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Abstract. We introduce two abstract models for multithreaded programs based
on dynamic networks of pushdown systems. We address the problem of symbolic
reachability analysis for these models. More precisely, we consider the problem
of computing effective representations of their reachability sets using finite-state
automata. We show that, while forward reachability sets are not regular in gen-
eral, backward reachability sets starting from regular sets of configurations are
always regular. We provide algorithms for computing backward reachability sets
using word/tree automata, and show how these algorithms can be applied for flow
analysis of multithreaded programs.

1 Introduction

Multithreaded programs are an important class of programs, in which parallelism is
used routinely in practice. Parallel programming in general is known to be difficult
and error prone, and multithreaded programs are no exception. Therefore, the design
of methods and techniques for automatic analysis of such programs is an important
and a quite challenging issue. For that, we need to define formal models which are
adequate for modelling multithreaded programs, and for which it is possible to construct
automatic analysis algorithms.

In recent related work, complete analysis algorithms for abstract classes of parallel
programs have been studied by several researchers. Mayr [13] establishes a number of
decidability and undecidability results for process classes in the so-called PRS (process
rewrite system) hierarchy. PRS are able to model sequential as well as parallel phe-
nomena. In fact, they can be seen as combinations of pushdown systems and Petri nets
(defined in a term rewriting setting using prefix and multiset rewrite rules). Follow-
ing the automata-based approach for the symbolic verification of pushdown systems
[2,11], Lugiez and Schnoebelen [12] show how to use tree automata for reachability
analysis of PA processes [1], a particularly well-known class in the PRS hierarchy.
Their paper has inspired further work that applies tree automata techniques to analysis
of more expressive models [6,7,3,4,19]. Another line of research generalizes fixpoint-
based techniques as common in flow analysis to analysis of similar models of parallel
programs [18,14,15]. Both approaches can be used to solve bitvector problems, a certain
type of simple but important data-flow-analysis problems, for flow graph systems with
parallel calls of procedures, or, equivalently, parbegin/parend-blocks interprocedurally
[9,10,18]. While [9,10] reduce the problem to reachability analysis of PA-processes,
[18] uses fixpoint-based techniques.
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Unfortunately, these results do not cover interprocedural analysis of multithreaded
programs because commands that start new threads cannot adequately be modelled by
parallel calls. In a multithreaded program such a command typically returns immedi-
ately (see, e.g., the JAVA or POSIX thread API). Therefore the father of a new thread
can pursue its execution concurrently to its son and can even terminate or return to its
caller while the son is still alive. In contrast, a parallel call returns only when and if all
its component processes have terminated, which is a fundamentally different behavior.
Indeed we show in Sect. 2 that in presence of procedures, multithreaded programs can
have trace languages different from that of any program with parallel calls.

The goal of this paper is to adapt the automata-based approach mentioned above
to interprocedural (reachability) analysis of multithreaded programs. For this purpose
we propose two models of multithreaded programs, show how to perform reachability
analysis for them with automata-theoretic constructions, and discuss their utility for
modelling and analysing multithreaded and other classes of parallel programs.

In Sect. 2 we introduce Dynamic Pushdown Networks (DPNs) as a basic model of
multithreaded programs. Intuitively, a DPN is a network of pushdown processes that run
independently in parallel. Each process can create new members of the network as a side
effect of a pushdown transition. DPNs thus model a network of threads each of which
can perform basic actions, call (recursively) procedures, and spawn new processes. We
show that while forward reachability of DPNs does not preserve regularity of configu-
ration sets in general, it still preserves context-freeness (Sect. 4). Backward reachability
in contrast preserves regularity and we show how to compute the backward reachability
set of a regular set of configurations by means of a saturation algorithm in polynomial
time (Sect. 4). We also show that DPN allow us to solve bitvector problems interproce-
durally for multithreaded programs (Sect. 3), contrary to previously used models in the
literature such as PA processes (Sect. 2).

We extend DPNs to Constrained DPNs (CDPN) in Sect. 5, a model that combines
(indeed even extends) the modelling power of both DPNs and PA (and even the so-
called PAD [13]). The new idea is that enabledness of a transition for a process can
be made dependent on a constraint which is a regular pattern among the sequence of
control states of its sons. We require constraints to be stable in the sense that further
evolution of the sons cannot invalidate a constraint. We show that otherwise we lose
the property that backward reachability preserves regularity. Transition rules with sta-
ble constraints increase the expressive power considerably over DPNs. In particular
they allow us to model, in addition to thread creation and procedure calls, also paral-
lel calls and various types of join commands among other things. It also allows us to
return information back from procedures called in parallel to their caller which cannot
be handled in PA and not even in PAD. Constrained DPNs inherit from DPNs that for-
ward reachability does not preserve regularity. Therefore, we consider here backward
reachability only. We show that the set of configurations that can reach a given regular
set of configurations of a CDPN can again be computed by a saturation algorithm. As
configurations of CDPNs are given by unbounded width trees rather than by words as
in the DPN case—the tree structure captures the father-son relationship—we resort to
hedge automata here [8]. The construction is nontrivial and its justification uses in a
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subtle manner the assumption about the stability of the constraints in the system defini-
tion. While the overall complexity of this procedure is exponential—we indeed prove a
PSPACE lower bound—it is exponential only in the number of different constraints used
in the rules of the given CDPN, and just polynomial in the other problem parameters.
Therefore, if the number of different constraints is bounded, we obtain a polynomial-
time analysis algorithm. This in particular holds if we just model (in addition to spawn
operations), parallel calls, a fixed selection of join commands, or a combination of these.
Due to lack of space, proofs are omitted. They can be found in [5].

2 Dynamic Pushdown Networks

A Dynamic Pushdown Network (DPN) is a tuple M = (Act,P,Γ,∆), where Act is a fi-
nite set of visible actions, P is a finite set of control states, Γ is a finite set of stack
symbols disjoint from P, and ∆ is a finite set of transition rules of the following forms:

either (a) pγ
a

↪→ p1w1, or (b) pγ
a

↪→ p1w1 � p2w2, where p, p1, p2 ∈ P, a ∈ Act, γ ∈ Γ,
and w1,w2 ∈ Γ∗. A DPN can be seen as a collection of identical sequential processes
running in parallel, each of them being able to (1) perform pushdown operations and
to (2) create processes in the network. Synchronization is not allowed between
processes.

A configuration of a DPN M (also called M-configuration) is a word over the al-
phabet Σ = P ∪ Γ starting with a symbol in P. An M-configuration can be seen as a
sequence of (sub)words in PΓ∗ each of them corresponding to the configuration of one
of the processes running in parallel in the network. Let Conf M be the set of all M-
configurations.

For every a ∈ Act, we define a−→M to be the smallest relation in Conf M × Conf M

s.t. ∀u,v ∈ Conf M, u a−→M v iff (1) there is a rule pγ
a

↪→ p1w1 in ∆ s.t. u = u1 pγu2 and

v = u1 p1w1u2, or (2) there is a rule pγ
a

↪→ p1w1 � p2w2 in ∆ s.t. u = u1 pγu2 and v =
u1 p2w2 p1w1u2. We write u →M v if there exists a ∈ Act s.t. u a−→M v.

The semantics above says that rules of the form (a) correspond precisely to push-
down operations (manipulation of the top of the stack) which can be applied anywhere
in the configuration (i.e., by any of the processes in the network): if a process is at
control state p and has γ as topmost stack symbol, then it can move to control state p1

and replace γ by w1 at the top of its stack. Rules of the form (b) allow in addition the
creation of new processes: a process with control state p and topmost stack symbol γ
can (1) move to state p1 and modify its stack by replacing γ with w1, and moreover,
(2) create (to its left) a process which starts its execution at the initial configuration
p2w2.

Given a configuration c, the set of immediate predecessors (resp. successors) of
c is preM(c) = {c′ ∈ C : c′→Mc} (resp. postM(c) = {c′ ∈ C : c→Mc′}). These no-
tations can be generalized straightforwardly to sets of configurations. Let pre∗

M (resp.
post∗M) denote the reflexive-transitive closure of preM (resp. postM). We omit the sub-
script M when it is understood from the context. Given ∆′ ⊆ ∆, we use pre∆′ (resp.
post∆′ ) to denote immediate predecessors (resp. successors) using a rule in ∆′. Then,
pre∗

∆′ and post∗∆′ denote the corresponding reflexive-transitive closures. Furthermore,

TracesM(c) = {w ∈ Act∗ : ∃c′. c
w→M c′} is the set of traces generated by c.
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DPN vs. PA Processes: DPNs allow to model multithreaded programs where creation
of threads is done using spawn commands (see Sect. 3). This is not the case for other
formalisms used in the literature for modelling parallel programs like PA [1]:1

Theorem 1. Let L =
⋃{an

(
bn′ ⊗(cmdm′

)
)

: n ≥ n′ ≥ 0, m ≥ m′ ≥ 0}, where ⊗ denotes
the shuffle (or interleaving) operator defined as usual. Then:

a) There is a DPN M and an M-configuration c such that TracesM(c) = L .
b) There is no PA system ∆ and no process variable A such that Traces∆(A) = L .

Hence, PA processes are inadequate for capturing the behavior of multithreaded pro-
grams with spawn-like creation of threads. It also follows from the proof that trace
sets of DPNs cannot be captured by the type of constraint systems used as semantic
reference point in the constraint-based approach [18,14,15]. Therefore, the methods of
[9,10,18,15,14] for interprocedural analysis of flow graphs with parallel calls do not
carry over immediately to multithreaded programs. These inadequacy results are rather
strong because any interesting process equivalence would imply equality of traces.

3 Program Analysis Based on DPN

We show hereafter how DPNs can be used to model multithreaded programs and how
our results on symbolic reachability analysis can be used in flow analysis of these pro-
grams. This is inspired by Esparza et. al. [9,10].

Flow Graph Systems: As common in program analysis we assume that the program
is given by a flow graph system. Let Proc be a finite set of procedure names contain-
ing Main. We assume that the program operates on a set X = {x1, . . . ,xk} of global
variables. We consider the following types of basic statements: assignment statements,
xi := e, where xi ∈ X and e is some expression; call of a single procedure, call(π), where
π ∈ Proc; and spawn of a new thread, spawn(π), where π ∈ Proc. The intuitive meaning
of assignment statements and calls is obvious. The spawn command spawn(π) models
creation of a new independent thread. Like the call call(π), spawn(π) starts an instance
of procedure π. In contrast to a call, however, the spawn command returns immedi-
ately such that the newly created instance of π runs as a new thread concurrently to the
statements that are executed after the spawn. Let Stmt be the set of basic statements.

The control flow of each procedure π ∈ Proc is described by a control flow graph
Gπ = (Nπ,Eπ,eπ,xπ), where Nπ is a finite set of program points of procedure π; Eπ ⊆
Nπ × Stmt × Nπ is a finite set of edges annotated by basic statements; eπ ∈ Nπ is the
entry point of π; and xπ ∈ Nπ is the exit point of π. We assume that the sets of program
points of different procedures are disjoint, Nπ ∩Nπ′ = /0 if π,π′ ∈ Proc, π = π′, and agree
that N =

⋃
π∈Proc Nπ and E =

⋃
π∈Proc Eπ.

1 PA corresponds to processes definable by a set of rewrite rules of the form A → t where A is
a process variable, and t is a term built from process variables, sequential composition, and
asynchronous parallel composition.
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From Flow Graph Systems to DPN: From a given flow graph system as above we
construct a DPN M = (Act,P,Γ,∆) that captures its operational semantics:

– The actions are given by the assignments that appear in the flow graph system;
a special symbol τ is used to signify steps in which no assignment is executed:
Act = {x := e | ∃u,v : (u,x := e,v) ∈ E}∪{τ};

– we have just one artificial control state #: P = {#};
– we work with a stack of program points; the topmost stack symbol is the current

program point of the current procedure, the other stack symbols are the return points
of its callers: Γ = N;

– the transition rules in ∆ describe computation steps of the flow graph system:

1. for every assignment edge (u,x := e,v) ∈ E we put the rule #u
x:=e
↪→ #v to ∆;

2. for every call edge (u,call(π),v) ∈ E we put the rule #u
τ

↪→ #eπv to ∆;

3. for every spawn-edge (u,spawn(π),v) ∈ E we put the rule #u
τ

↪→ #v�#eπ to ∆,

4. for each procedure π ∈ Proc, we put the rule #xπ
τ

↪→ # to ∆. This rule describes
the return from procedure π.

Note that it is possible to extend the semantics above in order to handle local pro-
cedure variables and return values from procedure calls. For that, we assume as usual
that data values are mapped into a finite abstract domain using standard techniques such
as predicate abstraction. Then, abstract values of local variables can be encoded in the
stack alphabet and abstract return values can be encoded in the control states.

Solving Bitvector Problems: The operational semantics given above can be used for
solving bitvector problems. In order to ease comparison with [10] we discuss detection
of live (global) variables. Other bitvector problems can be solved in a similar fashion.
Informally, a variable x ∈ X is live at a program point u ∈ N if there is an execution
from u in which x is used before it is over-written. We restrict attention to reachable
configurations and use a similar definition and notation as Esparza and Podelski [10].
Thus, we define: program variable x is live at a program point u ∈ N if there is a tran-
sition sequence #eMain

σ1−−→c1
σ2−−→c2

y:=e−−−→c3 such that: (1) u is active in configuration
c1, i.e., appears as the topmost stack symbol of one of the parallel pushdown processes
in the network described by c1; (2) σ2 is a sequence of statements that do not modify x
(i.e., do not write to x); and (3) e is an expression in which x is used.

We denote the set of configurations c in which u is active by Atu, the set of assign-
ments in the given program that modify x by Modx ⊆ Act, and the set of assignments
in the program in which x is used by Usex ⊆ Act. Moreover, we write ∆A for the set of

rules of ∆ with an action in a subset A ⊆ Act: ∆A = {(pγ
a

↪→ w) ∈ ∆ | a ∈ A}. Using this
notation it is not hard to see that x is live at u if and only if

#eMain ∈ pre∗(Atu ∩pre∗
∆Act\Modx

(pre∆Usex
(Conf M)))

Then, our results concerning backward reachability analysis of DPN given in the next
section (see Theorem 3 and Note 1) can be used to decide this property.
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4 Reachability Analysis for DPN

We consider the problem of computing representations of the post∗ and pre∗ images of
given sets of configurations. We are interested in the case that sets of configurations are
effectively given using automata-based representations.

Computing post∗ Images: We show first that post∗ does not preserve regularity in

general. Consider indeed the DPN M = ({a},{p},{γ1,γ2},{pγ1
a

↪→ pγ1γ1 � pγ2}). It is
easy to see that post∗M({pγ1}) = {(pγ2)n pγn+1

1 : n ≥ 0}, which is clearly nonregular.

Proposition 1. There is a DPN M, and a configuration c of M, such that post∗(c) is
not a regular set of configurations.

We prove, however, that post∗ preserves context-freeness:

Theorem 2. For every DPN M and any context-free set C of M-configurations, the set
post∗(C) is context-free and effectively constructible in polynomial time.

Computing pre∗ Images: We show now that pre∗ preserves regularity. Let M be a DPN
and A be an automaton recognizing a set of M-configurations. We define a polynomial-
time algorithm allowing to construct an automaton Apre∗ s.t. L(Apre∗) = pre∗

M(L(A)).
For technical reasons, we require that A is in a special form we define below.

M-Automata: Let M = (Act,P,Γ,∆) be a DPN. A finite automaton A = (S,Σ,δ,s0,F)
is an M-automaton if the following conditions hold:

1. Σ = P∪Γ is the finite alphabet,
2. the set of states is partitioned into two sets, S = Sc ∪Ss, Sc ∩Ss = /0,
3. for every s ∈ Sc and every p ∈ P, there is a (unique and distinguished) state sp ∈ Ss,
4. there is a relation δ′ ⊆ Ss ×Γ× (Ss \{sp : s ∈ Sc, p ∈ P}) ∪ Ss ×{ε}×Sc such that

δ = δ′ ∪ {(s, p,sp) : s ∈ Sc, p ∈ P},
5. the initial state s0 ∈ Sc, and
6. F ⊆ S is the set of final states.

For σ ∈ Σ ∪{ε} and s,s′ ∈ S, we write s
σ→δ s′ in lieu of (s,σ,s′) ∈ δ. We extend

this notation in the obvious manner to sequences of symbols: (1) ∀s ∈ S. s
ε→δ s, and (2)

∀s,s′ ∈ S. ∀σ ∈ Σ∪{ε}. ∀w ∈ Σ∗. s σw−−→δ s′ iff ∃s′′ ∈ S. s
σ→δ s′′ and s′′ w→δ s′.

Note that requirement (4) codes a number of conditions on δ: (1) each s ∈ Sc has
sp as its unique p-successor and has no Γ-transitions, (2) s is the only predecessor of
sp, (3) only ε-moves from states in Ss lead to states s ∈ Sc, (4) states s ∈ Ss do not
have p-successors, for any p ∈ P. So, every path in an M-automaton (starting from
the initial state) is the concatenation of paths of the form s

p→δ sp
w−→δ t

ε→δ s′ where
s,s′ ∈ Sc, p ∈ P, w ∈ Γ∗, and all states in the path sp

w−→δ t are in Ss. Note that for every
finite automaton A over the alphabet P ∪ Γ such that L(A) ⊆ Conf M , it is possible to
construct an M-automaton recognizing the same language.

Constructing the Automaton Apre∗: Let M be a DPN and A = (S,Σ,δ,s0,F) be an
M-automaton. The construction of Apre∗ is in the same spirit as the ones for single
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pushdown systems (see [2]). It consists in adding iteratively new transitions to the au-
tomaton A according to saturation rules (reflecting the backward application of the
transition rules in the system), while the set of states remains unchanged. Therefore,
we define Apre∗ to be the finite-state automaton (S,Σ,δ′,s0,F), where δ′ is the smallest
relation which contains δ (i.e., δ ⊆ δ′) and satisfies the following conditions:

R1: If (pγ
a

↪→ p1w1) ∈ ∆ and s
p1w1−−−→δ′ s′, for s,s′ ∈ S, then (sp,γ,s′) ∈ δ′.

R2: If (pγ
a

↪→ p1w1 � p2w2) ∈ ∆ and s
p2w2 p1w1−−−−−−→δ′ s′, for s,s′ ∈ S, then (sp,γ,s′) ∈ δ′.

The relation δ′ can be computed as the limit of an increasing sequence of relations
obtained by adding transitions to δ that are required by one of the implications above.
This procedure terminates after a polynomial number of steps since only a polynomial
number of transitions can potentially be added.

Let us explain intuitively the role of the saturation rule (R1). Consider a path in the
automaton of the form s

p1w1−−−→s′. This means, by definition of M-automata, that s is nec-
essarily in Sc and that we have s

p1−−→ sp1

w1−−→s′. Then, the rule consists in adding to the

automaton the transition sp
γ→ s′. Since by definition of M-automata we have s

p→ sp, we

obtain a path s
pγ−−→ s′ in the automaton. Therefore, if a configuration u1 p1w1u2 is recog-

nized by a run s0 u1−−→s
p1w1−−−→s′ u2−−→ sF , then its predecessor u1 pγu2 is also recognized

due to the new transition by the run s0 u1−−→s
pγ−−→ s′ u2−−→sF . The role of (R2) is similar.

Theorem 3. L(Apre∗) = pre∗
M

(
L(A)

)
.

Note 1. For the sake of completeness, we mention that for every DPN M, and every M-
automaton A , the sets preM(A) and postM(A) are regular and effectively constructible.
The constructions are quite straightforward. For preM we take two copies of A . The first
copy provides the initial state and the second copy the final states. We then apply the
saturation rules to the first copy of the automaton, but let all new transitions lead from
states of the first copy to states of the second copy. The postM construction is similar (it
needs adding a finite number of intermediary states).

5 Constrained DPN

We consider in this section an extension of the DPN model introduced in Section 2. In
addition to the ability of performing spawn operation as previously, processes are now
allowed to observe the control states of their children (processes they have created in
the past). This is relevant in particular for handling return values and some kinds of join
statements between parallel processes. To achieve that, we define a model where the
application of a transition rule by some process is conditioned by a (regular language)
constraint on the sequence of control states of its children. We need however to impose
a stability condition (defined below) on the constraints in order to have a model which
can be analysed by means of finite-state automata representations. We show later that
we lose regularity of the reachability sets if we relax the stability condition.

Stable Regular Languages: Let Σ be a finite alphabet and let ρ ⊆ Σ × Σ be a binary
relation over Σ. Then, a set of symbols S ⊆ Σ is ρ-stable iff ∀s ∈ S. ∀t ∈ Σ. (s, t) ∈
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ρ ⇒ t ∈ S. A ρ-stable regular language over Σ is a subset of Σ∗ which is definable by a
regular expression of the form:

e ::= S, a ρ-stable set | e + e | e · e | e∗

We can prove straightforwardly by induction on the structure of regular expressions:

Lemma 1. Let φ ⊆ Σ∗ be a ρ-stable regular language, let u,v ∈ Σ∗, and let a ∈ Σ such
that uav ∈ φ. Then, for every b ∈ Σ, (a,b) ∈ ρ implies that ubv ∈ φ.

Definition of the Models: A Constrained Dynamic Pushdown Network (CDPN) is a
tuple M = (Act,P,Γ,∆), where Act is a finite set of visible actions, P is a finite set of
control states, Γ is a finite set of stack symbols disjoint from P, and ∆ is a finite set

of transition rules of the following forms: either (a) φ : pγ
a

↪→ p1w1, or (b) φ : pγ
a

↪→
p1w1 � p2w2, where p, p1, p2 ∈ P, a ∈ Act, γ ∈ Γ, w1,w2 ∈ Γ∗, and φ is a ρ∆-stable

regular language over P, with ρ∆ = {(p, p′)∈ P×P : there is a rule ψ : pδ
a

↪→ p′u or ψ :

pδ
a

↪→ p′u � p′′v in ∆}.
A CDPN consists of a collection of identical sequential processes running in paral-

lel, each of them being modeled as a pushdown system which is able to (1) manipulate
its own stack using pushdown rules of the form (a), (2) create a new process (which
becomes its youngest son) using rules of the form (b), and (3) observe, under some
conditions, the states of its children (processes it created in the past): each transition
rule is constrained by the fact that the sequence of control states of the children (given
in the decreasing order of their age) must belong to the specified language φ.

Since we need to refer to the children of each process, a configuration of a CDPN
can be naturally seen as a tree where each vertex is annotated with the configuration
of some sequential process (pushdown system), and where the structure corresponds to
the relation father-son. Notice that such a tree may have an arbitrary width. We define
hereafter a class of terms describing such configurations and we define a transition
relation between such terms.

M-Terms: Let X = {x1, . . . ,xn} be a set of variables. We define the set T [X ] of M-terms
over P∪Γ∪X inductively as follows:

– X ⊆ T [X ],
– If t ∈ T [X ] and γ ∈ Γ, then γ(t) ∈ T [X ],
– If t1, . . . ,tn ∈ T [X ] and p ∈ P, then p(t1, . . . ,tn) ∈ T [X ], for n ≥ 0.

Note that in the last item of this definition, n can be 0 (i.e., p is on a leaf). In that
case, we write p() or simply p to represent the corresponding term.

Terms in T [ /0] are called ground terms, and will also be denoted by T . A term
in T [X ] is linear if each variable occurs at most once. A context C is a linear term. Let
t1, . . . ,tn be n ground terms. Then C[t1, . . . ,tn] is the ground term obtained by substituting
in C the occurrence of the variable xi with the term ti, for 1 ≤ i ≤ n.

A term in T [X ] can be seen as a rooted labeled tree of arbitrary width, where (1) an
internal node is either of arity 1 (has one successor) if it is labeled with a stack symbol
γ ∈ Γ, or it has an arbitrary arity if it is labeled with a state p ∈ P, and (2) where the
leaves are labeled with either variables x ∈ X , or with states p ∈ P.
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M-Configurations: We define M-configurations to be the ground M-terms (terms in
T [X ] without variables). Given n ground terms t1, . . . ,tn, the term γm · · ·γ1 p(t1, . . . ,tn)
represents a configuration where (1) the common ancestor to all processes is at local
control state p and has γ1 · · ·γm as stack content, where γ1 is the topmost stack symbol,
and (2) this process has n children, the ith of which is described, together with all of
its descendants, by the term ti, for i = 1, . . . ,n. A ground term of the form γm · · ·γ1 p
corresponds to the case of one single process without children.

Transition Relation: Given a CDPN M, we define a transition relation →M between
M-configurations. We introduce first a notation. Given a configuration t of one of the
forms γm · · ·γ1 p(t1, . . . ,tn) or γm · · ·γ1 p, we define S(t) to be the control state p, i.e.,
S(t) is the local control state of the topmost process represented in t. Then, →M is the
smallest relation between M-configurations such that:

– If (φ : pγ
a

↪→ p1w1) ∈ ∆ and S(t1) · · ·S(tn) ∈ φ, then

C
[
γp(t1, . . . ,tn)

]
→M C

[
wR

1 p1(t1, . . . ,tn)
]

– If (φ : pγ
a

↪→ p1w1 � p2w2) ∈ ∆ and S(t1) · · ·S(tn) ∈ φ, then

C
[
γp(t1, . . . ,tn)

]
→M C

[
wR

1 p1(t1, . . . ,tn,wR
2 p2)

]

where wR denotes the reverse word (mirror image) of w. The notions of post, pre, post∗,
and pre∗ are defined as usual.

Modelling Power: Since CDPN generalize DPN, the modelling of programs with
spawn operations given in Section 3 is still valid for CDPN. Moreover, stable con-
straints as preconditions of transition rules increase tremendously the modelling power
of our formalism. We discuss some applications in this section.

Parallel Calls: In the data-flow analysis scenario, we can use constraints, e.g., in order
to accommodate parallel call commands as another basic primitive for creation of par-
allelism in addition to spawn commands. A parallel call, pcall(π,π′) with π,π′ ∈ Proc
starts an instance of procedure π and an instance of π′ and runs them in parallel. It
terminates if and when both these instances terminate.

Assume that we extend the flow-graph model of Section 3 by allowing parallel
calls as another type of basic statement. In the CDPN model we capture the operational
semantics of an edge (u,pcall(π,π′),v) as follows: we start two new threads for π and π′

and ensure by a transition rule with an appropriate constraint that we can move to v only
after both these threads have terminated. For that, both threads indicate termination by
moving to a special new “terminated” control state � when they see a special new stack
symbol $ that we put at the bottom of their stack upon thread creation. Thus, we have
the following rules for modelling (u,pcall(π,π′),v):

P∗ : #u
τ

↪→ #γ1 � #eπ$ P∗ : #γ1
τ

↪→ #γ2 � #eπ′$ P∗�2 : #γ2
τ

↪→ #v

where γ1,γ2 are two auxiliary stack symbols chosen fresh for each parallel call. More-

over, the rule P∗ : #$
τ

↪→ � allows a thread to move to the state � once it has terminated.
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Join Statements: Besides parallel calls we can also model different types of join-
commands. We use the same technique as above for making termination visible to the

father of threads: we now use the rule #u
τ

↪→ #v � #ep$ to describe the behavior of a
spawn edge (u,spawn(p),v) ∈ E . Thus, we mark the bottom of the stack with the spe-

cial symbol $. We also use the rule P∗ : #$
τ

↪→ � from above to make termination visible
in the control state. This allows us to describe the operational semantics of different
types of join-command such as for instance (1) join∀: proceed if all threads directly cre-
ated by the current thread have terminated, and (2) join∃k: proceed if at least k among
the threads directly created by the current thread have terminated.

The behavior of an edge (u, j,v) where j is one of the join commands from above

is modelled by the rule φ : #u
τ

↪→ #v where φ = �∗ for j = join∀, and φ = (P∗�)kP∗ for
j =join∃k. Obviously, these constraints are stable.

Return Values: We can distinguish between different termination conditions by using
more than one terminated control state and use regular patterns of such control states
in constraints in the father process. This allows us, for instance, to return information
back to the caller from procedures called in parallel. Therefore, the modelling power of
CDPNs exceeds that of PA and even that of PAD 2 [13]: While in a PAD process (like
in a DPN process) we can use control states to return information back to a caller in
a normal procedure call, there is no such mechanism for parallel calls. The modelling
power for calls and parallel calls is thus more symmetric for CDPNs than for PAD.

Observing Execution Phases: Finally, as we allow stable constraints, a creator of a
thread can react on situations in which the created thread has achieved some progress
already but is not necessarily terminated yet. As an example, let us assume that a process
F (the father) creates a number of worker threads that sequentially go through a number
of phases, say phases 1, . . . ,n, before termination. For modelling the worker threads we
use new control states from a hierarchy P0 ⊃ P1 ⊃ . . . ⊃ Pn = /0 of control states such
that a worker thread is in phase i if and only if its control state is in Pi−1 \Pi. This means
a worker thread has finished phase i if and only if its control state belongs to Pi. Then,
the sets Pi are stable and can be used as building blocks for constraints in transitions of
F . Hence, process F can react on situations like “all worker threads have finished phase
i” by using the constraint P∗

i , “there is a worker thread that has finished phase i and all
other worker threads have finished phase j” by the constraint P∗

j PiP∗
j , etc.

6 Backward Reachability Analysis of CDPN

Symbolic Representations: We use hedge automata (unbounded width tree automata)
[8] to represent infinite sets of CDPN configurations. Let M = (Act,P,Γ,∆) be a CDPN.
An M-tree automaton is a tuple A = (Q,δ,F), where Q is a set of states, F is the set
of final states, and δ is a set of rules of either the form (1) γ(q) → q′, where γ ∈ Γ, and
q,q′ ∈ Q, or (2) p(L) → q, where L is a regular language over Q, p ∈ P, and q ∈ Q.

In order to define the language recognized by A , we define a move relation →δ
between terms over P∪Γ∪Q: for every two terms t and t ′, we have t →δ t ′ iff there exist

2 PAD extends PA by allowing rewrite rules of the form A ·B → t.
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a context C and a rule r ∈ δ such that t = C[s], t ′ = C[s′], and (1) either r = γ(q) → q′,
s = γ(q), and s′ = q′, or (2) r = p(L) → q, s = p(q1, . . . ,qn), q1 · · ·qn ∈ L, and s′ = q.

Let
∗→δ denote the reflexive-transitive closure of →δ. A term t ∈ T is accepted by

q ∈ Q if t
∗→δ q. Let Lδ

q = {t ∈ T : t
∗→δ q}. A term t is accepted by A if there exists a

state q ∈ F such that t
∗→δ q. Let L(A) be the set of all terms accepted by A .

A straightforward adaptation of the proofs in [8] allows to show that:

Theorem 4. The class of M-tree automata is closed under boolean operations. More-
over, the emptiness problem of M-tree automata is decidable.

Computing pre∗ Images: Let M = (Act,P,Γ,∆) be a CDPN and let A = (Q,δ,F)
be an M-tree automaton. We present hereafter an algorithm that allows us to construct
an M-tree automaton Apre∗ recognizing the pre∗-image of L(A). The construction pro-
ceeds (similarly to Section 4) by adding new transitions to the original automaton A
corresponding to the backward application of transition rules. In order to deal with the
constraints in the transition rules, we need to extend the original automaton.

Propagating Control States: Remember that, by definition of CDPN terms, the con-
figuration of each process is encoded bottom-up in the tree (reading first the control
state, and then the stack contents starting from its topmost symbol). Since constraints
in CDPN transition rules refer to control states of the children processes, and since
hedge automata can check only constraints on immediate successors in trees (which
correspond in our case to the bottom symbols in the stacks of the children processes),
we need to propagate upward the informations about the control states through the
stacks. Therefore, the first step of our construction consists in defining a new automa-
ton AP = (QP,δP,FP) such that L(AP) = L(A), and where states of Q are labelled by
control states p ∈ P. This automaton is given by: QP = Q × P, FP = F × P, and δP is
the smallest set of rules such that:

– if p(L) → s ∈ δ, then p(L′) → (s, p) ∈ δP, where L′ is obtained by substituting in
the words of L every occurrence of a state s ∈ Q by {(s, p) | p ∈ P};

– if γ(s) → s′ ∈ δ, then for every p ∈ P, γ
(
(s, p)

)
→ (s′, p) ∈ δP.

Lemma 2. L(AP) = L(A), and for every t ∈ T , t
∗→δP

(s, p) iff t
∗→δ s and S(t) = p.

Note 2. To avoid confusion, we use in the sequel p, p′, p1, p2, . . . to denote elements of
P, s,s′,s1,s2, . . . , to denote states of A , and q,q′,q1,q2, . . . to denote states of AP.

From Constraints over P to Constraints over QP: Given a constraint φ and n terms
t1, . . . ,tn such that ti

∗→δP
qi for 1 ≤ i ≤ n, we need also to be able to get the information

whether S(t1) · · ·S(tn) ∈ φ from the states q1, . . . ,qn. For that, we associate with each
constraint φ over P a constraint 〈φ〉 over QP such that S(t1) · · ·S(tn) ∈ φ if and only if
q1 · · ·qn ∈ 〈φ〉. The definition of 〈φ〉 is straightforward by induction on the structure of
regular expressions for stable languages: (1) 〈S〉= {(s, p) : s ∈ Q, p ∈ S}, (2) 〈φ1 ·φ2〉 =
〈φ1〉 · 〈φ2〉, (3) 〈φ1 + φ2〉 = 〈φ1〉+ 〈φ2〉, and (4) 〈φ∗〉 = 〈φ〉∗.
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Closed Set of Constraints: During the construction of the automaton, new transition
rules of the form p(L′) → q are added where L′ are languages which are built from lan-
guages L appearing in the rules of the original automaton A , and constraints φ appearing
in the transition rules of the CDPN M, using intersection and right-quotient operations.
Intersections L ∩〈φ〉 allow us to check that the guarding constraint for the application
of a transition rule is satisfied at the considered position in the tree. Right-quotients
Lq−1 = {w : wq ∈ L} allow us to get immediate predecessors by a spawn operation of
trees where the children of the spawning process are recognized by a sequence of states
in L, and the youngest son among these children (i.e., the one created by the spawn
operation and which is the right-most one in the list of children) is recognized by the
state q. Then, let us define Λ to be the smallest family of languages over QP such that:

– If (p(L) → q) ∈ δP, then L ∈ Λ.

– If L ∈ Λ, and (φ : pγ
a

↪→ p1w1 � p2w2) ∈ ∆, then L∩〈φ〉 ∈ Λ.
– If L ∈ Λ and q ∈ QP, then Lq−1 ∈ Λ.

Lemma 3. The family Λ is finite. Assuming that all languages and constraints appear-
ing in rules δP and ∆ are given by backward-deterministic finite-state automata of size
at most K, the number of elements of Λ is in O(Kn+1) where n is the number of different
constraints appearing in the rules of ∆.

Constructing Apre∗: We define Apre∗ to be the M-tree automaton (Q′,δ′,F ′) such that
(1) Q′ = QP ∪{qL

p : p ∈ P, L ∈ Λ}, (2) F ′ = FP, and (3) δ′ is the smallest set of rules
such that δ′

0 = δP ∪{p(L) → qL
p : p ∈ P, L ∈ Λ} ⊆ δ′ and:

R1: If (φ : pγ
a

↪→ p′w) ∈ ∆, p′(L) → q ∈ δ′
0, and wR(q) ∗→δ′ q′, then

(
γ(qL∩〈φ〉

p ) → q′) ∈ δ′.

R2: If (φ : pγ
a

↪→ p′w1 � p′′w2) ∈ ∆, p′(L) → q′′ ∈ δ′
0, wR

1 (q′′) ∗→δ′ q′, and wR
2 (p′′) ∗→δ′ q,

then
(
γ(qLq−1∩〈φ〉

p ) → q′) ∈ δ′.

Note that the states qL
p, for p ∈ P, and L ∈ Λ, are added to the automaton in order to

recognize precisely all the terms having p at the root and such that the sequence of
children of the root is recognized by a sequence of states in the language L. Note also
that all the transitions added by the construction are Γ-transitions, and therefore they do
not add P-transitions to the automaton.

The set of rules δ′ can be computed iteratively as the limit of an increasing sequence
δ′

0 ⊆ δ′
1 · · · such that δ′

i+1 contains at most one transition more than δ′
i added by applying

either (R1) or (R2). Note that δ′ is necessarily finite since (by Lemma 3) the number of
triples (γ,qL

p,q), for γ ∈ Γ, p ∈ P, L ∈ Λ, and q ∈ Q′ is finite.

Lemma 4. For every q ∈ QP, Lδ′
q = pre∗(LδP

q ).

The lemma above says that the construction ensures that every state recognizes the
set of all predecessors of its original language (i.e., in the automaton before saturation).
Let us give some intuitive explanations about the role of the saturation rules, and let us
consider the rule (R1) (since the role of (R2) is similar). Consider a term wR p′(t1, . . . ,tn)
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such that ti
∗→δ′ qi, for i ∈ {1, . . . ,n}. Assume that p′(L) → q is a rule of the automaton.

This means that after recognizing each of the terms ti and labelling their roots by the
states qi, the automaton can label the term p′(t1, . . . ,tn) by q if the sequence q1 · · ·qn is
in L. Assume furthermore that wR(q) ∗→δ′ q′. This means that the automaton can pro-
ceed by reading upward the word w and label the term wR p′(t1, . . . ,tn) by q′. Therefore,

if (φ : pγ
a

↪→ p′w) is a transition rule of the system, and if the sequence of control states
S(t1) · · ·S(tn) is in φ, then we must add the term γp(t1, . . . ,tn) (which is the immedi-
ate predecessor of wR p′(t1, . . . ,tn) by the transition rule) to the language of q′ (to say
that this term is a predecessor of some term which was recognized by q′ in the original
automaton). This is achieved by applying the saturation rule which adds to the automa-

ton the transition (γ(qL∩〈φ〉
p ) → q′). The justification of this is in fact subtle. First, if

S(t1) · · ·S(tn) ∈ φ, we must have q1 · · ·qn ∈ 〈φ〉. Since states recognize predecessors of
terms in their original language, each state qi is a pair (si, p′

i) such that p′
i = S(t ′i ) for

some t ′i such that ti ∈ pre∗(t ′i ). Now, here is the point where the stability property of
φ plays a crucial role: it ensures that backward transitions cannot make a term satisfy
new constraints (or equivalently, that forward transitions cannot falsify a constraint).
Therefore, since S(t1) · · ·S(tn) ∈ φ, we must have also S(t ′1) · · ·S(t ′n) ∈ φ, which implies
that q1 · · ·qn ∈ 〈φ〉. On the other hand, assume that S(t1) · · ·S(tn) ∈ φ but q1 · · ·qn ∈ 〈φ〉
because S(t ′1) · · ·S(t ′n) ∈ φ. We can show that γp(t1, . . . ,tn) is actually in the pre∗ image
of the original language. Indeed, it is possible in this case to start by rewriting each term

ti to its successor t ′i , which makes the transition rule (φ : pγ
a

↪→ p′w) applicable.

Theorem 5. For every CDPN M, and for every M-tree automaton A , we can construct
an M-tree automaton Apre∗ such that L(Apre∗) = pre∗(L(A)

)
.

Note 3. It is easy to show that, given an M-tree automaton A , the set preM(A) (and in
fact also the set postM(A)) is an effectively M-tree automata definable set.

Then, based on the modelling described in Sections 3 and 5, we can apply Theo-
rems 5 and 4 to check reachability properties and solve flow analysis problems (such as
bitvector problems) for multithreaded programs.

Complexity Issues: By Lemma 3, we know that the size of the automaton Apre∗ is at
most exponential in the number of constraints appearing in the given CDPN. In fact,
we can prove the following PSPACE lower bound by a reduction of the satisfiability
problem for quantified Boolean formulas (QBF).

Theorem 6. It is at least PSPACE-hard to decide for a given CDPN M, a regular set
of M-configurations R and an M-configuration c, whether c ∈ pre∗(R) or not.

Despite the hardness result above, in many interesting cases, we only need a fixed num-
ber of constraints, which leads to polynomial analysis algorithms. For instance, this is
the case when only trivial constraints (i.e., of the form P∗) are used, which corresponds
to the case of DPN models. Also, to model parallel calls only one additional constraint
is needed, namely P∗�2, as we have seen in Section 5. Similarly, we only need one
additional constraint for each type of join statement such as join∀ or join∃k. Note that
the automata for these constraints can easily be defined by backward deterministic au-
tomata of very small sizes. Also for typical properties such as bitvector problems (see
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Section 3), the initial automaton is always the one recognizing the set of all configu-
rations. Therefore, for an important fragment of CDPN which subsumes (in modelling
power) existing formalisms such as PA and PAD, and allows us in addition to model
spawn operations, our construction leads to a polynomial analysis algorithm.

However, when return values from parallel processes are taken into account, our
construction becomes exponential in the number of used abstract data values. This price
is unavoidable since dealing with an unfixed domain of return values is precisely the
feature which makes our model complex (see the proof of Theorem 6). Such complexity
does not appear for weaker models such as PA or PAD (which have polynomial analysis
algorithms [12,10,6]) since they cannot handle return values from parallel processes.

Relaxing Stability: We end this section by mentioning the fact that relaxing the stability
condition on the constraints appearing in the transition rules of CDPN leads to a model
for which pre∗ images are not regular in general.

Theorem 7. There exists a CDPN M with nonstable constraints, and a regular set T of
M-configurations such that pre∗

M(T ) is not definable by an M-tree automaton.

Actually, we can define M s.t. all its transition rules are of the form φ : pγ ↪→ p′γ (i.e.,
without stack manipulation and dynamic creation of processes), and where φ is of the
simple form pP∗, for p ∈ P. This shows that it is hard to relax the stability condition in
the definition of CDPN without losing the property that pre∗ preserves regularity.

7 Conclusion

We have defined new formalisms (DPN and CDPN), based on word/term rewrite sys-
tems, allowing to model adequately spawn-like commands in multithreaded programs.
We have shown that (1) they are more suitable for modelling these commands than
previously proposed formalisms (such as PA and PAD), and that (2) they subsume in
fact in modelling power these models (concerning CDPN), and allow to handle features
these models cannot handle such as return values from parallel processes, various join
commands, etc.

We have defined automata-based techniques for computing backward reachability
sets of our models. In the case of the basic model of DPN, word automata can be used
for this purpose and the construction is simple. In the case of CDPN where constraints
on the children are used, the problem of reachability analysis becomes much more
delicate. The condition of stability we impose in CDPN on the constraints (guards)
appearing in the transition rules seems to be necessary in order to have regular backward
reachability sets. Concerning complexity, our construction is exponential in the number
of different constraints used in the model, but significant classes of parallel programs
can be modelled using a fixed number of constraints (often representable using small
automata), and therefore they can be analysed in polynomial time.

Future work includes the extension of our models and our approach to handle syn-
chronisation between parallel processes. Of course, the reachability analysis becomes
undecidable in general, but reasonable classes of programs with particular synchroni-
sation policies can be considered (see e.g., [16]), and generic frameworks for defining
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abstractions (and refining them) can be developed based on our models and our tech-
niques, e.g., following the approaches of [3,4,14]. We think also that our techniques
could be used to handle models which extend those considered in this paper by allow-
ing a bounded number of context switches, in the spirit of the approach of [17].
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