the size of the run to compute. We show that
a more subtle method of assigning weights allows different runs to be compared
with constant space requirements. Thus, we construct a deterministic regular
automaton implementing a positional winning strategy.

Like Piterman and Vardi’s technique, our automaton is also exponential in
size. However, we believe our construction to be more direct and more likely to
be practicable. Indeed, the first step of the algorithm (the construction of the
winning region) has already been successfully implemented, whereas Piterman
and Vardi’s has not.

2 Preliminaries

2.1 Pushdown Games

A pushdown reachability game G is a given by a tuple (P, Σ,R, CF) where P =
PA⊎PE is a finite set of control states partitioned into Abelard and Éloise states
respectively, Σ is the finite stack alphabet, R ⊆ (P ×Σ)×

(

P ×Σ≤2
)

is the set
of transitions and CF is a set of target configurations, where a configuration is a
tuple (p, w) with p being a control state in P and w a stack in Σ∗.

We write (p, a) →֒ (p′, w) for the transition ((p, a) , (p′, w)). In the configura-
tion α = (p, aw), the pushdown system can apply the transition (p, a) →֒ (p′, u)
to go to the configuration α′ = (p′, uw).

In the following, for technical convenience, we will assume for each p ∈ P
and a ∈ Σ there exists some (p, a) →֒ (p′, w) ∈ R. Furthermore, we will assume
a bottom-of-stack symbol ⊥ that is neither pushed onto nor popped from the
stack. These two conditions together ensure that from a configuration (p, w⊥)
it is not possible for the system to become stuck; that is, reach a configuration
with no successor.

A play of a pushdown game is a sequence (p0, w0) , (p1, w1) , . . . where (p0, w0)
is some starting configuration and (pi+1, wi+1) is obtained from (pi, wi) via some
(pi, a) →֒ (pi+1, w) ∈ R. In the case where pi ∈ PE it is Éloise who chooses the
transition to apply, otherwise Abelard chooses the transition.

The winner of a play (p0, w0) , (p1, w1) , . . . is Éloise if there exists some i
such that (pi, wi) ∈ CF ; otherwise, Abelard wins the play. The winning region

3

W of a pushdown game is the set of all configurations from which Éloise can
always win all plays, regardless of the transitions chosen by Abelard.

2.2 Alternating P-Automata

To recognise sets of configurations, we use alternating P-automata. These were
first used by Bouajjani et al. [3].

An alternating P automaton is a tuple A = (Q, Σ,F , δ) where Q is a finite
set of states such that P ⊆ Q, Σ is a finite alphabet, F ⊆ Q is the set of
accepting states, and δ ⊆ Q × Σ × 2Q is a transition relation. We denote a
transition (q, a,Q) as q

a
−→ Q.

A run over a word a1 . . . an ∈ Σ∗ from a state q0 is a sequence

Q1
a1−→ · · ·

an−−→ Qn+1

where each Qi is a set of states such that Q1 = {q0}, and for each 1 ≤ i ≤ n we
have

Qi = {q1, . . . , qm} and Qi+1 =
∪

1≤j≤m

Pj

where for each 1 ≤ j ≤ m we have qj
w
−→ Pj . The run is accepting if Qn+1 ⊆ F .

Thus, for a given state q, we define Lq(A) to be the set of words over which
there is an accepting run of A from {q}. Finally, we define

L(A) = {(p, w) | p ∈ P and w ∈ Lp(A)} .

When Qi is a singleton set, we will often omit the set notation. For example,
the run above could be written q0

a1−→ · · ·
an−−→ Qn+1. Furthermore, when w =

a1 . . . an we will write q
w
−→ Q as shorthand for a run from q to Q. In particular,

we always have q
ε
−→ q for any q ∈ Q.

2.3 Constructing the Winning Region

We recall the saturation technique for computing Éloise’s winning region of a
pushdown reachability game. The algorithm was introduced by Bouajjani et
al. [3] and is essentially an accelerated backwards fixpoint computation begin-
ning with the target set of configurations and then computing all configurations
that may reach it. We adapt the algorithm slightly by annotating each added
transition with the number of iterations of the algorithm required to add the
transition to the automaton. A similar, though more complex annotation scheme
was used by Cachat to give a positional (though non-regular) winning strategy
for Éloise [4].

Fix a pushdown reachability game G = (P, Σ,R, CF) such that CF is repre-
sented by an alternating P-automata A with L(A) = CF . We will show how to
construct an automaton B such that L(B) = W, where W is Éloise’s winning
region of G.

Without loss of generality, we assume that there are no incoming transitions
to any state p ∈ P of A. The saturation algorithm constructs the automaton
B that is the least fixed point of the sequence of automata A0,A1, . . . defined

4

below. We simultaneously construct the sequence A0,A1, . . . and two annota-
tion functions I and R that annotate each transition t ∈ Q × Σ × 2Q. The
I function assigns to each rule its birthdate : a natural number which is intu-
itively the number of iterations of the saturation algorithm required to add the
transition to B. Since the algorithm is a backwards reachability algorithm, the
birthdate broadly gives the number of transitions required to either remove the
corresponding stack character or rewrite it to part of a stack in the set of target
configurations. The R partial function assigns to each transition starting with
a state of Éloise and whose birthdate is not 0 the rule of the pushdown game
responsible for the addition of the transition to the automaton. All transitions
in A0 will have the birthdate 0 assigned by I.

Initially, let I(t) = 0 for each t ∈ δ0 and define A0 = A = (Q, Σ, δ0,F). Then
we define Ai+1 = (Q, Σ, δi+1,F) where δi+1 is the smallest set of transitions such
that

1. δi ⊆ δi+1, and

2. for each p ∈ PE , if r = (p, a) →֒ (p′, w) ∈ R and p′
w
−→ Q is a run of Ai, then

t = p
a
−→ Q ∈ δi+1

and if t /∈ δi then set I(t) = i+ 1 and R(t) = r, and
3. for each p ∈ PA and a ∈ Σ we have

t = p
a
−→ Q ∈ δi+1

where, letting

{(p1, w1) , . . . , (pm, wm)} = {(p′, w) | (p, a) →֒ (p′, w) ∈ R}

we have Q =
∪

1≤j≤m

Qj where for each 1 ≤ j ≤ m, pj
wj

−−→ Qj is a run of Ai.

Furthermore, if t /∈ δi then set I(t) = i+ 1.

One can prove that L(B) = W. Since the maximum number of transitions of
an alternating automaton is exponential in the number of states (and we do not
add any new states), we have that B is constructible in exponential time.

Theorem 1 ([3]). The winning region of a pushdown reachability game is reg-
ular and constructible in exponential time.

Before proceeding with the construction of the strategy, we briefly discuss why
L(B) = W. It is well known that the winning region for Éloise is the smallest set
W such that L(A0) ⊆ W and W = Pre(W) where for any set of configuration
C,

Pre(C) = {c′ of Éloise | ∃c ∈ C, c′ → c}
∪ {c′ of Abelard | ∀c ∈ C, c′ → c ⇒ c ∈ C}

The key property of the algorithm is that it ensures that L(B) is closed under
the Pre operation (i.e., Pre(L(B)) = L(B)). More precisely, it ensures that for all

5

i ≥ 0, Pre(L(Ai)) ⊆ L(Ai+1). Hence as B is by definition equal to AN = AN+1,
we have that Pre(L(B)) = L(B). As L(B) contains L(A0), it follows that L(B)
contains the winning region of Éloise.

For the converse inclusion, it is necessary to show that every configuration
accepted by B belongs to the winning region of Éloise. For this we need to fix a
strategy for Éloise that is winning from every configuration in L(B).

The strategies of Éloise considered in this article consist of associating to ev-
ery run ρ a weight Ω(ρ) and a well-founded ordering < on weights. The strategy
consists in picking the successor of a configuration of Éloise in L(B)\A0 accepted
by a run of B with the smallest possible weight. The weight is defined such that
along any play following this strategy the weight of the smallest accepting run
strictly decreases. As the ordering is assumed to be well-founded this ensures
that a configuration in L(A) is eventually reached.

The key property here is that the algorithm ensures that for every configura-
tion c of Éloise accepted by a run ρ of B which does not belong to L(A0), there
exists a configuration c′ accepted by a run ρ′ of B such that c → c′ . Moreover ρ′

is obtained by replacing the topmost transition of ρ by several transitions which
are younger. Similarly for a configuration c of Abelard accepted by some run ρ
of B, we have that any configuration c′ such that c → c′ is accepted by a run
ρ′ of B which is obtained by replacing the topmost transition of ρ by several
transitions which are younger.

A possible weight for a run ρ is hence a tuple (nN , . . . , n0) ∈ N where N is
the maximum birthdate of a transition appearing in the automaton B and, for
all i ≥ 0, ni is the number of transitions of birthdate i. The ordering is here
the lexicographic ordering. Sadly this notion of weight cannot be handled by a
finite state automaton which is the goal of this article. In the following section,
we define a notion of weight that is compatible with finite state automata.

3 Regular Strategies

3.1 Runs As Trees

A run of B over a word a1 . . . an ∈ Σ∗ from a state q0 can be represented by an
unordered, unranked tree of depth n such that,

1. the root node is labelled q0.
2. for each node η at depth 0 ≤ i < n of the tree labelled q there is a transition

t = q
t
−→ {q1, . . . , qm} such that η has children η1, . . . , ηm labelled q1, . . . , qm

respectively and each edge (η, ηj) for all 1 ≤ j ≤ m is labelled by t.

A run, represented as a tree, gives rise to a set of sequences of transitions
t1, . . . , tn that are the labellings of the edges of each complete branch of the
tree (that is, running from the root node to some leaf node). Given a run ρ, let
Branches(ρ) be the set of sequences of labels on the branches of ρ.

3.2 Ordering On Runs

To define strategies, we first introduce an ordering between runs of the saturated
automaton. To do so, we assign to each branch of the run a weight and take the

6

weight of the run to be the maximum weight of all of its branches. The runs are
then (pre-)ordered by comparing their weights.

Weights. Let N be the number of iterations required for the saturation to reach
a fixed point. That is N is the smallest number such that for all t we have
I(t) ≤ N . Note that N is fixed for a given B. The weights are tuples in N

N+1

where N denotes the set of natural numbers. The weights are compared using
the reverse lexicographic-ordering

(i0, . . . , iN) ≺ (i′0, . . . , i
′
N)

whenever there exists N ≥ j ≥ 0 such that ij < i′j and for all N ≥ k > j we
have ik = i′k. Similarly, we write ⪯ to denote ≺ ∪ =. Moreover we write

(i0, . . . , iN) ≺j (i
′
0, . . . , i

′
N)

whenever ij < i′j and for all N ≥ k > j we have ik = i′k.

Weight of a branch. Fix a branch β = tn, . . . , t1 of the run which reads the stack
from top to bottom (thus tn reads the topmost character and t1 the bottommost
character). For all 0 ≤ j ≤ N , we take lftj to be the position from the bottom of
stack of the left-most transition of birthdate j and 0 if no such transition exists,
i.e. lftj = max {i | I(ti) = j } (with max ∅ = 0). Intuitively we first take into
account the position (from the bottom) of the transition of birthdate N that is
the furthest from the bottom. The greater this position is the greater the weight.
Then we look at the position of the transition of age N − 1 that is the furthest
from the bottom. We only take it into account if it is after the previous position.
This restriction is only here to ensure that the order can be implemented by an
automaton with an exponential number of states. And so on. . . .

The weight of the branch β is defined to be

Ω(β) := (i0, . . . , iN)

where ij = lftj if lftj > max{lftj+1, . . . , lftN} and 0 otherwise.
For example, consider a branch t1, t2, t3, t4, t5, t6 with a corresponding se-

quence of birthdates 1, 4, 2, 2, 5, 1 and assume that N = 5. We have lft5 = 2,
lft4 = 5, lft3 = 0, lft2 = 4,lft1 = 6 and lft0 = 0. The weight of this branch is
hence (0, 6, 0, 0, 5, 2).

Weight of a run and of a configuration. The weight of a run ρ is the maximum
weight (for ≺) of one of its branches.

Ω(ρ) := max {Ω(β) | β ∈ Branches(ρ)}

Finally we assign to any configuration (p, w) accepted by the automaton B the
weight Ω((p, w)) = min {Ω(ρ) | ρ accepts (p, w)} of its smallest accepting run.

The ordering ≺ is naturally extended to a total pre-ordering on runs by
taking for any two runs ρ and ρ′, ρ ≺ ρ′ if Ω(ρ) ≺ Ω(ρ′). Similarly ≺ is extended
to configurations accepted by B.

7

3.3 Éloise’s Winning Strategy

Given the ordering defined above, we can define a winning strategy for Éloise. Her
strategy is a simple one. At any configuration (p, aw) in her winning region, let ρ

be a smallest accepting run of B with respect to ≺. Furthermore, let t = p
a
−→ Q

be the first transition of ρ. To win the game, Éloise can play the rule R(t). For
any configuration (p, w) with p ∈ PE , let PlayE((p, w)) be the set of rules r
that annotate the first transition of a ≺-smallest run of B over (p, w) whenever
(p, w) ∈ W \ CF . Otherwise, let PlayE((p, w)) = ∅.

Lemma 1. For a given pushdown reachability game G = (P, Σ,R, CF) with W,
B and ≺ being Éloise’s winning region, the automaton constructed by saturation
and its associated ordering respectively, it is the case that, for all configurations
(p, aw) ∈ W, we have either

1. (p, aw) ∈ CF , or

2. p ∈ PE and for all (p, a) →֒ (p′, u) ∈ PlayE((p, w)) we have

(p′, uw) ≺ (p, aw) with (p′, uw) ∈ W ,

3. p ∈ PA and for all (p, a) →֒ (p′, u) ∈ R we have

(p′, uw) ≺ (p, aw) with (p′, uw) ∈ W .

Proof. We only consider Éloise’s case as Abelard’s case is similar. Let (p, aw) ∈
W be a configuration of Éloise. Let ρ be a minimal run accepting for (p, aw) and

let t = p
a
−→ Q be the first transition of ρ. Furthermore for all q ∈ Q, let ρq be

the subrun of ρ accepting w from q Finally assume that R(t) = (p, a) →֒ (p′, u).

By definition of the saturation algorithm, there exists a run ρu of the form
p′

u
−→ Q where every transition t′ labelling ρu is such that I(t′) < I(t). Let ρ′ be

the run obtained by plugging into ρu the run ρq at each leaf labelled by q ∈ Q .
This runs accepts (p′, uw) and hence (p′, uw) belongs to W.

Furthermore every branch β′ of ρ′ is obtained from some branch β of ρ by
replacing the first transition t by a sequence of transitions t1, . . . , t|u| where for
all 1 ≤ j ≤ |u|, I(tj) < I(t). By definition of the order ≺, Ω(β′) ≺I(t) Ω(β).
Hence Ω((p′, uw)) ⪯ Ω(ρ′) ≺ Ω(ρ) = Ω((p, aw)). ⊓⊔

Theorem 2. The positional strategy PlayE is winning for Éloise from every
configuration of her winning region.

Proof. Assume towards a contradiction that there exists an infinite play c0, c1 . . .
which starts in the winning region of Éloise and that does not reach a configu-
ration in CF . From Lemma 1, we immediately obtain that Ω(c0) ≻ Ω(c1) ≻ · · · .
Being a (reverse) lexicographic ordering built upon well-founded orderings, ≺ is
a well-founded total ordering on weights which brings the contradiction. ⊓⊔

8

3.4 Regular Winning Strategies

We show that the above strategy can be implemented by a regular automaton.
That is, we define a finite deterministic automaton which processes a configu-
ration (p, w) and outputs the set of rules PlayE((p, w)) whenever p ∈ PE and
(p, w) ∈ W \ CF , and ∅ otherwise. The automaton reads the stack content w
from the bottom of the stack and reaches some state s. The output is obtained
by applying a mapping Outp to s. We first formally define strategy automata.

Definition 1. Given a pushdown game (P, Σ,R, CF), a strategy automaton S
is a tuple (S,Σ, s0, δ, (Outp)p∈PE

) where S is a finite set of states, Σ is an input
alphabet, s0 is an initial state and δ : S × Σ 7→ S is a transition function and
for all p ∈ PE, Outp : S 7→ 2R is an output mapping for the control state p.

As usual, we extend the transition function δ to words over the input alphabet
Σ. Writing w̃ to denote the mirror of the word w, the output PlayS((p, w)) of a
strategy automaton S over a given configuration (p, w) is defined to be

PlayS((p, w)) := Outp(δ(s0, w̃))

Given a pushdown game G = (P, Σ,R, CF) as well as an automaton B =
(Q, Σ, δ,F) representing Éloise’s winning region, obtained by saturation, along
with its associated ordering ≺. We define a strategy automaton SB such that for
all (p, w) we have

PlaySB
((p, w)) = PlayE((p, w)) .

3.5 The automaton SB

The State-Set The automaton SB will run B in reverse, starting from the
bottom of the stack. Assuming that the automaton has read the word w̃, the
state of SB will have as a component a mapping Movesw : PE 7→ 2R such that
for all state p ∈ PE , Movesw(p) = PlayE((p, w)). Note that this mapping is
only defined for states belonging to Éloise as those are the only states for which
she is required to make a decision. Clearly if the automaton can maintain this
information, we have constructed a strategy automaton. In order to update this
component while keeping the state set at most exponential, the automaton will
maintain two additional pieces of information.

– the set of states Accw ∈ 2Q from which B admits an accepting run on w,
– a partial mapping in fw : Q × Q → {≺ι,EQ,≻ι | 0 ≤ ι ≤ N } which when

applied to two states q1 and q2 ∈ Accw compares the minimal runs of B
starting in state q1 and q2 respectively.

Intuitively, for the automaton to update Moveswa, it is only necessary to know
the transitions that can start a minimal accepting run for any state of Éloise. We
will see below that this information can be computed only using the comparison
provided by fw.

More formally, let w be a stack content. The set Accw ⊆ Q is the set of states
B from which B has an accepting run, that is

Accw :=
{

q ∈ Q
∣

∣

∣
q

w
−→ F ⊆ F

}

.

9

The partial mapping fw : Q×Q → {≺ι,EQ,≻ι | 0 ≤ ι ≤ N } is defined for
all states q1 and q2 ∈ Accw by taking

fw(q1, q2) :=

≺ι if Ω(ρ1) ≺ι Ω(ρ2)
≻ι if Ω(ρ1) ≻ι Ω(ρ2)
EQ if Ω(ρ1) = Ω(ρ2)

where ρ1 and ρ2 are ≺-minimal runs accepting w from q1 and q2 respectively.

The Transition function To define the transition function of the strategy
automaton, it remains to show how to compute Accaw, faw and Movesaw using
only a, Accw and fw. To do this we will define three functions UpAcc, Upf , and
UpMoves that perform the updates for their respective components.

We define UpAcc following the standard membership algorithm for alternating
automata, and obtain the following lemma.

Definition 2 (UpAcc). We define

UpAcc(a,Accw) :=
{

q
∣

∣

∣
q

a
−→ Q ∈ δ ∧Q ⊆ Accw

}

.

Lemma 2. For all w ∈ Σ∗ and all a ∈ Σ we have Accaw = UpAcc(a,Accw).

Computing faw is more involved and requires some preliminary notations.
First observe that the mapping fw induces a total pre-ordering on the set

Accw. For all subsets Q ⊆ Accw, we denote by max(Q) the set of all maximal el-
ements for this ordering. We write fw(max(Q1),max(Q2)) for the value fw(q, q

′)
for any q ∈ max(Q1) and q′ ∈ max(Q1). As all the elements of max(Q1) (resp.
max(Q2)) are equal for the ordering, the choice of q and q′ is irrelevant.

As a first step, we use the information of fw to compare the weights of
minimal runs on aw starting with two given transitions t1 and t2. Take any two
transitions t1 = q1

a
−→ Q1 and t2 = q2

a
−→ Q2 with Q1 ⊆ Accw and Q2 ⊆ Accw

and I(t1) = γ1 and I(t2) = γ2. There are two cases to comparing runs starting
with t1 and t2. In the first case, the minimal runs from Q1 and Q2 differ on
some weight ι > γ1, γ2. In this case the ordering is dominated by ι and remains
unchanged. If, however, γ1 ≥ ι or γ2 ≥ ι, then the relative ordering of the runs
is decided by t1 and t2. More formally, we write

t1 ≺ι t2

if either

1. the ordering between the minimal runs is not decided by t1 and t2, that is
(a) fw(max(Q1),max(Q2)) =≺ι, and
(b) ι > γ1, γ2.

2. the ordering is decided by t1 and t2, that is
(a) γ1 < γ2 and ι = γ2 and
(b) fw(max(Q1),max(Q2)) ̸∈ {≺ι′ ,≻ι′ | γ2 < ι′ ≤ N }, or

In addition, we write t1 ≻ι t2 when t2 ≺ι t1. We also write t1 EQ t2 when

10

1. γ1 = γ2, and
2. fw(max(Q1),max(Q2)) belongs to {EQ,≺ι,≻ι | 0 ≤ ι ≤ γ1 = γ2 }.

Lemma 3. For any two transitions t1 = q1
a
−→ Q1 and t2 = q2

a
−→ Q2 with

Q1 ⊆ Accw and Q2 ⊆ Accw, t1 ≺ι t2 (resp. t1 ≻ι t2, resp. t1 EQ t2) if and only
if Ω(ρ1) ≺ι Ω(ρ2) (resp. Ω(ρ1) ≻ι Ω(ρ2), resp. Ω(ρ1) = Ω(ρ2)) where ρ1 and
ρ2 are the minimal runs accepting aw and starting with t1 and t2 respectively.

Proof. Let I(t1) = γ1 and I(t2) = γ2. We first argue that a minimal run begin-
ning with t1 (resp. t2) can be constructed from t1 and a minimal run from Q1

(resp. Q2). Let ρ
′
1 be a minimal run from Q1. Let ρ1 = t1ρ

′′
1 ≺ι t1ρ

′
1. If γ1 ≥ ι,

then Ω(t1ρ
′′
1) = Ω(t1ρ

′
1) and thus t1ρ

′
1 is also a minimal run. Otherwise γ1 < ι

and ρ1 = t1ρ
′′
1 ≺ι t1ρ

′
1 implies ρ′′1 ≺ι ρ

′
1, contradicting the minimality of ρ′1.

Now, let ρ1 = t1ρ
′
1 and ρ2 = t2ρ

′
2. Suppose t1 ≺ι t2. There are two cases.

When fw(max(Q1),max(Q2)) =≺ι (implying ρ′1 ≺ι ρ
′
2) and ι > γ1, γ2 then we

conclude t1ρ
′
1 ≺ι t2ρ

′
2. Otherwise γ1 < γ2 = ι and fw(max(Q1),max(Q2)) is not

≺ι′ or ≻ι′ for some ι′ > γ2. From the last condition, we know ρ′1 and ρ′2 are
equal or differ only on some weight ι′ ≤ γ2. Thus we know t1ρ

′
1 ≺γ2=ι t2ρ

′
2.

In the other direction, suppose t1ρ
′
1 ≺ι t2ρ

′
2. If ι > γ1, γ2, then we have ρ′1 ≺ι

ρ′2 and thus fw(max(Q1),max(Q2)) =≺ι. We then have t1 ≺ι t2 as required. If
γ1 ≥ ι or γ2 ≥ ι, then for t1ρ

′
1 to be smaller than t2ρ

′
2 we must have γ1 < γ2 = ι

and moreover ρ′1 and ρ′2 must have the same weight, or differ on some ι′ ≤ ι.
Thus, fw(max(Q1),max(Q2)) ̸∈ {≺ι′ ,≻ι′ | γ2 < ι′ ≤ N } and t1 ≺ι t2.

The case for ≻ι is symmetric, hence it only remains to consider EQ. We
have t1 EQ t2 if and only if γ1 = γ2 and fw(max(Q1),max(Q2)) belongs to
{EQ,≺ι,≻ι | 0 ≤ ι ≤ γ1 = γ2 }. We have this iff ρ′1 and ρ′2 have equal weights
or differ only on some ι ≤ γ1, γ2 and, thus, iff Ω(t1ρ

′
1) = Ω(t2ρ

′
2). ⊓⊔

As a consequence of the above lemma, we have defined a total pre-order on
the set of a-transitions. For any set of a-transitions T , we denote by min(T) the
set of minimal elements for this order. We are now ready to define Upf .

Definition 3 (Upf). We define Upf (a,Accw, fw) as the mapping g defined for
all states q1 and q2 ∈ Accaw by

g(q1, q2) := fw(min(Tq1),min(Tq2))

where Tq1 = {q1
a
−→ Q1 | Q1 ⊆ Accw} and Tq2 = {q2

a
−→ Q2 | Q2 ⊆ Accw}.

It directly follows from Lemma 3 that:

Lemma 4. For all w ∈ Σ∗ and all a ∈ Σ, we have faw = Upf (a,Accw, fw).

Finally, we define UpMoves.

Definition 4 (UpMoves). We define UpMoves(a,Accw, fw) to be the mapping
associating to any control state p ∈ PE the set {R(t) | t ∈ min(Tp)} where

Tp =
{

p
a
−→ Q | Q ⊆ Accw

}

.

Lemma 5. For all w ∈ Σ∗ and all a ∈ Σ, we have

Movesaw = UpMoves(a,Accw, fw) .

11

The Definition of SB We bring together the above discussion and define SB.

Definition 5. Given a pushdown game G = (P, Σ,R, CF) as well as an anno-
tated automaton B = (Q, Σ, δ,F) constructed by saturation in N steps, we define
SB to be the strategy automaton (S,Σ, s0, δ, (Outp)p∈PE

) where

S = 2Q × (Q×Q → {≺ι,EQ,≻ι | 0 ≤ ι ≤ N })×
(

PE 7→ 2R
)

and s0 = (F , f0,Moves0) where we have f0(q1, q2) = EQ for all q1, q2 ∈ F and
Moves0(p) = ∅ for all p ∈ PE, and

δ(a, (Acc, f,Moves)) =
(

UpAcc(a,Acc),Upf (a,Acc, f),UpMoves(a,Acc, f)
)

and finally, for all p ∈ PE, Outp(Acc, f,Moves) = Moves(p).

The size of the automaton SB is exponential in the size of pushdown game.

Theorem 3. Given a P-automaton B = (Q, Σ, δ,F) constructed by saturation
and a strategy automaton SB constructed as above, we have

PlaySB
((p, w)) = PlayE((p, w)) .

Proof. Take a configuration (p, w). By induction on the length of w, we show
that upon reading w̃ the automaton SB reaches the state (Accw, fw,Movesw).

In the base case, the initial state s0 is by definition (Accε, fε,Movesε). The
induction step immediately follows from Lemma 2, 4 and 5. The output is there-
fore Movesw(p) which is by definition equal to PlayE((p, w)). ⊓⊔

4 Conclusion

We gave the construction of a regular postional strategy for Éloise in a push-
down reachability game. The strategy automaton is a deterministic automaton
of exponential size in the size of the pushdown game.

To define a similar strategy for Abelard, observe that any strategy of Abelard
consisting in picking a move that stays outside of the winning region of Éloise is
winning. A deterministic strategy automaton implementing such a strategy has
states in Σ × 2Q. After reading a stack content ãw, the automaton reaches the
state (a,Accw). For all p ∈ PA, the output mapping Outp associates to a state
(a,Accw) the set of rules (p, a) →֒ (p′, u) ∈ R such there are no runs of B of the

form p′
u
−→ Q′ ⊆ Accw.

If we consider pushdown Büchi reachability games, computing a regular po-
sitional strategy for Éloise can be reduced to the reachability case. Let W be
the winning region of Éloise in the Büchi game and CF be a regular set of final
configurations. Consider the positional strategy consisting of playing any move
that stays in W for configurations in W ∩ CF and for configurations in W \ CF
plays the regular positional strategy for the reachability game to W∩CF . As W
is regular, the resulting strategy is regular and can be implemented by strategy
automaton of exponential size.

12

Abelard’s strategy is more complex and leads to the open problem of extend-
ing our approach to pushdown parity games. The saturation method underlying
our approach was extended to these settings in [9]. The challenge is to define
an ordering on runs of the saturated automaton that can be implemented by a
finite state automaton of size at most exponential in that of the pushdown game.

Acknowledgments This work was supported by the Engineering and Physical
Sciences Research Council [EP/K009907/1] and the Labex Bézout as part of the
program “Investissements d’Avenir” (ANR-10-LABX-58).

References
1. T. Ball, V. Levin, and S. K. Rajamani. A decade of software model checking with

slam. Commun. ACM, 54(7):68–76, 2011.
2. Thomas Ball and Sriram K. Rajamani. Bebop: A symbolic model checker for

boolean programs. In SPIN, pages 113–130, 2000.
3. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-

tomata: Application to model-checking. In CONCUR, pages 135–150, 1997.
4. T. Cachat. Symbolic strategy synthesis for games on pushdown graphs. In ICALP,

pages 704–715, 2002.
5. T. Cachat. Games on Pushdown Graphs and Extensions. PhD thesis, RWTH

Aachen, 2003.
6. E. Allen Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy

(extended abstract). In FOCS, pages 368–377, 1991.
7. J. Esparza and S. Schwoon. A bdd-based model checker for recursive programs.

In CAV, pages 324–336, 2001.
8. A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model

checking pushdown systems. In INFINITY, volume 9, pages 27–37, 1997.
9. M. Hague and C.-H. Luke Ong. Winning regions of pushdown parity games: A

saturation method. In CONCUR, pages 384–398, 2009.
10. N. D. Jones and S. S. Muchnick. Even simple programs are hard to analyze. J.

ACM, 24:338–350, April 1977.
11. O. Kupferman, N. Piterman, and M. Y. Vardi. An automata-theoretic approach to

infinite-state systems. In Essays in Memory of Amir Pnueli, pages 202–259, 2010.
12. N. Piterman and M. Y. Vardi. Global model-checking of infinite-state systems. In

CAV, pages 387–400, 2004.
13. S. Schwoon. Model-checking Pushdown Systems. PhD thesis, Technical University

of Munich, 2002.
14. O. Serre. Note on winning positions on pushdown games with [omega]-regular

conditions. Inf. Process. Lett., 85(6):285–291, 2003.
15. O. Serre. Contribution à létude des jeux sur des graphes de processus à pile. PhD

thesis, Université Paris 7 – Denis Diderot, UFR dinformatique, 2004.
16. D. Suwimonteerabuth, F. Berger, S. Schwoon, and J. Esparza. jmoped: A test

environment for java programs. In CAV, pages 164–167, 2007.
17. D. Suwimonteerabuth, S. Schwoon, and J. Esparza. jmoped: A java bytecode

checker based on moped. In TACAS, pages 541–545, 2005.
18. D. Suwimonteerabuth, S. Schwoon, and J. Esparza. Efficient algorithms for al-

ternating pushdown systems with an application to the computation of certificate
chains. In ATVA, pages 141–153, 2006.

19. WALi. https://research.cs.wisc.edu/wpis/wpds/download.php.
20. I. Walukiewicz. Pushdown processes: Games and model-checking. Inf. Comput.,

164(2):234–263, 2001.
21. W. Zielonka. Infinite games on finitely coloured graphs with applications to au-

tomata on infinite trees. Theor. Comput. Sci., 200(1-2):135–183, 1998.

13

