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Regular Tree and Regular Hedge Languages

over Unranked Alphabets�

Version �� April �� �����

Anne Br�uggemann�Kleiny Makoto Murataz Derick Woodx

Abstract

We survey the basic results on regular tree languages over unranked alphabets�

that is� we use an unranked alphabet for the labels of nodes� we allow unbounded�

yet regular� degree nodes and we treat sequences of trees that� following Courcelle�

we call hedges�

The survey was begun by the �rst and third authors� Subsequently� when they

discovered that the second author had already written a summary of this view of

tree automata and languages� the three authors decided to join forces and produce

a consistent review of the area�

The survey is still un�nished because we have been unable to �nd the time to

�nish it� We are making it available in this un�nished form as a research report

because it has� already� been heavily cited in the literature�

� Introduction

The study of tree automata has a long �in computer science� history� see the survey
of Thatcher �Tha���� and the texts of Gecseg and Steinby �GS���� and of the TATA
group �CDG�	��
 We� however� take a path that is somewhat di�erent from most of the
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research in this area
 We use an unranked alphabet� we allow unbounded� yet regular�
degree nodes and we treat sequences of trees that we call hedges� a term coined by
Courcelle �Cou��� Cou�	�
 One of us has been looking for a name that is as simple as
forest �which is used for sets of trees�� but is more appropriate for sequences of trees

Hedge seems to best t this requirement
 Note that when we remove the root of a tree
we are left with a hedge and� conversely� adding a new root to a hedge gives a tree


One reason for taking a path less traveled by is that the Standard Generalized Markup
Language �SGML� �ISO��� and the Extensible Markup Language �XML� �BPMM	���
which are metalanguages for document grammars� introduce these requirements
 Since
most work on classes of documents generated by document grammars is grammatical in
nature why do we consider tree and hedge automata rather than document grammars� We
have investigated the use and theory of document grammars elsewhere �Woo	�� BKW	��
KW		�� however� grammars are not always the most appropriate tool for modeling appli�
cations
 Tree and hedge automata provide a natural framework for investigating tree and
hedge transformations� tree and hedge query languages� layout generation for trees and
hedges� and context specication and evaluation �BKW��a� BKW��b� Mur	�� Mur	��
Mur	��


Although many of the fundamental results for extended hedge automata are proved by
similar methods to those for the corresponding tree automaton results� they are not
without interest
 In addition� Thatcher both in published work �Tha��� Tha��a� TW���
and unpublished work �Tha��b� developed the basic theory of unranked tree automata
and also introduced and investigated their regular extensions
 This paper collects in a
uniform presentation� both known results and new results for extended tree automata and
also demonstrates how� if at all� these results carry over to extended hedge automata


The paper currently has nine further sections
 Section � introduces the basic notation
and terminology for hedges� trees and tree automata� and Section � introduces hedge
automata
 Section � focusses on top�down and bottom�up automata
 Section � introduces
an algebraic approach to tree automata� Section � deals with local tree languages and
Section � discusses characterizable languages
 Section � introduces the notion of a top
congruence and Section 	 uses that notion to prove that two�way tree automata are only
as expressive as standard tree automata
 Section �� introduces tree regular expressions
and Section �� introduces endmarked tree automata
 In Section �� we review previous
work and relate it to our contributions and in Section �� we mention some open problems


� Notation and de�nitions

We dene sequences of trees that we call hedges after Courcelle �Cou��� Cou�	� and then
extend the denition of tree automata to hedge automata along the lines of Murata�s
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survey �Mur	��
 Note that trees are hedges that have exactly one root


We assume that the nodes of hedges and trees are labeled with symbols from some nite
alphabet �
 The Greek letter � denotes the empty string over any alphabet


We represent hedges and trees by sequences of terms� using the symbols in � as operators

Operators have no rank or arity� so they can have any number of operands� including none

Terms have at least one operator


For example� the term sequence a��b���a�� represents a hedge of three trees each of
height �
 We will often drop the terminating parentheses � � and use abc to repre�
sent the preceding hedge
 Note that it also represents a string over �
 The term
a�a�a��a���a�a��a���� represents a complete binary tree of height �� all of whose nodes
have the label a


More formally� we dene hedges over � inductively as follows�

� The empty term sequence is a hedge and it is denoted by �

� If g is a hedge and a � �� then a�g� is a hedge

� If g and h are hedges� then gh is a hedge

The width jhj of a hedge h is also dened inductively by� j�j � �� ja�g�j � �� and
jghj � jgj� jhj
 Immediately� a tree is a hedge of width one


We denote symbols in � with a� strings over � �which we also call strings� with w� and
sets of strings over � �which we also call string languages� with L


We denote hedges with g or h� sets of hedges �which we also call hedge languages� with H�
and sets of sets of hedges �which we also call families of hedge languages� with H


We denote trees with t� sets of trees �which we also call tree languages� with T � and sets
of sets of trees �which we also call families of tree languages� with T 
 Subscripted and
superscripted variables have the same types as their base names


De�nition ��� We dene the set of nodes of a hedge h as a set of strings of natural
numbers and denote it by nodes�h�
 The denition is by induction on h�

�
 For the hedge �� nodes��� � ��

�
 For a tree a�g�� nodes�a�g�� � f�g � f� � x j x � nodes�g�g�

�
 For a hedge gh� nodes�gh� �

nodes�g� � f�jgj� i�� � i� � � � ik j i� � � � ik � nodes�h�� where k � �g�

The nodes of a hedge �or of a tree� viewed as a term sequence �or as a term� correspond
to occurrences of subterms
 We denote nodes of hedges and trees with �
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De�nition ��� For each node � of a hedge g� we dene the set of ��s children to consist
of all nodes � � i in nodes�g� and we denote it by children���


De�nition ��� A node � of a hedge g is a leaf if and only if children��� � � and the
set leaves�g� denotes the leaves of g


We dene the roots of a hedge h to be the set of all nodes gn � h such that � � N


Note that the leaves and only the leaves of a hedge �nodes corresponding to subterms of
the form a��� have an empty set of children


De�nition ��� For each node � of a hedge g� the label of � in � is denoted by label���

More precisely� for a hedge g � g� � � � gn of width n � �� we dene�

�
 The label of the node i of the hedge g to be ai � �� where gi � ai�hi��

�
 The label of the node i � s in g to be the label of the node s in the tree gi


De�nition ��� A two	way nondeterministic tree automaton 
�NTA� is specied
by a tuple �Q� �� F �� where Q is a nite set of states� F � Q is a set of nal states and
� � � � Q� � Q � fu� d� sg is a transition relation such that� for each a in �� q in Q
and m in fu� d� sg� the set fw � Q�j�a� w� q�m� � �g is a regular set of strings over the
alphabet Q �regularity of the transition relation�


We denote both hedge and tree automata with M 


We dene the computations �or behavior� of a �NTA on a tree as a sequence of congu�
rations
 A conguration assigns a state of the automaton to each node in what we call a
cut of the tree


De�nition ��� A cut of a tree t is a subset of nodes�t� such that� for each leaf node �
of t� there is exactly one node �represented by a prex of �� on the path from the root to
� that is in the cut


We denote cuts for both hedges and trees with C


De�nition �� A con�guration of a �NTA M � �Q� �� F � operating on a tree t is a
map c � C �	 Q from a cut C of t to the state set Q of M 


We denote congurations with c


Let � be a node of a tree t and let c � C�	Q be a conguration of the �NTAM operating
on t
 If children��� � C� then formally c�children���� is a subset of Q
 We overload this
notation so that c�children���� also denotes the sequence of states in Q which arises from
the order of ��s children in t


De�nition ���

�



�
 A starting con�guration of a �NTA M � �Q� �� F � operating on a tree t is a
conguration c � C �	 Q� where C � leaves�t� and c��� is any state q in Q such
that �label���� �� q� u� � �


�
 A halting con�guration is a conguration c � C �	 Q such that C � f�g


�
 An accepting con�guration is a halting conguration c such that c�f�g� � F 


De�nition ���

�
 A �NTA M � �Q� �� F � operating on a tree t makes a transition from one congura�
tion c� � C� �	 Q to a second conguration c� � C� �	 Q �symbolically c��	 c��
if and only if it makes an up transition� a down transition or a staying transition
�dened in parts �� � and ��


�
 M makes an up transition from c� to c� if and only if t has a node � such that

�a� children��� � C��

�b� C� � �C� n children���� � f�g�

�c� �label���� c��children����� c����� u� � � and

�d� c� is identical to c� on their domains� common subset C� 
 C�


�
 M makes a down transition from c� to c� if and only if t has a node � such that

�a� � � C��

�b� C� � �C� n f�g � children�����

�c� �label���� c��children����� c����� d� � � and

�d� c� is identical to c� on their domains� common subset C� 
 C�


�
 M makes a staying transition from c� to c� if and only if t has a node � such that

�a� � � C��

�b� C� � C��

�c� �label���� c����� c����� s� � � and

�d� c� is identical to c� on their domains� common subset C�nf�g� which is identical
to C� n f�g


De�nition ����

�
 A computation of a �NTA M on a tree t from conguration c to conguration c�

is a sequence of congurations c�� � � � � cn� n � �� such that c � c��	� � ��	 cn � c�


�
 An accepting computation of M on t is a computation from a starting congu�
ration to an accepting conguration


For a �NTA M � �Q� �� F �� the transition relation � is a subset of ��Q��Q�fu� d� sg

For a down transition �a� w� g� d� in �� the interpretation is that M � when in state q and
sitting on a node labeled a� can move down and label its children one after the other with
the states in the string w� which is in Q�
 It might be confusing at a rst glance that in the

�



transition relation � the next state for a down transition is given before the current state

We have chosen this notation for the sake of homogenuity
 We are making this point here�
since it may be particularly surprising when we dene top�down tree automata


De�nition ����

�
 A tree t is recognizable by an automaton M if and only if there is an accepting
computation of M on t


�
 The tree language T �M� that is recognizable by a �NTA M is the set of trees
that are recognizable by M 


De�nition ����

�
 A nondeterministic bottom	up tree automaton 
NBTA� is a �NTA M �
�Q� �� F �� where � contains only transitions whose last component is u
 For an
NBTA M � we can consider � to be a subset of � � Q� � Q� dropping the last�
constant component in the Cartesian product


�
 A deterministic bottom	up tree automaton 
DBTA� is an NBTA M �
�Q� �� F �� where� for each a in � and w in Q�� there is at most one q in Q such
that �a� w� q� � �


�
 A tree automaton without further qualication is always an NBTA


The behaviour of a bottom�up tree automaton� which is also a �NTA� is precisely the
same as when it is viewed as a �NTA


De�nition ����

�
 A nondeterministic top	down tree automaton 
NTTA� is a �NTA M �
�Q� �� I�� where � contains only transitions whose last component is d and I is a set
of initial states� For an NTTA M � we can consider � to be a subset of ��Q��Q�
dropping the last� constant component in the Cartesian product


�
 A deterministic top	down tree automaton 
DTTA� is an NTTAM � �Q� �� I��
where I is a singleton set and� for each a in � and q in Q� there is� for each natural
number n� at most one w of length n in Q� such that �a� w� q� � �


The behavior of a top�down tree automaton M � �Q� �� I� is slightly di�erent
 Com�
putations between congurations are dened precisely the same as in the more general
case of �NTAs
 The starting conguration for a tree t is� however� any conguration
c � f�g �	 I� a halting conguration is any conguration c � leaves�t� �	 Q� and an
accepting conguration is any halting conguration c � leaves�t� �	 Q such that� for each
leaf node � of t� the condition �label���� �� c���� � � holds
 For obvious reasons� in the
case of a top�down tree automaton� the set I is called the set of initial states


�



For a bottom�up as well as for a top�down tree automaton the language of recognizable
trees consists of the trees for which the automaton can carry out a computation from a
starting conguration to an accepting conguration


De�nition ���� A tree language is tree regular if and only if it is recognizable by a
tree automaton� that is� by an NBTA


� Hedge automata

We extend the denitions of tree automata to hedge automata in the obvious way


De�nition ��� A two	way nondeterministic hedge automaton 
�NHA� is spec�
ied by a tuple �Q� �� F �� where Q is a nite set of states� F � Q is a set of nal states
and � � ��Q� �Q� fu� d� sg is a transition relation such that� for each a in �� q in Q�
and m in fu� d� sg� the set fw � Q�j�a� w� q�m� � �g is a regular set of strings over the
alphabet Q �regularity of the transition relation�


We denote both hedge and tree automata with M 


We dene the computations �or behavior� of a �NHA on a hedge as a sequence of cong�
urations
 A conguration assigns a state of the automaton to each node in what we call
a cut of the hedge


De�nition ��� A cut of a hedge h is a subset of nodes�h� such that� for each leaf
node � of h� there is exactly one node �represented by a prex of �� on the path from a
root node of h to � that is in the cut


We denote cuts with C


De�nition ��� A con�guration of a �NHA M � �Q� �� F � operating on a hedge h is a
map c � C �	 Q from a cut C of h to the state set Q of M 


We denote congurations with c


Overloading� Let � be a node of a hedge h and let c � C�	Q be a conguration of
the �NHA M operating on h
 If children��� � C� then formally c�children���� is a subset
of Q
 We overload this notation so that c�children���� also denotes the sequence of states
in Q that arises from the order of ��s children in h


De�nition ���

�
 A starting con�guration of a �NHA M � �Q� �� F � operating on a hedge h is a
conguration c � C �	 Q� where C � leaves�h� and c��� is any state q in Q such
that �label���� �� q� u� � �


�



�
 A halting con�guration is a conguration c � C �	 Q such that C � froots�h�g


�
 An accepting con�guration is a halting conguration c such that c�roots�h�� �
F �


De�nition ���

�
 A �NHA M � �Q� �� F � operating on a hedge h makes a transition from one congu�
ration c� � C� �	 Q to a second conguration c� � C� �	 Q �symbolically c��	 c��
if and only if it makes an up transition� a down transition or a staying transition
�dened in parts �� � and ��


�
 M makes an up transition from c� to c� if and only if h has a node � such that

�a� children��� � C��

�b� C� � �C� n children���� � f�g�

�c� �label���� c��children����� c����� u� � � and

�d� c� is identical to c� on their domains� common subset C� 
 C�


�
 M makes a down transition from c� to c� if and only if h has a node � such that

�a� � � C��

�b� C� � �C� n f�g � children�����

�c� �label���� c��children����� c����� d� � � and

�d� c� is identical to c� on their domains� common subset C� 
 C�


�
 M makes a staying transition from c� to c� if and only if h has a node � such
that

�a� � � C��

�b� C� � C��

�c� �label���� c����� c����� s� � � and

�d� c� is identical to c� on their domains� common subset C�nf�g� which is identical
to C� n f�g


De�nition ���

�
 A computation of a �NHA M on a hedge h from conguration c to conguration c�

is a sequence of congurations c�� � � � � cn� n � �� such that c � c��	� � ��	 cn � c�


�
 An accepting computation of M on h is a computation from a starting conguration
to an accepting conguration


For a �NHA M � �Q� �� F �� the transition relation � is a subset of ��Q��Q�fu� d� sg

For a down transition �a� w� g� d� in �� the interpretation is that M � when in state q and
sitting on a node labeled a� can move down and label its children one after the other with
the states in the string w� which is in Q�


De�nition ��

�



�
 A hedge h is recognizable by an automaton M if and only if there is an accepting
computation of M on h


�
 The hedge language T �M� that is recognizable by a �NHA M is the set of hedges
that are recognizable by M 


De�nition ���

�
 A nondeterministic bottom	up hedge automaton 
NBHA� is a �NHA M �
�Q� �� F �� where � contains only transitions whose last component is u
 For an
NBHA M � we can consider � to be a subset of � � Q� � Q� dropping the last�
constant component in the Cartesian product


�
 A deterministic bottom	up hedge automaton 
DBHA� is an NBHA M �
�Q� �� F �� where� for each a in � and w in Q�� there is at most one q in Q such that
�a� w� q� � �


�
 A hedge automaton without further qualication is always an NBHA


The behaviour of a bottom�up hedge automaton� which is also a �NHA� is precisely the
same as when it is viewed as a �NHA


De�nition ���

�
 A nondeterministic top	down hedge automaton 
NTHA� is a �NHA M �
�Q� �� I�� where � contains only transitions whose last component is d and I is a set
of initial states
 For an NTHA M � we can consider � to be a subset of ��Q� �Q�
dropping the last� constant component in the Cartesian product


�
 A deterministic top	down hedge automaton 
DTHA� is an NTHA M �
�Q� �� I�� where I is a singleton set and� for each a in � and q in Q� there is� for each
natural number n� at most one w of length n in Q� such that �a� w� q� � �


For a top�down hedge automaton M � �Q� �� I�� the situation is slightly di�erent
 Com�
putations between congurations are dened precisely the same as in the more general
case of �NHAs
 The starting conguration for a hedge h is� however� any conguration
c � froot�t�g �	 I� a halting conguration is any conguration c � leaves�t� �	 Q� and
an accepting conguration is any halting conguration c � leaves�t� �	 Q such that� for
each leaf node � of h� the condition �label���� �� c���� � � holds


For a bottom�up as well as for a top�down hedge automaton� the language of recognizable
hedges consists of the hedges for which the automaton can carry out a computation from
a starting conguration to an accepting conguration


De�nition ���� A hedge language is hedge regular if and only if it is recognizable by
a hedge automaton� that is� by an NBHA


	



� Languages recognizable by bottom�up and

top�down tree automata

The following results have analogs in the theory of tree automata over ranked alphabets

Each proof is based on a proof for the ranked�alphabet case
 These results can be extended

to hedge automata in a straightforward manner�

Theorem A The tree languages that are recognizable by nondeterministic top�down tree
automata are precisely the tree�regular languages� that is� nondeterministic bottom�up and
nondeterministic top�down tree automata recognize precisely the same tree languages�

Proof Let M � �Q� �� F � be a NBTA and let M � � �Q� �� I� be the dual NTTA� whose
sets of states and transitions are the same asM �s and whose set of initial states is the same
asM �s set of nal states
 We note that� for any tree t� the starting congurations ofM on t
are precisely the accepting congurations ofM � on t and that the accepting congurations
of M on t are precisely the starting congurations of M � on t
 Furthermore� for any two
congurations c� and c� on t� M makes a transition from c� to c� when operating on t if
and only if M � makes the reverse transition fom c� to c�
 Hence� accepting computations
of M on t are precisely the reverse of accepting computations of M � on t
 Therefore� M
and M � recognize the same tree language
 �

Theorem B Each tree�regular language is recognizable by a deterministic bottom�up tree
automaton� that is� deterministic bottom�up and nondeterministic bottom�up tree au�
tomata recognize precisely the same tree languages�

Proof We apply the well�known subset construction for string automata or tree au�
tomata over ranked alphabets to tree automata over unranked alphabets


Let M � �Q� �� F � be a NBTA
 We dene a DBTA M � � �Q�� ��� F �� that recognizes the
same tree language as does M 


Let Q� be the powerset of Q and let F � be the set fS � QjS 
 F �� �g


For each symbol a in �� each string X � X� � � �Xn over Q�� n � �� and each state S in Q��
we add �a�X� S� to �� if and only if

S � fq � there are qi in Xi� � � i � n� such that �a� q� � � � qn� q� � �g�

In particular� ���a� �� S� if and only if

S � fqj��a� �� q�g�

To demonstrate the regularity of the transition relation� we need to show that� for each a
in � and each S � Q�� the set

L�
a�S � fX� � � �Xn in Q��j���a�X� � � �Xn� S�g

��



is regular


First� note that X� � � �Xn � L�
a�S if and only if the following two conditions hold�

�
 For each q in S� there are qi in Xi� � � i � n� such that �a� q� � � � qn� q� � �


�
 For each qi in Xi� � � i � n� there is a q in S such that �a� q� � � � qn� q� � �


Since� for each a in � and each q in Q� the set

fq� � � � qn in Q�j�a� q� � � � qn� q� � �g

is a regular string language� one may be tempted to conclude that L�
a�S is also regular since

it appears to be built from unions and intersections of regular languages
 Unfortunately�
these unions and intersections are unbounded
 Therefore� we need to use a more sophis�
ticated argument that involves string morphisms and� in particular� the well�known fact
that morphic images of regular sets are also regular
 Additionally� we use the 
�morphic
image

h��L� � fwjthere is v such that h�v� � w � Lg

of a language L with respect to a morphism h
 Note that the 
�morphic images of regular
sets are also regular


Now� observe that

L��
a�q � f�q�� X�� � � � �qn� Xn�j�a� q� � � � qn� q� � � and qi � Xig

is a regular string language over the alphabet

Q�� � f�q�X�jq � X � Q�g�

Furthermore� consider the morphism h � Q��� �	 Q�� that maps each �q�X� in Q�� to its
second component X


Since L�
a�S is the intersection of the two sets
�

q�S

h�L��
a�q�

and

h��
�

q�S

L��
a�q��

we can conclude that L�
a�S is string regular


Having established the regularity of the transition relation of M � � �Q�� ��� F ��� it is
now obvious that M � is indeed an DBTA and that M and M � recognize the same tree
language
 �

��



Theorem C There are tree languages that are tree regular but are not recognizable by
any deterministic top�down tree automaton�

Proof Any DTTA that recognizes the two trees a�a��� a��� and a�b��� b��� also recognizes
the trees a�a��� b��� and a�b��� a���
 On the other hand� there is an NTTA that recognizes
the two�element tree language fa�a��� a���� a�b��� b���g
 �

� Monoid view of tree automata

We can reprove some of the results in the Sections � and � using a more algebraic denition
of a tree automaton in which the regularity of the state sequences is captured by using
the morphic characterization of regular languages


The basic result on which this section is based is as follows�

Proposition ��� A language L � �� is regular if and only if there are a �nite monoid K�
a morphism � � �� �	 K and a subset R � K such that L � ����R��

De�nition ��� A hedge automaton is specied by M � �Q���R� �� Rf�� where Q is a
nite set of states� R is a nite monoid� � is a map �� R �	 Q� � is a map Q� �	 R�
where ��p q� � ��p���q�� and Rf is a subset of R


Obviously� given a hedge h� we can compute a state in R denoted by M�h�
 Now� h is
accepted by M if and only if M�h� � Rf 


Two hedges g and h are equivalent if and only if M�g� � M�h� �� R�


In addition� following the ideas of Pair and Quere �PQ���� of Takahashi �Tak��� and
of Murata �Mur���� we can introduce the notion of a binoid �it is closed under two
operations� and establish the following result


Proposition ��� A hedge language L � �� is regular if it is the inverse morphic image
of a subset of some �nite binoid� where the morphism is from the set of hedges to this
�nite binoid�

This section is not yet finished�

� Local tree languages and morphic images

De�nition ��� A tree grammar G over an alphabet � is specied by a tuple �P� I��
where P is a subset of ����� for each a in �� the set fwja�	w in Pg is string�regular�

��



and I is a nonempty subset of �
 We call P the set of productions and I the set of start
symbols
 These results can be extended to hedge grammars in a straightforward manner�

A tree grammar is very similiar to an extended context�free grammar� there are just two
di�erences� First� a tree grammar can have more than one start symbol and� second� there
is no distinction between terminal and nonterminal symbols in tree grammars


We denote tree grammars with G


De�nition ��� The derivation trees of a tree grammar G � �P� I� with root label a�
a � �� are dened inductively� For each production a�	w� w � a� � � �an� n � �� and�
for any derivation trees t� with root label a�� 
 
 
 � tn with root label an� the tree a�t� � � � tn�
is a derivation tree of G with root label a
 A derivation tree of G is a derivation tree with
a root label in I


Note that a�labeled leaves in a derivation tree correspond to productions a�	� in the
grammar


De�nition ��� A tree language is tree local if and only if it is the set of derivation
trees for a tree grammar


De�nition ��� A tree morphism is based on a map from one alphabet to another and
is extended to trees in the standard way


Theorem D A tree language is tree regular if and only if it is the morphic image of a
tree�local tree language�

Proof The following observation helps to clarify the connection between tree automata
and tree grammars�

One�way tree automata visit each node of a tree exactly once during an accepting com�
putation� so the whole computation can be represented by adding an additional Q�label to
each ��labeled node�

More precisely� let M � �Q� �� I� be an NTTA and let t be a tree
 We add a second� Q�
component to the labels of t� constructing a number of ���Q��labeled trees� as follows�

�
 Each state q in I is added as a second component to the root of t


�
 If q has been added to an a�labeled node � of t� � has precisely n children and
�a� q� � � � qn� q� � �� then qi is added to the ith child of �� � � i � n


We consider only those ���Q��labeled trees t� constructed from t such that every node has
been additionally labeled and every �a� q��labeled leaf satises the condition �a� �� q� � �


There is a one�to�one correspondence between accepting computations of M on t and the
���Q��labelings of t� which we call M �s accepting computation trees corresponding to t


��



In particular� if t is not recognizable by M � then no corresponding accepting computation
���Q��tree can be constructed from t and conversely


After these preliminaries� we now proceed to the proof proper


Given an NTTA M � �Q� �� I�� dene the grammar G � �P�� � I� over the alphabet
�� � ��Q as follows�

P � f�a� q��	�a�� q�� � � � �an� qn�jn � �� a�� � � � � an � �� �a� q� � � � qn� q� � �g�

The syntax trees of G correspond precisely to the accepting computation trees of M 

Therefore� we dene a projection h on �� that gives the rst� label component yo obtain
the intended result� namely� the h�images of G�s syntax trees are precisely the trees
recognizable by M 


Conversely� given a tree grammar G � �P� I�� dene the NTTA M � ���� �� I� as follows�
For each a in �� q� � � � qn in ���� q in �� �a� q� � � � qn� q� � � if and only if

�
 h�q� � a


�
 The production q�	 q� � � � qn is in P 


The accepting computation trees of M are labeled with pairs �a� q� in � � �� where
h�q� � a
 If we drop the rst� ��labeled components from the accepting computation
trees of M � the results are precisely the syntax trees of G
 Hence� the trees recognizable
by M are precisely the h�images of G�s syntax trees
 �

Theorem E For each tree�regular tree language there is a uniquely de�ned minimal tree�
local superset�

Theorem F Tree�local tree languages do not form a Boolean algebra�

� Characterizable tree languages

These results can be extended to hedge languages in a straightforward manner�

De�nition �� An algebra A � �A� S� consists of a set A and a set of functions S
 Each
function s in S has a rank r�f� in N� so that s � Ar�s��	A


De�nition �� Let A � �A� S� be an algebra
 An equivalence relation  on A is called
an S�congruence if and only if any s in S and a�� � � � � ar�s�� b�� � � � � br�s� in A satisfy the
following condition� If ai  bi� � � i � r�s�� then s�a�� � � � � ar�s��  s�b�� � � � � br�s��� that
is� an A�congruence is an equivalence relation on A that is compatible with the functions
in S


��



De�nition �� An equivalence relation is of nite index if it has a nite number of
equivalence classes


De�nition �� Let A � �A� S� be an algebra
 A subset L of A is S�characterizable if
and only if there is a nite S�congruence on A such that L is the union of some of its
equivalence classes


Proposition �� Let A � �A� S� be an algebra� For any �nite number of S�character�
izable subsets of A there is a single S�congruence that characterizes all of them simulta�
neously�

Proposition �� Let A � �A� S� be an algebra� The subsets of A that are S�character�
izable form a Boolean algebra�

De�nition �� For a in � let the string functions pa and sa be dened as follows�
pa � �

��	��� pa�w� � aw� sa � �
��	��� sa�w� � wa
 Furthermore� let � denote string

catenation


The following well�known characterization for string languages is commonly attributed to
Myhill and Nerode�

Proposition �� Let S be any of the following three sets of functions� f�g� fpaja � �g
and fsaja � �g� Then� a subset L of �� is S�characterizable if and only if L is string
regular�

A fpaja � �g�congruence is called a left congruence and a fsaja � �g�congruence is called
a right congruence on ��


De�nition �� For trees t and t�� where t� � a�t� � � � tn�� we dene t � t� as the tree
a�t� t� � � � tn�� inserting t as the rst child of t�


A theorem on trees in the spirit of Myhill and Nerode


Theorem G A set of trees T is tree regular if and only if T is ��characterizable�

Proof In the rst part of the proof let T be a tree�regular set of trees and let M �
�Q� �� F � be a tree automaton that recognizes T 
 We construct an equivalence relation �
that ��characterizes T 


The regularity condition for the transition relation of M ensures that� for each a in � and
q in Q� the set

fw in Q�j�a� w� q� � �g

is string regular
 Since there are only nitely many such sets� we can nd a single fpaja �
�g�congruence  on � that characterizes them all simultaneously


��



A necklace of a tree t is an equivalence class �w��� w � Q�� such that M � when operating
on t� can generate w as the sequence of states for the children of t�s root


We dene trees t� and t� to be equivalent �t� � t�� if and only if t� and t� have identical
root labels and identical sets of necklaces


First of all� � is an equivalence relation on the set of trees and it has nite index


Furthermore� if t� � t� and t� � T � then t� � T 
 The reason is that the sets of states
that M obtains for the roots of t� and t�� when operating on t� and t�� respectively� only
depend on the root labels and on the sets of necklaces


It remains to demonstrate that � is a ��congruence
 Let t� � t� and t� � t�
 We can see
immediately that t� � t� and t� � t� have identical root labels
 Furthermore� the necklaces
of t� � t� are precisely the necklaces �pq�w���� where q is a state that M obtains for t��s
root� when M is operating on t� and �w�� is a necklace of t�
 The analogous argument
holds for t� and t�� so the sets of necklaces for t� � t� and t� � t� are the same


Thus� we have demonstrated that � ��characterizes T 


For the second proof step� let � be an equivalence relation that ��characterizes the set T
of trees
 We construct a tree automaton M � �Q� �� F � that recognizes T 


First� let Q � f�t��jt is a treeg
 Since � has nite index� the state set Q is nite


Second� let F � f�t��jt � Tg
 Since T �
S
f�t��jt � Tg� if t� � t� and t� � T � then t� � T 


Finally� let

� � f�a� �t��� � � � �tn��� �a�t� � � � tn����g�

Since a�t� � � � tn� � t� � �� � � �tn�� � �tn � a�� � � ��� and since � is a ��congruence� the
transition relation � is well dened


The tree automaton M � �Q� �� F � is deterministic
 When operating on the tree t� the
automaton M yields �t�� as the state for t�s root
 Hence� M recognizes t


We nally demonstrate the regularity of M �s transition relation �
 Choose� for each state
q in Q� a representative tree tq in q such that q � �tq��
 For each a in � and each tree t�
we demonstrate that the set

fq� � � � qnja�tq� � � � tqn� � tg

is string regular over Q� using the Myhill�Nerode theorem for string languages
 We dene
the equivalence relation  over Q�strings as follows�

q� � � � qm  q�� � � � q
�
n

��



if and only if

a�tq� � � � tqm� � a�tq�

�
� � � tq�

n
��

Since � is of nite index� so is 


Next we demonstrate that  is a pq�congruence for each q in Q
 Let q� � � � qm  q�
� � � � q

�
n


Then�

a�tq� � � � tqm� � a�tq�

�
� � � tq�

n
�

and� since � is a ��congruence�

a�tq� tq� � � � tqm� � tq � a�tq� � � � tqm�

� tq � a�tq�

�
� � � tq�

n
�

� a�tq� tq�

�
� � � tq�

n
��

Hence�

pq�q� � � � qm� � qq� � � � qm  qq�
� � � � q

�
n � pq�q

�
� � � � q

�
n��

Finally� we demonstrate that  characterizes the set

fq� � � � qnja�tq� � � � tqn�g�

It is� however� obvious since� for each q� � � � qm that belongs to this set and for each q�
� � � � q

�
n

that is �equivalent to q� � � � qm� the string q�
� � � � q

�
n belongs to this set as well
 Hence�

fq� � � � qnja�tq� � � � tqn�g

is the union of �equivalence classes
 �

Theorem H The tree�regular tree languages form a Boolean algebra�

	 Top congruences

These results can be extended to hedges in a straightforward manner�

De�nition ��� A pointed tree �sometimes also called a tree with a handle or a handled
tree� is a tree over an extended alphabet � � fXg so that precisely one node is labeled
with the variable X and that node is a leaf


De�nition ��� If t is a pointed tree and t� is a �pointed or nonpointed� tree� we can
catenate t and t� by replacing the node labeled X in t with the root of t�
 The result is
the �pointed or nonpointed� tree tt�


��



De�nition ��� Let T be a tree language
 Trees t� and t� are top congruent with
respect to T �t� T t� or simply t�  t�� if and only if� for each pointed tree t� the
following condition holds�

tt� � T if and only if tt� � T�

The tree functions pt that map each tree t� to pt�t
�� � tt� are� for pointed trees t� the tree

analog of the string functions pa� a � �
 The top congruence for trees is the tree analog
of the left congruence for strings


Lemma ��� The top congruence is an equivalence relation on trees� it is a congruence
with respect to catenations of trees with pointed or nonpointed trees�

Proof To verify the congruence condition� let t be a pointed tree
 We have to demon�
strate that t� T t� implies that tt� T tt�
 Since tree catenation is associative� for any
trees t� and t� such that t� T t� and for any pointed tree t��

t��tt�� � �t�t�t� T �t�t�t� � t��tt���

Hence� tt� T tt�
 �

De�nition ��� The top index of a tree language T is the number of T �equivalence
classes


Lemma ��� Each tree�regular tree language has �nite top index�

Proof Let T be the tree�regular language of a DBTA M 
 For any pair t� and t� of trees�
if the automatonM when operating on t� yields the same states in a halting conguration
as it does when operating on t�� then t� T t�
 SinceM �s state set is nite� the equivalence
relation T is of nite index
 �

A string language is regular if and only if it has nite index� however� that a tree language
has nite top index is insu�cient for it to be regular


Example Consider the tree language

L � fa�bici� � i � �g�

Clearly� L has nite top index� but it is not regular


A second condition� regularity of local views� must also be satised


De�nition ��� Let T be a tree language� a be a symbol in �� let t be a pointed tree
and Tf be a nite set of trees
 Then the local view of T with respect to t� a� and Tf is
the string language

Vt�a�Tf �T � � ft� � � � tn � T �
f jta�t� � � � tn� � Tg

��



over the alphabet Tf 
 For the purposes of local views we treat the trees in the nite set Tf

as symbols in the alphabet Tf � the trees in Tf are primitive entities that can be catenated
to give strings over Tf 
 Note that we are not catenating trees


Because one argument that we use in the proof of Lemma �
� occurs several times in the
paper� we factor it out as Lemma �
�


Lemma ��� Let � and �� be �nite alphabets� F be a subset of � � �� and B be a
string�regular language over ��� Then� the string language

fa� � � �an j �a�� b��� � � � � �an� bn� � F and b� � � � bn � Bg

is regular�

Proof Using projection to the second component as a morphism� we see that the set

A � f�a�� b�� � � � �an� bn� j �a�� b��� � � � � �an� bn� � F and b� � � � bn � Bg

is the inverse morphic image of the regular language B� hence� A is regular


Using projection to the rst component of A as a morphism� we see that the required
language which is the morphic image of A is also regular
 �

We continue now with the proof of Lemma �
�


Lemma ��� All local views of each tree�regular tree language are regular string lan�
guages�

Proof Let T be the tree language of an NBTA M � �Q� �� F �� a be a symbol in �� t
be a pointed tree and Tf be a nite set of trees


For each q in Q� dene Mq � �Q� �q� F � such that �q � � � f�X� �� q�g� that is� Mq is
identical to M with the exception of one additional tuple in Mq�s transition relation
 The
automaton Mq operates on � � fXg�labeled trees


A computation ofM on a tree tt� can be divided into two parts� a computation ofM on the
tree t� resulting in some state q at the root of t�� and a computation of Mq on the pointed
tree t
 The automaton M recognizes the tree tt� if and only if M � when operating on t��
makes a sequence of transitions from any starting conguration to a halting conguration
such that t��s root label is q and if Mq recognizes t


For any t� in Tf � let Qt� be the set of states q in Q so that M � when operating on t�� makes
a sequence of transitions from any starting conguration to a halting conguration such
that the root label of t� is q
 Lemma �
� and the regularity of M �s transition relation
imply that the local view Vt�a�Tf

� rewritten as

ft� � � � tn j for some qi � Qti �a� q� � � � qn� q� � � and Mq recognizes tg�

is string regular
 �

�	



Example Let

T � fc�t� � � � tn�jlabel�root�t��� � � � label�root�tn�� � falbljl � �gg�

The tree language T is has top index four
 Two of its equivalence classes are the sets of
trees whose root labels are a or b� the other two are T and the set of trees that are not
in T � but have the root label c
 The local view of T with respect to the pointed tree X���
symbol c� and the nite set of trees fa��� b��g is the nonregular set of strings falbljl � �g

Hence� T has nite top index but it is not tree regular


Theorem I A tree language is tree regular if and only if it has �nite top index and all
its local views are regular string languages�

Proof Lemmas �
� and �
� establish the two if clauses� thus� we need prove only the
only�if clause
 Let T be a tree language of nite top index such that all its local views
are regular string languages
 Let  denote the top congruence with respect to T and
let �t� denote the equivalence class of a tree t with respect to the top congruence
 that
recognizes T 
 We now construct an NBTA M � �Q� �� F � for T 


The rst part of the proof is a straightforward adaption of its string�language counterpart

The second part deals with the regularity of the transition relation


Let Q � f�t�jt is a treeg and F � f�t�jt � Tg
 Note that t�  t� implies that t� � T if and
only if t� � T � thus� �t� consists of either only trees in T or only trees not in T 
 Finally�
let � consist of the triples

�a� �t�� � � � �tn�� �a�t� � � � tn���

Observe that � is well dened� that is� if t�  t�� � � � tn  t�n� then a�t� � � � tn�  a�t�� � � � t
�
n�


The argument is incremental
 Let t be a pointed tree� then�

ta�t� � � � tn� � T � ta�X � t� � � � tn�t� � T

� ta�X � t� � � � tn�t
�
� � T

� ta�t�� � t� � � � tn� � T

� ta�t�� �X � t� � � � tn�t� � T

� ta�t�� �X � t� � � � tn�t
�
� � T

� ta�t�� � t
�
� � t� � � � tn� � T

�





� ta�t�� � � � t
�
n� � T�

Hence� a�t�� � � � � tn�  a�t��� � � � � t
�
n�
 Furthermore� M is deterministic


Finally� M recognizes T � since M � when operating on a tree t from the starting congu�
ration� reaches exactly one halting conguration� which corresponds to state �t�
 Hence�
M recognizes t if and only if �t� � F � that is� if t � F 


��



The second task is to demonstrate the regularity of M �s transition relation �
 For each q
inQ� let tq in q be a representative of q� that is� �tq� � q
 Furthermore� let Tf � ftqjq � Qg


Finally� let �T be a nite set of pointed trees that discriminates between the nitely many
�equivalence classes
 More precisely� t�  t� if and only if� for each t in �T � the tree tt�
is in T if and only if tt� is in T 


Now� �a� q� � � � qn� q� � � if and only if a�tq� � � � tqn�  tq� that is� if and only if� for each

t in �T � the tree ta�tq� � � � tqn� being in T is equivalent to the tree ttq being in T 
 Hence�
�a� q� � � � qn� q� � � if and only if q� � � � qn is in the intersection of the sets Vt�a�Tf �T � such

that t � �T and ttq � T � and of the complements of the sets Vt�a�Tf �T � such that t � �T
and ttq �� T 
 This intersection� however� is a string�regular set� which establishes the
regularity of M �s transition relation using string morphism
 �

At rst glance it may appear that the local�view condition for tree�regular tree languages
is a condition on innitely many trees
 But� if we exchange a tree t� in a nite set Tf

by an equivalent�with respect to top congruence�tree t�� then Va�t��Tfnft�g��ft�g�T � is the
morphic image of Va�t�Tf �T � under a string isomorphism
 Hence� if T has nite top index�
we need to check the local�view condition for only a nite number of tree sets Tf 



 Languages recognizable by two�way tree automata

These results can be extended to two�way hedge automata in a straightforward manner�

We establish the following theorem


Theorem J The tree language of every nondeterministic two�way tree automaton is tree
regular�

Lemma ��� The tree languages of all nondeterministic two�way tree automata have �nite
top index�

Proof Let M � �Q� �� F � be a �NTA that recognizes the tree language T 
 We demon�
strate that T is of nite top index and that all its local views are string regular


For each tree t let Qt be the union of the two sets

fq � Q j c��	 c�� c� a starting conguration for M on t�

c� a halting conguration for M on t� c��root�t�� � qg

and

f�q�� q�� � Q�Q j c��	 c�� c� and c� halting congurations for M on t�

c��root�t�� � q�� c��root�t�� � q�g�

��



Clearly the set fQtjt is a tree is nite
 Furthermore� if Qt� � Qt� � then t� T t�
 Hence�
T has nite top index
 �

Lemma ��� The tree languages of all nondeterministic two�way tree automata have only
regular local views�

Proof Let t be a pointed tree� a be a symbol in � and Tf be a nite set of trees


We demonstrate that the local view Vt�a�Tf �T � of T with respect to t� a� and Tf � namely�
the string language

ft� � � � tn � T �
f jta�t� � � � tn� � Tg

is string regular
 The proof is in three steps


The rst step is to recognize that Vt�a�Tf is a nite union of nite intersections of the
following sets Xp and Xpq� p� q � Q�

Xp � ft� � � � tn � T �
f j

c��	 c��

c� is starting conguration of M on a�t� � � � tn��

c� is halting conguration of M on a�t� � � � tn��

c��root�a�t� � � � tn��� � p and

there is no other halting conguration in the computation c��	 c�g

and

Xp�q � ft� � � � tn � T �
f j

c��	 c��

c� and c� are halting conguration of M on a�t� � � � tn��

c��root�a�t� � � � tn��� � p�

c��root�a�t� � � � tn��� � q and

there is no other halting conguration in the computation c��	 c�g

Any computation on ta�t� � � � tn� from a starting conguration to a halting conguration
can be partitioned into those parts that concern only t and those parts that concern only
a�t� � � � tn�
 The parts that concern only a�t� � � � tn� form a computation from a starting
conguration to a halting conguration� followed by a number of computations from
halting congurations to halting congurations


Hence� the a�t� � � � tn��related parts of any accepting computation ofM on ta�t� � � � tn� rst
go from a starting conguration to a halting conguration� having M in some state p at
a�t� � � � tn��s root� and then from halting conguration to halting conguration� leadingM
from some state pi to some state qi on a�t� � � � tn��s root until M nally leaves a�t� � � � tn�

��



and does not return
 This implies that t� � � � tn is in Xp 
 Xp�q� 
 � � � 
Xprqr 
 The state
sequence p� p�� q� � � � pr� qr documents the behavior of M at the root of a�t� � � � tn� during
an accepting computation of M on the complete tree ta�t� � � � tn�


For any other sequence of trees t�� � � � t
�
m in Xp 
 Xp�q� 
 � � � 
 Xprqr � we can construct

an accepting computation of M on ta�t�� � � � t
�
m� by patching the a�t� � � � tn��related parts

of the original computation with computations on a�t�� � � � t
�
m� that have the same state�

behavior at the root as a�t� � � � tn� had
 Since t�� � � � t
�
m is in Xp 
 Xp�q� 
 � � � 
 Xprqr � we

can nd such patches


We conclude that the whole set Xp 
Xp�q� 
 � � � 
Xprqr is a subset of Vt�a�Tf 


Since there are only nitely many sets Xp and Xpq� the set Vt�a�Tf is a nite union of nite
intersections of these


The next two steps establish that Xp and Xpq are regular string languages


First� a string t� � � � tn is in Xp if and only if there are p�� � � � � pn in Q such that M �
when operating on ti beginning in a starting conguration� eventually reaches a halting
conguration c such that c�root�ti�� � pi and �a� p� � � �pn� p� u� � �
 Lemma �
� and the
regularity of the transition relation � imply that Xp is a regular string language


Second� let Xs
pq be the subset of Xpq in which the computation c��	 c� �compare the

denition of Xpq� makes just one computation step and let Xm
pq be the subset of Xpq in

which the computation c��	 c� makes more than one computation step
 Then� Xpq is
the �not necessarily disjoint� union of Xs

pq and Xm
pq
 We demonstrate that both subsets

are string regular


First� note that

Xs
pq � ft� � � � tn � T �

f j �a� p� q� s� � �g�

Hence� Xs
pq depends only on a and is either empty or T �

f 
 In both cases� Xs
pq is regu�

lar
 Second� t� � � � tn � Xm
pq if and only if there are p�� � � � � pn� q�� � � � � qn in Q such that

�a� p� � � � pn� p� d� is in � and M � when operating on ti� makes a computation from a halt�
ing conguration with root label pi to a halting conguration with root label qi and
�a� q� � � � qn� q� u� � �


Lemma �
� and the regularity of the transition relation � imply that Xm
pq is a regular

string language
 �

�� Hedge and tree regular expressions

This section is not even started� let alone finished� We will follow the ideas
of Pair and Quere �PQ���� Takahashi �Tak��� and of Murata �Mur���


��



�� Tree automata with endmarkers

These results can be extended to hedge automata in a straightforward manner�

We introduce two new symbols� � and �� that serve as endmarkers on trees
 Let �e be
the disjoint union of � and f���g


De�nition ���� A �e�labeled tree is endmarked if and only if

�
 Its root is labeled ��

�
 Its leaves are labeled ��

�
 Its root is unary�

�
 Its leaves have no siblings�

�
 Each node that is not the root and not a leaf is labeled with a symbol in �� and

�
 There is at least one ��labeled node


Obviously� there is a one�to�one correspondence between ��labeled trees and endmarked
trees
 If we add to the ��labeled tree t a new root labeled � and to each leaf a new child
labeled �� the result is the endmarked version te
 For each tree language T we dene the
endmarked version T e � ftejt � Tg


Theorem K If a tree language T over the extended alphabet �e is tree regular� then so
is its endmarked subset�

Proof Given a tree automaton M � �Q� �� F � that recognizes the tree language T over
the extended alphabet �e� we dene a tree automaton M � � �Q�� ��� F �� that recognizes
precisely the endmarked trees in T 


We construct �� from � as follows�

First� we remove all transitions on the symbols � and � and all transitions on leaves
from �� that is all transitions of the form �a� �� q� whose second component is the empty
string
 We will add transitions later for ��labeled leaves or for ��labeled nodes� the
latter being transitions into a state that prevents further up moves
 Therefore� any tree
recognizable by M � has ��labeled leaves and a ��labeled root� all other nodes are ��
labeled


Next� we now replace all transitions on ��labeled leaves� but we mark the target states so
that further transitions can ensure that leaves have no siblings and that parents of leaves
are ��labeled


Finally� for each transition of the form ��� q� q�� � �� where q� � F � we add a transition
��� q� qf�� where qf is a new and nal state in Q�
 Thus� we ensure that the roots of
M ��recognizable trees are unary and ��labeled


��



More precisely� let Q� be the disjoint union of Q� fqfg and Q� fqsg� and let F � � fqfg

Furthermore� dene �� to be

� 
 ���Q� �Q� n f�a� �� q�ja � ��� q � Qg

� f��� �� �q� qs��j��� �� q� � �g

� f�a� �q� qs�� q
��j�a� q� q�� � �g

� f��� q� qf�j��� q� q
�� � � and q� � Fg�

�

Theorem L Let T be a tree language over the alphabet �� Then� T is tree regular if and
only if T e is tree regular�

Proof First� let T be tree regular and the tree automaton M � �Q� �� F � recognize T 

We dene a tree automaton M � � �Q�� ��� F �� such that the endmarked trees that M �

recognizes are precisely the trees in T e


Let Q� be the disjoint union of Q� fqsg and F � � F 
 Furthermore� let

�� � � � f��� �� qs�g � f�a� qs� q�j�a� �� q� � �g

� f��� q� q�jq � Qg�

Second� let T e be tree regular and the tree automaton M � �Q� �� F � recognize T e
 We
dene a tree automaton M � � �Q�� ��� F �� such that M � recognizes T 


Let Q� be the disjoint union of Q� fqfg and F � � fqfg
 Furthermore� let

�� � � 
 ���Q� �Q�

� f�a� �� q�j��� �� q�� � � and �a� q�� q� � �g

� f�a� w� qf�j�a� w� q� � � and ��� q� q�� � � and q� � Fg�

�

�� Previous work

Work on tree automata and tree�regular languages can be divided into two categories� one
dealing with ranked and the other with unranked alphabets


The bulk of the literature belongs to the rst category
 G�ecseg and Steinby �GS���
have written a comprehensive book on tree automata and tree transducers over ranked
alphabets
 In this standard reference trees are algebraic expressions and tree automata
are algebras
 The Handbook of Formal Languages �RS	�� provides an updated and more
concise version by the same authors


��



Tree�regular languages over unranked alphabets seem to have been investigated rst by
Thatcher �Tha��a�
 Two of Thatcher�s papers �Tha��a� TW��� state a number of results
on tree automata that carry over directly from the theory of string automata
 Neither
of the two papers provides the proofs� though� which seem to be included in a technical
report �Tha��b�
 On the other hand� tree automata were in the air in the mid to late
�	���s� thus� other researchers had similar ideas
 In particular� Arbib and Give�on �Ao����
Brainerd �Bra�	�� Doner �Don���� and Pair and Quere �PQ���


The characterization of tree�regular languages as morphic images of tree�local sets essen�
tially goes back to Thatcher �Tha��a� and was rediscovered by �Tak���


Thatcher �Tha��a� indicates that results on semigroup automata� congruences� minimality�
and decomposition also carry through from string languages to tree languages
 This is�
in �	�	� cited as ongoing work� we have not been able to nd any publications of this
work� though


Thatcher �Tha��� provides a light introduction to the theory of tree automata and tree�
regular languages
 This work indicates how the theory is applicable to context�free lan�
guage problems� for example to structural equivalence
 It also addresses tree transfor�
mations
 The paper starts out with tree languages over unranked alphabets� but quickly
restricts itself to the ranked�alphabet case
 In addition� Thatcher�s survey also provides
a useful introduction to the area �Tha���


Murata �Mur	�� surveys denitions and results on tree�regular languages
 His terminology
goes back to Thatcher �Tha��a�
 Murata extends his survey to hedge languages since he
is interested in tree transformations and hedges often are the natural results of them

Murata covers tree automata� tree expressions� and regular tree grammars


Barrero �Bar	�� argues that in application areas such as pattern recognition and gram�
matical inference it is sensible to consider unranked alphabets
 He developes a theory of
tree languages over unranked alphabets
 Although familiar with Thatcher�s work� Barrero
demands that for tree automata the number of transitions be nite
 In this framework�
tree languages are not closed under complement
 Barrero also addresses tree grammars


Moriya �Mor	�� demonstrates that two�way tree automata are equipotent to one�way
tree automata
 The alphabet of tree labels is not ranked� however� like in Barrero�s
work �Bar	��� the transition relation is nite
 Moriya�s proof is based on crossing se�
quences� as is the corresponding proof for string automata
 Moriya also addresses one�way
and two�way pushdown tree automata� for this type of automata� two�way ones are more
powerfull


Takahashi �Tak��� establishes a uniform mathematical framework to study regular sets
of strings� trees� and hedges� covering both ranked and unranked alphabets
 She char�
acterizes string�� tree�� and hedge�regular sets as morphic images of local sets and as
congruence�characterizable sets
 Takahashi applies the theory of hedge�regular languages

��



to the structural study of context�free languages


�� Concluding remarks

This section is not even started� let alone finished�
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