CWI Tracts

Managing Editors

J.W. de Bakker (CWI, Amsterdam)
M. Hazewinkel (CWI, Amsterdam)
J.K. Lenstra (CWI, Amsterdam)

Editorial Board

W. Albers (Maastricht)
P.C. Baayen (Amsterdam)
R.T. Boute (Nijmegen)
E.M. de Jager (Amsterdam)
M.A. Kaashoek (Amsterdam)
M.S. Keane (Delft)
J.P.C. Kleijnen (Tilburg)
H. Kwakernaak (Enschede)
J. van Leeuwen (Utrecht)
P.W.H. Lemmens (Utrecht)
M. van der Put (Groningen)
M. Rem (Eindhoven)
A.H.G. Rinnooy Kan (Rotterdam)
M.N. Spijker (Leiden)

Contrum voor Whskunde en Informatica
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

The CWI is a research institute of the Stichting Mathematisch Centrum, which was founded on February 11, 1946, as a nonprofit institution aiming at the promotion of mathematics, computer science, and their applications. It is sponsored by the Dutch Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

CWI Tract

Regular variation, extensions and
 Tauberian theorems

J.L. Geluk, L. de Haan

Centrum voor Wiskunde en Informatica Centre for Mathematics and Computer Science

1980 Mathematics Subject Classification: 26A12, 40E05.
ISBN 9061963249
NUGI-code: 811
Copyright © 1987, Stichting Mathematisch Centrum, Amsterdam Printed in the Netherlands
page
Introduction 1
I. Regular variation and the class Π 2
I. 1 Regularly varying functions 3
I. 2 The class II 15
I. 3 The class Γ 34
I. 4 Beurling slowly varying functions 48
I. 5 Sequential versions of regular variation 54
I. 6 Discussion 57
II. Transforms of regularly varying functions 59
II. 1 The complementary function 59
II. 2 The Laplace transform 66
II. 3 General kernel transforms 92
II. 4 Discussion 96
III. O-regular variation and 0-versions of the class n 97
IIT.1 O-regular variation 97
III. 2 O-versions of the class II: asymptotically balanced functions 108
III. 3 Discussion 119
IV. Tauberian theorems for O-varying functions 120
IV. 1 The Laplace transform 120
IV. 2 General kernel transforms 125
IV. 3 Discussion 128
References 129

Introduction

I. Regular variation and the class II

One way to think about regular variation is as a derivative at infinity. For a real measurable function g write the differential quotient

$$
\begin{equation*}
\frac{g(y+h)-g(y)}{h} \tag{1.1}
\end{equation*}
$$

where $h \neq 0$. Now we do not take the $\operatorname{limit} h \rightarrow 0$ for fixed y as usual but take the limit $\mathrm{y} \rightarrow \infty$ for fixed h . If this 1 imit exists for all $\mathrm{h} \neq 0$, then it follows (theorem 1.2 below) that the limit does not depend on h and we can write (see prop. 1.7.3) $g(y)=g_{0}(y)+o(1)(y+\infty)$ where g_{0} is differentiable and

$$
\lim _{y \rightarrow \infty} g_{0}^{\prime}(y)=\lim _{y \rightarrow \infty} \frac{g(y+h)-g(y)}{h} .
$$

If the limit in (1.1) as $y \rightarrow \infty$ exists, the function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$defined by $f(t)=\exp g(\log t)$ satisfies

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{f(t x)}{f(t)}=x^{\alpha} \text { for al1 } x \in \mathbb{R}^{+} \tag{1.2}
\end{equation*}
$$

for some $\alpha \in \mathbb{R}$. Then f is called a regularly varying function,
In this chapter these functions are studied thoroughly. Moreover we study the more general class of functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ for which

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{f(t x)-b(t)}{a(t)} \text { exists for all } x \in \mathbb{R}^{+} \tag{1.3}
\end{equation*}
$$

where $a>0$ and b are suitable chosen auxiliary functions. The results for functions satisfying (1.3) are surprisingly similar to those for functions satisfying (1.2) 。

Finally a different variant of (1.2) is studied, namely non-decreasing functions $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$for which

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{f(t+x c(t))}{f(t)} \text { exists and is positive for all } x \in \mathbb{R}, \tag{1.4}
\end{equation*}
$$

where $c>0$ is a suitable auxiliary function. Here again analogous properties are obtained. We shall see that the functions satisfying (1.4) are essentially inverses of the functions satisfying (1.3)
The chapter closes with a discussion of regularly varying sequences.

I.1. Regularly varying functions

Definition 1.1
A Lebesgue measurable function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ which is eventually positive is regularly varying (at infinity) if

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{f(t x)}{f(t)}=x^{\alpha}(x>0) \text { for some } \alpha \in \mathbb{R} \tag{1.5}
\end{equation*}
$$

Notation: $f \in \mathrm{RV}_{\alpha}^{\infty}$ or $\mathrm{f} \in \mathrm{RV}_{\alpha}$.
We use the notation $f \in R V_{\alpha}^{0}$ if $g \in \operatorname{RV}_{-\alpha}^{\infty}$ where $g(t):=f(1 / t)$.
The number α in the above definition is called the index of regular variation. A function satisfying (1.5) with $\alpha=0$ is called slowly varying.

Examples

For $\alpha, \beta \in \mathbb{R}$ the functions $x^{\alpha}, x^{\alpha}(\log x)^{\beta}, x^{\alpha}(\log \log x)^{\beta}$ are elements of $R V_{\alpha}$. The functions $2+\sin \log \log x, \exp \left\{(\log x)^{\alpha}\right\}(0<\alpha<1), x^{-1} \log \Gamma(x)$, $\sum_{k<x} l / k,(\log t)^{\sin } \log \log t$ are slowly varying. The functions $2+\sin x$, $\exp [\log x], 2+\sin \log x, x \exp \sin \log x$ are not regularly varying.

Our next result shows that it is possible to weaken the conditions in definition 1.1 .

Theorem 1.2
Suppose $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ is measurable, eventually positive and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{f(t x)}{f(t)} \tag{1.6}
\end{equation*}
$$

exists, is finite and positive for all x in a set of positive Lebesgue measure, then $f \in R V_{\alpha}^{\infty}$ for some $\alpha \in \mathbb{R}$.

Proof

Define $F(t):=\log f\left(e^{t}\right)$. Then $\{\lim F(t+x)-F(t)\}$ exists for all x in a set K of positive Lebesgue measure. Define $\Phi: K \rightarrow \mathbb{R}$ by $\Phi(x):=\lim _{t \rightarrow \infty}\{F(t+x)-F(t)\}$. By Steinhaus' theorem (cf. Hewitt, Stromberg p. 143) the set $K-K:=\{x-y$; x, $y \in K$ contains a neighbourbood of zero. Since K is an additive subgroup of \mathbb{R}, we have $K=\mathbb{R}$ and thus $\Phi(x)$ is defined for a11 $x \in \mathbb{R}$ and

$$
\begin{equation*}
\Phi(x+y)=\Phi(x)+\Phi(y) \text { for all } x, y \in \mathbb{R} . \tag{1.7}
\end{equation*}
$$

It remains to solve the equation (1.7) for measurable Φ :
Consider the restriction of Φ to an interval $L \subset \mathbb{R}$. By Lusin's theorem (cf. Halmos p. 242) there exists a compact set $M \subset L$ with positive Lebesgue measure λM such that the restriction of Φ to M is continuous. Let $\varepsilon>0$ be arbitrary. Then there exists $\delta>0$ such that $\Phi(y)-\Phi(x) \in(-\varepsilon, \varepsilon)$ whenever $x, y \in M$ and $|x-y|<\delta$ (since the restriction of Φ to M is uniformly continuous) and also such that $M-M$ contains the interval ($-\delta, \delta$) (by Steinhaus' theorem).
For each $s \in(-\delta, \delta) \in M-M$ there exists $x_{0} \in M$ such that also $x_{0}+s \in M$. Then $\Phi(\mathrm{x}+\mathrm{s})-\Phi(\mathrm{x})=\Phi(\mathrm{s})=\Phi\left(\mathrm{x}_{0}+\mathrm{s}\right)-\Phi\left(\mathrm{x}_{0}\right) \in(-\varepsilon, \varepsilon)$ for all $\mathrm{x} \in \mathbb{R}$, hence Φ is uniformly continuous on \mathbb{R}.
Since $\Phi(n / m)=n \Phi(1 / m)=n \Phi(1) / m$ for $n, m \in \mathbb{Z}, m \neq 0$, we have by the continuity of $\Phi, \Phi(x)=\Phi(1) \mathrm{x}$ for $\mathrm{x} \in \mathbb{R}$. Now (1.5) follows.

Theorem 1.3 (uniform convergence theorem)
If $f \in \mathrm{RV}_{\alpha}^{\infty}$, then relation (1.5) holds uniformly for $x \in[a, b]$ with $0<a<b<\infty$ 。

Proof

Without loss of generality we may suppose $\alpha=0$ (if not, replace $f(t)$ by $\left.f(t) / t^{\alpha}\right)$.
We define the function F by $F(x):=\ln f\left(e^{x}\right)$. It is sufficient to deduce a contradiction from the following assumption:
Suppose there exist $\delta>0$ and sequences $\mathrm{t}_{\mathrm{n}} \rightarrow \infty, \mathrm{x}_{\mathrm{n}} \rightarrow 0(\mathrm{n} \rightarrow \infty)$ such that

$$
\left|F\left(t_{n}+x_{n}\right)-F\left(t_{n}\right)\right|>\delta \text { for } n=1,2, \ldots
$$

For an arbitrary finite interval $J \subset \mathbb{R}$ we consider the sets
and

$$
\mathrm{Y}_{1, \mathrm{n}}=\left\{\mathrm{y} \in J ;\left|F\left(\mathrm{t}_{\mathrm{n}}+\mathrm{y}\right)-F\left(\mathrm{t}_{\mathrm{n}}\right)\right|>\frac{\delta}{2}\right\}
$$

$$
Y_{2, n}=\left\{y \in J ;\left|F\left(t_{n}+x_{n}\right)-F\left(t_{n}+y\right)\right|>\frac{\delta}{2}\right\} .
$$

The above sets are measurable for each n and $Y_{1, n} \cup Y_{2, n}=J$, hence either $\lambda\left(Y_{1, n}\right) \geq \frac{1}{2} \lambda(J)$ or $\lambda\left(Y_{2, n}\right) \geq \frac{1}{2} \lambda(J)$ (or both) where λ denotes Lebesgue measure.

Now we define

$$
z_{n}=\left\{z ;\left|F\left(t_{n}+x_{n}\right)-F\left(t_{n}+x_{n}-z\right)\right|>\frac{\delta}{2}, x_{n}-z \in J\right\}=\left\{z ; x_{n}-z \in Y_{2, n}\right\}
$$

Then $\lambda\left(Z_{n}\right)=\lambda\left(Y_{2, n}\right)$ and thus we have either $\lambda\left(Y_{1, n}\right) \geq \frac{1}{2} \lambda(J)$ infinitely often or $\lambda\left(Z_{n}\right) \geq \frac{1}{2} \lambda(J)$ infinitely often (or both).
Since all the $Y_{1, n}$'s are subsets of a fixed finite interval we have
$\lambda\left(\lim _{n \rightarrow \infty} \sup Y_{1, n}\right)=\lim _{k \rightarrow \infty} \lambda\left(\underset{n=k}{u} Y_{1, n}\right) \geq \frac{1}{2} \lambda(J)$ or a similar statement for the $Z_{n}{ }^{\prime} s$ (or both). This implies the existence of a real number x_{0} contained in infinitely many $Y_{1, n}$ or infinitely many Z_{n}, which contradicts the assumption $\lim _{t \rightarrow \infty} F\left(t+x_{0}\right)-F(t)=0$.

Theorem 1.4 (Karamata's theorem)

Suppose $f \in \mathrm{RV}^{\infty}{ }^{\infty}$.
There exists $t_{0}>0$ such that $f(t)$ is positive and locally bounded for $t \geq t_{0}$. If $\alpha \geq-1$, then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{t f(t)}{\int_{t_{0}}^{t} f(s) d s}=a+1 \tag{1.8}
\end{equation*}
$$

If $\alpha<-1$, or $\alpha=-1$ and $\int_{0}^{\infty} f(s) d s<\infty$, then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{t f(t)}{\int_{t}^{\infty} f(s) d s}=-\alpha-1 \tag{1.9}
\end{equation*}
$$

Conversely: if (1.8) holds with $-1<\alpha<\infty$, then $f \in \operatorname{RV}_{\alpha}^{\infty}$; if (1.9) holds with $-\infty<\alpha<-1$, then $f \in \operatorname{RV}_{\alpha}^{\infty}$.

Proof

Suppose $f \in \mathrm{RV}_{\alpha}$.
By theorem 1.3 , there exist t_{0}, c such that $f(t x) / f(t)<c$ for $t \geq t_{0}$, $x \in[1,2]$. Then for $t \in\left[2^{n} t_{0}, 2^{n+1} t_{0}\right]$ we have

$$
\frac{f(t)}{f\left(t_{0}\right)}=\frac{f(t)}{f\left(2^{-1} t\right)} \cdot \frac{f\left(2^{-1} t\right)}{f\left(2^{-2} t\right)} \cdots \frac{f\left(2^{-n} t\right)}{f\left(t_{0}\right)}<c^{n+1}
$$

Hence $f(t)$ is locally bounded for $t \geq t_{0}$ and $\int_{t_{0}}^{t} f(s) d s<\infty$ for $t \geq t_{0}$.

In order to prove (1.8), we first show $\int_{t_{0}}^{\infty} f(s)$ ds $=\infty$ for $\alpha>-1$. Since $f(2 s) \geq 2^{-1} f(s)$ for s sufficiently large, we have for $n \geq n_{0}$

$$
\begin{aligned}
& \int_{2^{n}}^{2^{n+1}} f(s) d s=2 \int_{2^{n-1}}^{2^{n}} f(2 s) d s \geq \int_{2^{n-1}}^{2^{n}} f(s) d s \text {. Hence } \\
& \int_{n_{0}}^{\infty} f(s) d s=\sum_{n=n_{0}}^{\infty} \int_{2^{n}}^{2^{n+1}} f(s) d s \geq \sum_{n=n_{0}}^{\infty} \int_{2^{n}}^{n_{0}} f(s) d s=\infty .
\end{aligned}
$$

Next we prove $F(t):=\int_{t_{0}}^{t} f(s) d s \in \mathrm{RV}_{\alpha+1}$ for $\alpha>-1$. Fix $x>0$. For arbitrary $\varepsilon>0$ there exists $t_{1}=t_{1}(\varepsilon)$ such that $f(x t)\left\langle(1+\varepsilon) x^{\alpha} f(t)\right.$ for $t>t_{1}$. Since $\lim F(t)=\infty$,

$$
\frac{F(t x)}{F(t)}=\frac{\int_{t_{0}}^{t x} f(s) d s}{\int_{t_{0}}^{t} f(s) d s} \int_{t_{1}}^{\int_{1}^{t x} f(s) d s} \frac{x(s) d s}{\int_{t_{1}}^{t} f(x s) d s} \frac{\int_{t_{1}}^{t} f(s) d s}{\int_{t_{1}}^{t} f(s)}
$$

and hence

$$
\begin{equation*}
F(t x) / F(t)<(1+2 \varepsilon) x^{\alpha+1} \tag{1.10}
\end{equation*}
$$

for t sufficiently large. A similar lower inequality is easily derived and we obtain $F \in \mathrm{RV}_{\alpha+1}$ for $\alpha>-1$.
In case $\alpha=-1$ and $F(t) \rightarrow \infty$ the same proof applies. If $\alpha=-1$ and $F(t)$ has a finite limit, obviously $F \in \mathbb{R V}_{0}$.

Now

$$
\begin{equation*}
\frac{F(t x)-F(t)}{t f(t)}=\int_{1}^{x} \frac{f(t u)}{f(t)} d u \rightarrow \frac{x^{\alpha+1}-1}{\alpha+1}(t+\infty) \tag{1.11}
\end{equation*}
$$

by the uniform convergence theorem (theorem 1.3). Since $F \in R V_{\alpha+1}$, (1.8) follows. For the proof of (1.9) we first show the finiteness of the function G defined by

$$
G(t):=\int_{t}^{\infty} f(s) d s
$$

Since, in case $\alpha<-1$, there exists $\delta>0$ such that $f(2 s) \leq 2^{-1-\delta_{f}}(s)$ for s sufficiently large, we have for n_{1} sufficiently large

$$
\int_{2^{n}}^{\infty} f(s) d s=\sum_{n=n_{1}}^{\infty} \int_{2^{n}}^{2^{n+1}} f(s) d s \leq \sum_{n=n_{1}}^{\infty} 2^{-\delta\left(n-n_{1}\right)} \int_{2^{n_{1}}}^{n_{1}+1} f(s) d s<\infty
$$

The rest of the proof is analogous.

Conversely suppose (1.8) holds. Define

$$
\begin{equation*}
b(t):=t f(t) / F(t) \tag{1.12}
\end{equation*}
$$

Without loss of generality we suppose $f(t)>0(t>0)$.
Integrating both sides of $b(t) / t=f(t) / F(t)$ we find for some real c_{1} and all $x>0$ (note that $\log F$ is indeed an absolutely continuous function)

$$
\begin{equation*}
\int_{1}^{x} \frac{b(t)}{t} d t=\log F(x)+c_{1} \tag{1.13}
\end{equation*}
$$

(since the derivatives of the two parts exist and are equal a.e.). Using the definition of b again we find from (1.13)

$$
\begin{equation*}
f(x)=\operatorname{cb}(x) \exp \left\{\int_{1}^{x} \frac{b(t)-1}{t} d t\right\} \text { for a11 } x>0 \tag{1.14}
\end{equation*}
$$

with $c=e^{-c} 1>0$, hence for all $x, t>0$

$$
\frac{f(t x)}{f(t)}=\frac{b(t x)}{b(t)} \exp \left\{\int_{1}^{x} \frac{b(t s)-1}{s} d s\right\}
$$

Now for arbitrary $\varepsilon>0$ there is a t_{0} such that $|b(t s)-\alpha-1|<\varepsilon$ for $t \geq t_{0}$ and $s \geq \min (1, x)$. Hence the function f satisfies (1.5).
The last statement of the theorem ((1.9) implies $f \in R V_{\alpha}^{\infty}$) can be proved in a similar way.

Theorem 1.5 (representation theorem)
If $f \in R V_{\alpha}^{\infty}$, there exist measurable functions $a: \mathbb{R}^{+} \rightarrow \mathbb{R}$ and $c: \mathbb{R}^{+} \rightarrow \mathbb{R}$ with

$$
\begin{equation*}
\lim _{t \rightarrow \infty} c(t)=c_{0} \quad\left(0<c_{0}<\infty\right) \text { and } \lim _{t \rightarrow \infty} a(t)=\alpha \tag{1.15}
\end{equation*}
$$

and $t_{0} \in \mathbb{R}^{+}$such that for $t>t_{0}$

$$
\begin{equation*}
f(t)=c(t) \exp \left\{\int_{t_{0}}^{t} \frac{a(s)}{s} d s\right\} \tag{1.16}
\end{equation*}
$$

Conversely if (1.16) holds with a and c satisfying (1.15), then $f \in \operatorname{RV}_{\alpha}^{\infty}$.

Proof

Suppose $f \in \mathrm{RV}_{\alpha}^{\infty}$.
The function $t^{-\alpha} f(t)$ is slowly varying and hence has a representation as in (1.16) by (1.14). Then f has such a representation with $a(s)$ replaced by $a(s)$ $+\alpha$ and $c(t)$ replaced by $t_{0}^{\alpha} c(t)$. Now the result follows. Conversely one verifies directly that (1.5) follows from (1.16).

Remarks

1) In formula (1.16) we may take $t_{0} \in[0, \infty$) arbitrarily by changing the functions $c(t)$ and $a(t)$ suitably on the interval [$0, t_{0}$].
2) The functions $a(t)$ and $c(t)$ (given (1.16)) are not uniquely determined. It can easily be seen that it is possible to choose $a(t)$ continuous: define

$$
f_{0}(t):=\exp \left\{\int_{t_{0}}^{t} a(v) d v / v\right\} \text { and } b_{0}(t):=t f_{0}(t) / \int_{t_{0}}^{t} f_{0}(s) d s .
$$

Since $f_{0} \in R V_{\alpha}$ we get (1.14) with f and b. replaced by f_{0} and b_{0} respectively, i.e.

$$
f(x)=c(x) c b_{0}(x) \exp \left[\int_{1}^{x}\left(b_{0}(t)-1\right) d t / t\right]
$$

for all $\mathrm{x}>0$ with $\mathrm{b}_{0}(\mathrm{t})-1$ continuous.
It is possible to put all the undesirable behaviour of the function f into the function $c(t)$. We will prove (cor. 2.16) that it is possible to construct a representation with a $\in \mathrm{C}^{\infty}$.

We are going to list of number of consequences of the above theorems.

We need the following definition.

Definition 1.6

Suppose $f:\left(t_{0}, \infty\right) \rightarrow \mathbb{R}$ for some $t_{0} \geq-\infty$ is bounded on intervals of the form (t_{0}, a) with $a<\infty$ and $\lim _{t \rightarrow \infty} f(t)=\infty$.
Since $\lim f(t)=\infty$, the set $\{y ; f(y) \geq x\}$ is non-empty for all $x \in \mathbb{R}$. $t \rightarrow \infty$
Hence $-\infty \leq \inf \{y ; f(y) \geq x\}<\infty$ for $x \in \mathbb{R}$. Note that this infimum is nondecreasing in x. Since f is bounded on intervals of the form (t_{0}, a),
$\lim \inf \{y ; f(y) \geq x\}=\infty$.
$x+\infty$
Hence there exists $x_{0} \in \mathbb{R}$ such that $\inf \{y ; f(y) \geq x\}>-\infty$ for all $x \geq x_{0}$. The generalized inverse function $f^{+}:\left(x_{0}, \infty\right) \rightarrow \mathbb{R}$ is defined by

$$
f^{+}(x):=\inf \{y ; f(y) \geq x\}
$$

Proposition 1.7 (properties of RV functions)

1. If $f \in \operatorname{RV}_{\alpha}^{\infty}$ then $\log f(t) / \log t \rightarrow \alpha(t+\infty)$.

This implies $\lim _{t \rightarrow \infty} f(t)=\left\{\begin{array}{lll}0 & \text { if } \alpha<0 \\ \infty & \text { if } \alpha>0 .\end{array}\right.$
2. If $f_{1} \in R V_{\alpha_{1}}^{\infty}, f_{2} \in R V_{\alpha_{2}}^{\infty}$, then $f_{1}+f_{2} \in R V_{\max \left(\alpha_{1}, \alpha_{2}\right)}^{\infty}$.

If moreover $\lim _{t \rightarrow \infty} f_{2}(t)=\infty$, then the composition $f_{1}{ }^{\circ} f_{2} \in \operatorname{RV}_{\alpha_{1} \alpha_{2}}$.
3. If $f \in \operatorname{RV}_{\alpha}^{\infty}$ with $\alpha>0(\alpha<0)$ then f is asymptotically equivalent to a strictly increasing (decreasing) differentiable function g with derivative $g^{\prime} \in R V_{\alpha-1}$ if $\alpha>0$ and $-g^{\prime} \in R V_{\alpha-1}$ if $\alpha<0$. As a consequence of this: If $f \in R V_{\alpha}(\alpha>0)$ is bounded on finite intervals of \mathbb{R}^{+}, then

$$
\begin{equation*}
\sup _{0<x \leq t} f(x) \sim f(t)(t \rightarrow \infty) . \tag{1.19}
\end{equation*}
$$

If $f \in R V_{\alpha}(\alpha<0)$, then $\inf _{x>t} f(x) \sim f(t)(t \rightarrow \infty)$.
4. If $f \in R V_{\alpha}^{\infty}$ is integrable on finite intervals of \mathbb{R}^{+}and $\alpha \geq-1$, then $\int_{0}^{t} f(s) d s$ is regularly varying with exponent $\alpha+1$. If $f \in R V_{\alpha}^{\infty}$ and $\alpha<-1$, then $\int_{t}^{\infty} f(s)$ ds exists for t sufficiently large and is regularly varying with exponent $\alpha+1$. The same is true for $\alpha=-1$ provided $\int_{1}^{\infty} f(s) d s<\infty$.
5. Suppose $\mathrm{f} \in \mathrm{RV}_{\alpha}^{\infty}$. If $\delta_{1}, \delta_{2}>0$ are arbitrary, there exists $\mathrm{t}_{0}=\mathrm{t}_{0}\left(\delta_{1}, \delta_{2}\right)$ such that for $t \geq t_{o}, x \geq 1$

$$
\begin{equation*}
\left(1-\delta_{1}\right) x^{\alpha-\delta_{2}}<\frac{f(t x)}{f(t)}<\left(1+\delta_{1}\right) x^{\alpha+\delta_{2}} \tag{1.20}
\end{equation*}
$$

Note that conversely if f satisfies the above property, then $f \in R V_{\alpha}^{\infty}$.
6. Suppose $f \in \mathrm{RV}_{\alpha}^{\infty}$ is bounded on finite intervals of \mathbb{R}^{+}and $\alpha>0$. For $\xi>0$ arbitrary there exist $c>0$ and t_{o} such that for $t \geq t_{o}$ and $0<x \leq \xi$

$$
\begin{equation*}
\frac{f(t x)}{f(t)} \leq c \tag{1.21}
\end{equation*}
$$

7. If $f \in R V_{\alpha}^{\infty}$, $\alpha \leq 0$ is bounded on finite intervals of \mathbb{R}^{+}and $\delta, \xi>0$ arbitrary, there exist $c>0$ and t_{0} such that for $t \geq t_{o}$ and $0<x \leq \xi$

$$
\begin{equation*}
\frac{f(t x)}{f(t)}<c x^{\alpha-\delta} \tag{1.22}
\end{equation*}
$$

8. If $f(t)=\exp \left\{\int_{0}^{t} a(s) d s / s\right\}$
with a continuous $a(s) \rightarrow \alpha>0(s \rightarrow \infty)$, then $f^{+} \in R V_{1 / \alpha}$ where f^{+}is the inverse function of f.
9. Suppose $f \in \operatorname{RV}_{\alpha}^{\infty}, \alpha>0$, is bounded on finite intervals of \mathbb{R}^{+}. Then $f^{+} \in \operatorname{RV}_{1 / \alpha}^{\infty}$. (Formally f^{+}is only defined on a neighbourhood of infinity; we can extend its domain of definition by taking f^{+}zero elsewhere).

-11-

In particular, if $f \in \mathrm{RV}_{\alpha}, \alpha>0$ and f is increasing, the inverse function f^{+}is in $\mathrm{RV}_{1 / a}$.
10. If $f \in \mathrm{RV}_{\alpha}^{\infty}, \alpha>0$, there exists an asymptotically unique function h such that $f(h(x)) \sim h(f(x)) \sim x(x+\infty)$. Moreover $h \sim f^{+}$if f is bounded on finite intervals of \mathbb{R}^{+}.
11. If $f \in \operatorname{RV}_{\alpha}^{\infty}(\alpha \geq 0)$ and $f(t)=f\left(t_{0}\right)+\int_{t_{0}}^{t} \psi(s) d s$ for $t \geq t_{0}$ with ψ monotone,
then

$$
\lim _{t \rightarrow \infty} \frac{t \psi(t)}{f(t)}=\alpha .
$$

Hence in case $\alpha>0$ we have $\psi \in R V_{\alpha-1}^{\infty}$. Moreover if $f \in \operatorname{RV}_{\alpha}^{\infty}(\alpha \leq 0)$ and $f(t)=\int_{t}^{\infty} \psi(s) d s<\infty$ with ψ nonincreasing, then $t \psi(t) / f(t) \rightarrow-\alpha(t \rightarrow \infty)$. Hence in case $\alpha<0$ we have $\psi \in \operatorname{RV}_{\alpha-1}^{\infty}$.
12. Any $f \in R V_{\alpha}^{\infty}$ with $\alpha+1 \in \mathbb{N}$ is asymptotic to a function f_{1} with the property that the absolute values of all its derivatives are regularly varying.

Proof

ad $1,2,3,4,5$. Properties 1,3 and 5 follow immediately from the representation theorem (thm. 1.5). In order to prove regular variation of $\left|f^{\prime}\right|$ in property 3 one also needs remark 2 following thm. 1.5. Properties 2 and 4 are easy consequences of the uniform convergence theorem (thm, 1.3) and theorem 1.4 respectively.
ad 6. Take $\xi>0$. By property 5 there exists $t_{o}{ }^{\prime}$ such that if $t \geq t_{0}{ }^{\prime}$

$$
\frac{f(t x)}{f(t)}<2 x^{\alpha+1} \quad \text { for } x \geq 1
$$

Also, by property 3 , if $t \geq t_{o}{ }^{\prime \prime}$

$$
\frac{f(t x)}{f(t)} \leq \frac{\sup _{u \leq t} f(u)}{f(t)}<2 \text { for } 0<x<1
$$

Hence, if $t>t_{0}:=\max \left(t_{0}{ }^{\prime}, t_{o}{ }^{\prime \prime}\right)$,

$$
\frac{f(t x)}{f(t)}<\max \left(2,2 \xi^{\alpha+1}\right) \quad \text { for } 0<x \leq \xi_{0}
$$

ad 7. Apply property 6 above to the function $t^{-\alpha+\delta} f(t)$.
ad 8. Since $f(t) \rightarrow \infty(t \rightarrow \infty)$ and f is eventually strictly increasing and differentiable, there exists - for x sufficiently large - a unique differentiable inverse function $g \equiv f^{+}$and

$$
\begin{equation*}
f(g(x))=g(f(x))=x \text { for } x>x_{0} \tag{1.24}
\end{equation*}
$$

Differentiating the second equality in (1.24) we get using (1.23)

$$
\begin{equation*}
\frac{g^{\prime}(f(x)) f(x)}{g(f(x))}=\frac{1}{a(x)} \tag{1.25}
\end{equation*}
$$

Since f is continuous and $f(x) \rightarrow \infty(x \rightarrow \infty)$, (1.25) implies

$$
\operatorname{tg}^{\prime}(t) / g(t) \rightarrow \alpha^{-1}(t+\infty)
$$

Application of theorem 1.4 gives $g^{\prime} \in R V_{-1+1 / \alpha}$, hence $g=f^{\star} \in R V_{1 / \alpha}^{\infty}$ by property 4 above.
ad 9. Suppose $f \in \mathrm{RV}_{\alpha}^{\infty}, \alpha>0$. By theorem 1.5 and the remarks thereafter f has the representation (1.16) with $t_{0}=1$ and a continuous. For arbitrary $\varepsilon>0$ there exists $\mathrm{x}_{0}=\mathrm{x}_{0}(\varepsilon)$ such that for $\mathrm{x}>\mathrm{x}_{0}$

$$
\begin{equation*}
\left(c_{0}-\varepsilon\right) g(x) \leq f(x) \leq\left(c_{0}+\varepsilon\right) g(x) \tag{1.26}
\end{equation*}
$$

where $g(x)=\exp \left\{\int_{1}^{x} a(s) d s / s\right\}$.
The inequality (1.26) implies

$$
\begin{equation*}
g^{+}\left(x /\left(c_{0}-\varepsilon\right)\right) \geq f^{+}(x) \geq g^{+}\left(x /\left(c_{0}+\varepsilon\right)\right) \tag{1,27}
\end{equation*}
$$

for x sufficiently large. By property 8 above we have $g^{+} \in \operatorname{RV}_{1 / \alpha}^{\infty}$ Hence $g^{+}\left(x /\left(c_{0} \pm \varepsilon\right)\right) \sim\left(c_{0} \pm \varepsilon\right)^{-1 / \alpha^{+}}(x)$.
Since $\varepsilon>0$ is arbitrary, (1.27) implies $\mathrm{f}^{+} \sim \mathrm{g}^{+} \in \mathrm{RV}_{1 / \alpha^{\infty}}^{\infty}$
ad 10. Without loss of generality we may and do suppose f bounded on finite intervals of \mathbb{R}^{+}.
Then the proof of property 9 gives the existence of functions g and g^{+} such that $f(x) \sim g(x), f^{+}(x) \sim g^{+}(x)(x \rightarrow \infty), g\left(g^{+}(x)\right)=g^{+}(g(x))=x$ for x sufficiently large.

This implies $x=g^{+}(g(x)) \sim g^{+}(f(x)) \sim f^{+}(f(x))(x \rightarrow \infty)$, the first asymptotic equivalence follows from $f(x) \sim g(x)(x+\infty), g^{+} \in R V_{1 / \alpha}^{\infty}$ and the uniform convergence theorem.
The statement $f\left(f^{+}(x)\right) \sim x(x \rightarrow \infty)$ follows similarly.
Suppose now

$$
f\left(h_{i}(x)\right) \sim h_{i}(f(x)) \sim x(x \rightarrow \infty) \text { for } i=1,2
$$

Now $\lim _{n \rightarrow \infty} f\left(h_{1}\left(x_{n}\right)\right) / f\left(h_{2}\left(x_{n}\right)\right)=\lim _{n \rightarrow \infty}\left\{h_{1}\left(x_{n}\right) / h_{2}\left(x_{n}\right)\right\}^{\alpha}$ for any sequence $x_{n} \rightarrow \infty$ by the uniform convergence theorem, hence $h_{1}(x) \sim h_{2}(x)(x \rightarrow \infty)$.
ad 11. Suppose first ψ is non-decreasing and $f(t)=f\left(t_{0}\right)+\int_{t_{0}}^{t} \psi(s)$ ds for
$t \geq t_{0}$. Then for $a>1$ and $t \geq t_{0}$ we have

$$
\frac{t(a-1) \psi(t)}{f(t)} \leq \int_{1}^{a} \frac{t \psi(t v) d v}{f(t)}=\frac{f(t a)-f(t)}{f(t)} .
$$

Since $f \in R V_{\alpha}^{\infty}$ we find $\overline{\lim _{t \rightarrow \infty}} \frac{t \psi(t)}{f(t)} \leq \frac{a^{\alpha}-1}{a-1}$ for all $a>1$. Letting $a \rightarrow 1$ we get
$\overline{\lim }_{t \rightarrow \infty} \frac{t \psi(t)}{f(t)} \leq \alpha$.
Similar inequalities for $0<a<1$ lead to $\frac{\lim }{t \rightarrow \infty} \frac{t(t)}{f(t)} \geq \alpha$.
The cases ψ non-increasing and $\alpha \leq 0$ can be proved similarly.
ad 12. This property will be proved in chapter 2 (see cor. 2.12).

Remarks

1. There is no analogue of property 3 in case $\alpha=0$; even if lim $f(t)=\infty$ with $\mathrm{f} \in \mathrm{RV}_{0}^{\infty}$, then f is not necessarily asymptotic to a non-decreasing function as the following example (due to Karamata) shows.
Define $f(x):=\exp \left(\int_{0} \varepsilon(s) d s / s\right)$, where

$$
\varepsilon(s)=\left\{\begin{array}{cl}
0 & \text { for } 0 \leq s \leq 1 \\
a_{n} & \text { for }(2 n-1)!<s \leq(2 n)!, n=1,2,3, \ldots \\
-a_{n} / 2 & \text { for }(2 n)!<s \leq(2 n+1)!, n=1,2,3, \ldots
\end{array}\right.
$$

where the sequence a_{n} is such that $a_{n} \rightarrow 0(n \rightarrow \infty)$ and $a_{n} \log n \rightarrow \infty(n \rightarrow \infty)$. Then

$$
\begin{aligned}
& \sup _{<x \leq(2 n+1)!} f(x) / f((2 n+1)!)=f((2 n)!) / f((2 n+1)!) \\
& =\exp \left\{-\int_{(2 n)!}^{(2 n+1)!} \varepsilon(s) d s / s\right\}=\exp \left\{+\frac{a}{2} \log (2 n+1)\right\} \rightarrow \infty(n \rightarrow \infty) .
\end{aligned}
$$

Hence (1.13) does not hold.
2. Using the representation theorem for regularly varying functions, it is possible to show that if f is locally bounded and $f \in R V_{0}^{\infty}$, then the function $\sup f(x)$ is slowly varying.
$0<x \leq t$
3. Note that $\int_{0}^{t} f(s) d s \in R V_{\alpha+1}$ with $\alpha>-1$ does not imply $f \in R V_{\alpha}$. Example: $f(t)=\exp [\log t]$.
4. Note that property 12 strengthens property 3.

The following result is a generalization of theorem 1.4 (the kernel function k below is constant in theorem 1.4). A converse statement (thm. 2.34) will be given in chapter 2.

Theorem 1.8
Let $f \in R V_{\alpha}^{\infty}$ and suppose f is (Lebesgue) integrable on finite intervals of \mathbb{R}^{+}.
(i) If $\alpha>-1$ and the function $k: \mathbb{R}^{+} \rightarrow \mathbb{R}$ is bounded on $(0,1)$, then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{0}^{1} k(s) f(t s) d s / f(t)=\int_{0}^{1} k(s) s{ }^{\alpha} d s \tag{1.28}
\end{equation*}
$$

(ij) If $t^{+\varepsilon+\alpha} k(t)$ is integrable on $(1, \infty)$ for some $\varepsilon>0$, then $\int_{1}^{\infty} k(s) f(t s) d s<\infty$, for $t>0$ and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{1}^{\infty} k(s) f(t s) d s / f(t)=\int_{1}^{\infty} k(s) s^{\alpha} d s . \tag{1.29}
\end{equation*}
$$

Proof
(i) Note that for $0<\varepsilon<\alpha+1$ the function $t^{\alpha-\varepsilon} k(t)$ is integrable on $(0,1)$. Since there exists $c>1$ and $\varepsilon>0$ such that $f(t x) / f(t) \leq c x^{\alpha-\varepsilon}$ for $\mathrm{tx} \geq \mathrm{t}_{\mathrm{o}}, 0<\mathrm{x} \leq 1$ by Prop. 1.7 .5 , we can apply Lebesgue's dominated convergence theorem to obtain

$$
\int_{t_{0} / t}^{1} k(s) \frac{f(t s)}{f(t)} d s \rightarrow \int_{0}^{1} k(s) s^{\alpha} d s, t \rightarrow \infty .
$$

Furthermore

$$
\left|\int_{0}^{t_{0} / t} k(s) \frac{f(t s)}{f(t)} d s\right|=(t f(t))^{-1} \int_{0}^{t}|k(s / t) f(s)| d s+0(t \rightarrow \infty)
$$

since k is bounded and $\operatorname{tf}(t) \rightarrow \infty(t \rightarrow \infty)$.
(ij) The second statement is proved in a similar way.

Remark

N.G. de Bruijn (1959) noted that for any slowly varying function L there exists an asymptotically unique slowly varying function L^{*} called the conjugate slowly varying function satisfying $L(x) L^{*}(x L(x)) \rightarrow 1$,
$L^{*}(x) L\left(x L^{*}(x)\right) \rightarrow 1(x \rightarrow \infty)$.
Note that one can obtain L^{*} as follows: define $h(x):=x L(x)$. Then $L^{*}(x) \sim$ $x^{-1} h^{+}(x)(x \rightarrow \infty)$. In special cases one has $L^{*}(x) \sim 1 / L(x)(x \rightarrow \infty)$.
Example: $L(x) \sim(\log x)^{\alpha}(\log \log x)^{\beta}(x \rightarrow \infty), \alpha>0, \beta \in \mathbb{R}$, i.e. if $h(x) \sim$ $x(\log x)^{\alpha}(\log \log x)^{\beta},(x+\infty)$, then $h^{+}(x) \sim x(\log x)^{-\alpha}(\log \log x)^{-\beta}, x \rightarrow \infty$.
If we replace x by x^{γ} and take $\beta=0$, we find $f(x) \sim x^{\gamma}(\log x)^{\delta}, \gamma>0, \delta \in \mathbb{R}$ implies $f^{+}(x) \sim \gamma^{\delta / \gamma} x^{1 / \gamma}(\log x)^{-\delta / \gamma}(x+\infty)$.

I.2. The class Π

By way of introduction for the class II which is a generalization of the class RV we formulate the RV property somewhat differently. A measurable function
$\mathrm{f}: \mathbb{R}^{+}+\mathbb{R}$ is in $R V$ if there exists a positive function a such that for all $x>0$ the limit

$$
\lim _{t \rightarrow \infty} \frac{f(t x)}{a(t)}
$$

exists and is positive.
An obvious generalization is the following: Suppose $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ is measurable and there exist real functions $a>0$ and b such that for all $x>0$ the limit

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{f(t x)-b(t)}{a(t)} \tag{1.30}
\end{equation*}
$$

exists and the limit function is not constant (this is to avoid trivialities). First note that (1.30) is equivalent to:

$$
\begin{equation*}
\psi(x):=\lim _{t \rightarrow \infty} \frac{f(t x)-f(t)}{a(t)} \tag{1.31}
\end{equation*}
$$

exists for all $x>0$ with ψ not constant.
Next we identify the class of possible limit functions ψ.

Theorem 1.9

If $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ is measurable, a is positive. If (1.31) holds with ψ not constant, then

$$
\begin{equation*}
\psi(x)=c \cdot \frac{x^{\rho}-1}{\rho}(x>0) \tag{1.32}
\end{equation*}
$$

for some $\rho \in \mathbb{R}, c \neq 0$ (for $\rho=0$ read $\psi(x)=c \log x$). Moreover (1.31) holds with a function a which is measurable and in RV_{ρ}.

Proof
Since ψ is not constant, there exists $x_{0}>0$ such that $\psi\left(x_{0}\right) \neq 0$. From (1.31) it follows that we can choose $a(t)=\left\{f\left(x_{0} t\right)-f(t)\right\} / \psi\left(x_{0}\right)$. Hence without loss of generality we may assume a to be measurable. For $y>0$ arbitrary we have

$$
\begin{aligned}
& \frac{a(t y)}{a(t)}=\left\{\frac{f\left(t x_{0} y\right)-f(t)}{a(t)}-\frac{f(t y)-f(t)}{a(t)}\right\} / \frac{f\left(t x_{0} y\right)-f(t y)}{a(t y)} \rightarrow \\
& \rightarrow \frac{\psi\left(x_{0} y\right)-\psi(y)}{\psi\left(x_{0}\right)}(t+\infty) .
\end{aligned}
$$

Hence $A(y):=\lim _{t \rightarrow \infty} a(t y) / a(t)$ exists (and is non-negative) for all $y>0$.
Since $\frac{a(t x y)}{a(t)}=\frac{a(t x y)}{a(t x)} \frac{a(t x)}{a(t)}$ we have

$$
\begin{equation*}
A(x y)=A(x) \cdot A(y) \text { for all } x, y>0 \tag{1.33}
\end{equation*}
$$

Since a is measurable the function A is measurable. Moreover the only measurable solutions of Cauchy's functional equation (1.33) are $A(y)=y^{\rho}$ for some $\rho \in \mathbb{R}$ (see the proof of theorem 1.2) and $A(y)=0$ for $y>0$. However if $A(y)=0$ for $y>0$, then since $A(y) \psi(x)=\psi(x y)-\psi(y)$ for all x, $y>0$, we have ψ is constant contrary to our assumption. Hence a $\in R V_{\rho}$ for some $\rho \in \mathbb{R}$. As a consequence we have

$$
\begin{equation*}
y^{\rho} \psi(x)=\psi(x y)-\psi(y) \text { for all } x, y>0 \tag{1.34}
\end{equation*}
$$

If $\rho=0$ we have Cauchy's functional equation again and $\psi(y)=c \log x$ for some $c \neq 0, x>0$.
Next suppose $\rho \neq 0$. Interchanging x and y in (1.34) and subtracting the resulting relations we get

$$
\psi(x)\left(1-y^{\rho}\right)=\psi(y)\left(1-x^{\rho}\right) \text { for } x, y>0
$$

Hence $\psi(x) /\left(1-x^{\rho}\right)$ is constant, i.e. $\psi(x)=c \cdot \frac{1-x^{\rho}}{\rho}$ for $x>0$, with $c \neq 0$.

The following theorem states that for $\rho \neq 0$ relation (1.31) defines classes of functions we have met before. Note that it is sufficient to consider (1.32) with $c>0$ since replacing f by $-f$ in (1.31) changes the sign of c.

Theorem 1.10

Suppose the assumptions of theorem 1.9 are satisfied with $\rho \neq 0$ and $c>0$. If $\rho>0$ then $f \in \operatorname{RV}_{\rho}^{\infty}$. If $\rho<0$ then $f(\infty):=\lim _{x \rightarrow \infty} f(x)$ exists and $f(\infty)-f(x) \in$ $R V_{\rho}^{\infty}$.

Proof
The proofs of theorem 1.14 and corollary 1.16 below can easily be adapted to show that if $\rho>0(\rho<0)$ there is a non-decreasing (non-increasing) function
g such that

$$
\begin{equation*}
f(t)-g(t)=o(a(t))(t+\infty) \tag{1.35}
\end{equation*}
$$

Since we may assume $a \in \mathrm{RV}_{\rho}$ (thm. 1.9) it follows that we also have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{g(t x)-g(t)}{a(t)}=c \frac{x^{\rho}-1}{\rho} \tag{1.36}
\end{equation*}
$$

It will become apparent that it is sufficient to prove the theorem for g. Take $y>1$ arbitrarily and define $t_{1}=1$ and $t_{n+1}=t_{n} y$ for $n=1,2, \ldots$ We have by (1.36)

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{g\left(t_{n+2}\right)-g\left(t_{n+1}\right)}{g\left(t_{n+1}\right)-g\left(t_{n}\right)}=y^{\rho} \tag{1.37}
\end{equation*}
$$

Suppose $\rho>0$. Then (1.37) immediately implies $g\left(t_{n}\right) \rightarrow \infty(n+\infty)$.
Further for any $\varepsilon>0$ there exists n_{0} such that for any $n>n_{0}$

$$
\begin{aligned}
& g\left(t_{n+2}\right)-g\left(t_{n_{0}+1}\right)=\sum_{k=n_{0}}^{n}\left\{g\left(t_{k+2}\right)-g\left(t_{k+1}\right)\right\}< \\
& <y^{\rho}(1+\varepsilon) \sum_{k=n_{0}}^{n}\left\{g\left(t_{k+1}\right)-g\left(t_{k}\right)\right\}=y^{\rho}(1+\varepsilon)\left\{\left(g\left(t_{n+1}\right)-g\left(t_{n_{0}}\right)\right.\right.
\end{aligned}
$$

and a similar lower inequality. It follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{g\left(t_{n+1}\right)}{g\left(t_{n}\right)}=y^{\rho} \tag{1.38}
\end{equation*}
$$

and hence

$$
\begin{equation*}
a\left(t_{n}\right) \sim \frac{g\left(t_{n+1}\right)-g\left(t_{n}\right)}{c\left(y^{\rho}-1\right) / \rho} \sim \frac{\rho}{c} \cdot g\left(t_{n}\right) \tag{1.39}
\end{equation*}
$$

Further for $\mathrm{x}>1$

$$
\begin{equation*}
\frac{g\left(t_{n} x\right)}{g\left(t_{n}\right)}-1=\frac{g\left(t_{n} x\right)-g\left(t_{n}\right)}{g\left(t_{n}\right)} \sim \frac{g\left(t_{n} x\right)-g\left(t_{n}\right)}{c a\left(t_{n}\right) / \rho}+x^{\rho}-1(n+\infty) \tag{1.40}
\end{equation*}
$$

For any $s>0$ choose $n(s) \in \mathbb{N}$ such that $t_{n(s)} \leq s<t_{n(s)+1}$. Then by (1.38) and (1.40)

$$
\frac{g(s x)}{g(s)} \leq \frac{g\left(t_{n(s)+1} x\right)}{g\left(t_{n(s)+1}\right)} \cdot \frac{g\left(t_{n(s)+1}\right)}{g\left(t_{n(s)}\right)}+x^{\rho} y^{\rho}(n \rightarrow \infty)
$$

Similarly

$$
\frac{g(s x)}{g(s)} \geq \frac{g\left(t_{n(s)} x\right)}{g\left(t_{n(s)}\right)} \frac{g\left(t_{n(s)}\right)}{g\left(t_{n(s)+1}\right)} \rightarrow x^{\rho} y^{-\rho}(n \rightarrow \infty)
$$

Since $y>1$ is arbitrary, we have proved $g \in \mathrm{RV}_{\rho}^{\infty}$.
Combination with (1.36) gives $a(t) / g(t) \rightarrow \rho / c(t \rightarrow \infty)$. With (1.35) this implies $f(t) \sim c a(t) / \rho(t \rightarrow \infty)$ hence $f \in R V_{\rho}^{\infty}$.

Suppose next $\rho<0$. Then (1.37) immediately implies $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{g}\left(\mathrm{t}_{\mathrm{n}}\right)<\infty$. Write $h(x):=\lim _{t \rightarrow \infty} g(t)-g(x)$. We have

$$
\frac{h\left(t_{n}\right)}{a\left(t_{n}\right)}=\sum_{k=n}^{\infty} \frac{g\left(t_{k+1}\right)-g\left(t_{k}\right)}{a\left(t_{k}\right)} \frac{a\left(t_{k}\right)}{a\left(t_{n}\right)} .
$$

Choose $\varepsilon>0$ and $\mathrm{y}>(1+\varepsilon)^{-1 / \rho}$. Note that since a $\epsilon \mathrm{RV}_{\rho}$ the above expression is bounded above for $n \geq n_{0}$ by

$$
\sum_{k=n}^{\infty} c \frac{y^{\rho}-1}{\rho}(1+\varepsilon)\left\{y^{\rho}(1+\varepsilon)\right\}^{k-n}=\frac{y^{\rho}-1}{1-y^{\rho}(1+\varepsilon)} \cdot \frac{1+\varepsilon}{\rho} c,
$$

which tends to $-c / \rho$ as $\varepsilon+0+$. A similar lower bound is easily obtained and we conclude

$$
\lim _{n \rightarrow \infty} \frac{h\left(t_{n}\right)}{a\left(t_{n}\right)}=-\frac{c}{\rho} .
$$

Further for $\mathrm{x}>1$

$$
\frac{h\left(t_{n+1}\right)}{h\left(t_{n}\right)}-1=\frac{a\left(t_{n}\right)}{h\left(t_{n}\right)} \cdot \frac{h\left(t_{n+1}\right)-h\left(t_{n}\right)}{a\left(t_{n}\right)}+y^{\rho}-1(n \rightarrow \infty) .
$$

The rest of the proof follows closely the case $\rho>0$.

Definition 1.11

A measurable function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ is said to belong to the class I if there exists a function $a: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that for $\mathrm{x}>0$

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{f(t x)-f(t)}{a(t)}=\log x . \tag{1.41}
\end{equation*}
$$

Notation: $f \in \mathbb{I}$ or $f \in \mathbb{H}(a)$.

The function a is called an auxiliary function for f.
We say that $f \in \Pi^{0}$ if $g \in \Pi$ where $g(t)=f(1 / t)$.

Remarks

1. Note that any positive function a_{1} is an auxiliary function for f if and only if $a_{1}(t) \sim a(t)(t \rightarrow \infty)$.
2. For the definition of Π it is sufficient to require (1.41) for all x in a set A satisfying the following requirements: $\lambda(A)>0$ and there exists a sequence $x_{n} \in A(n=1,2, \ldots)$ such that $x_{n} \rightarrow 1(n+\infty)$.
3. We can weaken the definition as follows: there exist functions $a: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ and $g: \mathbb{R}^{+} \rightarrow \mathbb{R}$ such that for $\mathrm{x}>0$

$$
\lim _{t \rightarrow \infty} \frac{f(t x)-g(t)}{a(t)}=\log x .
$$

Theorem 1.12
If $f \in \Pi(a)$, then $1 \mathrm{im} a(t x) / a(t)=1$ for all $x>0$. Moreover (1.41) holds with a function a which is measurable and hence in RV_{0}^{∞}.

Proof

This is a special case of theorem 1.9.

Theorem 1.13

If $f \in \mathbb{\Pi}(a)$ and $g: \mathbb{R}^{+} \rightarrow \mathbb{R}$ is measurable and satisfies

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{f(t)-g(t)}{a(t)}=c \tag{1.42}
\end{equation*}
$$

for some $c \in \mathbb{R}$, then (1.41) is satisfied with f replaced by g, hence $g \in \Pi(a)$

This follows immediately from (1.24) and (1.25). Obviously for fixed auxiliary function a the relation (1.25) between functions $f, g \in \Pi(a)$ is an equivalence relation. We shall see below (proposition 1.17 .3 and 6) that any equivalence class contains a very smooth II-function.

Theorem 1.14 (uniform convergence theorem)
If $f \in \mathbb{I}$, then for $0<a<b<\infty$ relation (1.41) holds uniformly for $x \in[a, b]$.

Proof
Define $F(t):=f\left(e^{t}\right), A(t):=a\left(e^{t}\right)$. It is sufficient to deduce a contradiction from the following assumption: there exist $\delta>0$ and sequences $t_{n} \rightarrow \infty, x_{n} \rightarrow 0$ ($n \rightarrow \infty$) such that for all n

$$
\left|\frac{F\left(x_{n}+t_{n}\right)-F\left(t_{n}\right)}{A\left(t_{n}\right)}\right|>\delta .
$$

Consider the sets

$$
\begin{aligned}
& \mathrm{J}:=[-\delta / 5,+\delta / 5], \\
& \mathrm{Y}_{1, \mathrm{n}}=\left\{\mathrm{y} ;\left|\left(\mathrm{F}\left(\mathrm{t}_{\mathrm{n}}+\mathrm{y}\right)-F\left(\mathrm{t}_{\mathrm{n}}\right)\right) / \mathrm{A}\left(\mathrm{t}_{\mathrm{n}}\right)\right|>\delta / 2, \mathrm{y} \in \mathrm{~J}\right\}, \\
& \mathrm{Y}_{2, \mathrm{n}}=\left\{\mathrm{y} ;\left|\left(\mathrm{F}\left(\mathrm{t}_{\mathrm{n}}+\mathrm{x}_{\mathrm{n}}\right)-\mathrm{F}\left(\mathrm{t}_{\mathrm{n}}+\mathrm{y}\right)\right) / \mathrm{A}\left(\mathrm{t}_{\mathrm{n}}\right)\right|>\delta / 2, \mathrm{y} \in J\right\} .
\end{aligned}
$$

The above sets are measurable for each n and $Y_{1, n} \cup Y_{2, n}=J$, hence either $\lambda\left(\mathrm{Y}_{1, \mathrm{n}}\right) \geq \frac{1}{2} \lambda(\mathrm{~J})$ or $\lambda\left(\mathrm{Y}_{2, \mathrm{n}}\right) \geq \frac{1}{2} \lambda(\mathrm{~J})$ (or both), where λ denotes Lebesgue measure. Define

$$
z_{1, n}=\left\{z ;\left|\left(F\left(t_{n}+x_{n}\right)-F\left(t_{n}+x_{n}-z\right)\right) / A\left(t_{n}\right)\right|>\delta / 2, x_{n}-z \in J\right\}
$$

Then $\lambda\left(Z_{1, n}\right)=\lambda\left(Y_{2, n}\right)$.
Since $a \in R V_{0}$ (theorem 1.9) we have the inequality $A\left(t_{n}\right) \geq \frac{1}{2} A\left(t_{n}+x_{n}-z\right)$ for $\mathrm{z} \in \mathrm{Z}_{1, \mathrm{n}}$ and $\mathrm{n} \geq \mathrm{n}_{0}$ by proposition 1.7.5. As a consequence $\mathrm{Z}_{1, \mathrm{n}} \subset \mathrm{Z}_{2, \mathrm{n}}$ for $\mathrm{n} \geq \mathrm{n}_{0}$, where $\mathrm{z}_{2, \mathrm{n}}$ is defined by
$Z_{2, n}:=\left\{z ;\left|\left(F\left(t_{n}+x_{n}\right)-F\left(t_{n}+x_{n}-z\right)\right) / A\left(t_{n}+x_{n}-z\right)\right|>\delta / 4, x_{n}-z \in J\right\}$
$c[-\delta / 4,+\delta / 4]$ for n sufficiently large since $x_{n} \rightarrow 0$.
Hence we find $\lambda\left(\lim _{n \rightarrow \infty} \sup Z_{2, n}\right) \geq \lambda\left(\lim _{n \rightarrow \infty} \sup Z_{1, n}\right) \geq \frac{1}{2} \lambda(J)$ or $\lambda\left(\lim _{n \rightarrow \infty} \sup Y_{1, n}\right) \geq$ $\frac{1}{2} \lambda(J)$.

This implies the existence of a real number x_{0} contained in infinitely many $Y_{1, n}$ or infinitely many $Z_{2, n}$ which contradicts the assumption $\lim _{t \rightarrow \infty}\left\{F\left(t+x_{0}\right)-F(t)\right\} / A(t)=x_{0}$.
$t \rightarrow \infty$
Corollary 1.15
If $f \in \mathbb{I}(a)$, for any $\varepsilon>0$ there exist $t_{0}, c>0$ such that for $t \geq t_{0,} x \geq 1$

$$
\begin{equation*}
\left|\frac{f(t x)-f(t)}{a(t)}\right| \leq c x^{\varepsilon} . \tag{1.43}
\end{equation*}
$$

Hence $f(t)$ is locally bounded for $t \geq t_{0}$.

Proof

By the uniform convergence theorem (theorem 1.14) we have

$$
\begin{equation*}
-2 \leq \frac{f(t u)-f(t)}{a(t)} \leq 2 \text { for } t \geq t_{1} \text { and } 1 \leq u \leq e . \tag{1.44}
\end{equation*}
$$

For $x>1$ define $n \in \mathbb{N}$ by $e^{n} \leq x<e^{n+1}$. Then

$$
\begin{aligned}
\frac{f(t x)-f(t)}{a(t)} & =\sum_{k=0}^{n-1} \frac{f\left(e^{k+1} t\right)-f\left(e^{k} t\right)}{a\left(e^{k} t\right)} \frac{a\left(e^{k} t\right)}{a(t)} \\
& +\frac{f(t x)-f\left(e^{n} t\right)}{a\left(e^{n} t\right)} \frac{a\left(e^{n} t\right)}{a(t)} .
\end{aligned}
$$

Using (1.44) and the inequality $a(t x) / a(t) \leq c_{1} x^{\varepsilon}$ for some $c_{1}>0, t \geq t_{2}$ (prop. 1.7.5) we find that for $t \geq t_{0}=: \max \left(t_{1}, t_{2}\right)$

$$
\left|\frac{f(t x)-f(t)}{a(t)}\right| \leq 2 c{ }_{1} \sum_{k=0}^{n} e^{\varepsilon k} \leq c e^{n \varepsilon} \leq c x^{\varepsilon} .
$$

For the last statement, take $t=t_{0}$ in (1,43).

Corollary 1.16
If $f \in \mathbb{K}(a)$, there exists a non-decreasing function g such that $f(t)-g(t)=$ $O(a(t))(t+\infty)$. In particular $g \in \Pi(a)$ by theorem 1.13.

Proof
By corollary 1.15 the function f is locally integrable on $\left[t_{0}, \infty\right)$. Note that by theorem 1.14

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{1}^{e} \frac{f(t x)-f(t)}{a(t)} \frac{d x}{x}=\int_{1}^{e} \log x \frac{d x}{x}=\frac{1}{2} \tag{1.45}
\end{equation*}
$$

Now choose $t_{1} \geq t_{0}$ such that $f(e x)-f(x)>0$ for $x>t_{1}$.
Then

$$
\begin{aligned}
& \int_{1}^{e} \frac{f(t x)}{x} d x=\int_{t_{1}}^{t e} \frac{f(x)}{x} d x-\int_{t_{1}}^{t} \frac{f(x)}{x} d x \\
& =\int_{t_{1}}^{e t} \frac{f(x)}{x} d x+\int_{t_{1}}^{t} \frac{f(e x)-f(x)}{x} d x=: g_{0}(t) .
\end{aligned}
$$

Note that g_{0} is non-decreasing and by (1.45)

$$
\lim _{t \rightarrow \infty} \frac{g_{0}(t)-f(t)}{a(t)}=\frac{1}{2} .
$$

Now $g_{0} \in \Pi(a)$ by theorem 1.13. Define $g(t):=g_{0}\left(t e^{-\frac{1}{2}}\right)$. Then $g \in \Pi(a)$ and $g(t)-f(t)=o(a(t))(t+\infty)$.

The following theorem gives a characterization of the class Π.

Theorem 1.17
Suppose $f: \mathbb{R}^{+}+\mathbb{R}$ is measurable.
For $t_{0} \geq 0$ let $\psi:\left(t_{0}, \infty\right)+\mathbb{R}$ be defined by

$$
\begin{equation*}
\psi(t):=f(t)-t^{-1} \int_{t_{0}}^{t} f(s) d s \tag{1.46}
\end{equation*}
$$

The following statements are equivalent:
a. $f \in \Pi$.
b. The function $\psi:\left(t_{0}, \infty\right) \rightarrow \mathbb{R}$ is well-defined for some $t_{0} \geq 0$, eventually positive and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{f(t x)-f(t)}{\psi(t)}=\log x \tag{1.48}
\end{equation*}
$$

for $\mathrm{x}>0$.
c. The function $\psi:\left(t_{0}, \infty\right) \rightarrow \mathbb{R}$ is well-defined for $t \geq t_{0}$ and slowly varying at infinity.
d. There exists $\rho \in R V_{0}^{\infty}$ such that

$$
\begin{equation*}
f(t)=\rho(t)+\int_{t_{0}}^{t} \rho(s) d s / s \tag{1.50}
\end{equation*}
$$

e. There exist $c_{1}, c_{2} \in \mathbb{R}, a_{1}, a_{2} \in R V_{0}^{\infty}$ with $a_{1}(t) \sim a_{2}(t)(t \rightarrow \infty)$ such that

$$
\begin{equation*}
f(t)=c_{1}+c_{2} a_{1}(t)+\int_{1}^{t} a_{2}(s) d s / s \tag{1.51}
\end{equation*}
$$

If f satisfies (1.50) (or (1.51)) then $f \in \mathbb{I}(\rho)$ (or $f \in \mathbb{f}\left(a_{2}\right)$ respectively). Hence $\rho(t) \sim a_{2}(t) \sim \psi(t)(t+\infty)$.

Proof
$a \rightarrow b$
Suppose f $\in \mathbb{I}(a)$,
Take t_{0} as in cor. 1.15. Then $\psi(t)$ is well-defined for $t \geq t_{0}$.
Note that for $t \geq t_{0}$

$$
\begin{equation*}
\frac{\psi(t)}{a(t)}=\frac{t_{0} f(t)}{t a(t)}+\int_{t_{0} / t}^{1} \frac{f(t)-f(t u)}{a(t)} d u \tag{1.52}
\end{equation*}
$$

From cor, 1.15 it follows that $f(t)=o\left(t^{\beta}\right)(t+\infty)$ for any $\beta>0$ (take $t=t_{0}$ in (1.43)).
Since $\operatorname{ta}(t) \in \mathrm{RV}_{1}^{\infty}$, (thm. 1.12) we have $f(t)=o(t a(t))(t \rightarrow \infty)$.
We can apply Lebesgue's theorem on dominated convergence to the second term on the right-hand side in (1.52) since by cor. 1.15 for $\mathrm{tu} \geq \mathrm{t}_{0}, 0<\mathrm{u} \leq 1$

$$
\left|\frac{f(t u / u)-f(t u)}{a(t u)}\right| \leq c u^{-\varepsilon}
$$

and by prop. 1.7 .5 for tu $\geq t_{1}, 0<u \leq 1$

$$
0<a(t u) / a(t) \leq c_{1} u^{-\varepsilon} .
$$

Hence $\lim _{t \rightarrow \infty} \frac{\psi(t)}{a(t)}=-\int_{0}^{1} \log u d u=1$, which proves the implication $a+b$.

$b \rightarrow c$

See theorem 1.12.
$c \rightarrow d$
By Fubini's theorem we have

$$
\begin{aligned}
& \int_{t_{0}}^{t} \frac{\psi(s)}{s} d s=\int_{t_{0}}^{t} \frac{f(s)}{s} d s-\int_{t_{0}}^{t} \int_{t_{0}}^{s} \frac{f(u)}{s^{2}} d u d s \\
& =\frac{1}{t} \int_{t_{0}}^{t} f(u) d u=f(t)-\psi(t) .
\end{aligned}
$$

Hence (1.50) with $\rho=\psi$.
$\underline{e}+a$
By the uniform convergence theorem (thm. 1.3) for functions in RV

$$
\frac{f(t x)-f(t)}{a_{2}(t)}=c_{2}\left\{\frac{a_{1}(t x)}{a_{1}(t)}-1\right\} \frac{a_{1}(t)}{a_{2}(t)}+\int_{1}^{x} \frac{a_{2}(t u)}{a_{2}(t)} \frac{d u}{u} \rightarrow \log x(t \rightarrow \infty)
$$

for all $\mathrm{x}>0$.

Corollary 1.18

If $f \in \mathbb{M}$, then $\lim f(t)=: f(\infty) \leq \infty$ exists.
If the limit is infinite, then $f \in R V_{0}^{\infty}$. If the limit is finite, $f(\infty)-f(t)$ $\epsilon \mathrm{RV}_{0}^{\infty}$ 。

Proof
Consider the representation (1.50). Theorem 1.4 implies that
$\rho(t)=o\left(\int_{1}^{t} \rho(s) d s / s\right)(t+\infty)$. Hence, if $\int_{\infty}^{\infty} \rho(s) d s / s<\infty, \rho(t) \rightarrow 0(t \rightarrow \infty)$ and
$\lim _{t \rightarrow \infty} f(t)=c+\int_{1}^{\infty} \rho(s) d s / s$. Then $f(\infty)-f_{t} f(t)=\int_{t}^{\infty} \rho(s) d s / s \in R V_{0}^{\infty}$ (prop.
1.7.4). If $\int_{1}^{\infty} \rho(s) d s / s=\infty$, then $f(t) \sim \int_{1}^{t} \rho(s){ }^{t} \mathrm{ds} / \mathrm{s} \in \mathrm{RV}_{0}^{\infty}$ (prop. 1.7.4). \&

Remarks

1. Note that from the proof of cor. 1.18 it follows, using (1.46), $\psi(t) \sim a(t)$ $(t+\infty)$ and theorem 1.4, that $a(t)=o(f(t))(t \rightarrow \infty)$. As a consequence, the limit relation (1.42) above is strictly stronger than $f(t) \sim g(t)(t \rightarrow \infty)$.
2. Theorem 1.17 is also true - and the proof not much different - with ψ replaced by ϕ defined as follows:

$$
\phi(t):=t \int_{t}^{\infty} f(u) \frac{d u}{u^{2}}-f(t) .
$$

3. The result of cor. 1.16 is reobtained from theorem 1.17 by taking $g(t)=\int_{t_{0}}^{e t} \rho(s) d s / s$ with ρ as in (1.50).

-26-

4. Suppose f is locally integrable on \mathbb{R}^{+}and a $\in \mathrm{RV}_{0}$. Then

$$
\begin{equation*}
\frac{f(t x)-f(t)}{a(t)}+0 \quad(t \rightarrow \infty) \quad \text { for } x>0 \tag{1.53}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{f(t)-t^{-1} \int_{0}^{t} f(s) d s}{a(t)} \rightarrow 0 \quad(t \rightarrow \infty) \tag{1.54}
\end{equation*}
$$

are equivalent.
The proof follows closely the proof of theorem 1.17.
5. From theorem 1.17 e it is clear that for any a $\in \mathrm{RV}_{0}^{\infty}$, there exists a function f such that $f \in \Pi(a)$.
6. Let $t_{1} \geq 0$ be such that f is locally integrable on $\left(t_{1}, \infty\right)$. Then theorem 1.17 holds for any $t_{0} \geq t_{1}$.

We mention some properties of functions which belong to the class π.

Proposition 1.19

1. If $f, g \in \Pi$ then $f+g \in \Pi$. If $f \in \Pi$, and $h \in R V_{\alpha}^{\infty}, \alpha>0$, then $f{ }^{\circ} h \in \Pi$. If $f \in \Pi, \lim _{t \rightarrow \infty} f(t)=\infty$ and h is differentiable with $h^{\prime} \in \operatorname{RV}_{\alpha}^{\infty}(\alpha>-1)$, then $h{ }^{\circ} f \in I$, where $h{ }^{\circ} f$ denotes the composition of the two functions.
2. If $f \in \operatorname{II}$ (a) is integrable on finite intervals of \mathbb{R}^{+}and the function f_{1} is defined by

$$
\begin{equation*}
f_{1}(t):=t^{-1} \int_{0}^{t} f(s) d s(t>0) \tag{1.55}
\end{equation*}
$$

then $f_{l} \in \Pi(a)$.
Conversely if $f_{1} \in \Pi(a)$ and f is non-decreasing, then $f \in \Pi(a)$.
3. If $f \in \Pi(a)$, there exists a twice differentiable function \bar{f} with $-\overline{\mathrm{f}}{ }^{\prime \prime} \in \mathrm{RV}_{-2}^{\infty}$ such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{f(t)-\bar{f}(t)}{a(t)}=0 . \tag{1.56}
\end{equation*}
$$

In particular $\overline{\mathrm{f}}$ is eventually concave. As a consequence of this:

If $f \in I$ is bounded on finite intervals of \mathbb{R}^{+}and $\lim f(t)=\infty$, then $\sup _{0<x \leq t} f(x)-f(t)=o(a(t))(t+\infty)$.
4. Suppose $f \in \Pi$ (a). For arbitrary $\delta_{1}, \delta_{2}>0$ there exists $t_{0}=t_{0}\left(\delta_{1}, \delta_{2}\right)$ such that for $x \geq 1, t \geq t_{0}$

$$
\begin{equation*}
\left(1-\delta_{2}\right) \frac{1-x^{-\delta_{1}}}{\delta_{1}}-\delta_{2}<\frac{f(t x)-f(t)}{a(t)}<\left(1+\delta_{2}\right) \frac{x^{\delta_{1}}-1}{\delta_{1}}+\delta_{2} \tag{1.57}
\end{equation*}
$$

Note that conversely if f satisfies the above property, then $f \in \Pi(a)$.
5. Suppose

$$
\begin{equation*}
f(t)=f\left(t_{0}\right)+\int_{t_{0}}^{t} g(s) d s, t>t_{0} \tag{1.58}
\end{equation*}
$$

with $g \in \mathrm{RV}_{-1}^{\infty}$. Then $f \in$ II. Conversely if $f \in I l$ satisfies (1.58) with g nonincreasing, then $g \in \operatorname{RV}_{-1}^{\infty}$.
Moreover in this case $\operatorname{tg}(t)$ is an auxiliary function for f.
Similarly if

$$
\begin{equation*}
f(t)=c+\int_{t}^{\infty} g(s) d s \tag{1.59}
\end{equation*}
$$

with $g \in \operatorname{RV}_{-1}^{0}$, then $f \in \Pi^{0}$ (see def. 1.l1). Conversely if $f \in \Pi^{0}$ satisfies (1.59) with g non-increasing, then $g \in \mathrm{RV}_{-1}^{0}$.

Moreover in this case $t^{-1} g\left(t^{-1}\right)$ is an auxiliary function for $f\left(t^{-1}\right)$.
This property supplements a corresponding statement for functions in $\mathrm{RV}_{\alpha}^{\infty}, \alpha \neq 0$ (cf. prop. 1.7.11).
6. If $f \in \Pi(a)$ there is a function f_{1} with $(-1)^{n+1} f_{1}(n) \in R V_{-n}^{\infty}$ for $n=1,2, \ldots$ such that $f_{1}(t)-f(t)=o(a(t)), t \rightarrow \infty$.

Proofs

ad 1. The statement $f+g \in I$ is a consequence of the representation (1.50) since the sum of two slowly varying functions is slowly varying (see proposition 1.7.2). If $f \in \Pi(a)$ and $h \in R V_{\alpha}^{\infty}$, then for $x>0$ we have
$\lim _{t \rightarrow \infty} \frac{f\left(\frac{h(t x)}{h(t)} h(t)\right)-f(h(t))}{\alpha a(h(t))}=\log x$ by the uniform convergence
theorem (thm. 1.14).
For the last statement we expand the function h :

$$
\frac{h(f(t x))-h(f(t))}{a(t) h^{\prime}(f(t))}=\frac{f(t x)-f(t)}{a(t)} \cdot \frac{h^{\prime}(f(t)+\theta\{f(t x)-f(t)\})}{h^{\prime}(f(t))}
$$

for some $0<\theta=\theta(x, t)<1$. Now the second factor on the right-hand side tends to 1 as $t \rightarrow \infty$ since $h^{\prime} \in R V_{\alpha}^{\infty}$ and $f \in R V_{0}^{\infty}$ (see corollary 1.18) by the uniform convergence theorem (theorem 1.14).

$$
\lim _{t \rightarrow \infty} \frac{f(t)-f_{1}(t)}{a(t)}=\lim _{t \rightarrow \infty} \frac{\psi(t)}{a(t)}=1
$$

As a consequence $f_{1} \in \Pi$ (a) (see theorem 1.13).
Conversely suppose $f_{1} \in \mathbb{I}(a)$. Then for $x>0$ we have by definition $\int_{0}^{t} \psi(s) d s / s=f_{1}(t)$ and hence

$$
\frac{f_{1}(t x)-f_{1}(t)}{a(t)}=\int_{1}^{x} \frac{\psi(t s)}{a(t)} \frac{d s}{s}
$$

Now fix $x>1$. Since $f_{1} \in \Pi(a)$ the above expression tends to $\log x$ as $t \rightarrow \infty$. Since f is non-decreasing, $t \psi(t)$ is non-decreasing. This implies

$$
\left(1-x^{-1}\right) \frac{\psi(t)}{a(t)} \leq \int_{1}^{x} \frac{\psi(t s)}{a(t)} \frac{d s}{s} \text { for } t>0
$$

hence
$\overline{\lim }_{t \rightarrow \infty} \frac{\psi(t)}{a(t)} \leq \frac{\log x}{1-x^{-1}}$ for $x>1$. Similarly we find $\frac{\lim }{t \rightarrow \infty} \frac{\psi(t)}{a(t)} \geq \frac{-\log x}{x^{-1}-1}$
for $0<x<1$.

Finally let $x \rightarrow 1$ to obtain $\psi(t) \sim a(t)(t \rightarrow \infty)$, which implies $\psi \in \operatorname{RV}_{0}^{\infty}$. The proof is finished by application of theorem 1.17.
ad 3. We may assume without loss of generality that f is integrable on finite intervals of \mathbb{R}^{+}.
Define the functions f_{i} for $i=1,2,3$ recursively by

$$
f_{i}(t):=t^{-1} \int_{0}^{t} f_{i-1}(s) d s \text { for } t>0
$$

where $f_{0}=\mathrm{f}$.
Repeated application of theorem 1.13 and 1.17 gives

$$
f(t)-f_{3}(t)=\sum_{i=0}^{2}\left\{f_{i}(t)-f_{i+1}(t)\right\} \sim 3 a(t)(t+\infty) .
$$

Hence $f_{3} \in \mathbb{H}(a)$ by theorem 1.13. Define \bar{f} by $\bar{f}(t):=f_{3}\left(e^{3} t\right)$, then $f(t)-\bar{f}(t)=o(a(t))(t+\infty)$. Furthermore \bar{f} is twice differentiable and

$$
t^{2} f_{3}^{\prime \prime}(t)=\left(f_{1}(t)-f_{2}(t)\right)-2\left(f_{2}(t)-f_{3}(t)\right) \sim-a(t)(t \rightarrow \infty)
$$

by theorem 1.17. a_{0}, b such that $a_{0}(t) \sim a(t), b(t)=o(a(t))(t+\infty)$ and

$$
\begin{equation*}
f(t)=\int_{t^{\prime}}^{t} \frac{a_{0}(s)}{s} d s+b(t) \text { for } t>t^{\prime} \tag{1.60}
\end{equation*}
$$

Then for all $\varepsilon, \delta_{1}, \delta_{3}, \delta_{4}>0$ there exists $t=t_{0}\left(\varepsilon, \delta_{1}, \delta_{3}, \delta_{4}\right)$ such that for all $t \geq t_{0}, x \geq 1$ we have

$$
\begin{aligned}
& f(t x)-f(t)=\int_{1}^{x} \frac{a_{0}(t s)}{s} d s+\frac{b(t x)}{a(t x)} a(t x)-b(t) \\
& \leq\left[\left(1+\delta_{3}\right) \int_{1}^{x} s^{\delta_{1}-1} d s+\varepsilon\left(1+\delta_{4}\right) x^{\delta_{1}}+\varepsilon\right] a(t) \\
& =\left\{\left[1+\delta_{3}+\varepsilon\left(1+\delta_{4}\right) \delta_{1}\right] \frac{x^{\delta} 1-1}{\delta_{1}}+\varepsilon\left(2+\delta_{4}\right)\right\} a(t)
\end{aligned}
$$

using $a_{0}(t) \sim a(t), b(t)=o(a(t))$ and prop. 1.7.5.
Hence f satisfies the stated upper inequality if we take ε, δ_{3} and δ_{4} such that $\max \left\{\delta_{3}+\varepsilon\left(1+\delta_{4}\right) \delta_{1}, \varepsilon\left(2+\delta_{4}\right)\right\}=\delta_{2}$.
The proof of the lower inequality is similar.
ad 5. We give the proof of the first statement, the proof of the other statement is similar.

$$
\begin{equation*}
\frac{f(t x)-f(t)}{\operatorname{tg}(t)}=\int_{1}^{x} \frac{g(t s)}{g(t)} d s . \tag{1.61}
\end{equation*}
$$

If $g \in \mathrm{RV}_{-1}^{\infty}$, then the right-hand side in (1.61) tends to $\log \mathrm{x}(\mathrm{t}+\infty)$ by the uniform convergence theorem for regularly varying functions (theorem 1.3). Next suppose $f \in \pi(a)$. We have

$$
\frac{f(t x)-f(t)}{a(t)}=\frac{t g(t)}{a(t)} \int_{1}^{x} \frac{g(t s)}{g(t)} d s,
$$

and the integral is at most $x-1$ when $x>1$. Hence for $x>1$, since $\mathrm{f} \in \mathrm{I}$, we get

$$
\lim \frac{\operatorname{tg}(t)}{a(t)} \geq \frac{\ln x}{x-1}
$$

$$
t \rightarrow \infty
$$

Similarly we find $\overline{\lim } \frac{\operatorname{tg}(t)}{a(t)} \leq \frac{\ln x}{x-1}$ for $0<x<1$.
Let $x \rightarrow 1$ to obtain $\operatorname{tg}(t) \sim a(t)(t+\infty)$ and the last function is slowly varying by theorem 1.12 .
ad 6. See Corollary 2.16.

Remark

A special case of the current subsection is obtained when the auxiliary function a satisfies $a(t) \rightarrow \rho>0(t \rightarrow \infty)$.
Note that the specialization of theorem 1.17 then gives the following statement:
Suppose $g: \mathbb{R}^{+}+\mathbb{R}^{+}$is measurable.
Then $g \in R V_{\rho}^{\infty}$ if and only if $\log g$ is locally integrable on (t_{0}, ∞) for some $\mathrm{t}_{0}>0$ and

$$
\lim _{t \rightarrow \infty} \int_{t}^{1} \log \left\{\frac{g(t s)}{g(t)}\right\} d s=\int_{0}^{1} \log s^{\rho} d s=-0
$$

This can be seen by applying theorem 1.17 for $f(t)=\log g(t)$.

Examples

The functions f defined by

$$
f(t)=\log t+o(1)(t+\infty)
$$

$$
\begin{aligned}
& f(t)=(\log t)^{\alpha}(\log \log t)^{\beta}+o(\log t)^{\alpha-1}(t \rightarrow \infty), \alpha>0, \beta \in \mathbb{R}, \\
& f(t)=\exp \left\{(\log t)^{\alpha}\right\}+o(\log t)^{\alpha-1} \exp \left\{(\log t)^{\alpha}\right\} \text { for } 0<\alpha<1, t \rightarrow \infty, \\
& f(t)=t^{-1} \log \Gamma(t)+o(1)(t+\infty)
\end{aligned}
$$

are in $I I$.
The functions f defined by

$$
\begin{aligned}
& f(t)=[\log t] \\
& f(t)=2 \log t+\sin \log t
\end{aligned}
$$

are in $R V_{0}^{\infty}$, but not in Π.

The following result is a generalization of part of theorem 1.17 (the kernel function k below is constant in theorem 1.17).

Theorem 1.20

Suppose $f \in \mathbb{M}(a)$ is integrable on finite intervals of \mathbb{R}^{+}.
(i) If the measurable function $k: \mathbb{R}^{+} \rightarrow \mathbb{R}$ is bounded on $(0,1)$, then

$$
\begin{equation*}
\int_{0}^{1} k(s) \frac{f(t s)-f(t)}{a(t)} d s \rightarrow \int_{0}^{1} k(s) \log s d s, t \rightarrow \infty . \tag{1.62}
\end{equation*}
$$

(ii) If $t^{\varepsilon_{k}}(t)$ is integrable on $(1, \infty)$ for some $\varepsilon>0$, then

$$
\int_{1}^{\infty} k(s) f(t s) d s<\infty \text { for } t>0
$$

and

$$
\int_{1}^{\infty} k(s) \frac{f(t s)-f(t)}{a(t)} d s \rightarrow \int_{1}^{\infty} k(s) \log s d s(t \rightarrow \infty) .
$$

Proof
(i) Note that for $0<\varepsilon<1$ the function $t^{-\varepsilon_{k}}(t)$ is integrable on $(0,1)$. We proceed as in the first part of the proof of theorem 1.17. Applying corollary 1.15 we have

$$
\int_{t_{0} / t}^{1} k(s) \frac{f(t s)-f(t)}{a(t)} d s+\int_{0}^{1} k(s) \log s d s
$$

by Lebesgue's theorem on dominated convergence. Since k is bounded, $\operatorname{ta}(t) \in \operatorname{RV}_{1}^{\infty}$ and $f(t)=o\left(t^{1 / 2}\right)(t+\infty)$, we have

$$
\begin{aligned}
& t_{0} / t h(s) \frac{f(t s)-f(t)}{a(t)} d s=\left\{\int_{0}^{t} k(s / t) f(s) d s-f(t) \int_{0}^{t} k(s / t) d s\right\} / t a(\\
& \rightarrow 0, t \rightarrow \infty
\end{aligned}
$$

(ii) The second statement is proved in a similar way.

Definition 1.21

The functions $f_{1}, f_{2}: \mathbb{R}^{+} \rightarrow \mathbb{R}$ are inversely asymptotic (at infinity) if for every constant $c>1$ there exists a $t_{0}=t_{o}(c)$ such that

$$
\begin{equation*}
\mathrm{f}_{1}(\mathrm{t}) \leq \mathrm{f}_{2}(\mathrm{ct}) \quad \mathrm{t} \geq \mathrm{t}_{\mathrm{o}} \tag{1.63}
\end{equation*}
$$

and

$$
\mathrm{f}_{2}(\mathrm{t}) \leq \mathrm{f}_{1}(\mathrm{ct}) \quad \mathrm{t} \geq \mathrm{t}_{0} .
$$

Notation: $\mathrm{f}_{1} \stackrel{*}{\sim} \mathrm{f}_{2}$ or $\mathrm{f}_{1}(\mathrm{t}) \stackrel{*}{\sim} \mathrm{f}_{2}(\mathrm{t})(\mathrm{t} \rightarrow \infty)$.
We use the notation $f_{1}(t) \stackrel{*}{\sim} f_{2}(t)(t \rightarrow 0+)$ if $f_{1}(1 / t) \stackrel{*}{\sim} f_{2}(1 / t)(t \rightarrow \infty)$.
It is easy to see that if f_{1} and f_{2} are increasing and unbounded, then $f_{1} \stackrel{*}{\sim} f_{2}$ at infinity if and only if the inverse functions are asymptotically equal (i.e. $\left.f_{1}^{+}(t) \sim f_{2}^{+}(t), t+\infty\right)$.

The relevance of this definition for functions in $R V_{\alpha}$ and in the class Π follows from the next proposition.

Proposition 1.22

(i) Suppose $f_{1} \in R V_{\alpha}^{\infty}, \alpha>0$ and f_{2} is measurable. Then $f_{1} \stackrel{*}{\sim} f_{2}$ if and only if $f_{1}(t) \sim f_{2}(t)(t \rightarrow \infty)$. It then follows that $f_{2} \in R V_{\alpha}$.
(ij) Suppose $f_{1} \in \operatorname{II}(a)$ and f_{2} is measurable. Then $f_{1} \stackrel{*}{\sim} f_{2}$ if and only if $f_{1}(t)-f_{2}(t)=o(a(t)), t \rightarrow \infty$. It then follows that $f_{2} \in \Pi(a)$.

Proof
(i) Since $f_{1} \in \mathrm{RV}_{\alpha}$ the inequalities (1.63) imply that for every $c>1$

$$
c^{-\alpha} \leq \lim _{t \rightarrow \infty} \frac{f_{2}(t)}{f_{1}(t)} \leq \lim _{t \rightarrow \infty} \frac{f_{2}(t)}{f_{1}(t)} \leq c^{\alpha}
$$

which implies $f_{1}(t) \sim f_{2}(t)(t+\infty)$.
Conversely, if $f_{1}(t) \sim f_{2}(t)$ and $f_{1} \in R V_{\alpha}^{\infty}(\alpha>0)$, then for $t \geq t_{0}$ $f_{1}(c t) \geq c^{\alpha / 2} f_{1}(t) \geq f_{2}(t)$. The second inequality in (1.63) is obtained likewise.
(ij) The second statement follows similarly since $f_{1} \in \Pi(a)$ implies $f_{1}(c t)=f_{1}(t)+a(t) \log c+o(a(t))(t+\infty)$.

As a consequence: if $f_{1} \stackrel{*}{\sim} f_{2}, f_{1} \in \Pi$, then there exist functions $a: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$, $b: \mathbb{R}^{+} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\frac{f_{1}(t x)-b(t)}{a(t)} \rightarrow \log x(t \rightarrow \infty) \text { for } i=1,2, x>0 \tag{1.64}
\end{equation*}
$$

Note that every pair of admissible functions $a>0$ and b gives rise to an equivalence class of functions $f \in \mathbb{I}$ satisfying (1.64). The next lemma shows that every equivalence class contains a smooth function.

Lemma 1.23
a) Suppose $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ is measurable and eventually positive. If $f \in R V_{\alpha}^{\infty}$ $(0<\alpha<1)$ or $f \in \Pi$, then there exists a positive decreasing continuous function s with $s(t) \rightarrow 0(t \rightarrow \infty)$ such that

$$
\begin{equation*}
\mathrm{f}(\mathrm{t}) \stackrel{\star}{\sim} \int_{0}^{\mathrm{t}} \mathrm{~s}(\mathrm{x}) \mathrm{dx}(\mathrm{t} \rightarrow \infty) \tag{1.65}
\end{equation*}
$$

b) Suppose f satisfies (1.65) with s positive, eventually decreasing and $s(\infty)=0$.
(i) If $s \in R V_{\alpha-1}^{\infty}, \alpha>0$, then $f \in R V_{\alpha}^{\infty}$ and if $s \in R V_{-1}^{\infty}$, then $f \in \Pi(a)$ with $a(t) \sim t s(t)(t \rightarrow \infty)$.
(ij) If $f \in \operatorname{RV}_{\alpha}^{\infty}(0<\alpha<1)$, then $s \in R V_{\alpha-1}^{\infty}$. If $f \in \Pi(a)$, then $s \in R V_{-1}^{\infty}$ and $a(t) \sim t s(t)(t+\infty)$.

Proof
a) If $f \in \operatorname{RV}_{\alpha}^{\infty}(\alpha>0)$ the statement is an immediate consequence of prop. 1.7.3 and prop. 1.22. Next suppose $f \in \Pi$. By proposition 1.19 .3 there exists
$\overline{\mathrm{f}}{ }_{\sim}^{*} \mathrm{f}$ which is twice differentiable and (by iteration) we may suppose its derivative $\bar{s}(t)$ to be convex and decreasing for $t \geq t_{0}$. Hence

$$
\vec{f}(t)=\vec{f}\left(t_{0}\right)+\int_{t_{0}}^{t} \vec{s}(x) d x \text { for all } t>t_{0}
$$

The right-hand side it not yet exactly of the required form. Note that since $\overline{\mathrm{f}}$ is eventually positive $\frac{1 \mathrm{im}}{\mathrm{t} \rightarrow \infty} \overline{\mathrm{f}}(\mathrm{t})-\mathrm{t} \bar{s}(\mathrm{t})>0$ by remark 1 following cor. 1.18.
Take $t_{1} \geq t_{0}$ such that $\vec{f}(t)>t \vec{s}(t)$ for $t \geq t_{1}$. The function f_{0} defined by $f_{0}(t):=\int_{0} s(x) d x$ with

$$
s(x)=\begin{aligned}
& \bar{f}\left(t_{1}\right) / t_{1} \text { for } 0<x<t_{1} \\
& \bar{s}(x) \quad \text { for } x \geq t_{1}
\end{aligned}
$$

satisfies $f_{0}(t) \stackrel{*}{\sim} f(t)(t \rightarrow \infty)$.

The final step is to redefine the function s on the interval $\left(0, t_{1}+1\right)$ without changing $\int_{0}^{t_{1}^{+1}} s(x) d x$ in such a way that s is decreasing and continuous.
b) The implication $s \in R V_{\alpha-1}^{\infty}, \alpha>0 \rightarrow f \in \mathrm{RV}_{\alpha}^{\infty}$ is an immediate consequence of the propositions 1.7 .4 and 1.22 (i). The converse implication is a consequence of the propositions 1.7 .11 and 1.22 (i). The proof of the corresponding statements for the class II are similar.

Remark
A similar result holds for functions $f \in \mathrm{RV}_{\alpha}^{\infty}$ with $\alpha>1$ or $\alpha<0$. We leave the formulation to the reader. The statement of lemma 1.23 will be used in chapter 2.

1. 3 The class Γ

For RV functions propositions 1.7 .9 and 1.7 .10 show that (generalized) inversion gives again an RV function. For non-decreasing unbounded functions in the class II we obtain the following class by inversion (cf. theorem 1.27 below).

Definition 1.24

A non-decreasing function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is eventually positive, is said to belong to the class Γ if there exists a function $b: \mathbb{R} \rightarrow \mathbb{R}^{+}$such that for all $x \in \mathbb{R}$

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{f(t+x b(t))}{f(t)}=e^{x} \tag{1.66}
\end{equation*}
$$

Notation: $f \in \mathrm{I}$ or $\mathrm{f} \in \mathrm{I}(\mathrm{b})$.

The function b is called an auxiliary function for f.

Remarks

1. Note that (1.66) implies $f(\infty)=\infty$.
2. From lemma 1.25 below it follows that relation (1.66) holds uniformly on each bounded interval.
Hence any positive function b_{1} is an auxiliary function for f if and only if $b_{1}(t) \sim b(t)(t \rightarrow \infty)$; the "only if" part of this statement follows by contradiction.

Lemma 1.25

Suppose the functions $f, f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ are non-decreasing for $n=1,2, \ldots, f$ is continuous and $f_{n}(x) \rightarrow f(x)(n \rightarrow \infty)$ for $x \in \mathbb{R}$.
Then convergence is uniform on bounded intervals of \mathbb{R}.

Proof

By contradiction. Suppose there exists a sequence $x_{1}^{1}, x_{2}^{1}, \ldots \ldots \in[a, b]$ such that

$$
\begin{equation*}
f_{n}\left(x_{n}^{1}\right)-f\left(x_{n}^{l}\right) \geq c>0 \tag{1.67}
\end{equation*}
$$

say, for all n.
Let x_{1}, x_{2}, \ldots be a subsequence of $x_{1}^{1}, x_{2}^{1}, \ldots$ with $x_{n} \rightarrow x_{0} \in[a, b](n \rightarrow \infty)$.
Choose n_{0} such that $f\left(x_{n}\right)>f\left(x_{0}\right)-c / 3$ for $n \geq n_{0}$.
Choose $\varepsilon>0$ such that $f\left(x_{o}+\varepsilon\right)<f\left(x_{0}\right)+c / 3$.
Choose n_{1} such that $f_{n}\left(x_{0}+\varepsilon\right)<f\left(x_{0}+\varepsilon\right)+c / 3$ for $n \geq n_{1}$.
Choose n_{2} such that $x_{n} \leq x_{0}+\varepsilon$ for $n \geq n_{2}$.
Combination of the above four inequalities contradicts (1.67).

In order to show that the class Γ consists of the fuctions which are inverse to a non-decreasing Π-function we need the following lemma. Recall (def 1.6) that if $f:\left(t_{0}, \infty\right) \rightarrow \mathbb{R}$ is bounded on intervals of the form (t_{0}, a) with $a<\infty$ and $\lim f(t)=\infty$, then the generalized inverse function f^{+}is defined by $t \rightarrow \infty$ $f^{+}(x)=\inf \{y ; f(y) \geq x\}$ for x sufficiently large.

Lemma 1.26

Suppose the functions $f_{n}: \mathbb{R}^{+} \rightarrow \mathbb{R}$ are nondecreasing, $\lim _{t \rightarrow \infty} f_{n}(t)=\infty$ for
$n=1,2, \ldots$ and $f_{n}(x) \rightarrow f(x)(n+\infty)$ for every continuity point of f. Suppose also $\lim f(t)=\infty$ 。
Then $f_{n}^{t+\infty}(y) \rightarrow f^{+}(y)(n \rightarrow \infty)$ for every continuity point of f^{+}.

Proof
Let y be a continuity point of f^{+}. Fix $\varepsilon>0$. We have to prove that for $n \geq n_{0}$

$$
f_{n}^{+}(y)-\varepsilon \leq f^{+}(y) \leq f_{n}^{+}(y)+\varepsilon .
$$

We are going to prove the right inequality, the proof of the left-hand inequality is similar.
Choose $0<\varepsilon_{1}<\varepsilon$ such that $f^{+}(y)-\varepsilon_{1}$ is a continuity point of f. This is possible since the continuity points of f form a dense set, Since f^{+}is continuous in $y, f^{+}(y)$ is a point of increase for f, hence $f\left(f^{+}(y)-\varepsilon_{1}\right)<y$. Choose $\delta<y-f\left(f^{+}(y)-\varepsilon_{1}\right)$. Since $f^{+}(y)-\varepsilon_{1}$ is a continuity point of f, there exists n_{0} such that $f_{n}\left(f^{+}(y)-\varepsilon_{1}\right)<f\left(f^{+}(y)-\varepsilon_{1}\right)+\delta<y$ for $n \geq n_{0}$. The definition of the function f_{n}^{+}then implies $f^{+}(y)-\varepsilon_{1}<f_{n}^{+}(y)$.

Theorem 1.27

(i) Suppose $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$.

If $f \in \Pi(a)$ and $f(\infty)=\infty$, then $f^{+} \in \Gamma(b)$ with $b(t) \sim a\left(f^{+}(t)\right)(t \rightarrow \infty)$.
(ij) Conversely, if $g \in \Gamma(b)$, then $g^{+} \in \Pi(a)$ with $a(t) \sim b\left(g^{+}(t)\right)(t \rightarrow \infty)$.

As in proposition 1.7 .9 the domain of definition $f^{+}\left(g^{+}\right)$can be extended to \mathbb{R} (\mathbb{R}^{+}respectively) by defining the function to be zero on a neighbourhood of $-\infty$ (0 respectively).

Proof
(i) Suppose $f \in I(a)$. Note that f is locally bounded on intervals of the form (t_{0}, a) for t_{0} sufficiently large, hence f^{+}is well-defined. Using the definition of f^{+}we have $f\left((1-\varepsilon) f^{+}(s)\right) \leq s \leq f\left((1+\varepsilon) f^{+}(s)\right)$ for any $\varepsilon>0$. As a consequence we have for $\mathrm{x}>0$

$$
\frac{f\left(\mathrm{Xf}^{+}(\mathrm{s})\right)-s}{a\left(f^{+}(s)\right)} \geq \frac{f\left(\mathrm{Xf}^{+}(\mathrm{s})\right)-\mathrm{f}\left(\mathrm{f}^{+}(\mathrm{s})\right)}{\mathrm{a}\left(\mathrm{f}^{+}(\mathrm{s})\right)}-\frac{\mathrm{f}\left((1+\varepsilon) \mathrm{f}^{+}(\mathrm{s})\right)-\mathrm{f}^{\left(f^{+}(\mathrm{s})\right)}}{a\left(\mathrm{f}^{+}(\mathrm{s})\right)}
$$

The right-hand side in the above inequality tends to $\log (x /(1+\varepsilon))$ since $f \in \Pi(a)$ and $\lim _{s+\infty} f^{+}(s)=\infty$.
Using a similar upper inequality we find
$\lim _{s \rightarrow \infty} \frac{f\left(\mathrm{xf}^{+}(\mathrm{s})\right)-s}{a\left(f^{+}(s)\right)}=\log x$ since $\varepsilon>0$ is arbitrary. Application of lemma
1.26 then shows

$$
\frac{f^{+}\left(s+x a\left(f^{+}(s)\right)\right)}{f^{+}(s)}=\inf \left\{y ; \frac{f\left(y f^{+}(s)\right)-s}{a\left(f^{+}(s)\right)} \geq x\right\} \rightarrow e^{x}(s \rightarrow \infty)
$$

(ij) Conversely suppose $g \in \Gamma(b)$. By the definition of g^{+}we have

$$
\begin{equation*}
g\left(g^{+}(t)-0\right) \leq t \leq g\left(g^{+}(t)+0\right) \tag{1.68}
\end{equation*}
$$

Hence for any $\varepsilon>0$ we have $g\left(g^{+}(t)-\varepsilon b\left(g^{+}(t)\right)\right) \leq t \leq g\left(g^{+}(t)+\varepsilon\right.$ $b\left(g^{+}(t)\right)$) since the function b is positive.
Division by $g\left(g^{+}(t)\right)$ throughout and application of (1.66) shows that $t \sim g\left(g^{+}(t)\right)(t \rightarrow \infty)$.
We thus have by (1.66)

$$
\lim _{t \rightarrow \infty} \frac{g\left(g^{+}(t)+x b\left(g^{+}(t)\right)\right)}{t}=e^{x} \text { for } x \in \mathbb{R}
$$

By lemma 1.26 we find

$$
\begin{aligned}
& \frac{g^{+}(t x)-g^{+}(t)}{b\left(g^{+}(t)\right)}=\frac{\inf \{v ; g(v) \geq t x\}-g^{+}(t)}{b\left(g^{+}(t)\right)}= \\
& =\inf \left\{y ; g\left(g^{+}(t)+y b\left(g^{+}(t)\right)\right) \geq t x\right\} \rightarrow \ln x(t \rightarrow \infty)
\end{aligned}
$$

Remarks

1. Note that if $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ is nondecreasing and $f(\infty)=\infty$, then for any continuity point of f we have $f(t)=\inf \left\{y ; f^{+}(y) \geq t\right\}$, hence the generalized inverse of the generalized inverse gives us the original function.
2. If $g \in \Pi(b)$, then the composition $b{ }^{\circ} g^{+} \in \operatorname{RV}_{0}^{\infty}$.

Next we prove a representation theorem for the class Γ.

Theorem 1.28
Suppose $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$is non-decreasing.
The following statements are equivalent:
(i) $f \in \Gamma$.
(ij) There exists a differentiable function $\beta: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$with $\beta^{\prime}(x) \rightarrow 0(x \rightarrow \infty)$ such that

$$
\begin{equation*}
f(t) \sim \exp \left\{\int_{1}^{t} \frac{d s}{\beta(s)}\right\}(t \rightarrow \infty) \tag{1.70}
\end{equation*}
$$

(iij) $\quad \lim _{t \rightarrow \infty} \frac{f(t) \cdot \int_{0}^{t} \int_{0}^{x} f(s) d s d x}{\left(\int_{0}^{t} f(s) d s\right)^{2}}=1$.

Proof
$(i)+(i j)$
Theorem 1.27 implies that $\mathrm{f}^{+} \in$ M. Proposition 1.19 .3 shows that there exists a function g, twice differentiable with $-g^{\prime \prime} \in \operatorname{RV}_{-2}^{\infty}$ and $g \stackrel{*}{\sim} f^{+}$. The latter relation implies $\mathrm{g}^{+}(\mathrm{t}) \sim \mathrm{f}(\mathrm{t}), \mathrm{t} \rightarrow \mathrm{\infty}$, by definition 1.21 . (Note that $\mathrm{f} \in \Gamma$ implies $f(t+) \sim f(t-), t+\infty)$.
Since $-g^{\prime \prime} \in R V_{-2}^{\infty}$ we have $\frac{t^{\prime \prime}(t)}{g^{\prime \prime}(t)} \rightarrow-1(t \rightarrow \infty)$ by theorem 1.4. Replacing t by $g^{+}(t)$ gives

$$
\frac{-g^{+}(t)\left(g^{+}\right)^{\prime \prime}(t)}{\left\{\left(g^{+}\right)^{\prime}(t)\right\}^{2}}=\frac{g^{+}(t) g^{\prime \prime}\left(g^{+}(t)\right)}{g^{\prime}\left(g^{+}(t)\right)} \rightarrow-1(t+\infty)
$$

Hence $\left\{\frac{1}{\left(1 n g^{+}\right)^{\prime}(t)}\right\}^{\prime}=1-\frac{g^{+}(t)\left(g^{+}\right)^{\prime \prime}(t)}{\left\{\left(g^{+}\right)^{\prime}(t)\right]^{2}}+0(t+\infty)$.
Define the function β by $\beta(t)=1 /\left(\ln g^{+}\right)^{\prime}(t)$. Then β satisfies the requirements of the theorem and for some constant c

$$
\begin{equation*}
\log g^{+}(t)=\int_{1}^{t} \frac{d s}{\beta(s)}+c \tag{1.72}
\end{equation*}
$$

Then $\mathrm{f} \sim \mathrm{g}^{+}$satisfies (1.70) since we can modify β on the interval (1,2) in such a way that $(1,72)$ holds with $\mathrm{c}=0$.
$(i j) \rightarrow(i)$
First we note that $\beta^{\prime}(t) \rightarrow 0(t \rightarrow \infty)$ implies

$$
\begin{equation*}
\frac{\beta(t+x \beta(t))}{\beta(t)} \rightarrow 1(t+\infty) \tag{1.73}
\end{equation*}
$$

uniformly on finite intervals of \mathbb{R}, since
$-1+\beta(t+x \beta(t)) / \beta(t)=x \beta^{\prime}(t+\theta x \beta(t))$ with $\theta=\theta(t, x)$ and $0<\theta<1$.

The right-hand side is easily seen to tend to zero uniformly as $t \rightarrow \infty$. Now by (1.70)

$$
\frac{f(t+x \beta(t))}{f(t)} \sim \exp \left\{\int_{t}^{t+x \beta(t)} \frac{d s}{\beta(s)}\right\}=\exp \left\{\int_{0}^{x} \frac{\beta(t)}{\beta(t+v \beta(t))} d v\right\}
$$

and the integral on the right-hand side tends to x as $t+\infty$.
(i), $(i j)+(i i j)$

First we prove that $f \in \Gamma(b)$ implies $\int_{0}^{t} f(s)$ ds $\in \Gamma(b)$. By the previous proof
we may assume that $f \in \Gamma(\beta)$ with $\beta(t) \sim b(t)(t \rightarrow \infty), \beta$ as in thm. 1.28 (ij) and such that (1.70) holds.
and such that (1.70) holds.
Define the function g by $g(t)=\exp \left\{\int_{0}^{t} \frac{d s}{B(s)}\right\}$.
Since $\beta^{\prime} \rightarrow 0$ we have $(\beta g)^{\prime}=\beta^{\prime} g+g \sim g$, hence $\beta(t) g(t) \sim \int_{0}^{t} g(s) d s(t+\infty)$.
Since $f(t) \sim g(t)(t+\infty)$, this implies

$$
\begin{equation*}
\beta(t) \sim \frac{\int_{0}^{t} g(s) d s}{g(t)} \sim \frac{\int_{0}^{t} f(s) d s}{f(t)}(t \rightarrow \infty) \tag{1.74}
\end{equation*}
$$

It follows that (cf. (1.73))

This implies $\int_{0}^{t} f(s) d s \in \Gamma(\beta)$. The proof also shows that if a function h satisfies $h \in \Gamma(\beta)$, then $\beta(t) \sim \int_{0}^{t} h(s) d s / h(t)(t+\infty)$. Applying this for $h(t):=\int_{0} f(s) d s$ entails

$$
\begin{equation*}
B(t) \sim \int_{0}^{t} \int_{0}^{x} f(s) d s d x / \int_{0}^{t} f(s) d s(t+\infty) . \tag{1.75}
\end{equation*}
$$

The statement (1.71) is implied by (1.74) and (1.75).
$(\mathrm{i} i j)+(\mathrm{i})$
Define the function ε by $\varepsilon(t)=1-f(t)\left(\int_{t}^{t} \int_{0}^{x} f(s) d s d x\right) /\left(\int_{0}^{t} f(s) d s\right)^{2}$ and the function h by $h(t)=\int_{0}^{t} \int_{0}^{x} f(s) d s d x / \int_{0}^{t} f(s) d s, t>0$.
Then $\varepsilon(t) \rightarrow 0(t \rightarrow \infty)$ by (1.71) and $h(t)=h(1)+\int_{1}^{t} \varepsilon(s)$ ds. It follows (as in
the part $(i j) \rightarrow(i)$ of this proof) that the part $(i j) \rightarrow(i)$ of this proof) that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} h(t+x h(t)) / h(t)=1 \tag{1.76}
\end{equation*}
$$

for all x uniformly on finite intervals and hence

$$
\begin{equation*}
\int_{0}^{t} \int_{0}^{x} f(s) d s d x=c \exp \left\{\int_{1}^{t} \frac{d s}{h(s)}\right\} \in \Gamma(h) \tag{1.77}
\end{equation*}
$$

Note that $c=\int_{0}^{1} \int_{0}^{x} f(s) d s d x$.
By (1.76) and (1.77) we then have

$$
\begin{equation*}
\int_{0}^{t} f(s) d s=\frac{1}{h(t)} \int_{0}^{t} \int_{0}^{x} f(s) d s d x \in \Gamma(h) \tag{1.78}
\end{equation*}
$$

and hence $f(t) \sim\left(\int_{0}^{t} f(s) d s\right)^{2} / \int_{0}^{t} \int_{0}^{x} f(s) d s d x(t \rightarrow \infty)$. Combination with (1.77) and (1.78) gives $f \in \Gamma(h)$.

$$
-41-
$$

Remark
Note that for the implication (1.70) $\rightarrow(1.66)$ or (1.71) $\rightarrow(1.66)$ the monotonicity of f has not been used. The question of defining a function class like Γ without monotonicity remains unsettled.

Corollary 1.29

1. If $f \in \Gamma(b)$, then

Hence b can always be taken measurable.
Moreover the function β in the above theorem satisfies $\beta(t) \sim b(t)(t+\infty)$. Hence if $f \in \Gamma(b)$, then $b(t+x b(t)) \sim b(t)(t \rightarrow \infty)$ uniformly on finite intervals of \mathbb{R}.
2. $f \in \Gamma(b)$ implies $\int_{0}^{t} f(s) d s \in \Gamma(b)$.
3. We may replace (1.70) by $f(t) \sim \exp \left\{\int_{1}^{t} \frac{c(s)}{B(s)} d s\right\}$, where $c(s) \rightarrow c>0(s \rightarrow \infty)$.
4. $f \in \Gamma(b)$ implies $b(t) / t \rightarrow 0, t+\infty$ (since the same holds for the function B_{C})

The next theorem provides another characterization of the class Γ.
Theorem 1.30
If $f \in \Gamma$, then for all positive α

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\int_{0}^{t}\{f(s)\}^{\alpha} d s}{\{f(t)\}^{\alpha-1} \int_{0}^{t} f(s) d s}=\frac{1}{\alpha} \tag{1.79}
\end{equation*}
$$

Conversely, if a positive non-decreasing function f satisfies (1.79) for some positive $\alpha \neq 1$, then $f \in \Gamma$.

Proof
Suppose $f \in \Gamma(b)$. Then $\lim _{t \rightarrow \infty} \frac{\{f(t+x b(t) / \alpha)\}^{\alpha}}{f(t)^{\alpha}}=e^{x}$,
hence $f^{\alpha} \in \Gamma(b / \alpha)$. Applying corollary 1.29 .1 twice, we get

$$
\frac{\int_{0}^{t}\{f(s)\}^{\alpha} d s}{\{f(t)\}^{\alpha}} \sim \frac{b(t)}{\alpha} \sim \frac{\int_{0}^{t} f(s) d s}{\alpha f(t)}(t \rightarrow \infty),
$$

which is equivalent to (1.79).
For the proof of the converse statement we define the function ρ by

$$
\begin{align*}
& \rho(t)=\frac{1}{\alpha-1} \frac{\{f(t)\}^{\alpha}}{\int_{0}^{t}\{f(s)\}^{\alpha} d s} \quad\left(1-\frac{\int_{0}^{t}\{f(s)\}^{\alpha} d s}{(f(t))^{\alpha-1} \int_{0}^{t} f(s) d s}\right) g(t) \text {, where } \\
& g(t)=\left(\alpha \int_{0}^{t}\{f(s)\}^{\alpha} d s / \int_{0}^{t} f(s) d s\right)^{1 /(\alpha-1), t>0 .} \tag{1.80}
\end{align*}
$$

Then $g(t)=c+\int_{0}^{t} \rho(s) d s$, hence using (1.79) twice we find

$$
\begin{equation*}
\frac{\rho(t)}{g(t)} \sim \frac{1}{\alpha} \frac{\{f(t)\}^{\alpha}}{\int_{0}^{t}\{f(s)\}^{\alpha} d s} \sim \frac{f(t)}{\int_{0}^{t} f(s) d s}(t \rightarrow \infty) . \tag{1.81}
\end{equation*}
$$

Note that (1.79) and (1.70) imply $g(t) \sim f(t)(t \rightarrow \infty)$.

Hence $\int_{0}^{t} g(s) d s \sim \int_{0}^{t} f(s) d s(t+\infty)$ and combination with (1.81) gives
$\lim _{t \rightarrow \infty} \rho(t) \int_{0}^{t} g(s) d s /\{g(t)\}^{2}=1$. By the proof of theorem 1.28 (cf. the remark following the theorem) we have $\lim \rho(t+x b(t)) / \rho(t)=e^{x}$ for all $x \in \mathbb{R}$ uniformly on finite intervals with $b(t)=g(t) / \rho(t)$.
Hence for $x \in \mathbb{R}$ since $g(t) \sim f(t)(t \rightarrow \infty)$ and $f(t) \rightarrow \infty$ we have

$$
\begin{gathered}
\frac{g(t+x b(t))}{g(t)}-1=\frac{\int_{t}^{t+x b(t)} \rho(s) d s}{c+\int_{0}^{t} \rho(s) d s} \sim b(t) \int_{0}^{x} \frac{\rho(t+u b(t))}{\rho(t)} d u /\left(\int_{0}^{t} \rho(s) d s / \rho(t)\right) \\
\sim e^{x}-1(t+\infty) .
\end{gathered}
$$

Hence $g \in \Gamma$. Since $f(t) \sim g(t)(t \rightarrow \infty)$, we find $f \in \Gamma$.

Proposition 1.31

1. If $f \in \Gamma$, then $\log f(t) / \log t+\infty(t \rightarrow \infty)$.

Moreover $\lim _{t \rightarrow \infty} \frac{f(t x)}{f(t)}= \begin{cases}0 & \text { if } 0<x<1 \\ \infty & \text { if } x>1 .\end{cases}$
2. The class Γ is closed under multiplication: if $f_{1} \in \Gamma\left(b_{1}\right), f_{2} \in \Gamma\left(b_{2}\right)$, then $f_{1} f_{2} \in \Gamma(b)$ with $b(t):=b_{1}(t) b_{2}(t) /\left\{b_{1}(t)+b_{2}(t)\right\}$.
3. If $f \in \Gamma$, $h \in R V_{\alpha}^{\infty}$ with $\alpha>0$, then $h{ }^{\circ} f \in \Gamma$, where $h{ }^{\circ} f$ denotes the composition of the two functions. If $f \in \Gamma$ and h is differentiable with $h^{\prime} \in \mathrm{RV}_{\alpha}^{\infty}, \alpha>-1$, then $f{ }^{\circ} \mathrm{h} \in \Gamma$.
4. If $f \in \Gamma(b)$ then $\int_{0}^{t} f(s) d s \in \Gamma(b)$. Conversely if $\int_{0}^{t} f(s) d s \in \Gamma(b)$ and f is non-decreasing, then $f \in \Gamma(b)$.
5. If $f \in \Gamma(b)$, there exists $f_{0} \in C^{\infty}$ with $f_{0}^{(n)} \in \Gamma(b)$ for $n=1,2$, ... such that $f_{0}(t) \sim f(t)(t \rightarrow \infty)$.
6. Suppose $f \in \Gamma(b)$. If $\delta_{1}, \delta_{2}>0$ are arbitrary, there exists $t_{0}=t_{0}\left(\delta_{1}, \delta_{2}\right)$ such that for $t \geq t_{0}, x \geq 0$

$$
\left(1-\delta_{1}\right)\left(\frac{f(t+x b(t))}{f(t)}\right)^{\delta_{2}} \leq \frac{b(t+x b(t))}{b(t)} \leq\left(1+\delta_{1}\right)\left(\frac{f(t+x b(t))}{f(t)}\right)^{\delta_{2}} .
$$

7. Suppose $f \in \Gamma(b)$. Define the function g by $g(t)=1 /\left\{\int_{1}^{t} d s / f(s)\right\}$. Then $g \in \Gamma(b)$.

Proof

ad 1. The proof is an immediate consequence of theorem 1.28, cor. 1.29 .4 and de 1'Hôpital's rule.
ad 2. By theorem 1.28 it is sufficient to prove that

$$
\lim _{t \rightarrow \infty} \frac{d}{d t}\left\{\beta_{1}(t)^{-1}+\beta_{2}(t)^{-1}\right\}=0 \text { with } \beta_{1} \text { and } \beta_{2} \text { as defined there. }
$$ This follows immediately since $\beta_{1}, \beta_{2}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$satisfy $\beta_{i}^{\prime}(t) \rightarrow 0(t+\infty)$ for $i=1$, 2 .

ad 3. If $f \in \Gamma(b)$ and $h \in R V_{\alpha}^{\infty}$ with $\alpha>0$, by the uniform convergence theorem for regularly varying functions we have $h(f(t+x b(t) / \alpha)) / h(f(t)) \rightarrow e^{x}$ ($t+\infty$). If $f \in \Gamma(b)$ and h is differentiable with $h^{\prime} \in \operatorname{RV}_{\alpha}, \alpha>-1$, by the uniform convergence theorem for regularly varying functions (thm. 1.3) and lemma 1.25 we have for some $\theta=\theta(x, t) \epsilon(0,1)$

$$
\frac{f\left(h\left(t+\frac{x b(h(t))}{h^{\prime}(t)}\right)\right)}{f(h(t))}=\frac{f\left(h(t)+x b(h(t)) \frac{h^{\prime}\left(t+\theta x b(h(t)) / h^{\prime}(t)\right)}{h^{\prime}(t)}\right)}{f(h(t))} \rightarrow e^{x}
$$

as $t \rightarrow \infty$ (note that $b(h(t)) / t h^{\prime}(t)=\frac{b(h(t))}{h(t)} \cdot \frac{h(t)}{t h^{\prime}(t)} \rightarrow 0(t+\infty)$ by cor. 1.29 .4 since $h^{\prime} \in R V_{\alpha}$ with $\alpha>-1$).
ad 4. Since $\int_{0}^{t} f(s) d s \in \Gamma(b)$, for $x>0$ the right-hand side of the inequality

tends to $\left(e^{x}-1\right) / x$ as $t+\infty$. Let now $x \rightarrow 0+$ to obtain $\overline{\lim }_{t \rightarrow \infty} f(t) b(t) \int_{0}^{t} f(s) d s \leq 1$. Similarly, for $x<0$ we have

$$
-\frac{\int_{t+x b(t)}^{t} f(s) d s}{x \int_{0}^{t} f(s) d s} \leq \frac{f(t) b(t)}{t},
$$

which implies $\frac{\lim }{t \rightarrow \infty} f(t) b(t) / \int_{0}^{t} f(s) d s \geq 1$.
Hence $f(t) b(t) \sim \int_{0}^{t} f(s) d s$. Since $\int_{0}^{t} f(s) d s \in \Gamma(b)$ we have $b(t+x b(t))$ $\sim b(t)$ (cor. 1.29.1). Combining these results, we find $f \in \Gamma(b)$.
ad 5. From theorem 1.28 it follows that without loss of generality we may suppose f to be strictly increasing and continuous. Application of theorem 1.27 (ij) shows that the inverse function $f^{+} \in \Pi(a)$ with $a(t) \sim$ $b\left(f^{+}(t)\right)($ or $a(f(t)) \sim b(t)(t+\infty))$.

Since $\mathrm{f}^{+} \in \Pi(a)$, there exists a function $g_{0} \in \Pi(a)$ satisfying $g_{0} \stackrel{*}{\sim} f^{+}$ and $(-1)^{\mathrm{n}+1} \mathrm{~g}_{0}{ }^{(\mathrm{n})} \in \mathrm{RV}_{-\mathrm{n}}^{\infty}$ for $\mathrm{n}=1,2$,.. (see prop. 1.19 .6 and prop. 1.22 (ij)).

By the definition of the relation $\stackrel{*}{\sim}$ we have $g_{0}^{+}(t) \sim f(t)(t \rightarrow \infty)$, hence $a\left(g_{0}^{+}(t)\right) \sim a(f(t)) \sim b(t)$ (by the uniform convergence theorem for $R V$ functions), which is equivalent to

$$
\begin{equation*}
a(t) \sim b\left(g_{0}(t)\right)(t+\infty) \tag{1.82}
\end{equation*}
$$

On the other hand we find

$$
\begin{equation*}
a(t) \sim \operatorname{tg}_{0}^{\prime}(t)(t \rightarrow \infty) \tag{1.83}
\end{equation*}
$$

by application of lemma 1.23 b .
We claim that the function f_{0} defined by $f_{0}(t):=g_{0}^{+}(t)$ for all suffiently large t satisfies the assumptions.
First note that $f_{0}(t) \sim f(t)$ which implies $f_{0} \in \Gamma(b)$ since $f \in \Gamma(b)$. We shall prove that for $n \in \mathbb{N}$ we have

$$
\begin{equation*}
f_{0}^{(n)}(t) \sim \frac{f_{0}(t)}{\{b(t)\}^{n}}(t+\infty), \tag{1.84}
\end{equation*}
$$

which implies $f_{0}^{(n)} \in \Gamma(b)\left(\right.$ since $f_{0} \in \Gamma(b)$).

Substituting $g_{0}(t)$ for t shows that (1.84) is equivalent to

$$
f_{0}^{(n)}\left(g_{0}(t)\right)\left\{b\left(g_{0}(t)\right)\right\}^{n} / t+1(t \rightarrow \infty) .
$$

Combination of (1.82) and (1.83) shows that the last limit relation is equivalent to

$$
\begin{equation*}
f_{0}^{(n)}\left(g_{0}(t)\right)\left\{\operatorname{tg}_{0}^{\prime}(t)\right\}^{n} t^{-1}+1(t+\infty) \tag{1.85}
\end{equation*}
$$

We will prove (1.85) by induction using Faà di Bruno's formula (see e.g. Abramowitz and Stegun, p. 823):
Since $f_{0}\left(g_{0}(t)\right)=t$ for all t sufficiently large, we have for $n>1$

$$
0=\left(\frac{d}{d t}\right)^{n} f_{0}\left(g_{0}(t)\right)=\sum_{m=0}^{n} f_{0}^{(m)}\left(g_{0}(t)\right) \Sigma^{\prime} n!\prod_{k=1}^{n}\left(\frac{g_{0}^{(k)}(t)}{k!}\right)^{a_{k}} \frac{1}{a_{k}!},
$$

where Σ^{\prime} denotes summation over all a_{k} 's satisfying $a_{1}+2 a_{2}+\ldots+n a_{n}$ $=n$ and $a_{1}+\ldots+a_{n}=m$.
Since $(-1)^{n+1} g_{0}^{(n)} \in R V_{-n}^{\infty}$, we have by repeated application of theorem 1.4

$$
\begin{equation*}
\frac{t^{k-1} g_{0}^{(k)}(t)}{g_{0}^{\prime}(t)}+(-1)^{k-1}(k-1)!(t+\infty) \text { for all } k \geq 2 \tag{1.87}
\end{equation*}
$$

Hence

$$
\prod_{k=1}^{n}\left(\frac{g_{0}^{(k)}(t)}{k!}\right)^{a_{k}} \frac{1}{a_{k}!} \sim(-1)^{n-m}\left(g_{0}^{\prime}(t)\right)^{m} t^{m-n} \prod_{k=1}^{n}\left(k^{a_{k}} \cdot a_{k}!\right)^{-1}(t \rightarrow \infty)
$$

Substitution gives

$$
\begin{gather*}
0=t^{n-1}\left(\frac{d}{d t}\right)^{n} f_{0}\left(g_{0}(t)\right)=(1+o(1)) \sum_{m=0}^{n}\left\{f_{0}^{(m)}\left(g_{0}(t)\right)\left(\operatorname{tg}_{0}^{\prime}(t)\right)^{m} t^{-1}\right\} \\
(-1)^{n-m} n!\Sigma^{\prime} \prod_{k=1}^{n}\left(k^{a_{k}} \cdot a_{k}!\right)^{-1}(t+\infty) . \tag{1.88}
\end{gather*}
$$

The proof of (1.85) for $n=1$ is immediate from $f_{0}\left(g_{0}(t)\right)=t$ and (1.87).

Now suppose (1.85) holds for $1 \leq n \leq N-1$.
Then the existence of $\lim _{t \rightarrow \infty} f_{0}^{(N)}\left(g_{0}(t)\right)\left\{\operatorname{tg}_{0}^{\prime}(t)\right\}^{N_{t}-1}$ is a consequence of (1.88). Moreover this limit is 1 since $\sum_{m=0}^{n}(-1)^{m} \Sigma^{2} \prod_{k=1}^{n}\left(k^{a^{n}}{ }_{a_{k}!}\right)^{-1}=0$ for $n \in \mathbb{N}$ (this can be seen e.g. by taking $f_{0}(t)=\exp t$ in (1.86)).
ad 6. We only prove the second inequality. The proof of the first inequality is similar. Suppose $f \in \Gamma(b)$. Since there exists a strictly increasing $f_{1} \in \Gamma(b)$ satisfying $f_{1}(t) \sim f(t)(t+\infty)$ (theorem 1.28), we may suppose without loss of generality that f is strictly increasing. We apply proposition 1.7 .5 to the function $b^{\circ} \mathrm{f}^{+}$, which is slowly varying by theorem 1.27 (ij) and theorem 1.12 to obtain

$$
\frac{b\left(f^{+}(s y)\right)}{b\left(f^{+}(s)\right)} \leq\left(1+\delta_{1}\right) y^{\delta_{2}} \text { for } s \geq s_{0}, y \geq 1
$$

Now take $s=f(t)$ and $y=f(t+x b(t)) / f(t)$ in the resulting inequality.
ad 7. By theorem 1.28 there exists a function $\beta(t) \sim b(t)(t \rightarrow \infty)$ such that
$\beta^{\prime}(t) \rightarrow 0$ and $1 / f(t) \sim \exp \left\{-\int_{1}^{t} d s / \beta(s)\right\}(t \rightarrow \infty)$.
Hence $g(t)=1 /\left[\int_{1}^{t} d s / f(s)\right\} \sim 1 / \int_{1}^{t} \exp \left(-\int_{1}^{s} d u / \beta(u)\right) d s(t \rightarrow \infty)$.
Since $f \in \Gamma(\beta)$ we have

by de 1'Hôpital's rule.
Hence $g \in \Gamma(\beta)$, which implies $g \in \Gamma(b)$ by remark 2 following def. 1.24.

In theorem 1.17 it is shown that for $f \in \Pi(a)$ it is possible to construct a representation in terms of the function a. Our last result for the class r gives a similar statement for functions $f \in \Gamma(b)$.

Proposition 1.32

If $f \in \Gamma(b)$ with b such that $1 / b$ is locally integrable on \mathbb{R}^{+}(this can always be achieved since any auxiliary function is asymptotic to a positive continuous one), then there exists a non-decreasing function $f_{1} \in \operatorname{RV}_{1}$ such that

$$
\begin{equation*}
f(t)=f_{1}(h(t)), \tag{1.89}
\end{equation*}
$$

where $h(t):=\exp \left(\int_{0}^{t} \frac{1}{b(s)} d s\right)$.
Conversely if f satisfies (1.89) with h as above, then $f \in \Gamma(b)$.

Proof

Suppose $f \in \Gamma(b)$. Define $f_{1}(t):=f\left(h^{+}(t)\right)$.
Note that $h^{+} \in \Pi(a)$, where $a(t) \sim b\left(h^{+}(t)\right)(t \rightarrow \infty)$ by theorem 1.27.

By lemma 1.25 we have for $x>0$

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \frac{f_{1}(t x)}{f} f_{1}(t) & =\lim _{t \rightarrow \infty} \frac{f\left(h^{+}(t)+\left\{\left(h^{+}(t x)-h^{+}(t)\right) / b\left(h^{+}(t)\right)\right\} b\left(h^{+}(t)\right)\right)}{f\left(h^{+}(t)\right)} \\
& =\exp \left(\lim _{t \rightarrow \infty} \frac{h^{+}(t x)-h^{+}(t)}{b\left(h^{+}(t)\right)}\right)=x .
\end{aligned}
$$

Conversely, if f satisfies (1.89), where $f_{1} \in R_{1}$, then for $x>0$

$$
\lim _{t \rightarrow \infty} \frac{f(t+x b(t))}{f(t)}=\lim _{t \rightarrow \infty} \frac{f_{1}(\{h(t+x b(t)) / h(t)\} h(t))}{f_{1}(h(t))}=
$$

$$
=\lim _{t \rightarrow \infty} h(t+x b(t)) / h(t)=e^{x}
$$

I. 4 Beurling slowly varying functions

The class of auxiliary functions b for functions in the class Γ (cf, cor. 1.29.1) is an interesting class in its own right since it can be used in other contexts as well. We now give some results for this class of functions.

Definition 1.33

A measurable function $b: \mathbb{R} \rightarrow \mathbb{R}$ which is eventually positive is Beurling slowly varying (at infinity) if

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{b(t+x b(t))}{b(t)}=1 \text { for all } x \in \mathbb{R} \tag{1.90}
\end{equation*}
$$

Notation: $b \in \operatorname{BSV}$.

Remark
This class of functions was used by A. Beurling in connection with a generalization of Wiener's Tauberian theorem (unpublished, cf. Bloom 1976).

Before discussing further properties of the class Γ, we give two results concerning the class BSV.

Theorem 1. 34
If $b \in \operatorname{BSV}$ is continuous, relation (1.90) holds uniformly for $x \in[a, b]$ with $-\infty<a<b<\infty$ 。

Proof

We prove the result for $a=0, b=1$, the argument for an arbitrary interval being similar.
Suppose (1.90) does not hold locally uniformly. Then there exist $\varepsilon \in(0,1)$ and sequences $\left\{x_{n}\right\} \subset(0,1)$ and $t_{n} \rightarrow \infty(n \rightarrow \infty)$ such that

$$
\left|b\left(t_{n}+x_{n} b\left(t_{n}\right)\right) / b\left(t_{n}\right)-1\right| \geq \varepsilon \text { for } n=1,2, \ldots
$$

The function $f_{n}(t):=b\left(t_{n}+t b\left(t_{n}\right)\right) / b\left(t_{n}\right)-1$ is continuous and $\lim f_{n}(t)=0$ for fixed t.
Hence there is an integer N and a sequence $\alpha_{n} \in(0,1)(n=1,2, \ldots)$ such that

$$
\begin{equation*}
\left|b\left(y_{n}\right) / b\left(t_{n}\right)-1\right|=\varepsilon \text { for } n \geq N \tag{1.91}
\end{equation*}
$$

where $y_{n}=t_{n}+\alpha_{n} b\left(t_{n}\right)$.
We introduce three sequences of sets:

$$
\begin{aligned}
& V_{n}:=\left\{\alpha \in(0,2+\varepsilon) ;\left|\frac{b\left(t_{n}+\alpha b\left(t_{n}\right)\right)}{b\left(t_{n}\right)}-1\right|<\frac{\varepsilon}{2}\right\}, \\
& W_{n}:=\left\{\mu \in(0,1) ;\left|\frac{b\left(y_{n}+\mu b\left(y_{n}\right)\right)}{b\left(y_{n}\right)}-1\right|<\frac{\varepsilon}{2(1+\varepsilon)}\right\}, \\
& W_{n}^{\prime}=\left\{\alpha \in(0,2+\varepsilon) ;\left|\frac{b\left(t_{n}+\alpha b\left(t_{n}\right)\right)}{b\left(y_{n}\right)}-1\right|<\frac{\varepsilon}{2(1+\varepsilon)}\right\}= \\
&=\left\{\alpha \in(0,2+\varepsilon) ; \alpha=\alpha_{n}+\mu \frac{b\left(y_{n}\right)}{b\left(t_{n}\right)} \text { and } \mu \in W_{n}\right\} .
\end{aligned}
$$

Since $b \in \operatorname{BSV}$ we have $\lim _{n \rightarrow \infty} \lambda\left(V_{n}\right)=2+\varepsilon$ and $\lim _{n \rightarrow \infty} \lambda\left(W_{n}\right)=1$ (λ denotes Lebesgue measure).
Hence $\alpha_{n} \in(0,1)$ and (1.91) imply $\frac{\lim _{n \rightarrow \infty}}{} \lambda\left(W_{n}^{\prime}\right) \geq 1-\varepsilon$.
For $\alpha \in W_{n}^{\prime}$ we have

$$
\begin{gathered}
\left|\frac{b\left(t_{n}+\alpha b\left(t_{n}\right)\right)}{b\left(t_{n}\right)}-1\right|=\left|\frac{b\left(y_{n}\right)}{b\left(t_{n}\right)}-1+\frac{b\left(y_{n}\right)}{b\left(t_{n}\right)}\left\{\frac{b\left(t_{n}+\alpha b\left(t_{n}\right)\right)}{b\left(y_{n}\right)}-1\right\}\right| \\
\quad \geq\left|\frac{b\left(y_{n}\right)}{b\left(t_{n}\right)}-1\right|-\frac{b\left(y_{n}\right)}{b\left(t_{n}\right)} \cdot \frac{\varepsilon}{2(1+\varepsilon)} \geq \varepsilon-\frac{\varepsilon}{2}=\frac{\varepsilon}{2}
\end{gathered}
$$

hence $V_{n} \cap W_{n}^{\prime}=\phi$. Since $V_{n}, W_{n}^{\prime} \subset(0,2+\varepsilon)$, this implies

$$
2+\varepsilon \geq \frac{1 \operatorname{im}}{n \rightarrow \infty} \lambda\left(V_{n} u W_{n}^{\prime}\right) \geq 1 \operatorname{im}\left(\lambda\left(V_{n}\right)+\lambda\left(W_{n}^{\prime}\right)\right) \geq 2+\varepsilon+1-\varepsilon=3
$$

which gives a contradiction.

Next we prove a representation for BSV functions which satisfy (1.90) locally uniformly.

Theorem 1.35
If $b \in \operatorname{BSV}$ and (1.60) holds uniformly on finite intervals, then there exists a integrable function ε such that $\lim _{t \rightarrow \infty} \varepsilon(t)=0$ and

$$
\begin{equation*}
b(t) \sim \int_{0}^{t} \varepsilon(s) d s(t+\infty) \tag{1.92}
\end{equation*}
$$

Conversely, if $b: \mathbb{R} \rightarrow \mathbb{R}$ is measurable, eventually positive and satisfies (1.92) with $\varepsilon(t) \rightarrow 0(t \rightarrow \infty)$ then (1.90) holds uniformly on bounded intervals of \mathbb{R}.

Proof

Suppose (1.90) holds uniformly on finite intervals. Then there exists $t_{0}>0$ such that for $t \geq t_{0}$ and all $x \in[-1,1]$ we have $b(t+x b(t)) \geq \frac{1}{2} b(t)$. Define the sequence $\left\{t_{n}\right\}$ by $t_{n+1}=t_{n}+b\left(t_{n}\right), n=0,1,2, \ldots$
Then the sequence $\left\{t_{n}\right\}$ is increasing and we claim that $t_{n} \rightarrow \infty(n \rightarrow \infty)$.
If not then $\lim _{n \rightarrow \infty} t_{n}=p<\infty$. Now $t_{n}=t_{0}+\sum_{k=1}^{n} b\left(t_{k-1}\right)$. Then the series $\sum_{k=1}^{\infty} b\left(t_{k}\right)$ converges and, in particular, $\lim _{n \rightarrow \infty} b\left(t_{n}\right)=0$. Since $p \geq t_{0}$,

$$
b(y) \geq \frac{1}{2} b(p) \text { for all } y \in[p-b(p), p+b(p)]
$$

Note that $b(t)$ is positive for $t \geq t_{0}$ and this is contradicted by

$$
0=\lim _{n \rightarrow \infty} b\left(t_{n}\right) \geq \frac{\lim }{y \rightarrow p} b(y) \geq \frac{1}{2} b(p)
$$

This proves $t_{n} \rightarrow \infty(n+\infty)$.
Define the function $b^{*} b y b^{*}(t)=0$ on $\left(0, t_{0}\right), b^{*}(t)=b(t)$ for $t=t_{n}(n=$ $1,2, \ldots$.$) and linear on the interval \left[t_{n}, t_{n+1}\right](n=0,1,2, \ldots)$. Then, since convergence in (1.90) is uniform, we have $b(t) \sim b *(t)(t+\infty)$.

Moreover b* satisfies the representation

$$
b^{*}(t)=\int_{0}^{t} \varepsilon(s) d s, t>0
$$

with $\varepsilon(s)=0$ on ($0, t_{0}$) and

$$
\varepsilon(s)=\frac{b *\left(t_{n+1}\right)-b *\left(t_{n}\right)}{t_{n+1}-t_{n}}=\frac{b\left(t_{n+1}\right)-b\left(t_{n}\right)}{b\left(t_{n}\right)}
$$

for $t_{n} \leq s<t_{n+1}, n=0,1,2, \ldots$ Since $\varepsilon(s) \rightarrow 0(s+\infty) b$ satisfies the required representation. For the converse part we may assume that $b(t)=\int_{0}^{t} \varepsilon(s) d s$.

We prove that (1.90) holds uniformly for $\mathrm{x} \in[\mathrm{a}, \mathrm{b}]$.
By (1.92) there exists t_{0} such that:

$$
0<\frac{b(t)}{t}<\frac{1}{2\lceil a \mid} \text { for } t \geq t_{0} .
$$

For any $\varepsilon_{0}>0$ there exists $t_{1} \geq t_{0}$ such that $|\varepsilon(t)|<\varepsilon_{0}$ for $t>t_{1}$. Consequently for $t>2 t_{1}$ we have $t\left(1+v \frac{b(t)}{t}\right)>t_{1}$ and hence $\mid \varepsilon(t+v b(t) \mid<$ ε_{0} for all $\mathrm{v} \geq \min (0, a)$. It follows that

$$
\left|\frac{b(t+x b(t))-b(t)}{b(t)}\right| \leq\left|\int_{0}^{x}\right| \varepsilon(t+v b(t))|d v|<\varepsilon_{0}|x| \leq \varepsilon_{0} \max (|a|, b)
$$

for $t>2 t_{1}$ and all $x \in[a, b]$.

Remark
From the proof it follows that it is possible to take ε continuous in (1.92).

We close this section with an application of the Beurling slowly varying functions and the class r.

Theorem 1.36

Suppose y is a positive solution of the second order differential equation $y^{\prime \prime}=$ fy satisfying $y(x)+\infty(x+\infty)$, where f is continuous and $1 / \sqrt{f} \in$ BSV.

Then $y \in \Gamma(1 / \sqrt{f})$.

Proof
a. First we suppose that f is differentiable and $(1 / \sqrt{f(x)})^{\prime}=-f^{\prime}(x) / 2 f^{3 / 2}(x)$ $\rightarrow 0(x+\infty)$. Define the function w by

$$
\begin{equation*}
w(x):=\frac{y^{\prime}(x)}{y(x) \sqrt{f(x)}} \tag{1.93}
\end{equation*}
$$

Then $w(x)>0$ for all x sufficiently large (if not then $y^{\prime}\left(X_{k}\right)=0$, hence $y^{\prime \prime}\left(u_{k}\right)=y\left(u_{k}\right) f\left(u_{k}\right)=0$ for some sequences $x_{k}, u_{k}+\infty(k+\infty)$ which gives a contradiction).
Note that

$$
\begin{equation*}
w^{\prime}=-\sqrt{f}\left(w+\frac{f^{\prime}}{4 f^{3 / 2}}+\sqrt{\left.1+\frac{\left(f^{\prime}\right)^{2}}{16 f^{3}}\right)\left(w+\frac{f^{\prime}}{4 f^{3 / 2}}-\sqrt{1+\frac{\left(f^{\prime}\right)^{2}}{16 f^{3}}}\right)}\right. \tag{1.94}
\end{equation*}
$$

We shall prove $w(x) \rightarrow 1(x+\infty)$ and consider the following three cases: a.1. $W^{\prime}(x)>0$ for all $x>x_{0}$ 。

Then w is increasing and $\lim w(x)=: A \in[0, \infty]$ exists. If $A=\infty$, then (1.94) implies $w^{\prime \prime}(x) / \sqrt{f(x)} \rightarrow-\infty(x+\infty)$ which contradicts $w^{\prime}>0$ 。 If $A<\infty$, from (1.94) it follows that $\lim _{x \rightarrow \infty} \frac{W^{\prime}(x)}{\sqrt{f(x)}}=1-A^{2}$.

If $A \neq 1$ this implies

$$
\begin{equation*}
w(x) \sim\left(1-A^{2}\right) \int_{0}^{x} \sqrt{f(s)} d s . \tag{1.95}
\end{equation*}
$$

Since $w(x) \leq A+1$ for all sufficiently large x we have
$\sqrt{f(x)}=\frac{y^{\prime}(x)}{y(x) w(x)} \geq \frac{y^{\prime}(x)}{(A+1) y(x)}$ and $y(x) \rightarrow \infty$ entails $\int_{0}^{x} \sqrt{f(s)} d s \rightarrow \infty(x \rightarrow \infty)$.
Combination with (1.95) theri gives $w(x) \rightarrow \infty$ which gives a contradiction as above. Hence $w(x) \rightarrow 1(x+\infty)$.
a.2. As in part a.1 we find $\lim _{x \rightarrow \infty} w(x)=1$ in case $w^{*}(x)<0$ for all $x>x_{0}$. a.3. If $w^{\prime}(x)=0$ infinitely often we have

$$
w(x)=-\frac{f^{\prime}(x)}{4 f(x)^{3 / 2}}+\sqrt{1+\frac{\left\{f^{\prime}(x)\right\}^{2}}{16 f^{3}(x)}}
$$

for every x where $w^{\prime}(x)=0$.

Since w is monotone between consecutive zeros of w^{\prime} we find
$\lim w(x)=1$.
$x+\infty$
The proof can be completed as follows.
Since $f=y^{\prime \prime} / y$ and $\lim w(x)=1$ we have $\left(y^{\prime}(x)\right)^{2} / y(x) y^{\prime \prime}(x) \rightarrow 1(x+\infty)$
which is equivalent ${ }^{x} \overrightarrow{\text { to }}_{0}^{\infty} y^{\prime \prime} \in \Gamma(b)$ by theorem 1.28. Moreover since $w(x) \rightarrow 1$
we have

$$
b(x) \sim \frac{y^{\prime}(x)}{y^{\prime \prime}(x)} \sim \frac{y(x)}{y^{\prime}(x)} \sim \frac{1}{\sqrt{f(x)}}(x+\infty) .
$$

Application of cor. $1,29.2$ then finishes the proof.
b. If f is not differentiable then, by theorem 1.35 there exists a differentiable function g such that $g(x) \sim f(x)(x+\infty)$ and $\left(\frac{1}{\sqrt{g(x)}}\right),+0$ ($x \rightarrow \infty$).
Then for any $\varepsilon>0$ there exists $\mathrm{x}_{1}=\mathrm{x}_{1}(\varepsilon)$ such that
$(1-\varepsilon) g(x) \leq f(x) \leq(1+\varepsilon) g(x)$ for $x \geq x_{1}$.
Now consider the positive solutions of the differential equations $u^{\prime \prime}=(1-\varepsilon) g u$ and $v^{\prime \prime}=(1+\varepsilon) g v$ which tend to infinity.
Note that for $\mathrm{x} \geq \mathrm{x}_{1}$ we have

$$
\frac{d}{d x}\left\{y^{\prime}(x) u(x)-u^{\prime}(x) y(x)\right\}=y(x) u(x)\{f(x)-(1-\varepsilon) g(x)\} \geq 0
$$

Hence for $\mathrm{x} \geq \mathrm{x}_{1}$ we have

```
y'(x)u(x) - u'(x)y(x)\geqc, where c is a constant.
```

This implies

$$
\begin{equation*}
\frac{y^{\prime}(x)}{y(x) \sqrt{f(x)}} \geq \frac{c}{u(x) y(x) \sqrt{f(x)}}+\frac{u^{\prime}(x)}{u(x) \sqrt{f(x)}} \text { for } x \geq x_{1} \tag{1.96}
\end{equation*}
$$

By part a of the proof we have $u^{\prime}(x) \sim u(x) \sqrt{(1-\varepsilon) g(x)}(x+\infty)$, which implies

$$
\begin{equation*}
\frac{u^{\prime}(x)}{u(x) \sqrt{f(x)}}+\sqrt{1-\varepsilon} \tag{1.97}
\end{equation*}
$$

hence $u(x) y(x) \sqrt{f(x)} \sim \sqrt{1-\varepsilon}^{-1} u^{\prime}(x) y(x) \rightarrow \infty$ since $y(x) \rightarrow \infty(x+\infty)$ and $u^{\prime}(x) \rightarrow \infty$ (note that $u^{\prime} \in \Gamma$).
 we find $\lim y^{\prime}(x) /\{y(x) \sqrt{f(x)}\}$ Since $\varepsilon>0$ is arbitrary this implies $y^{\prime}(x) \sim y(x) \sqrt{f(x)}$ and the proof can be completed as in a.l.

I. 5 Sequential versions of regular variation.

In this paragraph we consider representation and embedding theorems for RVsequences and Π-sequences. We start with a formal definition.

Definition 1.37

A sequence of positive numbers $\left\{c_{n} ; n=0,1,2, \ldots\right\}$ is said to be regularly varying (RV) if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} c_{[x n]} / c_{n}=x^{\alpha} \quad(x>0) \text { for some } \alpha \in \mathbb{R} \tag{1.98}
\end{equation*}
$$

Notation: $\left\{c_{n}\right\}$ is a $R V_{\alpha}$ - sequence.

It is clear that if the function $c_{[x]}$ is regularly varying with index α, then $\left\{c_{n}\right\}$ is a $R V_{\alpha}$-sequence.
The next theorem gives a converse result, which enables us to use earlier results about RV-functions by "embedding" the sequence in an RV-function.

Theorem 1.38
If the sequence $\left\{c_{n}\right\}$ of positive numbers satisfies $\lim _{n \rightarrow \infty} c_{[x n]} / c_{n}=\psi(x)$ for $x>0$, where $0<\psi(x)<\infty$ for $x>0$, then $f(x):=c_{[x]}$ is regularly varying. In particular $\left\{c_{n}\right\}$ is a $R V_{\alpha}$-sequence.

Proof
We first prove $c_{n-1} / c_{n} \rightarrow 1(n \rightarrow \infty)$.

Since $\pi^{-1}[n \pi]=\max \left\{\frac{k}{\pi} ; \frac{k}{\pi}<n\right\}$, we have $\left[\pi^{-1}[n \pi]\right]=n-1$ for all $n \in \mathbb{N}$. Hence

Hence $\lim _{n \rightarrow \infty} c_{n-1} / c_{n}$ exists.

Since $\frac{c[[n / 2] 2]}{c_{n}}=\left\{\begin{array}{l}1 \text { if } n \text { is even } \\ c_{n-1} / c_{n} \text { if } n \text { is odd }\end{array}\right.$ and moreover $\lim _{n \rightarrow \infty} c_{[[n / 2] 2]} / c_{n}=$
$\psi(2) \psi\left(\frac{1}{2}\right)$, we find $\psi(2) \psi\left(\frac{1}{2}\right)=\psi(\pi) \psi\left(\pi^{-1}\right)=1$.
Combination with (1.99) then gives $\lim _{n \rightarrow \infty} c_{n-1} / c_{n}=1$.
Then also $c_{n+k} / c_{n}+1(n+\infty)$ for any fixed $k \in \mathbb{Z}$.

Since $0 \leq t x-[t] x \leq[x]+1$ we have for any fixed $x>0$

$$
\frac{f(t x)}{f(t)}=\frac{c_{[x[t]]}^{c}}{c_{[t]}} \cdot \frac{c_{[t x]}}{{ }^{c}[[t] x]}+\psi(x)(t+\infty)
$$

hence $\mathrm{f} \in \mathrm{RV}_{\alpha}$ by theorem 1.2.

Corollary 1.39

$\left\{\mathrm{c}_{\mathrm{n}}\right\}$ is a RV_{α}-sequence with $\alpha>-1$ if and only if

$$
\lim _{n \rightarrow \infty} \frac{1}{n c_{n}} \sum_{k=1}^{n} c_{k}=\frac{1}{\alpha+1} \text { with } \alpha>-1
$$

Proof:

Use theorem 1.38, 1.2 and 1.4.

Next we prove a similar statement concerning the class \mathbb{K}. Here however, we have to require beforehand that the auxiliary function is in $R V_{0}$.

Definition 1.40

A sequence of positive numbers $\left\{c_{n}, n=0,1,2, \ldots\right\}$ is said to be a $\Pi(a)$ sequence if there exists a $R V_{0}$-sequence $\left\{a_{n}\right\}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{c_{[n x]}-c_{n}}{a_{n}}=\log x \text { for all } x>0 \tag{1.100}
\end{equation*}
$$

The next result shows that it is possible to use earlier results obtained in this chapter for the class π.

Theorem 1.41

If the sequence $\left\{c_{n}\right\}$ is a $\Pi(a)$-sequence, then the function f defined by $f(t):=c[t]$ belongs to the class II.

$$
-56-
$$

Proof
Since $\left\{a_{n}\right\}$ is a $R V_{0}$ sequence, by definition 1.40 we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{c^{c}[[n x] z]-c_{n}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{c_{[[n x] z]}-c_{[n x]}}{a_{[n x]}} \cdot \frac{a_{[n x]}}{a_{n}} \\
& +\lim _{n \rightarrow \infty} \frac{c_{[n x]}-c_{n}}{a_{n}}=\ln z+\ln x \text { for all } x, z>0 .
\end{aligned}
$$

This implies (take $x=\pi, z=\pi^{-1}$) that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{c_{n-1}-c_{n}}{a_{n}}=0 \text {, which implies } \lim _{n \rightarrow \infty} \frac{c_{n+k}-c_{n}}{a_{n}}= \\
& -\lim _{n \rightarrow \infty} \sum_{j=1}^{k} \frac{c_{n+j-1}-c_{n+j}}{a_{n+j}} \frac{a_{n+j}}{a_{n}}=0 \text { for } k \in \mathbb{Z} \text { fixed, }
\end{aligned}
$$

since $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ is a RV_{0}-sequence.
Hence for all $x>0$ we have

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \frac{c_{[t x]}-c_{[t]}}{{ }^{a}[t]}=\lim _{t \rightarrow \infty} \frac{c_{[t x]}-c_{[[t] x]}}{{ }^{a}[t x]} \frac{{ }_{[t x]}}{{ }^{a}[t]}+ \\
& +\lim _{t \rightarrow \infty} \frac{{ }^{c}[[t] x]-c[t]}{a_{[t]}}=\ln x
\end{aligned}
$$

(use the fact that $[t x]-[[t] x]$ is bounded).

The final theoren is not concerned with RV sequences proper but it provides a criterion for regular variation when one only has convergence through a certain sequence of reals tending to infinity.

Theorem 1.42
Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be continuous and let the positive sequence $\left\{a_{n}\right\}$ satisfy $a_{n} \rightarrow \infty$ and $a_{n+1} / a_{n} \rightarrow 1(n \rightarrow \infty)$.
Suppose $\lim _{n \rightarrow \infty} \frac{f\left(a_{n} t\right)}{b_{n}}=\psi(t)$ exists for all t in an open interval V of \mathbb{R}^{+}, where b_{n} and $\psi(t)$ are finite and positive for $n \geq 1$ and $t \in V$.
Then $f \in R V_{\alpha}^{\infty}$ for some $\alpha \in \mathbb{R}$.

Proof
Note that $V \cap u^{-1} V \neq \emptyset$ for all u in a non-empty interval K.
If t, ut $\in V$ we have $\frac{f\left(a_{n} u t\right)}{f\left(a_{n} t\right)} \rightarrow \frac{\psi(u t)}{\psi(t)}(n \rightarrow \infty)$.
Hence if we write $f_{u}(t)=f(u t) / f(t)$ we have

$$
f_{u}\left(a_{n} t\right) \rightarrow \frac{\psi(u t)}{\psi(t)}(n \rightarrow \infty)
$$

for all $t \in V \cap\left(u^{-1} V\right)$.

Now write $f^{*}(t):=f_{u}\left(e^{t}\right), a_{n}^{*}:=\log a_{n}$.
Then $f^{*}\left(t+a_{n}^{*}\right)$ converges as $n \rightarrow \infty$ for all t in a non-empty open interval J. Let $\varepsilon>0$ be arbitrary.
Define for $k \in \mathbb{Z}, m \in \mathbb{N}$

$$
C_{k, m}:={\underset{n>m}{n}\left\{t \in \mathbb{R} ; f *\left(t+a_{n} *\right) \in[k \varepsilon-\varepsilon, k \varepsilon+\varepsilon]\right\} . . . ~ . ~}_{n}
$$

Hence, since the set $C_{k, m}$ is closed for all k, m, J is non-empty and open and $J \subset \cup C_{k, m}$, we can apply Baire's category theorem (see Hewitt and Stromberg p. 68). It follows that one of the sets $C_{k, m}$ contains an open interval I, which means that

$$
k \varepsilon-\varepsilon \leq f *\left(t+a_{n}^{*}\right) \leq k \varepsilon+\varepsilon \text { for } n \geq m, t \in I .
$$

Since $a_{n}{ }^{*} \rightarrow \infty, a_{n+1}^{*}-a_{n}{ }^{*} \rightarrow 0$, it follows that $\underset{n \geq m}{u} a_{n}{ }^{*}+I$ contains an interval of the form $\left[t_{0}, \infty\right)$, hence

$$
k \varepsilon-\varepsilon \leq f *(t) \leq k \in+\varepsilon \text { for all } t \geq t_{0} .
$$

Hence $\lim _{t \rightarrow \infty} f_{u}(t)=\lim _{t \rightarrow \infty} f(u t) / f(t)$ exists and is finite and positive for all $u \in K$. The proof is finished by an application of theorem 1.2 .

I. 6 Discussion

We do not attempt to give a full bibliographic account of the material of this chapter. Instead, we give at least one key reference for each of the main topics.

Most of the results from section 1.1 are already present in J. Karamata's papers (1930) and (1933) in some form. The present form of the uniform convergence theorem (th. 1.3) and of the representation theorem (th. 1.5) is due to Van Aardenne-Ehrenfest et al. (1949) and de Bruijn (1959). Our method of proof for theorem 1.2 stems from Cziszar and Erdös (1964) and has been used also by Bingham and Goldie (1982). Theorem 1.8 (a general-kernel Abelian theorem) is due to Karamata (1962).

Properties 1 up to 4 from prop. 1.7 originate from Karamata's original papers. A reference for the inequalities in properties 5 up to 7 is Pitman (1968). A reference for the statements on inverses of RV functions is de Haan (1970). Property 11 has been taken from Feller (1971) and property 12 from de Haan (1977).

Some of the results of section 1.2 (class Π) appear in Bojanic and Karamata (1963), many of them have been taken from de Haan (1970) after a recursion to monotone functions via the uniform convergence theorem (th. 1.14). Theorem 1.20 is a version of a theorem due to Bingham and Teugels (1980); the present form is believed to be new. The notion of inversely asymptotic functions and its applications have been taken from Balkema, de Haan and Geluk (1979). The material of section 1.3 (class Γ) has been taken mainly from de Haan (1970). Some of the properties of prop. 1.31 are new. The problem how to extend the theory of the class Γ to functions which are not monotone is still open. The results on Beurling slowly varying functions (section 1.4) are due (with different proofs) to Bloom (1976).
The application to differential equations (th. 1.36) is due to Omey (1981).
The section on regularly varying sequences is a compilation (except for the material on $\Pi(a)$ sequences) of the articles by Bojanic and Seneta (1973), Galambos and Seneta (1973) and Weissman (1974), the latter with improved proof.
Theorem 1.42, due to Kendall, has been presented here with a new short proof due to Balkema.
We end with some remarks about generalizations.
A theory of regular variation for functions $f: \mathbb{R} \rightarrow \mathbb{C}$ has been developed by Vuilleumier (1976) 。
A reference for the notion of regular variation and π-variation for functions $\mathrm{f}: \mathbb{R}_{\mathrm{n}}^{+} \rightarrow \mathbb{R}^{+}$is de Haan and Omey (1983).
Generalizations of the class II can be found in Geluk: I-regular variation (1981) and Omey and Willekens: I-variation with remainder (1986). The latter title alludes to the notion of "slow variation with remainder", see Aljancic, Bojanic and Tomić (1974), Goldie and Smith (1987). A somewhat different generalization will be discussed in chapter 3 .

II. Transforms of regularly varying functions

In this chapter all functions we consider are assumed to be measurable unless otherwise stated.

In Chapter 1 we have seen that regular variation is preserved under certain transformations. Under suitable regularity conditions we have for example:
if $f \in \operatorname{RV}_{\alpha}(\alpha>0)$, then $\int_{0}^{t} f(s) d s \in R V_{\alpha+1}, \sup _{0<t \leq x} f(t) \in R V_{\alpha}$
and the generalised inverse $f^{+} \epsilon \mathrm{RV}_{\alpha}-1$. Under somewhat more restrictive conditions the converse statements also hold. In this chapter we study two other transforms that preserve regular variation: the complementary function (see definition 2.1) and the Laplace transform (see definition 2.11). In fact, when discussing the Laplace transform we will need the results about the complementary function.

II 1. The complementary function

Definition 2.1

```
a. Suppose f: \mathbb{R}}\mp@subsup{}{+}{->}\mathbb{R}\mathrm{ is bounded on finite intervals of }\mp@subsup{\mathbb{R}}{}{+},f(\infty)=\infty\mathrm{ and
    f(t) =o(t) (t+\infty). Then the complementary function f}\mp@subsup{f}{}{C}\mathrm{ is defined by
    f
```



```
    f(0+) = \infty. Then the inverse complementary function }\mp@subsup{f}{c}{}\mathrm{ is defined by
    f
                                    \diamond
We shall concentrate on results for the complementary function, which plays a
role in Tauberian theorems for Laplace transforms. Similar results hold for
inverse complementary functions.
In case
```

$$
\begin{equation*}
f(x)=\int_{0}^{x} s(t) d t<\infty \text { for } x>0 \tag{2.1}
\end{equation*}
$$

with $s:(0, \infty) \rightarrow(0, \infty)$ continuous and strictly decreasing, then the transform $f^{\text {C }}$ takes a particularly simple form. We find the supremum by differentiation:

$$
\begin{equation*}
f^{c}(y)=f\left(s^{+}(y)\right)-y s^{+}(y)=\int_{0}^{s^{+}(y)} s(u) d u-y s^{+}(y)=\int_{y}^{\infty} s^{+}(u) d u \tag{2.2}
\end{equation*}
$$

where s^{+}is the inverse function of s.
Note that any complementary function $f^{\mathcal{C}}$ is convex, since the concave upper hull of f has the same complementary function as f itself. Compare (2.1) and (2.2).

Now a regularly varying function with index between 0 and 1 is close in a certain sense to a concave function (see lemma 1.23). In order to derive relations similar to (2.1) and (2.2) for functions in $R V$ or Π, we use the concept of inversely asymptotic functions (see definition 1.21). The following lemma is an immediate consequence of definition 2.1 and enables us to derive the asymptotic behaviour of f^{c} from the behaviour of f.

Lemma 2.2
Suppose $f_{1}, f_{2}: \mathbb{R}^{+} \rightarrow \mathbb{R}$ are bounded on finite intervals of \mathbb{R}^{+}, tend to ∞ and $f_{i}(t)=o(t)$ for $t \rightarrow \infty, i=1,2$.
(i) If $f_{1} \leq f_{2}$ then $f_{1}^{c} \leq f_{2}^{c}$.
(ii) If $f_{1}=f_{2}$ on a neighbourhood of ∞, then $f_{1}^{c}=f_{2}^{c}$ on a right-neighbourhood of 0 .
(iii) If $f_{2}(t)=f_{1}(a t)$ with $a>0$, then $f_{2}^{c}(s)=f_{1}^{c}(s / a)$.

Theorem 2.3

Suppose f satisfies the assumptions of definition 2.1 and let $\mathrm{s}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ be decreasing and continuous, $s(t) \rightarrow 0(t \rightarrow \infty)$ and

$$
\int_{0}^{1} \mathrm{~s}(\mathrm{x}) \mathrm{dx}<\infty .
$$

Then

$$
\begin{equation*}
f(t) \stackrel{\star}{\sim} \int_{0}^{t} s(x) d x \quad(t+\infty) \tag{2.3}
\end{equation*}
$$

implies

$$
\begin{equation*}
f^{c}(u) \stackrel{*}{\sim} \int_{u}^{\infty} s^{+}(x) d x \quad(u+0+) \tag{2.4}
\end{equation*}
$$

where s^{\star} is the inverse function of s.
Conversely if f is non-decreasing and $s \in \operatorname{RV}_{-\gamma}^{\infty}$ with $0<\gamma \leq 1$ (hence $\mathrm{s}^{+} \in \mathrm{RV}_{-\gamma^{-1}}^{0}$), then (2.4) implies (2.3).

Before giving the proof of the theorem we state the following corollary which is immediate by lemma 1.23.

Corollary 2.4

Suppose $f: \mathbb{R}^{\boldsymbol{+}}+\mathbb{R}$ satisfies the assumptions of definition 2.la.
(i) Let α, β be related by $\alpha^{-1}+\beta^{-1}=1$.

Then

$$
\begin{equation*}
f \in R V_{\alpha}^{\infty} \text { with } 0<\alpha<1 \tag{2.5}
\end{equation*}
$$

implies

$$
\begin{equation*}
\mathrm{f}^{\mathrm{c}} \in \mathrm{RV}_{\beta}^{0} \text { with } \beta<0 \tag{2.6}
\end{equation*}
$$

(ij) Also

$$
\begin{equation*}
\mathbf{f} \in \mathbb{I I} \tag{2.7}
\end{equation*}
$$

implies

$$
\begin{equation*}
\mathrm{f}^{\mathrm{c}} \in \Pi^{0} \tag{2.8}
\end{equation*}
$$

Conversely if f is non-decreasing (2.6) implies (2.5) and (2.8) implies (2.7) ,

Proof of theorem 2.3

First we prove the Abelian part (the implication (2.3) \rightarrow (2.4)).
Recall that (definition 1.21) the relation (2.3) means: For every a >1 there exists a constant $t_{0}=t_{0}(a)$ such that

$$
\int_{0}^{t / a} s(x) d x \leq f(t) \leq \int_{0}^{t a} s(x) d x \text { for } t \geq t_{0}
$$

The three implications in lema 2.2 give for some $u_{0}>0$

$$
\int_{u a}^{\infty} s^{+}(x) d x \leq f^{c}(u) \leq \int_{u / a}^{\infty} s^{+}(x) d x \text { for } 0<u<u_{0},
$$

which means that (2.4) holds.

Conversely, suppose (2.4) holds and f is non-decreasing.
Note that the function f^{c} satisfies the assumptions of definition $2.1 b$. Hence $\left(f^{c}\right)_{c}$ exists and is in fact the concave upper hull of f. Application of the analogue of the Abelian part $((2.3) \rightarrow(2.4))$ of theorem 2.3 for the inverse complementary function of F^{C} shows that

$$
f_{1}(t):=\left(f^{c}\right)_{c}(t) \stackrel{*}{\sim} \int_{0}^{t} s(x) d x(t \rightarrow \infty)
$$

Application of lemma 1.23 gives $f_{1} \in \Pi$ or $\mathrm{RV}_{1-\gamma}^{\infty}$ with $0<\gamma<1$.
By the definition of the classes II and $R V$ this implies for $\gamma \in(0,1]$ and $0<\varepsilon<1$

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{f_{1}(t(1+\varepsilon))-f_{1}(t)}{f_{1}(t)-f_{1}(t(1-\varepsilon))}=\int_{1}^{1+\varepsilon} s^{-\gamma} d s / \int_{1-\varepsilon}^{1} s^{-\gamma_{d s}}<1 \tag{2.9}
\end{equation*}
$$

where the case $\gamma=1$ corresponds to $\mathrm{f}_{1} \in \Pi$.
As a consequence of this asymptotic concavity, for fixed $a>1$ any interval ($t, a t$) for t sufficiently large will contain a point x with $f(x)=f_{1}(x)$ (apply (2.9) with $(1+\varepsilon) /(1-\varepsilon)=a$). Hence since f is non-decreasing $f_{1}(t)$ $\leq f_{1}(x)=f(x) \leq f(a t)$. Since obviously $f \leq f_{1}$, we find $f \stackrel{*}{\sim} f_{1}$ and hence f satisfies (2.3).

It follows from the above discussion that theorem 2.3 and corollary 2.4 above give results in case $f \in \operatorname{RV}_{\alpha}$ with $0<\alpha<1$ and in case $f \in \Pi$, which can be seen as an extension to $\alpha=0$. It is also possible to prove an extension for α $=1$. In order to see which order of magnitude for f is appropriate for such an extension, we recall that the existence of f^{C} requires $f(s)=0(s), s \rightarrow \infty$ (definition 2.1a). It turns out that, as in the case $\alpha=0$, the appropriate function class is again closely related to the class $\Pi_{\text {。 }}$
In order to formulate the results we define two classes of functions, related with the classes $I I$ and Γ and the relation $\dot{\sim}$ (def, 2.6), which is the analogue of the relation $\stackrel{*}{\sim}$ (see definition 1.21) appropriate for this context.

Definition 2.5

A measurable function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ is said to belog to the class Π^{-}if there exists a positive function a such that for all $\mathrm{x}>0$

$$
\lim _{t \rightarrow \infty} \frac{f(t x)-f(t)}{a(t)}=-\log x
$$

Notation: $f \in \mathbb{R}^{-}$or $f \in \mathbb{H}^{-}(a)$.
If the function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is non-increasing and if there exists a positive function b such that

$$
\begin{equation*}
\lim _{u \rightarrow 0+} \frac{f(u+x b(u))}{f(u)}=e^{-x} \text { for } x>0 \tag{2.10}
\end{equation*}
$$

then f belongs to the class $\mathrm{r}^{(0)}$.
(compare definition 1.24).
Notation: $f \in \Gamma^{(0)}$.

Note that $£ \in \Pi^{-}$if and only if $-£ \in \Pi$. Also it can be proved to see that $f(t) \in \Gamma^{(0)}$ if and only if $f(1 / t) \in \Gamma$.
From theorem 1.28 it follows by a change of variable that if $f \in \Gamma^{(0)}$, then there exists a differentiable function $\beta: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that $\beta^{\prime}(u) \rightarrow 0$, $B(u) \rightarrow O(u \rightarrow 0+)$ and

$$
\begin{equation*}
f(u) \sim \exp \left\{\int_{u}^{\infty} \frac{d x}{\beta(x)}\right\}(u+0+) \tag{2.11}
\end{equation*}
$$

Conversely, if

$$
\begin{equation*}
f(u) \sim \exp \left\{\int_{u}^{\infty} \frac{c(x)}{\beta(x)} d x\right\}(u+0+) \tag{2.12}
\end{equation*}
$$

where $c(x) \rightarrow c>0(x \rightarrow 0+)$ and β as above, then $f \in \Gamma^{(0)}$.

Definition 2.6
Suppose $f_{1}, f_{2}: \mathbb{R}^{+} \rightarrow \mathbb{R}$. We say

$$
\begin{equation*}
\mathrm{f}_{1}(\mathrm{t}) \stackrel{\sim}{f_{2}}(\mathrm{t}), \mathrm{t} \rightarrow \infty\left(\text { or } \mathrm{f}_{1} \dot{\sim} \mathrm{f}_{2}\right) \tag{2.13}
\end{equation*}
$$

if for every constant $a>1$ there exists a $t_{0}=t_{0}(a)$ such that for all $t \geq t_{0}$
and

$$
\begin{equation*}
\mathrm{f}_{1}(\mathrm{ta}) \leq a \mathrm{f}_{2}(\mathrm{t}) \tag{2.14}
\end{equation*}
$$

$$
\mathrm{f}_{2}(\mathrm{ta}) \leq a \mathrm{f}_{1}(\mathrm{t})
$$

Note that $f_{1}(t) \dot{\sim} f_{2}(t)(t \rightarrow \infty)$ if and only if- $\frac{f_{1}(t)}{t} \stackrel{*}{\sim}-\frac{f_{2}(t)}{t}$.

Before formulating an extension of theorem 2.3 above to the case $\gamma=0$ (or $\alpha=$ 1 in cor. 2.4) we give a lemma that is helpful for understanding the role of the classes Π^{-}and $\Gamma^{(0)}$.

Lemma 2.7

(i) Suppose $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$. Then $f(t) / t \in \pi^{-}$if and only if there is an eventually decreasing continuous function $s \in \Pi^{-\quad}$ such that

$$
\begin{equation*}
f(t) \dot{\sim} \int_{0}^{t} s(x) d x \quad(t+\infty) . \tag{2.15}
\end{equation*}
$$

(ij) Suppose $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is non-increasing. Then $f \in \Gamma^{(0)}$ if and only if there is a decreasing $t \in \Gamma^{(0)}$ such that

$$
\begin{equation*}
f(u) \sim \int_{u}^{\infty} t(x) d x \quad(u \rightarrow 0+) . \tag{2.16}
\end{equation*}
$$

Proof

(i) Suppose $f(t) / t \in I^{-}$. By Lemma 1.23 a there exists a decreasing continuous function ψ with $-\psi \in \Pi(a)$ such that $-f(t) / t \stackrel{*}{\sim}-\psi(t)(t \rightarrow \infty)$. Application of theorem 1.17 gives

$$
-\psi(t)+(t e)^{-1} \int_{0}^{t e} \psi(x) d x=o(a(t)) .
$$

Hence $-\psi(t) \stackrel{*}{\sim}-t^{-1} \int_{0}^{t} \psi(x e)$ dx by proposition 1.22 (ij) and (2.15) is satisfied with $s(x)=\psi(x e)$

Conversely, if $s \in \Pi^{-}$then $t^{-1} \int_{0}^{t} s(x) d x \in \Pi^{-}$(see theorem 1.17). From (2.15) and prop. 1.22 (ij) it then follows that $f(t) / t \in \pi^{-}$.
(ij) If $f \in \Gamma^{(0)}$ we have the representation (2.11). The derivative of the right-hand side of (2.11) is

$$
t(u)=-c \exp \left\{\int_{u}^{1} \frac{1+\beta^{\prime}(x)}{\beta(x)} d x\right\}(c \in \mathbb{R}),
$$

which is in $\Gamma^{(0)}$ since it satisfies the representation (2.12).
The converse part is a consequence of the analogue for $\Gamma^{(0)}$ of corollary 1.29.2 and proposition 1.31.7.

Theorem 2.8
Suppose f satisfies the assumptions of definition 2.1a and let $s: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be decreasing, $s(\infty)=0$ and $\int_{0}^{1} s(x) d x<\infty$.
Then

$$
\begin{equation*}
f(t) \dot{\sim} \int_{0}^{t} s(x) d x \quad(t+\infty) \tag{2.17}
\end{equation*}
$$

implies

$$
\begin{equation*}
f^{c}(u) \sim \int_{u}^{\infty} s^{+}(x) d x(u \rightarrow 0+) \tag{2.18}
\end{equation*}
$$

Conversely if $f(t) / t$ is non-increasing, $s \in \Pi^{-}$is decreasing, then (2.18) implies (2.17).

Before we prove theorem 2.8 we state the following corollary which is an immediate consequence of theorem 2.8 and lemma 2.7.

Corollary 2.9
Suppose $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ satisfies the assumptions of definition 2.1a. Then $f(t) / t \in \Pi^{-}$implies $f^{c} \in \Gamma^{(0)}$.
Conversely if $f(t) / t$ is non-increasing $f^{c} \in \Gamma^{(0)}$ implies $f(t) / t \in \pi^{-}$. \quad.

Proof of theorem 2.8
Suppose f satisfies (2.17). By definition 2.6 this means : for every a >1 there exists a constant $t_{o}(a)$ such that for all $t \geq t_{o}$

$$
\frac{1}{a} \int_{0}^{t a} s(x) d x \leq f(t) \leq a \int_{0}^{t / a} s(x) d x
$$

Application of lemma 2.2 then gives for some $u_{0}>0$

$$
\frac{1}{a} \int_{u}^{\infty} s^{+}(x) d x \leq f^{c}(u) \leq a \int_{u}^{\infty} s^{+}(x) d x \text { for } 0<u \leq u_{o},
$$

which means that (2.18) holds.
Conversely, suppose (2.18) holds and f is non-decreasing. Note that the function f^{C} satisfies the assumptions of definition 2.1b. Hence ($\left.\mathrm{f}^{\mathrm{c}}\right)_{c}$ exists and is in fact the concave upper hull of f .

Application of the analogue of the Abelian part ((2.17) \rightarrow (2.18)) of theorem 2.8 for the inverse complementary function of f^{C} shows that

$$
\begin{equation*}
f_{1}(t):=\left(f^{c}\right)_{c}(t) \dot{\sim} \int_{0}^{t} s(x) d x \quad(x+\infty) . \tag{2.19}
\end{equation*}
$$

Application of lemma 1.21 gives $f_{1}(t) / t \in \Pi^{-}$.
Suppose a is the auxiliary function of $s \in \pi^{-}$. Then (2.19) implies

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \frac{f_{1}(t(1+\varepsilon))-2 f_{1}(t)+f_{1}(t(1-\varepsilon))}{t a(t)}= \\
& \lim _{t \rightarrow \infty}\left[(1+\varepsilon)\left\{\frac{f_{1}(t(1+\varepsilon))}{t(1+\varepsilon)}-\frac{f_{1}(t)}{t}\right\}+(1-\varepsilon)\left\{\frac{f_{1}(t(1-\varepsilon))}{t(1-\varepsilon)}-\frac{f_{1}(t)}{t}\right\}\right] / a(t) \\
& =-(1+\varepsilon) \ln (1+\varepsilon)-(1-\varepsilon) \ln (1-\varepsilon)<0
\end{aligned}
$$

for $0<\varepsilon<1$. Since f_{1} is the concave upper hull of f it follows that for fixed $a>1$ any interval (t, at) contains a point x such that $f_{1}(x)=f(x)$ provided t is sufficiently large. Since f_{1} is concave, $f_{1}(t) / t$ is nonincreasing. Hence

$$
\frac{f_{1}(a t)}{a t} \leq \frac{f_{1}(x)}{x}=\frac{f(x)}{x} \leq \frac{f(t)}{t} .
$$

for all t sufficiently large. On the other hand we find since $f_{1} \geq f$

$$
\frac{f_{1}(t)}{t} \geq \frac{f_{1}(a t)}{a t} \geq \frac{f(a t)}{a t}
$$

This proves $\mathrm{f} \dot{\sim} \mathrm{f}_{\mathrm{I}}$, hence (2.17).

Results similar to theorem 2.8 with a suitable definition of the complementary function can be given in case $\alpha>1$ and $\alpha<0$. This possibility is mentioned in the paper of Bingham and Teugels (1975).

II 2. The Laplace transform

J. Karamata introduced the concept of regular variation in 1930 for use as a suitable condition for Abelian and Tauberian theorems for Laplace transforms. His Tauberian theorem generalized an earlier result of Hardy and Littlewood
(1930) for functions $f(x)$ asymptotic to $x^{\alpha}(\alpha \geq 0)$ as $x \rightarrow \infty$. We start here with Karamata's result (theorem 2.11). Next we treat a similar generalization of the case $f(x)=c \log x+o(1)$ (this involves the class Π; see theorems 2.14 and 2.16) . We proceed with a generalization of the case $\log \mathrm{f}(\mathrm{x}) \sim \mathrm{x}^{\alpha}(0<\alpha<$ $1)$, due to Kohlbecker (corollary 2.20a) and end with the borderline cases $\alpha=$ 0 (which corresponds in some sense to the case $\alpha=\infty$ in Karamata's Tauberian result; see cor. 2.20 b) and $\alpha=1$ (see theorem 2.26). That way the whole spectrum from functions like $\log x$ to functions like $\exp (x / \log x)$ is covered. Note that for $\alpha>1$ the Laplace transform does not converge (see definition 2.10).

Definition 2.10

Suppose $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ is measurable and $\int_{0}^{\infty} e^{-t x}|f(x)| d x<\infty$ for all $t>0$. The Laplace transform \hat{f} of the function f is for $t>0$ defined by

$$
\begin{equation*}
\hat{f}(t)=t \int_{0}^{\infty} e^{-t x} f(x) d x \tag{2.20}
\end{equation*}
$$

If f is non-decreasing and $f(0+)=0$ we can write $\hat{f}(t)=\int_{0}^{\infty} e^{-t x} d f(x)$.
Theorem 2.11 (Karamata, 1931)
Suppose $\alpha \geq 0$ and f satisfies the assumptions of definition 2.10. Tf

$$
\begin{equation*}
\mathrm{f} \in \mathrm{RV}_{\alpha}^{\infty} \tag{2.21}
\end{equation*}
$$

then

$$
\begin{equation*}
\hat{\mathrm{f}} \in \mathrm{RV}_{-\alpha}^{0} \tag{2.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{f}(1 / t) \sim \Gamma(1+\alpha) f(t) \quad(t \rightarrow \infty) \tag{2.23}
\end{equation*}
$$

Conversely if $x^{\beta} f(x)$ is positive and non-decreasing for some $\beta \in[0,1)$ and a11 $\mathrm{x}>0$, then (2.22) implies (2.21).

Proof
The implication (2.21) \rightarrow (2.23) is a special case of theorem 1.8. Now (2.22) follows.
Next suppose $x^{\beta} f(x)$ is non-decreasing for some $0 \leq \beta<1$ and (2.22) holds. For $a, v>0$

$$
\hat{f}(v) \geq v \int_{a}^{\infty} e^{-v x^{f}} f(x) d x \geq f(a) / q(a v)
$$

with $q(v):=\left\{v^{\beta} \int_{v}^{\infty} u^{-\beta} e^{-u} d u\right\}^{-1}$.
Hence for $\mathrm{t}, \mathrm{x}, \mathrm{p}>0$

$$
\begin{equation*}
x^{\beta} f(x t) / \hat{f}(p / t) \leq x^{\beta} q(p x) . \tag{2,24}
\end{equation*}
$$

Since $x^{\beta} f(x t) / \hat{f}\left(t^{-1}\right)$ is non-decreasing in x for all $t>0$ and bounded by $x^{\beta} \mathrm{q}^{(x)}$, we can apply the selection principle (Widder (1941), p. 26): if $t_{n}+\infty$, there exists a subsequence $t_{n}{ }^{\prime}+\infty$ and a function ϕ such that

$$
\begin{equation*}
\lim _{n^{\prime} \rightarrow \infty} f\left(x t_{n^{\prime}}\right) / \hat{f}\left(t_{n^{\prime}}{ }^{-1}\right)=\phi(x) \tag{2.25}
\end{equation*}
$$

for each continuity point x of ϕ. It is now sufficient to prove that each such function is of the form $\phi(x)=x^{\alpha} / \Gamma(1+\alpha)$. Note that (2.22) and (2.25) imply

$$
\begin{equation*}
\lim _{n^{\prime} \rightarrow \infty} f\left(x t_{n^{\prime}}\right) / \hat{f}\left(p / t_{n}^{\prime}\right)=p^{\alpha} \phi(x) \tag{2.26}
\end{equation*}
$$

for each continuity point x of ϕ.
By Lebesgue's theorem on dominated convergence (note that $q(v) \sim e^{v}, v \rightarrow \infty$, and $\mathrm{q}(\mathrm{v}) \sim \mathrm{cv}^{-\beta}, \mathrm{v} \rightarrow 0+$), we get for $\mathrm{s}>\mathrm{p}$ (using (2.24) and (2.26))

$$
\lim _{n^{\prime} \rightarrow \infty} s \int_{0}^{\infty} e^{-x s} f\left(x t_{n^{\prime}}\right) / \hat{f}\left(p / t_{n^{\prime}}\right) d x=s \int_{0}^{\infty} e^{-x s} p^{\alpha} \phi(x) d x<\infty .
$$

But then also, since $\hat{f}\left(p / t_{n^{\prime}}\right) \sim \hat{f}\left(t_{n^{\prime}}^{-1}\right) p^{-\alpha}\left(n^{\prime} \rightarrow \infty\right)$,

$$
\lim _{n^{\prime} \rightarrow \infty} s \int_{0}^{\infty} e^{-x s} f\left(x t_{n^{\prime}}\right) / \hat{f}\left(t_{n^{\prime}}^{-1}\right) d x=s \int_{0}^{\infty} e^{-x s} \phi(x) d x
$$

which is now true for all $s>0$. On the other hand we know

```
    \(\lim _{n^{\prime} \rightarrow \infty} s \int_{0}^{\infty} e^{-x s^{f}}\left(x t_{n^{\prime}}\right) / \hat{f}\left(t_{n^{\prime}}{ }^{-1}\right) d x=\lim _{n^{\prime} \rightarrow \infty} \hat{f}\left(s / t_{n^{\prime}}\right) / \hat{f}\left(t_{n^{\prime}}{ }^{-1}\right)=s^{-\alpha}\)
The uniqueness property of the Laplace transform (Widder (1941) \(p, 80\) ) now
gives \(\phi(x)=x^{\alpha} / \Gamma(1+\alpha)\) for \(x>0\).

\section*{Remarks}
1. For non-decreasing \(f\) it is also possible to prove the implication (2.23) \(\rightarrow\) \(f \in R V\). For details the reader is referred to Drasin's paper (1968).
2. Note that if \(f: \mathbb{R}^{\boldsymbol{+}} \rightarrow \mathbb{R}\) is locally bounded and measurable and if
\[
\log f(x)=o(x)(x \rightarrow \infty)
\]
then \(\hat{f}(t)<\infty\) for \(t>0\).
In particular this is true if \(\log f(x)=o(x)\) is replaced by \(f \in R V\).

\section*{Corollary 2.12 (= proposition 1.7.12)}

Any \(f \in R V_{\alpha}^{\infty}\) with \(\alpha+1 \in \mathbb{N}\) is asymptotic to a function \(f_{1}\) with the property that the absolute values of all its derivatives are regularly varying.

\section*{Proof}

If \(\alpha>0\), there is an increasing function \(f_{0}(t) \sim f(t)(t \rightarrow \infty)\) by proposition 1.7.3.

Define \(f_{1}(t)=\hat{f}_{0}(1 / t) / \Gamma(1+\alpha)\). For \(\alpha<0\) a similar proof can be given. \(\rangle\) Our next result contains an o-version of the above theorem.

\section*{Theorem 2.13}

Suppose \(f\) satisfies the assumptions of definition 2.10 and let \(g \in R V_{\alpha}^{\infty}\) with \(\alpha \geq 0\).
If
\[
\begin{equation*}
f(t)=o(g(t)) \quad(t+\infty) \tag{2.27}
\end{equation*}
\]
then
\[
\begin{equation*}
\hat{f}(1 / t)=o(g(t)) \quad(t+\infty) \tag{2.28}
\end{equation*}
\]

Conversely if \(f\) is non-decreasing and (2.28) holds, then (2.27) is true.

Proof
Suppose (2.27) with \(g \in \mathrm{RV}_{\alpha}, \alpha \geq 0\). Without loss of generality we may suppose that \(g\) satisfies the assumptions of definition 2.10 .
For \(\varepsilon>0\) arbitrary, there exists \(t_{0}\) such that \(f(t) \leq \varepsilon g(t)\) for \(t \geq t_{0}\). Hence
\[
t^{-1} \int_{t_{0}}^{\infty} e^{-s / t} f(s) d s \leq \varepsilon t^{-1} \int_{t_{0}}^{\infty} e^{-s / t} g(s) d s \leq 2 \varepsilon \Gamma(1+\alpha) g(t)
\]
for \(t\) sufficiently large by theorem 2.11 .
Since \(g \in R V_{\alpha}\) with \(\alpha \geq 0\) we have
\[
\left|t^{-1} \int_{0}^{t_{o}} e^{-s / t^{\prime}} f(s) d s\right| \leq t^{-1} \int_{0}^{t_{o}}|f(s)| d s=o(g(t))(t+\infty)
\]

Combination of the above inequalities then gives (2.28) since \(\varepsilon>0\) is arbitrary. The converse implication for non-decreasing follows immediately since \(f(t) \leq e \hat{f}(1 / t)\) by (2.24).

For positive functions \(f \in \Pi\) it is possible to improve the result for \(\alpha=0\) in theorem 2.11.

Theorem 2.14
Suppose fatisfies the assumptions of definition 2.10. Then
\[
\begin{equation*}
\mathrm{f} \in \mathrm{II} \tag{2.29}
\end{equation*}
\]
implies
\[
\begin{equation*}
\hat{\mathrm{f}} \in \Pi^{0} \tag{2.30}
\end{equation*}
\]

Conversely if \(f\) is non-decreasing then (2.30) implies (2.29). Moreover \(f \in \Pi(a)\) implies
\[
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{f(t)-\hat{f}\left(t^{-1}\right)}{a(t)}=\gamma, \tag{2,31}
\end{equation*}
\]
where \(\gamma\) is Euler's constant.

\section*{Proof}

The implication (2.29) \(\rightarrow(2.31)\) is a special case of theorem 1.18. Note that \(f \in \Pi(a)\) and (2.31) imply \(\hat{f} \in \Pi^{0}\) (see theorem 1.13).
In case \(f(t) \neq 0\) on \(\left(0, t_{o}\right)\), note that \(\left|t^{-1} \int_{0}^{0} e^{-s / t} f(s) d s\right| \leq t^{-1}\)
\(\int_{0}^{t}|f(s)| d s\) and the right-hand side is \(o(a(t))(t+\infty)\), which shows that (2.31) is also satisfied in this case. Conversely suppose \(\hat{f} \in \Pi^{0}\) and \(f\) is nondecreasing. Without loss of generality we may suppose that \(f(0+)=0\). Then the Laplace transform of the non-decreasing function \(g\) defined by
\(g(t)=\int_{0}^{t} \operatorname{sdf}(s)\) satisfies
\[
\begin{equation*}
\hat{f}(t)=\int_{t}^{\infty} \hat{g}(s) d s . \tag{2.32}
\end{equation*}
\]

Hence \(\hat{g} \in \mathrm{RV}_{-1}^{0}\) by proposition 1.19.5. This in turn implies \(\mathrm{g} \in \mathrm{RV}_{1}^{0}\) by theorem 2.11. Application of theorem 1.17 finally gives \(f \in \mathbb{I}\).

Corollary 2.15
If \(f(t x)-f(t) \rightarrow \log x(t+\infty)\), then \(\hat{f}\left(t^{-1} x^{-1}\right)-\hat{f}\left(t^{-1}\right) \rightarrow \log x(t \rightarrow \infty)\).
The converse holds under the assumption \(f\) is non-decreasing. Moreover then \(f(t)-\hat{f}\left(t^{-1}\right) \rightarrow \gamma, t \rightarrow \infty\).

It is possible to give a Mercerian result here of a restricted type: if \(\left(f(t)-\hat{f}\left(t^{-1}\right)\right) / t^{-1} \int_{0}^{t} \operatorname{sdf}(s) \rightarrow \gamma(t+\infty)\) with \(f\) non-decreasing and \(\mathrm{f}(0+)=0\), then \(\mathrm{f} \in \mathrm{I}\). See Embrechts (1978).

Example
If \(f(t)=c \log t+o(1)(c>0)\) then \(\hat{f}\left(t^{-1}\right)=c \log t-c \gamma+o(1), t \rightarrow \infty\). The converse holds under the assumption \(f\) is non-decreasing.

Note that the statement \(" f(t)-\hat{f}\left(t^{-1}\right) \rightarrow \gamma\) implies \(f(t)=1 \log t+o(1)\) "is not correct: take for example \(f(t)=t+\log (t+1)\).

\section*{Corollary \(2.16=\) Proposition 1.19.6}

Any \(f \in \mathbb{H}(a)\) has a companion function \(f_{1}\) such that \((-1)^{n+1} f_{1}(n) \quad \in V_{-n}^{\infty}\) for \(n=1,2, \ldots\) and \(f_{1}(t)-f(t)=o(a(t)), t+\infty\) (define \(f_{1}\) by \(f_{1}(t)=\hat{f}\left(t^{-1} e^{-\gamma}\right)\) ).

Theorem 2.17
Suppose that \(f: \mathbb{R}^{+} \rightarrow \mathbb{R}\) is integrable on finite intervals of \(\mathbb{R}^{+}\)and that \(\mathrm{L} \in \mathrm{RV}_{0}{ }^{\infty}\). Then
\[
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{f(t x)-f(t)}{L(t)}=0 \text { for every } x>0 \tag{2.33}
\end{equation*}
\]
implies
\[
\begin{equation*}
\lim _{s \rightarrow 0+} \frac{\hat{f}(s x)-\hat{f}(s)}{L(1 / s)}=0 \text { for every } x>0, \tag{2.34}
\end{equation*}
\]
and
\[
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{f(t)-\hat{f}\left(t^{-1}\right)}{L(t)}=0 \tag{2.35}
\end{equation*}
\]

Conversely if f is non-decreasing, then (2.34) implies (2.33).

Proof

Note that \(t^{-1} g(t)\) is locally bounded on \(t>0\) and that conversely \(f(t)=\frac{g(t)}{t}+\int_{0}^{t} \frac{g(s)}{s^{2}} d s\). We then have
\[
\begin{aligned}
& \frac{f(t)-\hat{f}(1 / t)}{L(t)}=\frac{g(t)}{t L(t)}-\int_{0}^{\infty} e^{-s} \frac{g(t s)}{t s L(t)} d s+\int_{0}^{1} \frac{1-e^{-s}}{s} \frac{g(t s)}{t s L(t)} d s+ \\
& -\int_{1}^{\infty} \frac{e^{-s}}{s} \frac{g(t s)}{t \operatorname{sL}(t)} d s .
\end{aligned}
\]

If (2.33) holds the first term on the right-hand side tends to zero as \(t \rightarrow \infty\) by remark 3 following corollary 1.18, the second term tends to zero by theorem 2.13 and the last two terms tend to zero by similar arguments as in the proof of theorem 2.14. This proves (2.35). Now (2.34) follows from (2.33) and (2.35) since \(\mathrm{L} \in \mathrm{RV}_{0}^{\infty}\). Conversely suppose (2.34) holds. Then with the function g as defined above we have
\[
\frac{\hat{\mathrm{f}}\left(2^{-1} t^{-1}\right)-\hat{\mathrm{f}}\left(\mathrm{t}^{-1}\right)}{\mathrm{L}(\mathrm{t})}=\int_{\frac{1}{2}}^{1} \frac{\hat{\mathrm{~g}}\left(\mathrm{st}{ }^{-1}\right)}{\mathrm{tL}(\mathrm{t})} \mathrm{ds} \geq \frac{2^{-1} \hat{g}\left(t^{-1}\right)}{\mathrm{tL(t)}} .
\]

Hence \(\hat{g}\left(t^{-1}\right)=0(t L(t))(t+\infty)\). Application of theorem 2.13 and remark 3 following corollary 1.18 then gives (2.33). This finishes the proof. \(\quad\).

Next we turn to Tauberian theorems for functions that grow faster than polynomials.
Roughly speaking we shall prove theorems connecting regular variation of \(\log \mathrm{f}\) at infinity with regular variation of \(\log \hat{f}\) at zero. It is now convenient to switch notation: instead of \(\log f\) we will write \(f\). This has the consequence that \(\log \hat{f}\) has to be considered as a function of \(\log f\), which is done in the next definition:

\section*{Definition 2.18}

Suppose \(f: \mathbb{R}^{+} \rightarrow \mathbb{R}\) is such that the Laplace transform of \(\exp f\) is finite. We define the function \(\tilde{\mathbb{F}}\) by the relation
\[
\begin{equation*}
\tilde{f}(s)=\log s \int_{0}^{\infty} \exp \{f(t)-s t\} d t, s>0 . \tag{2.36}
\end{equation*}
\]

In the proof of theorem 2.19 we use the concept of an inversely asymptotic function (see definition 1.21 ) in order to treat the cases \(I I\) and \(\mathrm{RV}_{\alpha}\) with \(0<\) \(\alpha<1\) simultaneously. It turns out that the transform \(\tilde{\mathbf{f}}\) defined above and the complementary function \(f^{c}\) whose properties were described in the first part of this chapter, are the same up to \(\stackrel{*}{\sim}\) equivalence.

Theorem 2.19
Suppose \(\mathrm{f}: \mathbb{R}^{+} \rightarrow \mathbb{R}\) is such that \(\tilde{\mathrm{f}}(\mathrm{s})\) is finite for \(s>0\) and let
\(s: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}\)be decreasing, continuous, \(\int_{0}^{1} s(x) d x<\infty, t s(t) \rightarrow \infty(t \rightarrow \infty)\)
and
\[
\begin{equation*}
s \in R V_{\alpha}^{\infty} \text { with }-1 \leq \alpha<0 \tag{2.38}
\end{equation*}
\]

Then
\[
\begin{equation*}
f(t) \stackrel{\star}{\sim} \int_{0}^{t} s(x) d x, t \rightarrow \infty \tag{2.39}
\end{equation*}
\]
implies
\[
\begin{equation*}
\tilde{\mathbf{f}}(\mathrm{u}) \stackrel{*}{\sim} \int_{\mathrm{u}}^{\infty} \mathrm{s}^{+}(\mathrm{x}) \mathrm{dx}, \mathrm{u} \rightarrow 0+, \tag{2.40}
\end{equation*}
\]
where \(s^{+}\)is the inverse function of \(s\).
Conversely if \(f\) is non-decreasing and if there exists a function satisfying (2.37) and (2.38), then (2.40) implies (2.39).

Corollary 2.20
Suppose \(f: \mathbb{R}^{+} \rightarrow \mathbb{R}\) is such that \(\tilde{\mathbf{f}}(\mathrm{s})\) is finite for all \(\mathrm{s}>0\).
a. Let \(p, q\) be related by \(\mathrm{p}^{-1}+\mathrm{q}^{-1}=1\).

Then \(f \in R V_{p}^{\infty}\) with \(0<p<1\) (i.e. \(\alpha=p-1>-1\) ) implies \(\tilde{f} \in R V_{q}^{0}\) with \(q<0\). If \(f \in \mathrm{RV}_{\mathrm{p}}^{\infty}\), then (2.39) is equivalent to (cf. prop. 1.22)
\[
f(t) \sim \int_{0}^{t} s(x) d x \sim p^{-1} t s(t) \quad(t+\infty)
\]
and (2.40) is equivalent to
\[
\widetilde{f}(u) \sim \int_{u}^{\infty} s^{+}(x) d x \sim-q^{-1} u s^{+}(u) \quad(u \rightarrow 0+) .
\]
b. The case \(p=0\) translates into the following: \(f \in \Pi\) (i.e. \(\alpha=-1\) ) with auxiliary function \(t s(t)+\infty(t \rightarrow \infty)\) (s decreasing) implies \(\tilde{f} \in \Pi^{0}\) with auxiliary function \(b(u) \sim u s{ }^{+}(u) \rightarrow \infty(u \rightarrow 0+)\). If \(f \in \Pi\), then (2.39) is equivalent to (cf. prop. 1.22)
\[
f(t)=\int_{0}^{t} s(x) d x+o(t s(t)) \quad(t \rightarrow \infty)
\]
and (2.40) is equivalent to
\[
\tilde{f}(u)=\int_{u}^{\infty} s^{+}(x) d x+o\left(u s^{\leftarrow}(u)\right) \quad(u \rightarrow 0+)
\]

Converse statements are true under the assumption that \(f\) is non-decreasing. \(\rangle\)

We prove the two statements in theorem 2.19 separately. For the proof of the Abelian part we need three lemmas.

Lemma 2.21
Suppose \(s: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}\)is decreasing, \(s(\infty)=0, \int_{0}^{1} s(x) d x<\infty, t s(t) \rightarrow \infty(t+\infty)\).
and let exp \(f(t)\) be locally integrable. and let \(\exp f(t)\) be locally integrable.
Define the function \(f_{o}\) by
\[
\begin{equation*}
\mathrm{f}_{\mathrm{o}}(\mathrm{t}):=\int_{0}^{\mathrm{t}} \mathrm{~s}(\mathrm{x}) \mathrm{dx} . \tag{2.41}
\end{equation*}
\]

Then
\[
\begin{equation*}
\mathrm{f}(\mathrm{t}) \stackrel{*}{\sim} \mathrm{f}_{\mathrm{o}}(\mathrm{t}) \quad(\mathrm{t}+\infty) \tag{2.42}
\end{equation*}
\]

Implies
\[
\begin{equation*}
\tilde{\mathbf{f}}(u) \stackrel{*}{\sim} \tilde{\mathrm{f}}_{0}(u) \quad(u+0+) \tag{2.43}
\end{equation*}
\]

Proof
Fix c \(>1\). We claim that
\[
\begin{equation*}
\exp \tilde{f}_{o}(u)-\exp \tilde{f}_{0}(c u)+\infty \text { for } u+0+ \tag{2.44}
\end{equation*}
\]

If we define \(t_{0}\) such that \(e^{-t} o=c e^{-c t_{0}}\), then \(t_{0}<1\) and
\[
\begin{aligned}
& \exp \tilde{f}_{o}(u)-\exp \tilde{f}_{0}(c u)=\int_{0}^{\infty} e^{f} f_{o}(t)\left(u e^{-u t}-c u e^{-c u t}\right) d t \\
& =\int_{0}^{\infty} e^{f}{ }_{o}^{(t / u)}\left(e^{-t}-c e^{-c t}\right) d t= \\
& =\int_{0}^{\infty}\left(e^{f}(t / u)-e^{f}\left(t_{o} / u\right)\right)\left(e^{-t}-c e^{-c t}\right) d t .
\end{aligned}
\]

Since \(f_{o}\) is non-decreasing the integrand in the last expression is nonnegative, hence the right-hand side is at least
\[
\begin{equation*}
\left(e^{f_{o}(2 / u)}-e^{f_{0}\left(t_{o} / u\right)}\right) \int_{2}^{\infty}\left(e^{-t}-c e^{-c t}\right) d t \tag{2.45}
\end{equation*}
\]

Note that \(t s(t) \rightarrow \infty(t \rightarrow \infty)\) implies \(\exp \left(f_{0}(2 / u)-f_{0}\left(t_{0} / u\right)\right)=\)
\[
\exp \left\{\int_{t_{0}}^{2} s(x / u) / u d x\right\} \rightarrow \infty, u \rightarrow 0+
\]

Hence the expression (2.45) tends to infinity which proves (2.44).

Now by (2.42) there exists \(t_{1}=t_{1}(c)\) such that \(f(c t) \geq f_{0}(t)\) for \(t \geq t_{1}\). Define the function \(f_{1}\) by \(f_{1}(t):=\min \left(f_{o}(t), f(c t)\right.\) ).
Then \(e^{\tilde{f}_{o}(u)}-e^{\tilde{f}_{1}(u)}=u \int_{0}^{t}\left(e^{f_{o}(t)}-e^{f_{1}(t)}\right) e^{-u t} d t=o(1)\)
\((u \rightarrow 0+)\). Together with (2.45) this gives \(\tilde{f}_{o}(c u) \leq \tilde{f}_{1}(u)\) for all \(u\) sufficiently sma11. The right-hand side is at most \(\tilde{f}(u / c)\) since \(f_{1}(t) \leq f(c t)\).
Hence \(\tilde{\mathrm{f}}_{0}(\mathrm{cu}) \leq \tilde{\mathrm{f}}(u / \mathrm{c})\) for \(u \leq u_{o}\).
Similarly we find \(\tilde{\mathrm{f}}(\mathrm{cu}) \leq \tilde{\mathrm{f}}_{\mathrm{o}}(\mathrm{u} / \mathrm{c})\) for \(u \leq \mathrm{u}_{1}\). This finishes the proof since c > 1 is arbitrary.

Lemma 2.22
If \(f\) is non-decreasing and \(f^{C}, \tilde{f}\) are well-defined, then
\[
\begin{equation*}
\tilde{\mathrm{f}}(\mathrm{~s}) \geq \mathrm{f}^{\mathrm{c}}(\mathrm{~s}) \text { for } \mathrm{s}>0 . \tag{2.46}
\end{equation*}
\]

Proof
For \(u, s>0\) we have
\[
\begin{aligned}
\exp \tilde{f}(s) & =s \int_{0}^{\infty} e^{-x s+f(x)} d x \geq s \int_{u}^{\infty} e^{-x s+f(x)} d x \geq e^{f(u)} s \int_{u}^{\infty} e^{-x s} d x \\
& =\exp \{f(u)-s u\}
\end{aligned}
\]

The proof is finished by taking the supremum over \(u>0\) on the right-hand side.

Lemma 2.23
If \(f(t)=\int_{0}^{t} s(x) d x, t>0\), where the function \(s\) is continuous, decreasing and \(s \in R V_{\alpha}\) with \(-1 \leq \alpha<0\), then for all \(t>0\)
\[
\begin{equation*}
\tilde{f}(s(t))=f^{c}(s(t))+\log \left\{s(t) \int_{-t}^{\infty} e^{-\Delta(u)} d u\right\} \tag{2.47}
\end{equation*}
\]
where the function \(\Delta\) is defined by
\[
\begin{equation*}
\Delta(u):=u s(t)-f(t+u)+f(t) \tag{2.48}
\end{equation*}
\]

Moreover the function \(\Delta\) is convex, positive for \(u \neq 0, u>-t, \Delta(0)=0\) and satisfies the inequality
\[
\begin{equation*}
\Delta(t+u) \geq\left(1-2^{\alpha^{\prime}}\right) u s(t) \text { for } u>0 \tag{2.49}
\end{equation*}
\]
and all \(t\) sufficiently large, where \(\alpha<\alpha^{\prime}<0\).

\section*{Proof}

By the definition of the complementary function \(f^{c}\) we have
\[
\begin{aligned}
\tilde{f}(s(t)) & =f(t)-t s(t)+\log \left\{s(t) \int_{-t}^{\infty} e^{-\Delta(u)} d u\right\} \\
& =f^{c}(s(t))+\log \left\{s(t) \int_{-t}^{\infty} e^{-\Delta(u)} d u\right\}
\end{aligned}
\]

Since \(s \in R_{\alpha}\) we have \(s(2 t) \leq 2^{\alpha^{\prime}} s(t)\) for \(t>t_{0}\), where \(\alpha<\alpha^{\prime}<0\). Now fix \(t>t_{0}\). Then since \(s\) is decreasing we have
\[
\Delta^{\prime}(u)=s(t)-s(t+u) \geq s(t)-s(2 t) \geq\left(1-2^{\alpha^{\prime}}\right) s(t)
\]
for \(u>t\). Hence we have
\[
\Delta(t+u)=\int_{0}^{t+u} \Delta^{\prime}(x) d x \geq \int_{t}^{t+u} \Delta^{\prime}(x) d x \geq\left(1-2^{\alpha^{\prime}}\right) u s(t)
\]
for \(u>0\).
\(\rangle\)

\section*{Proof of theorem 2.19 (Abelian part)}

In view of lemma 2.21 we may assume that \(f(t)=\int_{0}^{t} s(x) d x\) with \(s \in R V_{\alpha}\) \((-1 \leq \alpha<0)\) continuous, decreasing and \(t s(t) \rightarrow \infty(t \rightarrow \infty)\).

Application of lemma 2.23 gives
\[
\begin{aligned}
& \tilde{f}(s(t))=f^{c}(s(t))+\log \left\{s(t) \int_{-t}^{\infty} e^{-\Delta(u)} d u\right\} \\
& \leq f^{c}(s(t))+\log s(t)\left\{\int_{-t}^{t} 1 \cdot d u+\int_{0}^{\infty} e^{-\Delta(t+u)} d u\right\} \leq \\
& \leq f^{c}(s(t) / c)-\left(f^{c}(s(t) / c)-f^{c}(s(t))\right)+\log \left\{2 t s(t)+\left(1-2^{\alpha^{\prime}}\right)^{-1}\right\} .
\end{aligned}
\]

Now we have for any \(c>1\)
\[
f^{c}(s(t) / c)-f^{c}(s(t))=\int_{s(t) / c}^{s(t)} s^{+}(x) d x \geq\left(1-c^{-1}\right) t s(t),
\]
hence
\[
\tilde{f}(s(t)) \leq f^{c}(s(t) / c)-\left(1-c^{-1}\right) \operatorname{ts}(t)+\log \left\{2 t s(t)+\left(1-2^{\alpha^{\prime}}\right)^{-1}\right\}
\]

Now let \(t \rightarrow \infty\). Then \(s(t) \rightarrow 0\) and \(t s(t) \rightarrow \infty\) by assumption. The last inequality then gives \(\tilde{\mathbf{f}}(s) \leq f^{c}(s / c)\) for sufficiently small \(s\).
Combination with lemma 2.22 now gives \(\tilde{f}(s) \stackrel{*}{\sim} f^{c}(s), s \rightarrow 0+\). In view of theorem 2.3 this finishes the proof.

Before giving a proof of the Tauberian part of theorem 2.19 we discuss its main 1ine. We have seen that under the main assumptions (2.38) and (2.39) the complementary transform and the \(\sim\) transform have the same behaviour up to \(*\) equivalence.
If \(\tilde{f}\) satisfies (2.40), by the analogue of theorem 2.6 for the transform \(f_{c}\) its inverse complementary function ( \(\tilde{f})_{c}\) satisfies
\[
h(t):=(\tilde{f}){ }_{c}(t) \stackrel{\star}{\sim} \int_{0}^{t} s(x) d x(t \rightarrow \infty)
\]

It is then sufficient to prove \(h \stackrel{*}{\sim}\). The proof is by contradiction. We show that if the relation \(f \stackrel{\star}{\sim} h\) is not true, then \(\underset{f}{\sim} \underset{\sim}{\sim}\) cannot be true.

Since on the other hand \(\tilde{h}(u) \stackrel{*}{\sim} \int_{u}^{\infty} s^{+}(x) d x(u \rightarrow 0+)\) by theorem 2.3 and
\[
\tilde{f}(u) \stackrel{*}{\sim} \int_{u}^{\infty} s^{+}(x) d x(u \rightarrow 0+) \text { by assumption }
\]
this gives the required contradiction. In order to evaluate \(\tilde{h}\) we separate the domain of integration \((0, \infty)\) into two parts: an interval \(I\) and its complement \(I^{C}\).

Lemma 2.24 below shows that the contribution of \(I^{c}\) is small, i.e.
\[
\log s(t) \int_{I} e^{h(t)-t s(t)} d t \leq \tilde{h}(\operatorname{cs}(t))
\]
for \(t\) sufficiently large.

Lemma 2.24
Suppose \(f(t)=\int_{0}^{t} s(x) d x(t>0)\) with \(s\) continuous, decreasing and \(s \in \operatorname{RV}_{\alpha}^{\infty}\) with \(-1 \leq \alpha<0\). Suppose moreover \(t s(t)+\infty(t \rightarrow \infty)\). Then for every \(0<\beta<1\) there exist constants \(c>1\) and \(t_{0}\) such that for \(t \geq t_{o}\)
\[
\begin{equation*}
\log s(t) \int_{I} c e^{f(u)-u s(t)} d u \leq \tilde{f}(\operatorname{cs}(t)) \tag{2.50}
\end{equation*}
\]
where \(I=(t-\beta t, t+\beta t)\).

\section*{Proof}

Fix \(t>t_{o}\) and define the function \(\Delta\) as in (2.48). Application of lemna 2.23 gives \(\Delta(\beta t)=\Delta\left(\frac{\beta}{2} t+\frac{\beta}{2} t\right) \geq\left(1-2^{\alpha \prime}\right) \frac{\beta}{2} t s\left(\frac{\beta}{2} t\right) \geq \gamma_{1} \beta t s(t)\) for some \(\gamma_{1}>0\) not depending on \(\beta\) and \(t \geq t_{1}\) 。

Similarly \(\Delta(-\beta t) \geq \gamma_{2} \beta t s(t)\) for \(t \geq t_{2}\). Since \(\Delta\) is convex and \(\Delta(0)=0\),
\[
\begin{aligned}
& s(t) \int_{t+\beta t}^{\infty} e^{f(u)-u s(t)} d u=e^{f(t)-t s(t)} s(t) \int_{\beta t}^{\infty} e^{-\Delta(u)} d u \leq \\
& e^{f(t)-t s(t)} s(t) \int_{\beta t}^{\infty} e^{-\Delta(\beta t)-\Delta(u-\beta t)} d u \\
& \leq e^{f(t)-t s(t)} s(t) e^{-\gamma_{1} \beta t s(t)} \int_{0}^{\infty} e^{-\Delta(u)} d u=e^{-\gamma_{1} \beta t s(t)} s(t) \int_{t}^{\infty} e^{f(u)-u s( }
\end{aligned}
\]

This together with the corresponding inequality for the integral over ( \(0, t-\beta t\) ) gives
\[
\begin{equation*}
\log s(t) \int_{I} e^{f(u)-u s(t)} d u \leq \tilde{\tilde{E}}(s(t))-\gamma t s(t), \tag{2.51}
\end{equation*}
\]
where \(\gamma:=\beta \min \left(\gamma_{1}, \gamma_{2}\right)\).
Application of theorem 2.19 (Abelian part) gives
\[
\begin{equation*}
\widetilde{f}(u) \stackrel{*}{\sim} \int_{u}^{\infty} s^{+}(x) d x, u \rightarrow 0+ \tag{2.52}
\end{equation*}
\]

Hence for any \(\varepsilon>0\) there exists \(u_{0}\) such that for \(u \leq u_{o}\)
\[
\begin{align*}
& \tilde{\mathrm{f}}(\mathrm{u}) \leq \int_{(1-\varepsilon) \mathrm{u}}^{\infty} \mathrm{s}^{+}(\mathrm{x}) \mathrm{dx} \leq \int_{(1+2 \varepsilon) \mathrm{u}}^{\infty} \mathrm{s}^{+}(\mathrm{x}) \mathrm{dx}+3 \varepsilon u \mathrm{~s}^{+}((1-\varepsilon) \mathrm{u}) \leq  \tag{2.53}\\
& \widetilde{\mathrm{f}}((1+\varepsilon) \mathrm{u})+3 \varepsilon \mathrm{us}^{+}((1-\varepsilon) \mathrm{u})
\end{align*}
\]
since \(s^{+}\)is decreasing. Since \(s^{+} \in \mathrm{RV}_{-1 / \alpha}^{0}\) (see proposition 1.7.9) we have \(s^{+}((1-\varepsilon) u) \leq c_{0} s^{+}(u)\) for \(u\) sufficiently sma11, where \(c_{0}=c_{o}(\varepsilon)>(1-\varepsilon)^{-1 / \alpha}\) is a constant. Substitution in (2.53) gives for \(u \leq u_{0}\)
\[
\tilde{f}(u) \leq \tilde{f}((1+\varepsilon) u)+3 \varepsilon c_{0} u s^{+}(u) .
\]

The proof is completed by application of the inequality (2.51) if we take \(c=1+\varepsilon>1\) so that \(3 \varepsilon c_{0}<\gamma\) and \(u=s(t)\).

\section*{Proof of theorem 2.19 (Tauberian part)}

Define the function \(h\) by \(h(t):=(\tilde{f})_{c}(t)\). From \(\tilde{f} \geq f^{c}\) (1emma 2.22) it follows that
\[
\begin{equation*}
h(t) \geq\left(f^{c}\right)_{c}(t) \geq f(t) \tag{2.54}
\end{equation*}
\]

The latter inequality follows since \(\left(f^{c}\right)_{c}\) is the concave upper hull of \(f\).
From \(\tilde{\mathrm{f}}(\mathrm{u}) \underset{\sim}{*} \int_{\mathrm{u}}^{\infty} \mathrm{s}^{+}(\mathrm{x}) \mathrm{dx}(\mathrm{u} \rightarrow 0+\mathrm{f})\) it follows by theorem 2.3 that
\[
\begin{equation*}
h(t) \stackrel{*}{\sim} \int_{0}^{t} s(x) d x, t+\infty \text { with } s \in \operatorname{RV}_{\alpha}^{\infty}(-1 \leq \alpha<0) \tag{2.55}
\end{equation*}
\]

It remains to prove that \(f(t) \stackrel{*}{\sim} h(t)(t \rightarrow \infty)\). The proof is by contradiction. If \(f(t) \stackrel{*}{\sim} h(t)\) is not true, then since \(f\) and \(h\) satisfy (2.54), there exists a sequence \(\tau_{n} \rightarrow \infty(n \rightarrow \infty)\) and a constant \(c>1\) such that \(h\left(\tau_{n} / c\right) \geq f\left(\tau_{n} c\right)\). This implies since \(h\) and \(f\) are non-decreasing, that \(h(t / c) \geq f(t)\) for \(\tau_{n}<t<c \tau_{n}\) or (with \(t_{n}=\tau_{n} \sqrt{ }\), \(\beta=1-c^{-\frac{1}{2}}\) )
\[
\begin{equation*}
h(t / c) \geq f(t) \text { for } t \in I_{n}:=\left(t_{n}-\beta t_{n}, t_{n}+\beta t_{n}\right) \tag{2.56}
\end{equation*}
\]

Together with (2.54) this gives for \(s>0\)
\[
\begin{align*}
\widetilde{f}(s) & =\log s \int_{0}^{\infty} e^{f(u)-u s} d u \leq \log \left(s \int_{I_{n}} e^{h(u / c)-u s} d u\right. \\
& \left.+s \int_{I_{n}} c^{h(u)-u s} d u\right) \tag{2.57}
\end{align*}
\]

Note that (2.55) implies by lemma 1.23 that \(h(t)=\int_{0}^{t} s_{1}(x) d x\) where \(s_{1}\) nonincreasing and \(s_{1}(t) \sim s(t)(t \rightarrow \infty)\). So if we take \(f=h\) and \(t=t_{n}\) in lemma
2.24 we can estimate the second integral at the right-hand side in (2.57). As a consequence there exists \(c^{\prime}>1\) such that (with \(s_{n}:=s_{1}\left(t_{n}\right)\) )
\[
\begin{align*}
& \tilde{\mathrm{f}}\left(s_{\mathrm{n}}\right) \leq \log \left(\mathrm{e}^{\tilde{\mathrm{h}}\left(\mathrm{cs}_{n}\right)}+\mathrm{e}^{\tilde{\mathrm{h}}\left(c^{\prime} s_{\mathrm{n}}\right)}\right) \leq \tilde{\mathrm{h}}\left(c^{\prime \prime} s_{\mathrm{n}}\right)+1  \tag{2.58}\\
& c^{\prime \prime}=\min \left(c, c^{\prime}\right)>1 .
\end{align*}
\]

Now application of the direct statement of theorem 2.19 shows that (2.55) implies \(\tilde{h}(u) \stackrel{\star}{\sim} \int_{u}^{\infty} s^{+}(x) d x, u \rightarrow 0+\). Since also \(x s^{+}(x) \rightarrow \infty(x \rightarrow 0+)\), we have \(\tilde{h}\left(s_{n} \sqrt{ } c^{\prime \prime}\right)-\tilde{h}\left(s_{n} c^{\prime \prime}\right) \rightarrow \infty(n+\infty)\).

This takes (2.58) into the form \(\tilde{f}\left(s_{n}\right) \leq \tilde{h}\left(s_{n} / c^{\prime \prime}\right)\) for sufficiently large \(n\), hence \(\tilde{f}\) and \(\tilde{h}\) are not inversely asymptotic.
On the other hand by assumption \(\widetilde{\mathrm{f}}(\mathrm{u}) \stackrel{\star}{\sim} \int_{u}^{\infty} \mathrm{s}^{+}(\mathrm{x}) \mathrm{dx}\) and we already found \(\tilde{h}(u) \stackrel{*}{\sim} \int_{u}^{\infty} s^{+}(x) d x, u \rightarrow 0+\), hence a contradiction is obtained.

Now that the proof of theorem 2.19 has been completed, let us pause to consider its place with respect to the previous results. In theorem 2.11 we considered functions \(f \in \mathrm{RV}_{\alpha}^{\infty}(0 \leq \alpha<\infty)\). Theorem 2.19 concerns functions \(f\) such that \(\log f \in \operatorname{RV}_{\alpha^{\prime}}^{\infty}\left(0<\alpha^{\prime}<1\right)\) or \(\log f \in \Pi\) (the case \(\alpha^{\prime}=0\) ). We argue that the case \(\alpha^{\prime}=0\) of theorem 2.19 can also be considered as the borderline case \(\alpha=\infty\) of theorem 2.11. To this purpose note that \(f \in R V_{\alpha}^{\infty}\) is equivalent ( \(\alpha>0\) ) to
\[
\begin{equation*}
\lim _{t \rightarrow \infty}\left(\frac{f(t x)}{f(t)}\right)^{1 / a(t)}=x \tag{2.59}
\end{equation*}
\]
for all \(x>0\) provided that \(\lim a(t)=\alpha\). Now (2.59) with \(\lim a(t)=\infty\) is
equivalent to \(\log f \in \Pi(a)\) which is the condition for theorem 2.19 with \(\alpha^{\prime}=0\).
Incidentally, also the condition for theorem 2.14 (the refinement of theorem 2.11 for \(\alpha=0\), which is \(f \in \Pi\), is of the form (2.59) namely with the condition \(1 \mathrm{im} a(t)=0\) :
```

 \(\log x \sim \log \left(\frac{f(t x)}{f(t)}\right)^{1 / a(t)}=\left\{\log \frac{f(t x)}{f(t)}\right\} / a(t) \sim\left\{\frac{f(t x)}{f(t)}-1\right\} / a(t) \quad(t \rightarrow \infty\)
    ```

We mention that an alternative result for the case \(\alpha^{\prime}=0\) of theorem 2.19 has been proved by Parameswaran (1961). Without proof we mention the result here for completeness.

\section*{Theorem 2.25}

Suppose \(f: \mathbb{R}^{+} \rightarrow \mathbb{R}\) is such that \(\tilde{\mathrm{f}}(\mathrm{s})\) is finite for \(s>0\). Then \(f(t) \sim\{L(t)\}^{-1}(t \rightarrow \infty), L \in \operatorname{RV}_{0}^{\infty}\) and \(L^{*}\) is non-decreasing imply \(\tilde{f}(u) \sim L^{*}(1 / u)(u \rightarrow 0+)\).
Conversely if \(f\) is non-decreasing, \(\tilde{f}(u) \sim L^{*}(1 / u)\left(u \rightarrow 0+\right.\) ) with \(L \in R V_{0}^{\infty}\), then \(f(t) \sim\{L(t)\}^{-1}(t \rightarrow \infty)\).

In the above theorem the funtion \(L^{*}\) is the conjugate slowly varying function as defined in chapter 1 (see the remark following theorem 1.8).

The final theorem of this chapter gives a result for functions growing even faster than the functions from theorem 2.19. This result can be considered as the borderline case \(\alpha=1\) of theorem 2.19. Note that \(\alpha>1\) is impossible, since then the Laplace transform does not exist any more.

Theorem 2.26
Suppose \(f: \mathbb{R}^{+} \rightarrow \mathbb{R}\) is such that \(\tilde{f}(s)\) is finite for \(s>0\). Let (see definition 2.5)
\[
\begin{align*}
& s: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \text {be decreasing, continuous, } s(\infty)=0, \int_{0}^{1} s(x) d x<\infty  \tag{2.60}\\
& \text { and } s \in \mathbb{I}^{-}(a) \text {. }
\end{align*}
\]

Then
\[
\begin{equation*}
f(t) \dot{\sim} \int_{0}^{t} s(x) d x, t \rightarrow \infty \tag{2.61}
\end{equation*}
\]
implies
\[
\begin{equation*}
\tilde{\mathrm{f}}(\mathrm{u}) \sim \int_{\mathrm{u}}^{\infty} \mathrm{s}^{+}(\mathrm{x}) \mathrm{dx}, \mathrm{u} \rightarrow 0+ \tag{2.62}
\end{equation*}
\]

Conversely suppose \(f\) is non-decreasing, \(f(t) / t\) is non-increasing and \(s\) satisfies (2.60). Then (2.62) implies (2.61).

\section*{Remark}

Theorem 2.26 does not hold without the condition \(f(t) / t\) non-increasing. For a counterexample the reader is referred to Geluk, de Haan, Stadtmiiller [1986]. It is also possible to relax the assumptions on \(s\) in the theorem.

Corollary 2.27
Suppose \(f: \mathbb{R}^{+} \rightarrow \mathbb{R}\) is such that \(\tilde{f}(s)\) is finite for \(s>0\).
If \(f(t) / t \in \Pi^{-}\)(see definition 2.5) and \(\lim f(t) / t=0\), then \(\tilde{f} \in \Gamma^{(0)}\) (def.
2.5).

Conversely, if \(f(t)\) is non-decreasing, \(f(t) / t\) non-increasing,
```

$\lim _{t \rightarrow \infty} f(t) / t=0$ and $\tilde{f} \in \Gamma^{(0)}$, then $f(t) / t \in \mathbb{I}^{-}$.

```

Moreover (2.61) with \(s\) as in (2.60) is equivalent to
\[
\begin{equation*}
f(t)=t s(t / e)+o(t a(t)), t \rightarrow \infty . \tag{2.63}
\end{equation*}
\]

Proof of cor. 2.27
For the first part (the implications \(f(t) / t \in \Pi \cdots \tilde{f} \in \Gamma^{(0)}\) ) we use theorem 2.26 and lemma 2.7. In order to prove (2.63) notice that \(-s \in \Pi(a)\) and
\[
-\frac{f(t)}{t} \stackrel{\star}{\sim}-\frac{1}{t} \int_{0}^{t} s(x) d x(t+\infty)
\]
hence by proposition 1.22 and theorem 1.17
\[
\begin{aligned}
& \frac{f(t)}{t}=\frac{1}{t} \int_{0}^{t} s(x) d x+o(a(t))= \\
& =s(t)+\left\{-s(t)+t^{-1} \int_{0}^{t} s(x) d x\right\}+o(a(t)) \\
& =s(t)+a(t)+o(a(t))=s(t / e)+o(a(t))(t \rightarrow \infty) .
\end{aligned}
\]

The last equality follows directly from the definition of \(\mathbb{I}^{-}\)(a).

We prove the two statements of theorem 2.26 separately.
For the proof of the Abelian part we need two lemmas.

Proof
Since \(s \in \Pi^{-}(a)\) we have \(s(t)-s(2 t) \geq \frac{1}{2} a(t) \log 2\) for \(t>t_{0}\). Fix \(t>t_{0}\) and define the function \(\Delta\) as in (2.48). Recall that \(\Delta(u)\) is convex and nonnegative for \(u \geq-t\). Moreover \(\Delta^{\prime}(t)=s(t)-s(2 t) \geq \frac{1}{2} a(t) \log 2\), whence for \(u>0\)
\[
\begin{equation*}
\Delta(u+2 t) \geq \Delta(t)+(u+t) \Delta^{\prime}(t) \geq u \Delta^{\prime}(t) \geq \frac{1}{2} u a(t) \log 2 \tag{2.64}
\end{equation*}
\]

We have (1emma 2.22 and 2.23)
\[
\begin{equation*}
f^{c}(s(t)) \leq \tilde{f}(s(t))=f^{c}(s(t))+\log s(t) \int_{-t}^{\infty} e^{-\Delta(u)} d u \tag{2.65}
\end{equation*}
\]

The integral on the right-hand side can be estimated using (2.63):
\[
\begin{align*}
& s(t) \int_{-t}^{\infty} e^{-\Delta(u)} d u \leq s(t) \int_{-t}^{2 t} 1 \cdot d u+s(t) \int_{0}^{\infty} e^{-\Delta(u+2 t)} d u \leq \\
& \leq 3 t s(t)+2 s(t) /(a(t) \log 2) . \tag{2.66}
\end{align*}
\]

Consider this expression for \(t \rightarrow \infty\). Now \(s \in \mathbb{I}^{-}, a \in \mathrm{RV}_{0}^{\infty}\) and hence \(\mathrm{ta}(\mathrm{t}) \rightarrow \infty\), \(\log\) \(s(t)=o(\log t), t \rightarrow \infty(\) prop. 1.7.1). So
\[
\begin{equation*}
\log s(t) \int_{-t}^{\infty} e^{-\Delta(u)} d u \sim \log t(t+\infty) \tag{2.67}
\end{equation*}
\]

By theorem \(2.8 f^{c}(u) \sim \int_{u}^{\infty} s^{+}(x) d x, u \rightarrow 0+\).
In view of (2.65) and (2.66) the proof is finished if we show that
\[
\begin{equation*}
\frac{\log t}{\int_{s(t)}^{\infty} s^{+}(x) d x}=\frac{\log t}{\int_{0}^{t} s(x) d x-t s(t)}+0 \text { as } t \rightarrow \infty \tag{2.68}
\end{equation*}
\]

An application of theorem 1.17 shows that \(\int_{0}^{t} s(x) d x-t s(t)\) is in \(R V_{1}^{\infty}\).
It follows that the left-hand side of (2.68) is in \(R V_{-1}^{\infty}\), hence (2.62) follows.

\section*{Lemma 2.29}

If the assumptions of lemma 2.28 are satisfied, for any \(\delta>1\)
\[
\begin{align*}
& (f / \delta)^{\sim}(u)-\tilde{f}(\delta u) / \delta^{2} \rightarrow \infty, u \rightarrow 0+  \tag{2.69}\\
& (\delta f)^{\sim}(u)-\delta^{2} \tilde{f}(u / \delta) \rightarrow-\infty, u+0+ \tag{2.70}
\end{align*}
\]

By \((a f)^{\sim}\) we mean \(\tilde{g}\) with \(g(t):=a f(t)\) for \(a>0\).

\section*{Proof}

Fix \(\delta>1\). Since \(f^{c} \leq \tilde{f}\) (lemma 2.22) and \(\tilde{f}(u) \sim f^{c}(u)\) (thm. 2.3 and lemma 2.27)
\[
(f / \delta)^{\sim}(u) \geq(f / \delta)^{c}(u)=f^{c}(\delta u) / \delta \sim \tilde{f}(\delta u) / \delta, u \rightarrow 0+
\]

This proves (2.69) since \(\tilde{f}(u)+\infty\) as \(u \rightarrow 0+\). In order to prove (2.70) note that
\[
\delta \tilde{\mathrm{f}}(\mathrm{u} / \delta) \geq \delta \mathrm{f}^{\mathrm{c}}(\mathrm{u} / \delta)=(\delta f)^{c}(\mathrm{u}) \sim(\delta f)^{\sim}(\mathrm{u}), u \rightarrow 0+
\]

\section*{Proof of theorem 2.26 (Abelian part)}

Define the function \(f_{0}\) by \(f_{0}(t)=\int_{0}^{t} s(x) d x\).
Fix \(\delta>1\) and define the function \(f_{1}\) by \(f_{1}(t)=\min \left\{f_{0}(t) / \delta, f(t / \delta)\right\}\). Since \(f \dot{\sim} f_{0}\) it follows that \(f_{1}(t)=f_{0}(t) / \delta\) for \(t>t_{o}\). Hence
\[
\begin{equation*}
\exp \left(\mathrm{f}_{\mathrm{o}} / \delta\right)^{\sim}(u)-\exp \left(\tilde{\mathrm{f}}_{1}(\mathrm{u})\right)= \tag{2.71}
\end{equation*}
\]
\(u \int_{0}^{t_{o}}\left\{\exp \left(f_{o}(t) / \delta\right)-\exp \left(f_{1}(t)\right)\right\} e^{-u t} d t=o(1), u \rightarrow 0+\).

Now (2.69), (2.71) and \(f_{1}(t) \leq f(t / \delta)\) imply \(\tilde{f}(\delta u) \geq \tilde{f}_{1}(u)>\tilde{f}_{0}(\delta u) / \delta^{2}\) for \(u\) sufficiently small. Similarly we find \(\delta^{2} \tilde{f}_{o}(u / \delta) \geq \tilde{f}(u / \delta)\) for \(u\) sufficiently small by introducing the function \(f_{2}(t)=\max \left(\delta f_{0}(t), f(t \delta)\right)\). This proves \(\tilde{f}(u) \sim \tilde{f}_{o}(u), u \rightarrow 0+\), and the latter is asymptotic to \(\int_{u}^{\infty} s^{+}(x) d x\) by 1ernma 2.28.

In order to prove the Tauberian part of theorem 2.26 we need an analogue of lemma 2.24.

Lemma 2.30
Suppose \(f(t)=\int_{0}^{t} s(x) d x\) with \(s \in \Pi^{-}(a)\), \(s\) non-increasing, continuous and \(s(\infty)=0\).

For every \(0<\beta<1\) there exist \(c>1\) and \(t_{o}>0\) such that for \(t \geq t_{0}\)
\[
\begin{equation*}
\log s(t) \int_{I^{c}} e^{f(u)-u s(t)} d u \leq \tilde{f}(s(t)) / c \tag{2.72}
\end{equation*}
\]
where \(I=(t-\beta t, t+\beta t)\).

Proof
For \(t>0\) fixed and \(u>-t\) define \(\Delta(u):=u s(t)-f(t+u)+f(t)\) as in (2.49). Then as before
\[
\Delta^{\prime}(u) \geq s(t)-s(t+u)
\]
and, using \(s \in \Pi^{-}(a)\), for \(t \geq t_{o}, u \geq \beta t / 2\)
\[
\Delta^{\prime}(u) \geq \frac{1}{2} a(t) \log \left(1+\frac{\beta}{2}\right)=: 2 c_{o} a(t) .
\]

This implies
\[
\Delta(\beta t)=\Delta(\beta t / 2)+\int_{\beta t / 2}^{\beta t} \Delta^{\prime}(u) d u \geq c_{o} \beta t a(t)
\]
and since \(\Delta\) is convex and \(\Delta(0)=0\), for \(t \geq t_{0}\)
\[
\begin{aligned}
& s(t) \int_{t+\beta t}^{\infty} e^{f(u)-u s(t)} d u=e^{f(t)-t s(t)} s(t) \int_{\beta t}^{\infty} e^{-\Delta(u)} d u \\
& \leq e^{f(t)-t s(t)} s(t) \int_{\beta t}^{\infty} e^{-\Delta(\beta t)-\Delta(u-\beta t)} d u \\
& \leq e^{f(t)-t s(t)-c_{o} \beta t a(t)} s(t) \int_{0}^{\infty} e^{-\Delta(u)} d u= \\
& e^{-c o^{\beta t a(t)}} s(t) \int_{t}^{\infty} e^{f(u)-u s(t)} d u .
\end{aligned}
\]

Similarly for some \(c_{1}>0\) and \(t\) sufficiently large
\[
s(t) \int_{0}^{t-\beta t} e^{f(u)-u s(t)} d u \leq e^{-c} 1_{1}^{\beta t a(t)} s(t) \int_{0}^{t} e^{f(u)-u s(t)} d u .
\]

Combination of the two inequalities gives for some \(c_{2}>0\) and \(t\) sufficiently large
\[
\log s(t) \int_{I} c^{f(t)-u s(t)} d u \leq \tilde{f}(s(t))-c_{2} \beta \operatorname{ta}(t)
\]

It is now sufficient to prove that \(\operatorname{ta}(t) \sim \tilde{f}(s(t))(t+\infty)\).
This follows from the direct statement of theorem 2.26:
\[
\tilde{f}(s(t)) \sim \int_{s(t)}^{\infty} s^{+}(u) d u=t\left\{t^{-1} \int_{0}^{t} s(u) d u-s(t)\right\} \sim t a(t)(t+\infty),
\]
the last asymptotic equality being a consequence of \(s \in \mathbb{I}^{-}(a)\) and theorem 1.17.

\section*{Proof of theorem 2.26 (Tauberian part)}

Suppose (2.62) holds. The function \(h\) defined by \(h(t):=(\tilde{f})_{c}(t)\) is concave by the definition of the inverse complementary function (definition 2.1). Moreover \(h\) is eventually positive. Hence \(h(t) / t\) is eventually non-increasing. By lemma 2.22 we have \(h(t) \geq\left(f^{c}\right)_{C}(t)\). Also \(\left(f^{c}\right)_{c}\) is (by definition) the convex upper hull of \(f\), hence \(\left(f^{c}\right)_{c} \geq f\). As a consequence, for \(c>1\) we have for sufficiently large \(t\)
\[
h(t) \geq\left(f^{c}\right)_{c}(t) \geq f(t) .
\]

From (2.62) it follows by the analogue of theorem 2.8 for the inverse complementary function that
\[
\begin{equation*}
h(t) \dot{\sim} \int_{0}^{t} s(x) d x(t+\infty) \tag{2.73}
\end{equation*}
\]

It remains to prove that \(f(t) \dot{\sim} h(t)\). The proof is by contradiction. Suppose that \(f(t) \dot{\sim} h(t)\) is not true, then, since \(f(t) \leq h(t)\), there exists a sequence \(\tau_{n} \rightarrow \infty\) and a constant \(c>1\) such that
\[
\frac{f\left(\tau_{n}\right)}{\tau_{n}}<\frac{h\left(c \tau_{n}\right)}{c \tau_{n}}
\]

Now \(f(t) / t\) and \(h(t) / t\) are non-increasing, so for \(\tau_{n}<t<\tau_{n} \sqrt{c}\) we have \(f(t) / t \leq f\left(\tau_{n}\right) / \tau_{n}<h\left(\tau_{n} c\right) / \tau_{n} c \leq h(t \sqrt{c}) / t \sqrt{c}\). Hence for \(t_{n}=\tau_{n} c^{1 / 4}\) and \(\beta=1-c^{-1 / 4}\) we get
\[
\begin{equation*}
\frac{f(t)}{t}<\frac{h(t c)}{t c} \text { on } I_{n}:=\left(t_{n}-\beta t_{n}, t_{n}+\beta t_{n}\right) . \tag{2.74}
\end{equation*}
\]

We want to apply lemma 2.30 with \(f=h\). In order to do so, we have to show that there exists a non-increasing function \(s_{1}\) such that \(h(t)=\int_{s_{1}}^{t}(x) d x\) and \(s_{1} \in \mathbb{K}^{-}\). Since \(h\) is concave, there exists a non-increasing function \(s_{1}\) such that \(h(t)=\int_{0}^{t} s_{1}(x) d x\). Since \(s \in \pi^{( }(a)\) we have, by lemma 2.7 (i), in view of (2.73) \(h(t) / t \in \mathbb{\pi}^{-}(a)\). This, together with proposition 1.19 .2 , shows that \(s_{1} \in \Pi^{-}(a)\).

Now we can apply lemma 2.30 with \(\mathrm{f}=\mathrm{h}\). For n sufficiently large with \(\mathrm{s}_{\mathrm{n}}=\) \(s_{1}\left(t_{n}\right)\) by (2.74)
\[
\begin{aligned}
\tilde{f}\left(s_{n}\right) & \leq \log \left\{s_{n} \int_{I_{n}} \exp \left(h(t c) / c-t s_{n}\right) d t+s_{n} \int_{I_{n}^{c}} \exp \left(h(t)-s_{n} t\right) d t\right\} \\
& \leq \log \left\{\exp (h / c)^{\sim}\left(s_{n} / c\right)+\exp \left(\tilde{h}\left(s_{n}\right) / c\right)\right\} .
\end{aligned}
\]

Since \((h / c)^{\sim}\left(s_{n} / c\right) \sim(h / c)^{c}\left(s_{n} / c\right)=h^{c}\left(s_{n}\right) / c \sim \tilde{h}\left(s_{n}\right) / c(n \rightarrow \infty)\) by the Abelian parts of the theorems 2.8 and 2.26 , we find for all \(\varepsilon>0\) and sufficiently large \(n\)
\[
\tilde{f}\left(s_{n}\right) \leq \log \left(e^{\tilde{h}\left(s_{n}\right)(1+\varepsilon) / c}+e^{\tilde{h}\left(s_{n}\right) / c}\right) \leq \tilde{h}\left(s_{n}\right)(1+\varepsilon) / c+1
\]
and hence \(\tilde{f}\left(s_{n}\right) \leq \tilde{h}\left(s_{n}\right) / \sqrt{c}\) for \(n \geq n_{0}\), which means that \(\tilde{f}(s) \sim \tilde{h}(s)(s \rightarrow 0+)\) cannot be true. But on the other hand since \(h(t) \dot{\sim} \int_{0} s(x) d x(t+\infty)\) implies that \(\tilde{h}(s) \sim \int_{s}^{\infty} s^{+}(x) d x \sim \tilde{f}(s)(s \rightarrow 0+)\) by the Abelian parts of the theorems 2.8 and 2.26 and we have obtained a contradiction.

We give some examples, showing the scope of applicability of the above results.

\section*{Example 1}
\[
f(t)=(\log t)^{\alpha}(\log \log t)^{\beta}+o\left((\log t)^{\alpha-1}(\log \log t)^{\beta}\right)(t+\infty)(2.75)
\]
\(\alpha>0, \beta \in \mathbb{R}\).
By theorem 2.14
\[
\begin{gather*}
\hat{f}(u)=|\log u|^{\alpha}(\log |\log u|)^{\beta}-(\gamma+o(1))|\log u|^{\alpha-1}(\log |\log u|)^{\beta} \\
(u \rightarrow 0+) . \tag{2.76}
\end{gather*}
\]

Conversely, if \(f\) is non-decreasing, (2.76) implies (2.75).

\section*{Example 2}

Suppose
\[
\begin{equation*}
f(t) \sim t^{\alpha}(\log t)^{\beta}(t \rightarrow \infty), \alpha>0, \beta \in \mathbb{R} . \tag{2.77}
\end{equation*}
\]

By theorem 2.11
\[
\begin{equation*}
\hat{f}(t) \sim \Gamma(1+\alpha) u^{-\alpha}|\log u|^{\beta}(u+0+) \tag{2.78}
\end{equation*}
\]

Conversely if \(f\) is non-decreasing (2.78) implies (2.77).

\section*{Example 3}

Suppose \(f(t) \sim t^{\alpha}(\log t)^{\beta,} t \rightarrow \infty, \beta \in \mathbb{R}, 0<\alpha<1\). In order to derive the asymptotic behaviour of \(\tilde{\mathrm{f}}\) we can apply theorem 2.19 : relation (2.39) is
equivalent to \(f(t) \sim \int_{0}^{t} s(x) d x(t \rightarrow \infty)\) (see proposition 1.22).
The function \(s\) satisfies \(s(t) \sim \alpha t^{\alpha-1} \log ^{\beta} t, t \rightarrow \infty\).
We define the function \(\phi\) by \(\phi(t):=\frac{\alpha}{s(t)} \sim t^{1-\alpha} \log ^{-\beta} t, t \rightarrow \infty\).

As in the remark following theorem 1.8 we find
\[
\phi^{+}(t) \sim(1-\alpha)^{-\beta /(1-\alpha)} t^{1 /(1-\alpha)}(\log t)^{\beta /(1-\alpha)}, t \rightarrow \infty,
\]

As a consequence the inverse function of satisfies
\[
s^{+}(u) \sim \phi^{+}\left(\frac{\alpha}{u}\right) \sim(1-\alpha)^{-\beta /(1-\alpha)}\left(\frac{\alpha}{u}\right)^{1 /(1-\alpha)}(-\log u)^{\beta /(1-\alpha)}, u \rightarrow 0+
\]

Application of theorem 2.19 then gives
\(\tilde{f}(u) \sim \int_{u}^{\infty} s^{+}(x) d x\) and the last expression is asymptotic to \(\frac{1-\alpha}{\alpha} u s^{+}(u)\) by theorem 1.4. Hence we find
\[
\tilde{\mathrm{f}}(\mathrm{u}) \sim(1-\alpha)^{(1-\alpha-\beta) /(1-\alpha)} \alpha^{\alpha /(1-\alpha)} u^{-\alpha /(1-\alpha)}(-\log u)^{\beta /(1-\alpha)}, u \rightarrow 0+
\]
and a converse statement holds under the assumption that \(f\) is non-decreasing.

\section*{Example 4}

Consider the function
\[
\begin{equation*}
f(t)=t /(\log t)^{\beta}+o\left(t /(\log t)^{\beta+1}, t \rightarrow \infty, \beta>0 .\right. \tag{2.79}
\end{equation*}
\]

We want to derive the asymptotic behaviour of the transform \(\tilde{f}\) defined by
\[
\tilde{\mathrm{f}}(\mathrm{~s})=\log \mathrm{s} \int_{0}^{\infty} \exp \{f(u)-\mathrm{su}\} \mathrm{du}
\]
as \(s \rightarrow 0+\) (see definition 2.18).
Note that the function \(f(t) / t\) is in \(\Pi^{-}(a)\) with \(a(t) \sim \beta(\log t)^{-(\beta+1)}, t \rightarrow \infty\) (see definition 2.5). So we may apply theorem 2.26 and we have to find a functon \(s \in \Pi^{-}\)(a) satisfying (2.60) and such that
\[
\begin{equation*}
f(t) \dot{\sim} \int_{0}^{t} s(x) d x, t+\infty . \tag{2.80}
\end{equation*}
\]

Our first try is \(\frac{d}{d x}\left(x /(\log x)^{\beta}\right)=(\log x)^{-\beta}-\beta(\log x)^{-\beta-1}=\left((\log (e x))^{-\beta}+\right.\) \(o\left((\log x)^{-\beta-1}\right)\left(x^{+\infty}\right)\).
Now \((\log e x))^{-\beta}\) is positive and decreasing for \(x>1\) and \(f(t)=\int_{1}^{t}(\log e x)^{-\beta} d x\)
\(+o\left(t(\log t)^{-\beta-1}\right)\), \(t \rightarrow \infty\).
We define \(s(x):=(\log e x)^{-\beta}\) for \(x>1\) and decreasing and integrable on ( 0,1 ). Note that \(-s \in \Pi(a)\), hence \(-\frac{1}{t} \int_{0}^{t} s(x) d x \in \Pi(a)\).
Since \(f(t) / t=t^{-1} \int_{0}^{t} s(x) d x+0(a(t)\) ), we have (see proposition 1.22 )
\(-f(t) / t \stackrel{\star}{\sim}-t^{-1} \int_{0}^{t} s(x) d x(t \rightarrow \infty)\), hence (2.80). Application of theorem 2.26 then gives
\[
\tilde{\mathrm{f}}(\mathrm{u}) \sim \int_{u}^{\infty} \mathrm{s}^{+}(\mathrm{x}) \mathrm{dx}(\mathrm{u} \rightarrow 0+) .
\]

It remains to evaluate the right-hand side. Now \(s^{+}(x)=\exp \left(-1+x^{-1 / \beta}\right)\) and hence
\[
\begin{equation*}
\dddot{f}(u) \sim \alpha u^{1+1 / \alpha} \exp \left(-1+u^{-1 / \alpha}\right),(u \rightarrow 0+) \tag{2.81}
\end{equation*}
\]
by de \(1^{\prime \prime}\) Hopital's rule, Note that by theorem 2.8 the complementary function \(f^{C}\) has the same asymptotic behaviour.
Conversely if \(\tilde{f}\) satisfies (2.81), \(f\) is non-decreasing and \(f(t) / t\) nonincreasing, then fatisfies (2.79).

\section*{Example 5}

If \(f(t)=t /(\log t)^{\beta}+\beta(1+\beta) t(\log \log t) /(\log t)^{1+\beta}+\beta(1-\log \beta)\) \(t /(\log t)^{1+\beta}+o\left(t /(\log t)^{1+\beta}\right), t+\infty\)
for some \(\beta>0\), then \(\tilde{f}(s) \sim \exp \left(s^{-1 / \beta}\right), s \rightarrow 0+\) and the converse statement holds under the assumptions \(f\) non-decreasing and \(f(t) / t\) non-increasing.

\section*{Proof}

Suppose \(\widetilde{f}\) satisfies \(\widetilde{f}(s) \sim \exp \left(s^{-1 / \beta}\right), s \rightarrow 0+, f\) is non-decreasing and \(f(t) / t\) is non-increasing. We derive the asymptotic behaviour of \(f\) using theorem 2.26. Note that \(\tilde{\mathrm{f}} \in \Gamma^{(0)}\).
Since \(\tilde{f}(u) \sim \frac{1}{\beta} \int_{u}^{\infty} x^{-1-1 / \beta} \exp \left(x^{-1 / \beta}\right) d x(u \rightarrow 0+)\)
we have \(s^{+}(x) \sim \beta^{-1} x^{-1-1 / \beta} \exp \left(x^{-1 / \beta}\right)(x \rightarrow 0+)\)
and \(s^{+}\left((\log y)^{-\beta}\right) \sim \beta^{-1} y(\log y)^{1+\beta}(y+\infty)\).
As in the remark following theorem 1.8 we find by inversion
\(s(x)=\{\log \beta x-(1+\beta) \log \log \beta x+o(1)\}^{-\beta}\).
Hence by lemma 2.7, theorem 2.26 and corollary 2.27 we find
\[
f(t) \dot{\sim} \int_{0}^{t} \frac{d x}{\{\log \beta x-(1+\beta) \log \log \beta x\}^{\beta}} \dot{\sim} \beta^{-1} \int_{0}^{\beta t} \frac{d x}{\{\log x-(1+\beta) \log \log x\}^{\beta}}
\]
and
\[
f(\operatorname{te} / \beta)=\frac{t e / \beta}{\{\log t-(1+\beta) \log \log t\}^{\beta}}+o\left(t /(\log t)^{1+\beta}\right)
\]

Since
\[
\begin{aligned}
& \left\{\frac{\log t}{\log t-(1+\beta) \log \log t}\right\}^{\beta}= \\
& =\left\{1+(1+\beta) \frac{\log \log t}{\log t}+(1+o(1))(1+\beta)^{2}\left(\frac{\log \log t}{\log t}\right)^{2}\right\}^{\beta} \\
& =1+\beta(1+\beta) \frac{\log \log t}{\log t}+\beta(1+\beta)^{2}(1+o(1))\left(\frac{\log \log t}{\log t}\right)^{2}
\end{aligned}
\]
we find
\[
f(\operatorname{te} / \beta)=\frac{t e / \beta}{(\log t)^{\beta}}+e(1+\beta) \frac{t \log \log t}{(\log t)^{1+\beta}}+o\left(\frac{t}{(\log t)^{1+\beta}}\right)
\]
which is (2.82).

\section*{II. 3. General kernel transforms}

Two important subjects in the preceding section of this chapter were Abelian and Tauberian theorems for the Laplace transform of functions belonging to the classes \(R V\) and \(I I\). In this section we replace the Laplace transform by a more general kernel and derive Tauberian results. We restrict our attention to positive kernels and use the following notation.

\section*{Definition 2.31}

Suppose \(k, f: \mathbb{R}^{+} \rightarrow \mathbb{R}\) are measurable. In this section the transform \(\hat{f}\) is defined for \(t>0\) by
\[
\begin{equation*}
\hat{f}(t)=\int_{0}^{\infty} k(s) f(t s) d s \tag{2.83}
\end{equation*}
\]
and is supposed to be finite for \(t>0\).

In ch. 1 it was observed (thm. 1.8) that if \(f \in R_{\alpha}^{\infty}\) and \(t^{\alpha} k(t) \max \left(t^{-\varepsilon}, t^{+\varepsilon}\right)\) is integrable on \((0, \infty)\) for some \(\varepsilon>0\), then
\[
\hat{f}(t) / f(t) \rightarrow \int_{0}^{\infty} s^{\alpha} k(s) d s(t \rightarrow \infty) .
\]

As a consequence, if the last integral is positive, the function \(\hat{f} \in R V_{\alpha}\).

We prove a converse statement, thereby using Wiener's Tauberian theorem.

\section*{Definition 2.32}

The function \(g: \mathbb{R}^{+} \rightarrow \mathbb{R}\) is slowly decreasing if
\[
\lim _{\mu \rightarrow 1+} \lim _{t \rightarrow \infty} \inf _{u \in[1, \mu]}\{g(t u)-g(t)\} \geq 0
\]

Without proof we quote the following result (see e.g. Hardy (1948)).

\section*{Lemma 2.33 (Wiener-Pitt)}

Suppose the kernel \(k_{0} \in L^{1}(0, \infty)\) satisfies the condition
\[
\begin{equation*}
\int_{0}^{\infty} k_{o}(s) s^{-i x} d s \neq 0 \text { for all } x \in \mathbb{R} \tag{2.85}
\end{equation*}
\]
and the function \(g: \mathbb{R}^{+} \rightarrow \mathbb{R}\) is bounded and slowly decreasing.
Then
\[
\begin{equation*}
\frac{1}{t} \int_{0}^{\infty} k_{0}\left(\frac{s}{t}\right) g(s) d s \rightarrow c \int_{0}^{\infty} k_{0}(s) d s \quad(t \rightarrow \infty) \tag{2.86}
\end{equation*}
\]
implies
\[
\begin{equation*}
g(t)+c(t+\infty) . \tag{2.87}
\end{equation*}
\]

Two Tauberian theorems are proved, the first one for functions in RV, the second one for functions in II. The corresponding Abelian statements were derived in theorems 1.8 and 1.20 respectively.

Theorem 2.34
Suppose \(f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}\)satisfies: \(t^{\beta} f(t)\) is non-decreasing for some \(\beta \geq 0\) and \(\hat{f} \in R V_{\alpha}^{\infty}\) with \(\alpha \geq 0\). If the kernel \(k\) is non-negative, \(t^{\alpha} k(t) \max \left(t^{\varepsilon}, t^{-\varepsilon}\right)\) is integrable on ( \(0, \infty\) ) and
\[
\int_{0}^{\infty} k(s) s^{\alpha-i x} d s \neq 0 \text { for all } x \in \mathbb{R}
\]
then
\[
f(t) \sim\left(\int_{0}^{\infty} s^{\alpha} k(s) d s\right)^{-1} \cdot \hat{f}(t)(t+\infty), \text { hence } f \in \operatorname{RV}_{\alpha}^{\infty} .
\]

Proof
 the theorem for \(k_{1}(t):=k(c t)\) for a suitable constant \(c>0\) ). For \(t>0\) we have the inequality
\[
\hat{f}(t)=\int_{0}^{\infty} k(s) f(t s) d s \geq f(t) \int_{1}^{\infty} k(s) d s / s^{\beta}>0
\]
hence the function \(\theta\) defined by
\[
\theta(t)=f(t) / \hat{f}(t) \text { is bounded for } t>0 \text { and positive. }
\]

Note that for \(1<u \leq \mu, t>0\)
\[
\theta(t u)-\theta(t) \geq \frac{f(t)}{\hat{f}(t)}\left\{\frac{\hat{f}(t)}{u^{\hat{f}} \hat{f}(t u)}-1\right\} \geq \frac{f(t)}{\hat{f}(t)}\left\{\frac{\hat{f}(t)}{\mu^{\beta} \sup _{u \in[1, u]}^{\hat{f}}(t u)}-1\right\} .
\]

Since \(\hat{f} \in R V_{\alpha}\), by the uniform convergence theorem (theorem 1.3.3), we have
\(\sum_{t \rightarrow \infty}^{\lim } \inf _{u \in[1, \mu]}\{\theta(t u)-\theta(t)\} \geq \frac{\lim }{t \rightarrow \infty} \frac{f(t)}{f(t)}-\left(1-\mu^{-\alpha-\beta}\right)=-\left(1-\mu^{-\alpha-\beta}\right) \overline{\lim }_{t \rightarrow \infty} \theta(t)\), which implies that \(\theta\) is slowly decreasing. We proceed as in the proof of theorem 1.8, applying Lebesgue's theorem while using the inequalities from prop. 1.7.5 and the fact that \(\theta\) is bounded. It follows that
\[
\int_{0}^{\infty} k(s) \theta(t s)\left(\frac{\hat{f}(t s)}{\hat{f}(t)}-s^{\alpha}\right) d s \rightarrow 0(t \rightarrow \infty)
\]

Since
\[
\int_{0}^{\infty} k(s) \theta(t s) \frac{\hat{f}(t s)}{\hat{f}(t)} d s=\int_{0}^{\infty} \frac{k(s) f(t s) d s}{\hat{f}(t)}=1,
\]
this implies
\[
\int_{0}^{\infty} k(s) \theta(t s) s^{\alpha} d s+1(t+\infty)
\]

Application of the Wiener-Pitt theorem (lemma 2.33) above with \(k_{o}(t)=k(t) t^{\alpha}\) and \(f(t)=\theta(t)\) shows that
\[
\theta(t)=f(t) / \hat{f}(t)+\left(\int_{0}^{\infty} k(s) s^{\alpha} d s\right)^{-1}(t \rightarrow \infty)
\]

Note that the Tauberian part of theorem 2.11 (Karamata's theorem) is a special case of theorem 2.34.

Remark
Under certain additional assumptions it is possible to prove that \(\hat{f}(t) / f(t) \rightarrow a(t \rightarrow \infty)\) implies \(f \in R V\) (Jordan 1974).

Theorem 2.35
Suppose \(\mathrm{f}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}\)is non-decreasing and \(\hat{\mathrm{f}} \in \Pi(a)\). Suppose the kernel \(k\) is non-negative, \(k(t) \max \left(t^{\varepsilon}, t^{-\varepsilon}\right)\) is integrable on \((0, \infty)\) and \(k\) satisfies the Wiener condition
\[
\int_{0}^{\infty} k(s) s^{-i x} d x \neq 0 \text { for all } x \in \mathbb{R} .
\]

Then \(f \in \mathbb{M}\left(a_{o}\right)\) with
\[
\begin{aligned}
& a_{0}(t) \sim\left(\int_{0}^{\infty} k(s) d s\right)^{-1} a(t)(t+\infty) \text { and } \\
& \frac{\hat{f}(t)-f(t) \int_{0}^{\infty} k(s) d s}{a(t)} \rightarrow \int_{0}^{\infty} k(s) \log s d s(t \rightarrow \infty)
\end{aligned}
\]

Proof
As in the proof of theorem 1.17 we define the function \(\psi\) by
\[
\psi(t)=f(t)-t^{-1} \int_{0}^{t} f(s) d s, t>0
\]

Now observe that \(\hat{\psi}(t)=\hat{f}(t)-t^{-1} \int_{0}^{t} \hat{f}(s)\) ds. Application of theorem 1.17
\((a \rightarrow c)\) gives, since \(\hat{\mathbf{f}} \in \Pi(a), \hat{\psi}(t) \sim a(t)(t+\infty)\) and \(\hat{\psi} \in \operatorname{RV}_{0}^{\infty}\).
Since \(f\) is non-decreasing, the function \(t \psi(t)\) is non-decreasing and we can apply theorem 2.34 to obtain \(\psi \in R V_{0}\) and \(\psi(t) \sim a(t)\left(\int_{0}^{\infty} k(s) d s\right)^{-1}(t \rightarrow \infty)\).

A second application of theorem \(1.17(c+a)\) now gives \(f \in \Pi\left(a_{o}\right)\)
with \(\quad a_{0}(t) \sim\left(\int_{0}^{\infty} k(s) d s\right)^{-1} a(t)\).
The last limit relation is a consequence of theorem 1.20 (the Abelian counterpart of the present theorem).

Note that the Tauberian part of theorem 2.14 is a special case of theorem 2.35.

\subsection*{11.4. Discussion}

The connection between an RV function and its complementary function has been noted first by Matuszewska (1962). See also Bingham and Teugels (1975). The present exposition, both for RV and \(\pi / \mathrm{r}\) (th. 2.3 and th. 2.8 ) has been adapted from Balkema, Geluk and de Haan (1979).
The main theorem for the Laplace transform, theorem 2.11 (for RV functions) is of course due to Karamata (1931). No exposition is given here of the Mercerian implication: \(\hat{f}(1(t) \sim \Gamma(1+\alpha) f(t)(t \rightarrow \infty)\) implies \(f \in\) RV. This has been proved by Drasin (1968).
Theorem 2.14 (class II) has been adapted from de Haan (1976). The o-results of theorems 2.13 and 2.16 stem from Geluk and de Haan (1981). Theorem 2.19 (concerning functions like e.g. \(\exp \left\{(\log x)^{\beta} x^{\alpha}\right\}, 0 \leq \alpha<1, \beta>0\) ) is a combination of results from Kohlbecker (1958) and Balkema, Geluk and de Haan (1979) for the cases \(0<\alpha<1\) and \(\alpha=0\) respectively.

Finally theorem 2.25 (concerning functions like e.g. \(\exp \{x / \log x\}\) ) has been adapted from Geluk, de Haan and Stadtmüller (1986). Wagner (1968) contains a somewhat similar result.
General kernel results like th. 2.34 and 2.35 can be found in Bingham and Teugels (1979) and Bingham and Teugels (1980) respectively.

\section*{III. \(0-\) Regular variation and 0 -versions of the class \(\mathrm{II}_{\text {. }}\)}

In this chapter we investigate what can be said if we only assume
\[
\begin{equation*}
\overline{\lim }_{t \rightarrow \infty} \frac{f(t x)}{f(t)}<\infty \text { for } x>0 \tag{3.1}
\end{equation*}
\]
instead of the existence of the limit (i.e. \(f \in R V\) ) as in chapter 1 . We also consider a similar extension of the class \(\mathbb{H}\).
For this wider class of functions it is possible to derive results which are analogous to those of chapter 1 . In fact straightforward generalizations of many of the characterizations from that chapter are possible. Part of the material of this chapter has been treated in greater generality in two articles by Bingham and Goldie (1982).
III. 1. 0-regular variation

The following notation is useful in this section:

\section*{Definition 3.1}

The functions \(f\) and \(g\) are of the same order at infinity, notation \(f(x) \asymp g(x)\) \((x \rightarrow \infty)\) if \(f\) and \(g\) are both positive and if there exist \(0<c_{1}<c_{2}<\infty\) and \(x_{0}\) such that \(c_{1} \leq f(x) / g(x) \leq c_{2}\) for \(x \geq x_{0}\).

Theorem 3.2 below offers results analogous to the results of theorems \(1.4,1.5\) and prop. 1.7 for regularly varying functions. Recall from theorem 1.2 that if \(\lim f(t x) / f(t)\) exists for all \(x>0\), then the limit has the form \(x^{\alpha}\)
\(t+\infty\)
for some index \(\alpha \in \mathbb{R}\). Theorem 3.2 alsc offers an analogue of this result (part iij) for functions satisfying (3.1).

\section*{Theorem 3.2}

Suppose \(f: \mathbb{R}^{+} \rightarrow \mathbb{R}\) is measurable and eventually positive. The following statements are equivalent:
(i) \(\quad \overline{\lim }_{t \rightarrow \infty} \frac{f(t x)}{f(t)}<\infty\) for all \(x>0\).
(ij) There exist \(\alpha, \beta \in \mathbb{R}, \mathrm{t}_{0}\) and \(c>1\) such that
\[
\begin{equation*}
c^{-1} x^{\beta} \leq \frac{f(t x)}{f(t)} \leq c x^{\alpha} \text { for } a 11 x \geq 1, t \geq t_{0} \tag{3.3}
\end{equation*}
\]
(iij) \(\quad A:=\lim _{x \rightarrow \infty} \frac{\log \overline{\lim } f(t x) / f(t)}{\log x}\) exists and \(A<+\infty\)
and
\[
\begin{equation*}
B:=\lim _{x \rightarrow \infty} \frac{\log \frac{\lim }{t \rightarrow \infty} f(t x) / f(t)}{\log x} \text { exists and } B>-\infty \tag{3.5}
\end{equation*}
\]
(iv) There exist \(t_{0} \geq 0\) and \(\sigma \in \mathbb{R}\) such that
\[
\begin{equation*}
\int_{t_{0}}^{t} s^{+\sigma-1} f(s) d s \asymp t^{\sigma} f(t)(t+\infty) \tag{3.6}
\end{equation*}
\]
(v) There exists \(\tau \in \mathbb{R}\) such that
\[
\begin{equation*}
\int_{t}^{\infty} s^{\tau-1} f(s) d s \simeq t^{\tau} f(t)(t+\infty) \tag{3.7}
\end{equation*}
\]
(vi) There exist \(t_{1} \geq 0\) and measurable functions \(a\) and \(c\) with \(c(t) \quad 1\) and \(a\) bounded such that for \(t>t_{1}\)
\[
\begin{equation*}
f(t)=c(t) \exp \left\{\int_{t_{1}}^{t} a(s) d s / s\right\} \tag{3.8}
\end{equation*}
\]
(vii) There exist \(\alpha, \beta \in \mathbb{R}, t_{2}>0, x_{1}>1\) such that
\[
x^{\beta} \leq \frac{f(t x)}{f(t)} \leq x^{\alpha} \text { for } t \geq t_{2}, x \geq x_{1}
\]

Proof
\((i) \rightarrow(i j)\)
Define the function \(F\) by \(F(t):=1 n f\left(e^{t}\right)\). First we prove that if \(I \subset \mathbb{R}\) is an arbitrary finite interval, then
\[
\begin{equation*}
\overline{\lim } \sup _{t \rightarrow \infty}\{F(t+u)-F(t)\}<\infty . \tag{3.9}
\end{equation*}
\]

Suppose the contrary holds. Then there exist sequences \(t_{n} \rightarrow \infty, x_{n} \in I\) ( \(\mathrm{n}=1,2, \ldots\) ) such that
\[
F\left(t_{n}+x_{n}\right)-F\left(t_{n}\right)>n_{0}
\]

For an arbitrary finite interval \(J \subset \mathbb{R}\) we consider the sets
\[
\begin{aligned}
& Y_{1, n}=\left\{y \in J ; F\left(t_{n}+y\right)-F\left(t_{n}\right)>\frac{n}{2}\right\} \text { and } \\
& Y_{2, n}=\left\{y \in J ; F\left(t_{n}+x_{n}\right)-F\left(t_{n}+y\right)>\frac{n}{2}\right\} .
\end{aligned}
\]

The above sets are measurable for each \(n\) and \(Y_{1, n} u Y_{2, n}=J\), hence either \(\lambda\left(Y_{1, n}\right) \geq \frac{1}{2} \lambda(J)\) or \(\lambda\left(Y_{2, n}\right) \geq \frac{1}{2} \lambda(J)\) (or both) where \(\lambda\) denotes the Lebesgue measure.
Now define
\[
Z_{n}=\left\{z ; F\left(t_{n}+x_{n}\right)-F\left(t_{n}+x_{n}-z\right)>\frac{n}{2}, x_{n}-z \in J\right\}=\left\{z ; x_{n}-z \in Y_{2, n}\right\}
\]

Then \(\lambda\left(Z_{n}\right)=\lambda\left(Y_{2, n}\right)\) and thus we have efther
\[
\lambda\left(Y_{1, n}\right) \geq \frac{1}{2} \lambda(J) \text { or } \lambda\left(Z_{n}\right) \geq \frac{1}{2} \lambda(J)
\]
for infinitely many \(n \in \mathbb{N}\) (or both), where all the \(Y_{1, n}\) 's and \(Z_{n}\) 's are subsets of a fixed finite interval.
Hence we have \(\lambda\left(\lim _{n \rightarrow \infty} \sup Y_{1, n}\right)=\lim _{k \rightarrow \infty} \lambda\left(\bigcup_{n=k}^{\infty} Y_{1, n}\right) \geq \frac{1}{2} \lambda(J)\) or a similar expression for the \(Z_{n}\) 's (or both). This implies the existence of a real number \(x_{0}\) contained in infinitely many \(Y_{1, n}\) or in infinitely many \(Z_{n}\). This contradicts the assumption \(\overline{\lim } F\left(t+x_{0}\right)-F(t)<\infty\). Hence (3.9) is proved.
Next we apply (3.9) with \(I=[0,1]\). There exists a constant \(c_{0}\) such that \(F(t+u)-F(t) \leq c_{0}\) for all \(0 \leq u \leq 1\) and \(t \geq t_{0}\). Then for \(t \geq t_{0}\) and \(y>0\)
\[
F(t+y)-F(t)=F(t+y)-F(t+[y])+\sum_{k=0}^{[y]-1}\{F(t+k+1)-F(t+k)\}
\]
\[
\leq([y]+1) c_{0} \leq c_{0} y+c_{0}
\]

This finishes the proof of the right-hand inequality in (3.3). The proof of the left-hand inequality can be given if we replace \(f\) by \(1 / f\) in the above proof.
\(\underline{(i j) \rightarrow(i i j)}\) Trivial.
\((\mathrm{iij})+(\mathrm{i})\)
From (iij) it follows that for some \(\alpha, \beta \in \mathbb{R}, x_{0}>1\) we have
\[
\mathrm{x}^{\beta} \leq \phi(\mathrm{x}) \leq \Phi(\mathrm{x}) \leq \mathrm{x}^{\alpha}
\]
for all \(x \geq x_{0}>1\) with
\[
\begin{equation*}
\Phi(x):=\overline{\lim }_{t \rightarrow \infty} \frac{f(t x)}{f(t)} \tag{3.10}
\end{equation*}
\]
and
\[
\begin{equation*}
\phi(x):=\frac{\lim }{t \rightarrow \infty} \frac{f(t x)}{f(t)} . \tag{3.11}
\end{equation*}
\]

This gives (3.2) for \(x \geq x_{0}\). For \(x \in\left(1, x_{0}\right)\) we have the inequality
\[
\Phi(x)=\lim _{t \rightarrow \infty} \frac{f(t x)}{f(t)} \leq \lim _{t \rightarrow \infty} \frac{f\left(t x_{0}\right)}{f(t)} / \lim _{t \rightarrow \infty} \frac{f\left(t x x_{0}\right)}{f(t x)} \leq \frac{\left(x x_{0}\right)^{\alpha}}{x_{0}^{\beta}}<\infty .
\]

Similarly one proves \(\phi(x)>0\) for all \(x>1\). These two inequalities imply \(\Phi(x)<\infty\) for all \(x>0\).
\((i j) \rightarrow(i v)\) and \((i j)+(v)\)
The function
\[
\begin{equation*}
\gamma(t):=\int_{t_{0}}^{t} s^{\sigma-1} f(s) d s / t^{\sigma} f(t)=\int_{t_{0} / t}^{1} s^{\sigma-1} \frac{f(s t)}{f(t)} d s \tag{3.12}
\end{equation*}
\]
is bounded away from zero and infinity by (3.3) if we choose \(t_{0}\) as in (3.3) and \(\sigma>-\beta\). The proof of \((i j) \rightarrow(v)\) is similar.
(iv) \(\rightarrow\) (vi) and (v) \(\rightarrow\) (vi)

With \(\gamma\) defined as in (3.12) we have
\[
\int_{t_{0}}^{t} \frac{d s}{s \gamma(s)}=\log \int_{t_{o}}^{t} s^{\sigma-1} f(s) d s+c_{0}
\]
for \(t>t_{0}\) and some \(c_{0} \in \mathbb{R}\) (since both sides have the same derivatives a.e.). The last relation implies
\[
-101-
\]
\[
\exp \left\{\int_{t_{0}}^{t} \frac{d s}{s \gamma(s)}\right\} \asymp \int_{t_{0}}^{t} s^{\sigma-1} f(s) d s=t^{\sigma} f(t) \gamma(t) \asymp t^{\sigma} f(t) .
\]

Hence f has the required representation with \(a(s):=\gamma(s)^{-1}-\sigma\).
The proof of (v) \(\rightarrow\) (vi) is similar.
\((v i) \rightarrow(i)\) and \((i i) \rightarrow(v i j) \rightarrow(i i j)\)
Trivial.
This finishes the proof of the theorem. \(\%\)

Definition 3.3
A function \(f\) is 0 -regularly varying (at infinity) if \(f\) satisfies the conditions of theorem 3.2.
Notation: \(f \in\) RO.
The limits at the left-hand sides of (3.4) and (3.5) are called the upper and lower index of \(f\) respectively.
Notation: index \(f\) and index \(f\).

\section*{Remark}

Note that if \(f \in R O\), \(g\) measurable and \(f(t) \asymp g(t)(t \rightarrow \infty)\), then \(g \in R 0\).

It is obvious that if \(k=1 / f\), then \(\overline{\text { index }} k=-\underline{\text { index }} f\) and index \(k=\) - index \(f\).

\section*{Examples}
1. \(\mathrm{f}(\mathrm{x})=\exp [1 \mathrm{n} \mathrm{x}]\). Then index \(\mathrm{f}=\overline{\text { index }} \mathrm{f}=1\), but \(\mathrm{f} \notin \mathrm{RV}_{1}^{\infty}\).
2. Let \(f(x)=0 \quad x<e\)
\(=\exp \{\alpha \log x+\beta(\log x)(\sin \log \log x)\}, x \geq e\).

Then for every sequence \(\left\{\mathrm{t}_{\mathrm{k}}\right\}\) with \(\mathrm{t}_{\mathrm{k}} \rightarrow \infty\) we have
\[
\lim _{k \rightarrow \infty} f\left(t_{k} x\right) / f\left(t_{k}\right)=\phi(x)
\]
if and only if
\[
\lim _{k \rightarrow \infty}\left\{g\left(s_{k}+y\right)-g\left(s_{k}\right)\right\}=\log \phi\left(e^{y}\right)
\]
with \(g(x):=\log f\left(e^{x}\right), y=\log x\) and \(s_{k}=\log t_{k}\).
Because \(s_{k}\left\{\sin \left(\log s_{k}+\log \left(1+y / s_{k}\right)-\sin \log s_{k}\right\}-y \cos \log s_{k} \rightarrow 0\right.\) as \(k \rightarrow \infty\) we have
\[
\lim _{k \rightarrow \infty}\left\{g\left(s_{k}+y\right)-g\left(s_{k}\right)\right\}=\alpha y+\beta y \lim _{k \rightarrow \infty}\left(\sin \log \left(s_{k}+y\right)+\cos \log s_{k}\right)
\]

The limit points of \(f(t x) / f(t)\) are thus given by
\[
\phi(x)=x^{c} \text { with } c \in[\alpha-|\beta| \sqrt{2}, \alpha+|\beta| \sqrt{2}] .
\]

Hence \(\overline{\text { index }} \mathrm{f}=\alpha+|\beta| \sqrt{2}\) and index \(\mathrm{f}=\alpha-|\beta| \sqrt{2}\).
Note that, if \(\beta=1\) and \(1<\alpha<\sqrt{2}, \lim _{t \rightarrow \infty} f(0)=\infty\) but index \(f<0\).
3. In example 2 the limit functions \(\phi(x):=\lim _{k \rightarrow \infty} f\left(t_{k} x\right) / f\left(t_{k}\right)\) have the form
\(\phi(x)=x^{c}\). It is not necessarily true that the limit function is of this form however.
Example: if \(f(t)=t^{\beta}(2+\sin (\log t)), t>0, \beta \in \mathbb{R}\), then \(f \in R O\) and \(\phi(x)=x^{\beta} \cdot \frac{2+\sin (\alpha+\log x)}{2+\sin \alpha}, \alpha \in \mathbb{R}\).
An example of a monotone Ro function of this type is
\(f(t)=\exp \left(\int_{1}^{t}\{2+\sin (\log s)\} d s / s\right)\).
In that case we have \(\phi(x)=x^{2} \exp (-\cos (\alpha+\log x)+\cos \alpha)\).

In the above theorem the two-sided bounds can not be replaced by one-sided bounds. For example: the right-hand inequality in (3.3) is not equivalent to (3.4). The following is a counterexample: take \(F(x)=\ln f\left(e^{x}\right)\) and let \(F\) be continuous, piecewise linear with \(F(3 n)=F(3 n+2)=-(n-1)^{2}\) and \(F(3 n+1)=\) \(-n^{2}\). Then (3.4) is satisfied, but not the right-hand inequality in (3.3).

\section*{Corollary 3.4}
(i) The constants \(\alpha, \beta\) and \(c\) in (ij) and (vij) are not uniquely determined. If \(f \in\) RO we can take any \(\beta<\) index \(f\) and \(\alpha>\overline{\text { index }} f\). The constant c \(>1\) in (3.3) however cannot be taken arbitrarily small for given \(f\) as the following example shows:
\(f(t)=2^{n} X_{\left[2^{n}, 2^{n+1}\right)}(t), n \in \mathbb{N}\), where \(x\) is the indicator-function.
(ij) Note that (3.6) holds for any \(\sigma>-\) index \(f\) and (3.7) holds for any \(\tau<-\overline{\text { index }} \mathrm{f}\) 。
(iij) If \(f \in R O\), there exists \(f_{o}(t) \asymp f(t)\) with \(f_{o}\) continuous. It is even possible to obtain \(f_{o} \in C^{n}\) by a construction similar to the one in remark 2 following theorem 1.5.

\section*{Remark}

If \(f\) is non-decreasing, we can omit the lower inequalities in theorem 3.2.
Also, instead of \(\overline{11 m} f(t x) / f(t)<\infty\) for all \(x>1\), it then is sufficient to require
\[
\begin{equation*}
\overline{\lim } f\left(t x_{0}\right) / f(t)<\infty \text { for some } x_{0}>1 \tag{3.13}
\end{equation*}
\]

Proof
Suppose (3.13). Then \(f\left(t x_{0}\right) / f(t) \leq c\) for \(t \geq t_{0}\) and some \(x_{0}>1\). With \(\rho=\ln c / \ln x_{o}\) we find
\[
\frac{f\left(t x_{o}^{n}\right)}{f(t)}=\frac{f\left(t x_{o}^{n}\right)}{f\left(t x_{o}^{n-1}\right)} \frac{f\left(t x_{o}^{n-1}\right)}{f\left(t x_{o}^{n-2}\right)} \cdots \frac{f\left(t x_{o}\right)}{f(t)} \leq x_{o}^{n \rho}
\]

Hence if \(x>1\) is arbitrary, there exists \(n \in \mathbb{N}\) such that \(x_{o}{ }^{n-1} \leq x<x_{o}{ }^{n}\) and \(f(t x) / f(t) \leq x_{0}{ }^{n \rho} \leq x_{0}{ }^{\rho} x^{\rho}\).

This shows that the right-hand inequality in (3.3) is satisfied for all \(\mathrm{x}>1\). The left-hand inequality follows immediately from the monotonicity of \(f\).

In view of the use of this class of functions for Tauberian theorems, we are especially interested in monotone RO-functions. We do not restrict ourselves to the class of functions described in the previous remark however, but consider next a class of \(R 0\) functions for which there is a positive lower bound on the growth of the function:
Note that if \(f \in\) RO and index \(f>\varepsilon>0\), then \(f\) is at least of the same order of magnitude as a monotone function that increases as a power function:
\[
f(t) \asymp t^{\varepsilon} \int_{t_{0}}^{t} f(s) s^{-1-\varepsilon} d s
\]
\(t \rightarrow \infty\) ((3.6), cf. cor. 3.4).

The next theorem characterizes this class of functions.

\section*{Theorem 3.5}

Suppose \(f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}\)is measurable. The following statements are equivalent
(i) \(\quad \Phi(x)=\overline{\lim _{t \rightarrow \infty}} \frac{f(\mathrm{tx})}{f(\mathrm{t})}<\infty\) for all \(\mathrm{x} \geq 1\)
and there exists \(x_{0}>1\) such that
(ij) There exist \(\alpha, \beta>0, t_{0} \geq 0\) and \(c>1\) such that
\[
\begin{equation*}
c^{-1} x^{\beta} \leq \frac{f(t x)}{f(t)} \leq c x^{\alpha} \text { for all } x \geq 1, t \geq t_{o} \tag{3.16}
\end{equation*}
\]
(iij)

and
\[
\lim _{x \rightarrow \infty} \frac{\ln \frac{\lim }{t+\infty} f(t x) / f(t)}{\ln x}>0
\]
(iv) There exist \(t_{o} \geq 0\) and \(\sigma \geq 0\) such that
\[
\int_{0}^{t} s^{-\sigma-1} f(s) d s \asymp t^{-\sigma} f(t)(t+\infty)
\]
(v) There exists \(\tau \geq 0\) such that
\[
\int_{t}^{\infty} s^{-\tau-1} f(s) d s \asymp t^{-\tau} f(t)(t+\infty)
\]
(vi) There exist \(t_{0} \geq 0\) and measurable functions \(a\) and \(c\) with
\[
\begin{align*}
& c(t) \asymp 1 \text { and } a(t) \asymp 1(t \rightarrow \infty) \text { such that } \\
& f(t)=c(t) \exp \left\{\int_{t}^{t} a(s) d s / s\right\} . \tag{3.17}
\end{align*}
\]
(vij) \(\overline{1 i m}_{t \rightarrow \infty} \frac{f(t x)}{f(t)}<\infty\) for all \(x>0\) and there exists \(x_{1}>1\) such that
\[
\frac{\lim _{t \rightarrow \infty}}{} \frac{f\left(t x_{1}\right)}{f(t)}>1
\]
(vilj) There exist \(0<\beta<\alpha<\infty, t_{0}>0, x_{1}>1\) such that
\[
x^{\beta} \leq \frac{f(t x)}{f(t)} \leq x^{\alpha} \text { for } t \geq t_{0}, x \geq x_{1}
\]

\section*{Proof}
(i) \(+(v i j)\)

We have to prove that \(\Phi(x)<\infty\) for all \(x>0\), where the function \(\Phi\) is defined by \(\Phi(x):=\overline{\lim }_{t \rightarrow \infty} f(t x) / f(t)\).
Since \(\phi(x)>1\) for \(x \geq x_{0}\) we have \(\Phi(x)<1\) for \(x<x_{0}^{-1}\). By assumption \(\Phi(y)<\infty\) for \(y>1\).
Now the inequality \(\Phi(x y) \leq \Phi(x) \Phi(y)\) and the last two statements show that \(\Phi(x)<\infty\) for \(x \in\left(x_{0}^{-1}, 1\right)\), which finishes the proof.
\((v i j) \rightarrow(i)\)
Since \(f \in R 0\), by (3.3) we have \(\phi(\tau) \geq c^{-1} \tau^{\beta} \geq c_{o}\) for \(\tau \in\left[1, x_{1}\right]\), where \(c_{0}:=\min \left(c^{-1}, c^{-1} x_{1}^{\beta}\right)>0\).

Define \(n_{0}=\min \left\{n ; c_{0} \phi\left(x_{1}\right)^{n}>1\right\}\). Then for \(x \geq x_{1} n_{0}\) there exists \(m \geq n_{0}\) such that \(x_{1}{ }^{m} \leq x<x_{1}{ }^{m+1}\) and \(\phi(x) \geq \phi\left(x / x_{1}{ }^{m}\right) . \phi\left(x_{1}^{m}\right) \geq c_{o} \phi\left(x_{1}\right)^{m}>1\).
(i), (vij) \(\rightarrow(i j)\)

Since \(f \in\) RO the second inequality in (3.16) follows and we only have to prove that the second inequality holds for sufficiently large \(x\). Take \(x_{1}>x_{o}^{2}\), define \(X_{i}=\log X_{i}, i=0,1\) and define the function \(F\) as in the proof of theorem 3.2. We shall prove that for an arbitrary finite interval \(I \subset\left[X_{1}, \infty\right)\)
\[
\begin{equation*}
\frac{\lim }{t \rightarrow \infty} \inf _{u \in I}\{F(t+u)-F(t)\}>0 \tag{3.18}
\end{equation*}
\]

First we shall prove this for \(\mathrm{I}=\left[\mathrm{X}_{1}, 2 \mathrm{X}_{1}\right]\).
Suppose the contrary holds. Then there exist sequences \(t_{n} \rightarrow \infty, x_{n} \in I\) \((n=1,2, \ldots)\) such that \(F\left(t_{n}+x_{n}\right)-F\left(t_{n}\right)<1 / n\). Define
\[
\begin{aligned}
J & =\left[X_{0}, x_{1} / 2\right], \\
Y_{1, n} & =\left\{y ; F\left(t_{n}+y\right)-F\left(t_{n}\right)<1 / 2 n, y \in J\right\} \\
Y_{2, n} & =\left\{y ; F\left(t_{n}+x_{n}\right)-F\left(t_{n}+y\right)<1 / 2 n, y \in J\right\} \\
Z_{n} & =\left\{z ; F\left(t_{n}+x_{n}\right)-F\left(t_{n}+x_{n}-z\right)<1 / 2 n, x_{n}-z \in J\right\} \\
& =\left\{z ; x_{n}-z \in Y_{2, n}\right\} \subset\left[\frac{1}{2} x_{1}, 2 x_{1}-x_{0}\right]
\end{aligned}
\]
and

Proceeding exactly as in the proof of theorem 3.2 one obtains (3.18) for \(I=\left[X_{1}, 2 X_{1}\right]\), i.e. there exist constants \(c_{0}>0\) and \(t_{0}\) such that \(F(t+u)-F(t) \geq c_{0}\) for all \(t \geq t_{0}\) and \(u \in\left[X_{1}, 2 X_{1}\right]\). Then for \(t \geq t_{0}\) and \(\mathrm{y}>\mathrm{X}_{1}\) we have
\[
\begin{aligned}
& F(t+y)-F(t)=F(t+y)-F\left(t+\left\{\left[y / X_{1}\right]-1\right\} X_{1}\right)+ \\
& +\sum_{k=0}^{\left[y / X_{1}\right]-2}\left\{F\left(t+(k+1) X_{1}\right)-F\left(t+k X_{1}\right)\right\} \geq\left[y / X_{1}\right] c_{o} \geq \\
& \left(-1+y / X_{1}\right) c_{0} .
\end{aligned}
\]

This proves (3.18) and the second inequality in (3.16). We omit the rest of the proof, which is similar to the proof of theorem 3.2.

\section*{Definition 3.6.}

Suppose \(f: \mathbb{R}^{+} \rightarrow \mathbb{R}\) is measurable and eventually positive. The function \(f\) is of bounded increase ( \(f \in \operatorname{BI}\) ) if \(f\) satisfies (3.14).

The function \(f\) is of positive increase ( \(f \in P I\) ) if \(f\) satisfies (3.15). As a consequence, if \(f\) satisfies the assumptions of theorem 3.5 above, then \(f \in B I \cap P I\).

\section*{Corollary 3.7}
a. If \(f \in B I \cap\) PI and \(g: \mathbb{R}^{+} \rightarrow \mathbb{R}\) is measurable, \(g(t) \asymp f(t)(t \rightarrow \infty)\), then \(\mathrm{g} \in \mathrm{BI} \cap \mathrm{PI}\).
b. \(B I \cap P I \subset R O\).
c. If \(f \in \operatorname{RO}\), then there exists \(\beta \geq 0\) such that \(t^{\beta} f(t) \in B I \cap\) PI.
d. \(f \in B I \cap\) PI if and only if \(f \in R O\) and index \(f>0\).
e. If \(f \in B I n P I\), then there exists a strictly increasing function \(f_{o}\) such that \(\mathrm{f}(\mathrm{t}) \asymp \mathrm{f}_{\mathrm{o}}(\mathrm{t}), \mathrm{t} \rightarrow \infty\). It follows that if \(\mathrm{f} \in \mathrm{BI} \cap \mathrm{PI}\) is locally bounded, then \(\sup ^{f}(x) \asymp\) inf \(f(x) \asymp f(t), t \rightarrow \infty\).
\[
0<x \leq t \quad x \geq t
\]
f. If \(f_{0}(t)=\exp \left\{\int_{t}^{t} a(s) d s / s\right\}\) with \(a(s) \asymp 1(s+\infty)\), then the inverse function \(\mathrm{f}_{\mathrm{o}}^{+}\)is in BI \(\cap \mathrm{PI}^{\circ}\) (Proof: similar to the proof of proposition 1.7.8).
g. If \(f \in B I \cap P I\) is bounded on finite intervals of \(\mathbb{R}^{+}\), the generalized inverse function \(f^{+}\)is as in definition 1.6 and \(f_{o}\) is as in \(e\) above, then \(f^{+}(t) \asymp f_{o}^{+}(t)(t+\infty)\), hence \(f^{+} \in B I \cap P I\).
(Proof : by theorem 3.5 there exist \(c>1\) and \(t_{o}=t_{o}(c)\) such that
\(c^{-1} f_{o}(t) \leq f(t) \leq c f_{o}(t)\) for \(t>t_{o}\).
Hence \(\mathrm{f}_{\mathrm{o}}^{+}(\mathrm{t} / \mathrm{c}) \leq \mathrm{f}^{+}(\mathrm{t}) \leq \mathrm{f}_{\mathrm{o}}^{+}(\mathrm{ct})\).
Also \(f_{o}^{+}(c t) \asymp f_{o}^{+}(t) \asymp f_{o}^{+}(t / c)\) by property e above.)
\(\diamond\)
h. If \(f \in B I \cap P I\) and \(f(t)=f\left(t_{0}\right)+\int_{t_{0}}^{t} \psi(s) d s\) for \(t \geq t_{0}\) with \(\psi\) monotone, then \(t \psi(t) \asymp f(t)(t+\infty)\). (Proof: similar to the proof of prop. 1.7.11).

In the sequel we need the following lemma, which can be obtained from cor. 3.7 in a way similar to the proof of proposition 1.7.6 and 1.7.7.

\section*{Lemma 3.8}
a. Suppose \(f \in B I \cap P I\) is bounded on finite intervals of \(\mathbb{R}^{+}\). For arbitrary \(\xi>0\), there exist \(c>0\) and \(t_{o}\) such that \(f(t x) / f(t) \leq c\) for \(\mathrm{t} \geq \mathrm{t}_{\mathrm{o}}\) and \(0<\mathrm{x} \leq \xi_{\text {。 }}\)
b. Suppose \(f \in R O\) is bounded on finite intervals of \(\mathbb{R}^{+}\). For arbitrary \(\xi>0\) and \(\alpha<\) index \(f\), there exist \(c>0\) and \(t_{o}\) such that \(f(t x) / f(t) \leq c x^{\alpha}\) for \(\mathrm{t} \geq \mathrm{t}_{\mathrm{o}}\) and \(0<\mathrm{x} \leq \xi_{\mathrm{F}}\)

The reader is invited to prove the equivalence of the following statements for non-decreasing \(f \in P I\).

\section*{Exercise}

Suppose \(f: \mathbb{R}^{+}+\mathbb{R}^{+}\)is non-decreasing.
Then the following statements are equivalent:
a. \(\frac{\lim }{t \rightarrow \infty} \frac{f(t x)}{f(t)}>1\) for some \(x>1\).
b. There exist \(\beta, t_{0}\) and \(c>0\) such that
\[
\frac{f(t x)}{f(t)} \geq c x^{\beta} \text { for all } x \geq 1, t \geq t_{0}
\]
c. \(1 / \int_{t}^{\infty} \frac{\mathrm{ds}}{\mathrm{sf}(\mathrm{s})} \in \mathrm{PI}\).
d. \(\overline{\lim } \frac{\int_{t \rightarrow \infty}^{t} f(s) d s}{t f(t)}<1\).
e. There exists \(\varepsilon>0\) such that \(t^{-1-\varepsilon} \int_{0}^{t} f(s) d s\) is increasing.
III. 2. 0 -versions of the class II: asymptotically balanced functions

\section*{Definition 3.9}

Suppose \(f: \mathbb{R}^{+} \rightarrow \mathbb{R}\) is measurable. The function \(f\) is asymptotically balanced if there exists a function \(a: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}\)such that
(i) \(\quad \Psi(x):=\overline{\lim }_{t \rightarrow \infty} \frac{f(t x)-f(t)}{a(t)}<\infty\) for all \(x>1\).
(ii) \(\quad \psi(x):=\frac{\lim _{t \rightarrow \infty}}{f(t x)-f(t)} \underset{a(t)}{t}>-\infty\) for all \(x>0\).
(iii) There exists \(x_{0}>1\) such that
\[
\begin{equation*}
\psi(x)=\lim _{t \rightarrow \infty} \frac{f(t x)-f(t)}{a(t)}>0 \text { for al1 } x \geq x_{0} \tag{3.21}
\end{equation*}
\]

Notation: \(f \in A B\) or \(f \in A B(a)\).

\section*{Examples}
\(f(t)=\log t+0(1)(t \rightarrow \infty)\) is in \(A B(1)\).
\(f(t)=c-t^{-\alpha}, c \in \mathbb{R}, \alpha>0\) is in \(A B\left(t^{-\alpha}\right)\).
The function \(\exp (f(t)) \in B I \cap P I\) if and only if \(f \in A B(1)\).

\section*{Lemma 3.10}

If \(f \in A B(a)\), then \(\overline{\lim } a(t x) / a(t)\langle\infty\) for all \(x>0\). Moreover we may take \(a\) measurable in definition 3.9 and hence in RO.

\section*{Proof}

Fix \(x>0\) and define \(y:=1+\max \left(x_{0}, x^{-1}\right)\) with \(x_{0}\) as in (3.21). Since
\[
\frac{a(t x)}{a(t)}=\left\{\frac{f(t x y)-f(t)}{a(t)}-\frac{f(t x)-f(t)}{a(t)}\right\} / \frac{f(t x y)-f(t x)}{a(t x)},
\]
we have
\[
\begin{equation*}
\overline{\lim }_{t \rightarrow \infty} \frac{a(t x)}{a(t)} \leq \frac{\Psi(x y)-\psi(x)}{\psi(y)}<\infty . \tag{3.22}
\end{equation*}
\]

This finishes the first part of the proof, since \(x>0\) is arbitrary. The proof is finished by observing that we may take \(a(t):=f\left(t x_{0}\right)-f(t)\) where \(x_{0}\) is as in (3.21).

We are going to prove a characterization theorem for functions in the class \(A B\). To this end we need two lemmas.

Lemma 3.11
Suppose \(f: \mathbb{R}^{+} \rightarrow \mathbb{R}\) is measurable and \(a \in R O\).
(i) Suppose there exists \(\mathrm{x}_{0} \geq 1\) such that
\[
\Psi(x):=\overline{\lim }_{t \rightarrow \infty} \frac{f(t x)-f(t)}{a(t)}<\infty \text { for all } x>x_{0} .
\]

Then for any \(\mathrm{x}_{1}>\mathrm{x}_{0}{ }^{2}\) there exist \(\mathrm{t}_{0}\) and \(\sigma \in \mathbb{R}\) such that
\[
\begin{equation*}
\frac{f(t x)-f(t)}{a(t)} \leq x^{\sigma} \text { for } x \geq x_{1}, t \geq t_{0} \tag{3.23}
\end{equation*}
\]

In (3.23) we may take any \(\sigma>\overline{\text { index }}\) a.
(ij) Suppose there exists \(x_{0} \geq 1\) such that
\[
\psi(x):=\frac{\lim }{t \rightarrow \infty} \frac{f(t x)-f(t)}{a(t)}>0 \text { for all } x>x_{0} .
\]

Then for any \(x_{1}>x_{0}{ }^{2}\) there exist \(t_{0}\) and \(c>0\) such that
\[
\begin{equation*}
\frac{f(t x)-f(t)}{a(t)} \geq c \text { for } x \geq x_{1}, t \geq t_{0} \tag{3.24}
\end{equation*}
\]

In (3.24) we may replace \(c\) by \(x^{\tau}\) for any \(\tau<\) index \(a\).

\section*{Proof}
(i) Similar to the proof of theorem 3.2 (i) \(\rightarrow\) (ij).

We pass to additive arguments and write \(F(x):=f\left(e^{x}\right), A(x):=a\left(e^{x}\right)\) and \(X_{i}:=\log x_{i}\) for \(i=0,1\). First we shall prove that for an arbitrary finite interval \(I \subset\left[X_{1}, \infty\right)\)
\[
\begin{equation*}
\overline{\overline{\lim }} \sup _{u \in I}\{F(t+u)-F(t)\} / A(t)<\infty . \tag{3.25}
\end{equation*}
\]

We first prove this for \(I=\left[X_{1}, 2 X_{1}\right]\). Suppose the contrary holds, then there exist sequences \(t_{n} \rightarrow \infty, x_{n} \in I(n=1,2, \ldots)\) such that
\[
\left[F\left(t_{n}+x_{n}\right)-F\left(t_{n}\right)\right] / A\left(t_{n}\right)>n
\]

Define \(J:=\left[X_{0}, X_{1} / 2\right]\) and
\[
\begin{aligned}
& Y_{1, n}=\left\{y ;\left(F\left(t_{n}+y\right)-F\left(t_{n}\right)\right) / A\left(t_{n}\right)>n / 2, y \in J\right\}, \\
& Y_{2, n}=\left\{y ;\left(F\left(t_{n}+x_{n}\right)-F\left(t_{n}+y\right)\right) / A\left(t_{n}\right)>n / 2, y \in J\right\}, \\
& z_{1, n}=\left\{z ;\left(F\left(t_{n}+x_{n}\right)-F\left(t_{n}+x_{n}-z\right)\right) / A\left(t_{n}\right)>n / 2, x_{n}-z \in J\right\}
\end{aligned}
\]

Since \(a \in R O\) we have \(c>0, n_{0}\) such that \(A\left(t_{n}\right) \geq c A\left(t_{n}+x_{n}-z\right)\) for \(n \geq n_{0}\) and \(z \in Z_{1, n}\) by theorem 3.2. As a consequence \(Z_{1, n} \subset Z_{2, n}\) for \(n \geq n_{0}\), where \(Z_{2, n}\) is defined by
\(z_{2, n}=\left\{z ;\left(F\left(t_{n}+x_{n}\right)-F\left(t_{n}+x_{n}-z\right)\right) / A\left(t_{n}+x_{n}-z\right)>c n / 2, x_{n}-z \in J\right\} \subset\) \(\left[\mathrm{X}_{0}, 2 \mathrm{X}_{1}-\mathrm{X}_{0}\right]\).

As before we find \(\lambda\left(\lim _{n \rightarrow \infty} \sup Z_{2, n}\right) \geq \lambda\left(\lim _{n \rightarrow \infty} \sup Z_{1, n}\right) \geq \frac{1}{2} \lambda\) (J) or \(\lambda\left(\underset{n \rightarrow \infty}{\lim \sup } \mathrm{Y}_{1, \mathrm{n}}\right) \geq \frac{1}{2} \lambda(\mathrm{~J})\), which contradicts our assumption.

As a consequence we find that for some \(c_{1}, t_{1}\)
\(\{f(t x)-f(t)\} / a(t) \leq c_{1}\) for \(x_{1} \leq x \leq x_{1}{ }^{2}, t \geq t_{1}\). We sha11 choose \(c_{1}>0\).
Finally choose \(x \geq x_{1}\), then \(x_{1}^{m} \leq x<x_{1}{ }^{m+1}\) for some \(m \geq 1\).
Since \(a \in R O\), there exist \(\alpha, c_{2}>0\) such that \(a(t x) / a(t) \leq c_{2} x^{\alpha}\) for \(x \geq 1\) and \(t \geq t_{2}\).
Hence for \(t \geq \max \left(t_{1}, t_{2}\right)\)
\[
\begin{aligned}
& \frac{f(t x)-f(t)}{a(t)}=\sum_{k=1}^{m-1} \frac{f\left(x_{1}{ }^{k} t\right)-f\left(x_{1}{ }^{k-1} t\right)}{a\left(x_{1}^{k-1} t\right)} \frac{a\left(x_{1}^{k-1} t\right)}{a(t)}+ \\
& +\frac{f(x t)-f\left(x_{1}{ }^{m-1} t\right)}{a\left(x_{1}{ }^{m-1} t\right)} \frac{a\left(x_{1}^{m-1} t\right)}{a(t)} \leq \\
& \leq \sum_{k=1}^{m} c_{1} a\left(x_{1}{ }^{k-1} t\right) / a(t) \leq \sum_{k=1}^{m} c_{1} c_{2} x_{1}^{(k-1) \alpha} \\
& =c_{1} c_{2}\left(x_{1}^{m \alpha-1}\right) /\left(x_{1}^{\alpha}-1\right) \leq c_{1} c_{2}\left(x_{1}^{\alpha}-1\right)^{-1} x^{\alpha}, \text { where } c_{1} \in \mathbb{R} .
\end{aligned}
\]
(ij) We omit the proof of the second part, which is similar.

Lemma 3.12
Let \(\mathrm{f}: \mathbb{R}^{+} \rightarrow \mathbb{R}\) be measurable and \(a \in\) RO. If \(\psi\) and \(\psi\) are defined as in lemma 3.11 and \(-\infty<\psi(x) \leq \Psi(x)\left\langle\infty\right.\) for all \(x>1\), then there exist constants \(t_{0}\) and \(\sigma, c>0\) such that
\[
\begin{equation*}
|\{f(t x)-f(t)\} / a(t)| \leq c x^{\sigma} \text { for } x \geq 1, t \geq t_{0} \tag{3.26}
\end{equation*}
\]

Moreover for any \(\sigma>\overline{\text { index }}\) a there exist \(c>0\) and \(t_{0}\) such that (3.26) holds.

\section*{Proof}

By lemma 3.11 we have \(\{f(t y)-f(t)\} / a(t) \leq y^{\alpha}\) for \(t \geq t_{0}\) and \(y \geq x_{1}\), where \(\sigma\) is a positive constant.
Then for \(\mathrm{x} \in[1,2]\) and \(t \geq \mathrm{t}_{0}\).
\[
\begin{aligned}
& \frac{f(t x)-f(t)}{a(t)}=\frac{f\left(2 x_{1} t\right)-f(t)}{a(t)}-\frac{f\left(2 x_{1} t\right)-f(x t)}{a(x t)} \frac{a(t x)}{a(t)} \\
& \geq \frac{f\left(2 x_{1} t\right)-f(t)}{a(t)}-\frac{\left(2 x_{1}\right)^{\sigma} a(t x)}{a(t)} \geq \frac{f\left(2 x_{1} t\right)-f(t)}{a(t)}-c_{0} x^{\alpha}
\end{aligned}
\]
for some \(\alpha \in \mathbb{R}\) and \(c_{0}>0\) since \(a \in R O\). Hence
\[
\begin{equation*}
\lim _{t \rightarrow \infty} \inf _{x \in[1,2]} \frac{f(t x)-f(t)}{a(t)} \geq \psi\left(2 x_{1}\right)-c_{0} \max \left(1,2^{\alpha}\right)>-\infty . \tag{3.27}
\end{equation*}
\]

Replacing f by -f we find a similar upper inequality.

An iteration procedure as in the proof of lemma 3.11 then gives (3.26)

We now proceed to give a characterization for functions of the class \(A B\). First we derive a representation for monotone functions of the class \(A B\). We then show that any function of the class is close to a monotone function in a certain sense.

\section*{Theorem 3.13}

Suppose \(f: \mathbb{R}^{+} \rightarrow \mathbb{R}\) is non-decreasing. Then \(f \in A B(a)\) if and only if there exists \(r>0\) such that the function \(g\) defined by
\[
\begin{equation*}
g(t):=\int_{0}^{t} s^{r} d f(s) \tag{3.28}
\end{equation*}
\]
is in \(B I \cap P I\). In that case we have \(g(t) \asymp t^{r} a(t)(t \rightarrow \infty)\).

\section*{Proof}

Assume that \(f \in A B(a)\).
Since we may take \(a \in R O\) by lemma 3.10 , we have \(t^{r} a(t) \in B I \cap P I\) (see cor. 3.7) for arbitrary \(r>\)-index \(a\). It is thus sufficient to prove \(t^{r} a(t) \asymp g(t)\) ( \(t+\infty\) ).

Application of Fatou's lemma gives
\[
\begin{aligned}
& \frac{\lim }{t \rightarrow \infty} \frac{g(t)}{t^{r} a(t)}=\frac{\lim }{t \rightarrow \infty} r \int_{0}^{1} \frac{f(t)-f(t v)}{a(t)} v^{r-1} d v \geq \\
& \geq r \int_{0}^{1} \frac{1 i m}{t \rightarrow \infty} \frac{f(t)-f(t v)}{a(t v)} \frac{a(t v)}{a(t)} v^{r-1} d v>0
\end{aligned}
\]

(i) and theorem 3.2, there exist \(c, \alpha, \sigma, t_{0}, x_{1}>1\) such that
\[
\begin{equation*}
\frac{f(t)-f(t v)}{a(t v)} \frac{a(t v)}{a(t)} \leq v^{-\sigma} \cdot c v^{\alpha} \tag{3.29}
\end{equation*}
\]
for \(\mathrm{tv} \geq \mathrm{t}_{0}\) and \(\mathrm{v}^{-1}>\mathrm{x}_{1}\). Write
\[
\frac{g(t)}{t^{r} a(t)}=r\left[\int_{0}^{t_{0} / t}+\int_{t_{0} / t}^{1 / x_{1}}+\int_{1 / x_{1}}^{1}\right\} \frac{f(t)-f(t v)}{a(t)} v^{r-1} d v
\]

By (3.29) we have
\[
\overline{\lim }_{t \rightarrow \infty} r \int_{t_{0} / t}^{1 / x} \frac{f(t)-f(t v)}{a(t)} v^{r-1} d v \leq r c \int_{0}^{1 / x_{1}} v^{\alpha-\sigma+r-1} d v
\]
and the last integral is finite if we take \(\mathrm{r}>\sigma-\alpha\).
Moreover we have
\[
\begin{aligned}
& \overline{\lim }\left|r \int_{t \rightarrow \infty}^{t_{0} / t} \frac{f(t)-f(t v)}{a(t)} v^{r-1} d v\right| \leq \overline{\lim }_{t \rightarrow \infty} \frac{|f(t)|}{a(t)}\left(\frac{t_{0}}{t}\right)^{r}+ \\
& f\left(t_{0}\right) t_{0}^{r} \overline{\lim }_{t \rightarrow \infty} t^{-r} / a(t) .
\end{aligned}
\]

The last expression is finite if we choose \(r\) sufficiently large, since \(|f(t)| \leq t^{\alpha} 0\) and \(a(t) \leq t^{\beta}{ }_{0}\) for \(t \geq t_{0}\) and some \(\alpha_{0}, \beta_{0} \in \mathbb{R}\) by lemma 3.12 and theorem 3.2 respectively.
Finally, since \(f\) is non-decreasing and \(f \in A B(a)\), we have
\[
\overline{\lim }_{t \rightarrow \infty} r \int_{1 / x_{1}}^{1} \frac{f(t)-f(t v)}{a(t)} v^{r-1} d v \leq \overline{\lim }_{t \rightarrow \infty} \frac{f(t)-f\left(t / x_{1}\right)}{a(t)}\left(1-x_{1}^{-r}\right)<\infty .
\]

Combination of the above results gives \(g(t) \asymp t^{r} a(t)\).

Conversely, assume that \(g \in B I \cap P I\). Using (3.28) we obtain
\[
\begin{equation*}
f(t)=f(0)+\int_{0}^{t} s^{-r} d g(s) \tag{3.30}
\end{equation*}
\]
and hence
\[
\begin{equation*}
\frac{f(t x)-f(t)}{t^{-r} g(t)}=r \int_{1}^{x} \frac{g(t u)}{g(t)} u^{-r-1} d u+\frac{(x t)^{-r} g(t x)}{t^{-r} g(t)}-1 . \tag{3.31}
\end{equation*}
\]

Since g is monotone, for \(\mathrm{x}>1\)
\[
\overline{\lim }_{t \rightarrow \infty} \frac{f(t x)-f(t)}{t^{-r} g(t)} \leq\left(1-x^{-r}\right) \overline{\lim }_{t \rightarrow \infty} \frac{g(t x)}{g(t)}+x^{-r} \overline{\lim }_{t \rightarrow \infty} \frac{g(t x)}{g(t)}-1<\infty .
\]

Also, with the function \(h\) defined by \(h(x):=\frac{\lim _{t \rightarrow \infty}}{} g(t x) / g(t)\), by (3.31),
\[
\frac{\lim }{t \rightarrow \infty} \frac{f(t x)-f(t)}{t^{-r} g(t)} \geq r \int_{1}^{x} u^{-r-1} h(u) d u+x^{-r} h(x)-1=: k(x) .
\]

Since \(h(t) \geq 1\) for \(t \geq 1\), but \(h(t) \neq 1\) on \((1, \infty)\), we find that for \(x\) sufficiently large
\[
-114-
\]
\[
k(x)>r \int_{1}^{x} u^{-r-1} d u+x^{-r}-1=0
\]

Hence \(f \in A B(a)\) with \(a(t) \asymp t^{-r} g(t), t \rightarrow \infty\).

\section*{Remark}

It follows from the proof that in the above result we may take any \(r>-\) index \(a\).

\section*{Corollary 3.14}

Suppose \(f\) is non-decreasing. Then \(f \in A B\) if and only if there exists a nondecreasing function \(g \in B I n P I\) and constants \(r>0\) and \(c\) such that
\(f(t)=c+g(t) t^{-r}+r \int_{0}^{t} s^{-r-1} g(s) d s\).
Proof
This is (3.30).

In the sequel we will need the following variant of this result.

Lemma 3.15
Suppose \(g: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}\)is measurable and the function \(f\) defined by
\[
f(t):=\int_{0}^{t} g(s) d s / s^{2} \text { is finite for all } t>0
\]

Then \(g \in B I \cap P I\) implies \(f \in A B(a)\) with index \(a>-1\). The converse statement is true if \(g\) is non-decreasing.

Proof
Suppose \(g \in B I n P I\). Since
\[
\frac{f(t x)-f(t)}{t^{-1} g(t)}=\int_{1}^{x} \frac{g(t s)}{g(t)} \frac{d s}{s^{2}}
\]
\(f \in A B(a)\) with \(a(t)=g(t) / t\) and index \(a>-1\).

Conversely if \(f \in A B(a)\) with index \(a>-1\) we obtain for \(x>1\) (use the monotonicity of \(g\) )
\[
-115-
\]
\[
\frac{f(t x)-f(t)}{a(t)}=\int_{1}^{x} \frac{g(t s)}{t a(t)} \frac{d s}{s} \geq \frac{g(t)}{t a(t)}\left(1-\frac{1}{x}\right)
\]
and for \(0<x<1\)
\[
\frac{f(t)-f(t x)}{a(t)} \leq \frac{g(t)}{t a(t)}\left(\frac{1}{x}-1\right),
\]
hence \(g(t) \asymp t a(t)\). Then \(g \in B I n\) PI follows.

For regularly varying functions and functions in the class \(\pi\), the notion of inversely asymptotic functions (see definition 1.21) proved useful. Lemma 1.23 a shows that for any function \(f \in \Pi\) or \(f \in R V\) it is possible to find a smooth function \(f_{0}\) which is inversely asymptotic to \(f\), i.e. for all a \(>1\) there exists \(t_{0}(a)\) such that \(f_{0}(t / a) \leq f(t) \leq f_{0}(a t)\) for \(t \geq t_{0}\) (this is relation \(\stackrel{\star}{\sim}\), see definition 1.21). We show that for any function \(f \in A B\), there exists a smooth (namely non-decreasing) function \(f_{0}\) such that the above inequalities hold for some \(a>1\) and all \(t\) sufficiently large. We start with a formal definition.

\section*{Definition 3.16}

The functions \(f, f_{0}: \mathbb{R}^{+} \rightarrow \mathbb{R}\) are 0 -inversely asymptotic if there exist constants \(a>1\) and \(t_{0}=t_{0}(a)\) such that
\[
\begin{equation*}
f(t) \leq f_{0}(a t) \quad t \geq t_{0} \tag{3.32}
\end{equation*}
\]
and
\[
\mathrm{f}_{0}(\mathrm{t}) \leq \mathrm{f}(\mathrm{at}) \quad \mathrm{t} \geq \mathrm{t}_{0}
\]

Notation : \(\mathrm{f} \stackrel{0}{\sim} \mathrm{f}_{0}\) or \(\mathrm{f}(\mathrm{t}) \stackrel{0}{\sim} \mathrm{f}_{0}(\mathrm{t}), \mathrm{t} \rightarrow \infty\).
The reader should compare this with definition 1.21 (relation \(\underset{\sim}{\sim}\) ). It is easy to see that if \(f\) and \(f_{0}\) are increasing and unbounded, then \(f \stackrel{0}{\sim} f_{0}\) if and only if the inverse functions satisfy \(f^{+}=0\left(f_{0}{ }^{+}\right)\)and \(f_{0}{ }^{+}=0\left(f^{+}\right)\), in other words, if \(\mathrm{f}^{+} \mathrm{Cf}_{0}{ }^{+}\).
The relevancy of this definition for functions \(f\) in BI \(n\) PI follows from the following lemmas.

Lemma 3.17
Suppose \(\mathrm{f}, \mathrm{f}_{0} \in \mathrm{BI} \cap \mathrm{PI}\).

Then \(f(t) \stackrel{0}{\sim} f_{0}(t)(t \rightarrow \infty)\) if and only if \(f(t) \asymp f_{0}(t), t \rightarrow \infty\).

Proof \(\quad\) Suppose \(\mathrm{f} \stackrel{0}{\sim} f_{0}\). We then have \(f(t) \leq f_{0}(a t) \leq c^{1+\overline{\text { index }}} f_{0} f_{0}(t)\) by (3.32) and theorem 3.5. A lower inequality is obtained similarly.
Conversely, suppose \(f(t) \leq b f_{0}(t)\) for \(t \geq t_{0}\) and \(b>0\).
By theorem 3.5 we have
\[
f_{0}(a t) \geq c^{-1} a^{\frac{1}{2}} \underline{\text { index }} f_{0} f_{0}(t) \text { for } t \geq t_{1}, a \geq 1 \text { and some } c>1
\]

Hence \(f(t) \leq f_{0}(a t)\) for \(t \geq \max \left(t_{0}, t_{1}\right)\) if we choose \(a>1\) such that \(c^{-1}\)
\(\mathrm{a}^{\frac{1}{2} \text { index }}{ }^{\mathrm{f}_{0}} \geq \mathrm{b}\).

The proof of a converse inequality is similar.

Lemma 3.18
Suppose \(\mathrm{f}_{0} \in \mathrm{BI} \cap \mathrm{PI}, \mathrm{f}: \mathbb{R}^{+} \rightarrow \mathbb{R}\) measurable and \(\mathrm{f} \stackrel{0}{\sim} \mathrm{f}_{0}\). Then \(f \in B I \cap P I\).

Proof
Directly from lemma 3.17 and cor, 3.7a.

For asymptotically balanced functions a statement analogous to that of lemma 3.18 is correct, although the proof is somewhat different, since the analogue of lemma 3.17 is no longer true.

Lemma 3.19
Suppose \(f_{0} \in A B(a), f: \mathbb{R}^{+} \rightarrow \mathbb{R}\) is measurable and \(f \underset{\sim}{\sim} f_{0}\). Then \(f \in A B(a)\) and
\[
\begin{equation*}
f(t)-f_{0}(t)=0(a(t)), t+\infty . \tag{3.33}
\end{equation*}
\]

\section*{Proof}

Fix \(\mathrm{x}>1\).
For \(t\) sufficiently large, by definition 3.16 , there exists \(c>1\) such that
\[
\begin{equation*}
\frac{f_{0}(t c x)-f_{0}(t / c)}{a(t)} \geq \frac{f(t x)-f(t)}{a(t)} \geq \frac{f_{0}(t x / c)-f_{0}(t c)}{a(t)} \tag{3.34}
\end{equation*}
\]

For x sufficiently large, the right-hand side in (3.34) has a positive limes inferior as \(t \rightarrow \infty\), since \(f_{0} \in A B(a)\).
The rest of the proof is easy.

Remark
There is a statement like that of lemma 3.19 for the class \(\Pi\) : if \(f \stackrel{*}{\sim} f_{0}\) and \(f_{0} \in \Pi(a)\), then \(f(t)-f_{0}(t)=o(a(t))\). See proposition 1.22 (ij). The latter relation has a converse : if \(f_{0} \in \Pi, f(t)-f_{0}(t)=o(a(t))\), then \(f \stackrel{*}{\sim} f_{0}\) and hence \(f \in \mathbb{I}\) (see theorem 1.13 and prop. 1.22 (ij)). The corresponding converse of relation (3.33) is not correct as the following example shows. Note that this remark reduces the value of corollary 3.21 below.

\section*{Example}

Take \(\mathrm{f}_{0}(\mathrm{t})=\mathrm{t}, \mathrm{f}(\mathrm{t})=\mathrm{t}+(-1)^{[\log \mathrm{t}]} \mathrm{t}\).
Then \(f_{0} \in A B(a)\) with \(a(t)=t\) and \(f(t)-f_{0}(t)=0(a(t)), t \rightarrow \infty\), but for \(x=e^{2 n+1}\) and \(e^{2 m} \leq t<e^{2 m+1}(m, n \in \mathbb{N})\) we have \(\{f(t x)-f(t)\} / t=-2\), hence \(\underset{t \rightarrow \infty}{\lim }\{f(t x)-f(t)\} / t<0\) for \(x=e^{3}, e^{5}, e^{7}, \ldots\), i.e. \(f\) is not in \(A B(a)\).
Note that the relation \(\stackrel{0}{\sim}\) is an equivalence relation for functions of the class \(A B\). The next theorem shows that every equivalence class contains a smooth function, namely a non-decreasing function and for such functions a representation is available.

Theorem 3.20
Suppose \(f: \mathbb{R}^{+} \rightarrow \mathbb{R}\) is measurable. Then the following statements are equivalent (i) \(f \in A B(a)\).
(ij) There exists a non-decreasing function \(f_{0} \in A B(a)\) such that \(f(t) \stackrel{0}{\sim} f_{0}(t)\) ( \(t+\infty\) ) .

\section*{Proof}
\((i) \rightarrow(i j)\)
Suppose \(f \in A B\). Then, by lemma 3.11 (ij) there exist \(t_{0}\) and \(x_{1}\) such that \(f(t x) \geq f(t)\) for \(t \geq t_{0}, x \geq x_{1}\), Now define the function \(f_{0}\) by \(f_{0}\left(t_{0} x_{1}\right)=f\left(t_{0} x_{1}\right)\) for \(n=0,1,2\), ... and linear in between. Note that \(f_{0}\) is non-decreasing. Further for \(s>2\) we have
\[
\begin{gathered}
f_{0}\left(t_{0} x_{1}^{s-2}\right) \leq f_{0}\left(t_{0} x_{1}^{[s]-1}\right)=f\left(t_{0} x_{1}^{[s]-1}\right) \leq f\left(t_{0} x_{1}^{s}\right) \\
\leq f\left(t_{0} x_{1}^{[s]+2}\right)=f_{0}\left(t_{0} x_{1}^{[s]+2}\right) \leq f_{0}\left(t_{0} x_{1}^{s+2}\right)
\end{gathered}
\]

Hence we obtain \(f_{0}\left(t / x_{1}^{2}\right) \leq f(t)\left\langle f_{0}\left(t x_{1}^{2}\right)\right.\) for \(\left.t\right\rangle t_{0} x_{1}^{2}\). Note that \(f_{0} \in A B(a)\) by lemma 3.19.
\((i j)+(i)\)
This is an immediate consequence of lemma 3.19.

\section*{Corollary 3.21}

If \(f \in A B(a)\), then there exists a non-decreasing \(f_{0} \in A B(a)\) such that \(f(t)=\) \(f_{0}(t)+O(a(t)), t+\infty\) 。

\section*{Proof}

Use lemma 3.19 and theorem 3.20.

We use the above corollary to derive a more specific result.

\section*{Theorem 3.22}

Suppose \(f: \mathbb{R}^{+} \rightarrow \mathbb{R}\) is measurable.
Then the following statements are equivalent.
(i) \(f \in A B(a)\)
(ij) There exists a non-decreasing function \(g \in B I \cap\) PI and constants \(r>0\) and \(c\) such that \(g(t) \asymp t^{r} a(t)\) and
\[
\begin{equation*}
\mathrm{f}(\mathrm{t}) \stackrel{0}{\sim} \mathrm{c}+\mathrm{r} \int_{0}^{\mathrm{t}} \mathrm{~s}^{-\mathrm{r}-1} \mathrm{~g}(\mathrm{~s}) \mathrm{ds} \tag{3.35}
\end{equation*}
\]

Proof
Suppose \(f \in A B(a)\). Application of theorem 3.20 and corollary 3.14 shows that we have
\[
f(t) \stackrel{0}{\sim} f_{0}(t):=c+g(t) t^{-r}+r \int_{0}^{t} s^{-r-1} g(s) d s
\]
where \(g \in B I n\) PI is non-decreasing, \(r>0\) and \(g(t) t^{r} a(t)\). We prove that \(f_{0}(t) \stackrel{\underset{\sim}{\sim}}{f_{1}}(t)(t+\infty)\), where \(f_{1}(t)\) denotes the right-hand side in (3.35).

By theorem 3.5 (viij) and the monotonicity of \(g\) for some \(x_{1}>1, t_{0}>0\), \(0<\beta<x\) we have for \(t \geq t_{0}\) and \(x>y>x_{1}\)
\[
\begin{align*}
& \frac{f_{1}(t x)-f_{0}(t)}{t^{-r} g(t)}=r \int_{1}^{x} \frac{g(t s)}{g(t)} s^{-r-1} d s-1 \geq r \int_{1}^{y} s^{-r-1} d s+  \tag{3.36}\\
& r \int_{y}^{x} s^{\beta-r-1} d s-1=y^{-r}\left(\frac{r}{r-\beta} y^{\beta}-1\right)-\frac{r}{r-\beta} x^{\beta-r} .
\end{align*}
\]

We take \(y=y_{0}>x_{1}\) such that \(\delta:=\frac{r}{r-\beta} y_{0}^{\beta}-1>0\). Then the right-hand side in (3.36) is positive for all \(x\) satisfying \(x^{-\beta+r}>\frac{r y_{0}^{r}}{(r-\beta) \delta}\). Hence \(f_{1}(t x) \geq f_{0}(t)\) for some \(x>1\) and \(t>t_{0}\).
The reverse inequality follows since \(f_{1}(t) \leq f_{0}(t) \leq f_{0}(t x)\). Hence we find \(f_{0}(t) \stackrel{0}{\sim} f_{1}(t)(t+\infty)\), which implies (3.35).
Conversely, if fatisfies (ij), we have by Fatou's lemma
\[
\frac{\lim _{t+\infty}}{f_{1}(t x)-f_{1}(t)} t^{-r} g(t) \quad r \int_{1}^{x} \frac{1 \operatorname{lm}_{t \rightarrow \infty}}{} \frac{g(t s)}{g(t)} s^{-r-1} d s>0
\]
for x sufficiently large, since \(\mathrm{g} \in \mathrm{BI} \cap \mathrm{PI}\) is non-decreasing.

\section*{Corollary 3.23}

If \(f \in A B(a)\), then there exists a non-decreasing function \(g \in B I \cap P I\) and constants \(r>0\) and \(c\) such that \(g(t) \asymp t^{r} a(t)\) and
\[
\begin{equation*}
f(t)=c+r \int_{0}^{t} s^{-r-1} g(s) d s+0\left(t^{-r} g(t)\right), t+\infty \tag{3.37}
\end{equation*}
\]

\section*{Remark}

Suppose \(f: \mathbb{R}^{+} \rightarrow \mathbb{R}\) is measurable and satisfies (3.37) with \(r>0\) and \(r\) < index \(\mathrm{g} \leq \overline{\text { index }} \mathrm{g}<\infty\) 。
Then \(f \in A B(a)\) with \(a(t) \asymp t^{-r} g(t)\). This is a partial converse of corollary 3.21 .
III.3. Discussion

A reference for 0-regularly varying functions is Aljancic and Arandelović (1977).

A reference for the classes BI, PI and \(A B\) is de Haan and Resnick (1984). There are many other possible generalizations of the classes \(R V\) and \(\Pi\); see the two papers by Bingham and Goldie (1982). We have chosen the present ones since they seem to be useful and since the results and proofs for those classes follow quite closely the theory of RV and \(\Pi\). The results presented after def. 3.16 are new and partly due to Balkema.

\section*{IV. Tauberian theorems for 0-varying functions.}

In this chapter Tauberian theorems are proved for the classes of functions Ro and \(A B\) ( 0 -regularly varying functions and asymptotically balanced functions). Note that the results are straightforward generalizations of the corresponding statements for the classes of functions \(R V\) and \(I I\) respectively (Karamata's theorem - theorem 2.11 - and theorem 2.14).
IV. 1. The Laplace transform

\section*{Theorem 4.1}

Suppose \(f: \mathbb{R}^{+} \rightarrow \mathbb{R}\) is measurable and has a finite Laplace transform \(\hat{f}(t)\) for \(t>0\).
If
\[
\begin{equation*}
\mathrm{f} \in \text { RO with index } f>-1 \tag{4.1}
\end{equation*}
\]
(see definition 3.2), then
\[
\begin{equation*}
\hat{f}(1 / t) \in \text { RO with index } \hat{f}(1 / t)>-1 \tag{4.2}
\end{equation*}
\]
and
\[
\begin{equation*}
f(t) \asymp \hat{f}(1 / t) \tag{4.3}
\end{equation*}
\]

Conversely if \(t^{\alpha} f(t)\) is non-decreasing for some \(\alpha \in[0,1\) ), then (4.2) or (4.3) implies (4.1).

Proof
First suppose (4.1) holds.
Since \(t f(t) \in B I \cap P I\) we may apply theorem 3.5.
By (3.16) there exist \(c>1, \alpha, \beta>0\) such that
\[
c^{-1} x^{\alpha-1} \leq f(t x) / f(t) \leq c x^{\beta-1} \text { for } x t \geq t_{0}, 0<x \leq 1
\]

Now write
\[
\begin{aligned}
\frac{\hat{f}\left(t^{-1}\right)}{f(t)} & =\int_{0}^{t} e^{-x} \frac{f(t x)}{f(t)} d x+\int_{t_{0} / t}^{1} e^{-x} \frac{f(t x)}{f(t)} d x+\int_{1}^{\infty} e^{-x} \frac{f(t x)}{f(t)} d x \\
& =: I_{1}+I_{2}+I_{3}
\end{aligned}
\]

Then \(0<\frac{1 \text { im }}{t \rightarrow \infty} I_{i} \leq \overline{\lim }_{t \rightarrow \infty} I_{i}<\infty\) for \(i=2\), 3. Next we consider \(I_{1}\). Since index \(\mathrm{f}>-1\) we have \(\mathrm{tf}(\mathrm{t}) \rightarrow \infty(\mathrm{t}+\infty)\). Hence
\[
\left|I_{1}\right| \leq \int_{0}^{t_{0}} e^{-x / t}|f(x)| d x / t f(t) \leq \int_{0}^{t_{0}}|f(x)| d x / t f(t) \rightarrow 0 \quad(t \rightarrow \infty)
\]

This proves \(\hat{f}\left(t^{-1}\right) \quad f(t)(t+\infty)\). Since \(f \in R O\), it follows that \(\hat{f}\left(t^{-1}\right) \in R O\). Hence (4.1) implies (4.2) and (4.3).
Conversely suppose \(t^{\alpha} f(t)\) is non-decreasing and (4.2) holds. Then
\[
\hat{f}(s)=\int_{0}^{\infty} e^{-t} f(t / s) d t \geq a^{\alpha} f(a / s) \int_{a}^{\infty} t^{-\alpha} e^{-t} d t=: c(a) f(a / s)
\]
for all \(\mathrm{s}, \mathrm{a}>0\).
Hence for \(\beta>1\) and sufficiently small \(s\)
\[
\begin{aligned}
& \hat{f}(s)=\int_{0}^{\infty} e^{-t} f(t / s) d t \leq \beta^{\alpha} f(\beta / s) \int_{0}^{\beta} t^{-\alpha} e^{-t} d t+c(1)^{-1} \int_{\beta}^{\infty} e^{-t} \hat{f}(s / t) d t \\
& \leq \beta^{\alpha} f(\beta / s) \int_{0}^{\beta} t^{-\alpha} e^{-t} d t+c(1)^{-1} \hat{f}(s) \int_{\beta}^{\infty} e^{-t} c t^{\gamma} d t,
\end{aligned}
\]
for some \(c>0, \gamma \in \mathbb{R}\), the last inequality being a consequence of theorem 3.2 (applied to the function \(\hat{f}(1 / x)\) ).
Now choose \(\beta=\beta_{0}>1\) in such a way that \(c(1)^{-1} \int_{\beta_{0}}^{\infty} e^{-t} c t \gamma_{d t} \leq \frac{1}{2}\).
Then we find
\[
\hat{f}(s) \leq 2 \beta_{o}^{\alpha} f\left(\beta_{o} / s\right) \int_{0}^{\beta} t^{-\alpha} e^{-t} d t=: c_{2} f\left(\beta_{o} / s\right) \text { for a11 } s \leq s_{o} \cdot \text { (4.5) }
\]

Combination of (4.4) and (4.5) gives
\[
\overline{\lim }_{t \rightarrow \infty} \frac{f(t x)}{f(t)} \leq c_{2} c(1)^{-1} \overline{\lim }_{t \rightarrow \infty} \frac{\hat{f}(1 / t x)}{\hat{f}\left(\beta_{0} / t\right)}<\infty
\]
for \(x>1\). Note that index \(f \geq-\alpha>-1\) since \(t^{\alpha} f(t)\) is non-decreasing. Hence \(f \in \operatorname{RO}\).
Finally suppose \(t^{\alpha} f(t)\) is non-decreasing (for some \(\alpha \in[0,1\) ) and (4.3) holds.
We use the inequality (4.4) again and find for \(x>0\) fixed
\[
\overline{\lim }_{t \rightarrow \infty} \frac{f(t x)}{f(t)} \leq c(x)^{-1} \overline{\lim }_{t \rightarrow \infty} \frac{\hat{f}(1 / t)}{f(t)}<\infty
\]

Hence \(f \in\) RO.

Theorem 4.2
Suppose \(f: \mathbb{R}^{+} \rightarrow \mathbb{R}\) is measurable and has a finite Laplace transform \(\hat{f}(t)\) for \(t>0\).

If
\[
\begin{equation*}
f \in A B\left(a_{f}\right) \text { with index } a_{f}>-1, \tag{4.6}
\end{equation*}
\]
then
\[
\begin{equation*}
\hat{f}(1 / t) \in A B\left(a_{\hat{f}}\right) \text { with index } a_{\hat{f}}>-1 \tag{4.7}
\end{equation*}
\]
and
\[
\begin{equation*}
\mathrm{f}(\mathrm{t}) \stackrel{0}{\sim} \hat{\mathrm{f}}(1 / \mathrm{t})(\mathrm{t} \rightarrow \infty) \tag{4.8}
\end{equation*}
\]
(see def. 3.16).
Conversely if \(f\) is non-decreasing, then (4.7) implies (4.6).

Proof
Since we may replace \(f(t)\) by \(f(t)+c\) without affecting \(f\) or \(\hat{f} \in A B\), we may suppose without loss of generality \(f(0+)=0\).
a. We first prove the equivalence of (4.6) and (4.7) under the assumption that \(f\) is non-decreasing. Suppose (4.6) holds. Since index \(a_{f}>-1\), we may apply theorem 3.13 with \(r=1\). Hence the function \(g\), defined by
\[
g(t):=t f(t)-\int_{0}^{t} f(s) d s
\]
is monotone, in \(B I \cap P I\) and \(g(t) \asymp t a(t)(t \rightarrow \infty)\). Theorem 4.1 then gives
\(\mathrm{g}(1 / \mathrm{t}) \in \mathrm{BI} \cap \mathrm{PI}\).
Now observe that
\[
\frac{d}{d s} \hat{f}(1 / s)=-\frac{1}{s} \hat{f}\left(\frac{1}{s}\right)+\frac{1}{s^{3}} \int_{0}^{\infty} e^{-t / s} t f(t) d t=\hat{g}(1 / s) / s^{2}
\]
and hence (note that \(\hat{f}(\infty)=f(0+)=0\) )
\[
\hat{f}(1 / s)=\int_{0}^{s} \hat{g}(1 / t) d t / t^{2}
\]

Application of lemma 3.15 then gives \(\hat{f}(1 / s) \in A B\left(a_{\hat{A}}\right)\) and \(a_{\hat{f}}(t) \asymp \hat{g}(1 / t) / t\), hence index \(a_{\hat{f}}>-1\). It is clear that this reasoning can f be followed in reversed order. Hence we have proved the equivalence of (4.6) and (4.7) in case \(f\) is non-decreasing.
b. Next we prove (4.6) \(\rightarrow\) (4.7) without the assumption of monotonicity for \(f\). For arbitrary \(f \in A B\), by theorem 3.20 , there exists a non-decreasing function \(f_{o}\) and constants \(t_{0}, x_{0}>1\) such that for \(t \geq t_{o}\)
\[
\begin{equation*}
f_{o}\left(t / x_{o}\right) \leq f(t) \leq f_{o}\left(t x_{o}\right) . \tag{4.9}
\end{equation*}
\]

Define the function \(f_{1}\) by
\[
f_{1}(t)=\max \left(f(t), f_{o}\left(t x_{0}\right)\right)
\]

Then \(f_{1}(t)=f_{0}\left(t x_{0}\right)\) ) for \(t \geq t_{o}\), hence
\[
\begin{align*}
& \hat{f}_{1}(1 / t)-\hat{f}_{0}\left(1 / t x_{0}\right)=\int_{0}^{t} e^{-t} e^{-s}\left\{f_{1}(t s)-f_{0}\left(t x_{0} s\right)\right\} d s \leq \\
& \leq t^{-1} \int_{0}^{t} e^{-s / t}\left|f_{1}(s)-f_{0}\left(x_{0} s\right)\right| d s \leq c / t \tag{4.10}
\end{align*}
\]
for all \(t\) sufficiently large, where \(c:=\int_{0}^{t}\left|f_{1}(s)-f_{o}\left(x_{0} s\right)\right| d s\). Since \(f(t) \leq f_{1}(t)\), we have \(\hat{f}(1 / t) \leq \hat{f}_{1}(1 / t)\). Combination with (4.10) gives
\[
\hat{f}(1 / t) \leq \hat{f}_{o}\left(1 / t x_{0}\right)+c / t \leq \hat{f}_{o}\left(1 / t x_{1}\right)
\]
for some \(x_{1}>x_{0}\) and all \(t\) sufficiently large, since \(\hat{f}_{0}(1 / t) \in A B\left(a_{\hat{f}}\right)\) with index \(a_{\hat{f}}>-1\) by part a of the proof.
Introducing the function \(f_{2}(t)=\min \left\{f(t), f_{0}\left(t / x_{0}\right)\right\}\) one finds similarly \(\hat{f}(1 / t) \geq \hat{f}_{o}\left(x_{2} / t\right)\) for some \(x_{2}>x_{o}\) and \(t\) sufficiently large.

Hence \(\hat{f}(1 / t) \stackrel{\sim}{\sim} \hat{f}_{0}(1 / t), t \rightarrow \infty\)
By part a we have \(\hat{f}_{0}(1 / t) \in \operatorname{AB}\left(a_{\hat{f}_{0}}\right)\). Application of lemma 3.19 then finishes the proof of (4.7).
c. Finally we prove the implication (4.6) \(\rightarrow\) (4.8).

By theorem 3.22
\[
\begin{equation*}
f(t) \stackrel{0}{\sim} c+r \int_{0}^{t} s^{-r-1} g(s) d s=: f_{2}(t) \tag{4.11}
\end{equation*}
\]
where \(r>0\) and \(c\) are constants and \(g \in B I \cap P I\) is non-decreasing.

Since we have proved in part b that if \(f \stackrel{0}{\sim}_{f}^{f}\) and \(f_{o}\) non-decreasing then \(\hat{f}(1 / t) \stackrel{0}{\sim} \hat{f}_{0}(1 / t)\), it is sufficient to prove \(\hat{f}_{2}(1 / t) \stackrel{0}{\sim} f_{2}(t)(t+\infty)\) 。

Since \(f \in A B(a)\) with index \(a>-1\), we may take \(r=1\) in (4.11). (see the remark following theorem 3.13.)
Now it follows that
\[
\begin{equation*}
\frac{\lim _{t \rightarrow \infty}}{f_{2}(t x)-\hat{f}_{2}(1 / t)} \underset{t^{-1} g(t)}{t} \int_{0}^{x} \frac{1-e^{-s}}{s^{2}} \frac{\lim }{t \rightarrow \infty} \frac{g(s t)}{g(t)} d s-\int_{x}^{\infty} \frac{e^{-s}}{s^{2}} \overline{\lim }_{t \rightarrow \infty} \frac{g(t s)}{g(t)} d s \tag{4.12}
\end{equation*}
\]
by Fatou's lemma, theorem 3.2 and the dominated convergence theorem.
Since the first integral is positive and the second integral is finite, the right-hand side in (4.12) is positive for \(x\) sufficiently large. This proves \(f_{2}\left(t x_{0}\right) \geq \hat{f}_{2}(1 / t)\) for \(t \geq t_{0}\) and some \(x_{0}>1\). The proof of the converse inequality needed for (4.8) is similar. Hence \(f_{2}(t) \stackrel{\underset{\sim}{\sim}}{f_{2}}(1 / t)(t+\infty)\).

\section*{Corollary 4.3}

Under the assumptions of theorem 4.3 we have \(f(t)-\hat{f}(1 / t)=0(a(t)), t+\infty\).

\section*{Examples:}
1. Suppose \(f(t)=(\log t)^{\alpha}+0\left((\log t)^{\alpha-1}\right)(\alpha>0)\) and \(\hat{f}(u)<\infty\) for \(u>0\). Since \(f \in A B\) (a) with \(a(t)=(\log t)^{\alpha-1}\), we have \(\hat{f}(1 / t)=(\log t)^{\alpha}+\) \(O\left((\log t)^{\alpha-1}\right.\) ) and the converse implication is true if \(f\) is non-decreasing.
2. A condition like index \(a>-1\) is necessary for the theorem. This is shown by the following example:
Let \(f(t)=0\) on \([0,1]\) and \(f(t)=1-t^{-\alpha}\) for \(t>1\), where \(\alpha \geq 1\) is a constant.
Then \(f(t x)-f(t) \asymp t^{-\alpha}\) as \(t \rightarrow \infty\), whereas
\[
\hat{f}(1 / t x)-\hat{f}(1 / t) \asymp \begin{cases}t^{-1} 1 \ln t & \text { if } \alpha=1 \\ 1 / t & \text { if } \alpha>1 .\end{cases}
\]

\section*{Remark}

Without proof we mention the following variant of theorem 4.2 and corollary 4.3. See de Haan, Stadtmüller (1985).

Suppose a \(\epsilon\) Ro with index \(a>-1, f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}\)is non-decreasing, \(f(0+)=0\) and \(\hat{f}(t)\langle\infty\) for \(t>0\). Then the statements
(i) \(\quad \overline{\lim }_{\mathrm{tm}} \frac{\mathrm{f}(\mathrm{tx})-\mathrm{f}(\mathrm{t})}{\mathrm{a}(\mathrm{t})}<\infty\) for all \(\mathrm{x}>1\)
(ii) \(\quad \lim _{t \rightarrow \infty} \frac{\hat{\mathrm{f}}(1 / \mathrm{tx})-\hat{\mathrm{f}}(1 / \mathrm{t})}{a(\mathrm{t})}<\infty\) for all \(x>1\),
are equivalent and they imply
\[
\begin{equation*}
f(t)-\hat{f}(1 / t)=0(a(t)), t+\infty \tag{4.15}
\end{equation*}
\]

\section*{IV.2. General kernel transforms}

Next we prove a generalization of theorem 4.1 for more general kernels. We restrict our attention to positive kernels as we did in the corresponding theorem on RV functions. Moreover the monotonicity assumption for \(f\) is weakened (see condition (4.17) below).

From now on we use the notation
\[
\begin{equation*}
\hat{f}(t)=\int_{0}^{\infty} k(s) f(t s) d s \text { (see definition 2.31). } \tag{4.16}
\end{equation*}
\]

Theorem 4.4
a. Let \(f \in\) RO with index \(f>-1\) and suppose \(f\) is (Lebesgue) integrable on finite intervals of \(\mathbb{R}^{+}\). If the function \(k: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}\)is bounded on ( 0,1 ) and
and
\(0<\int_{0}^{1} s^{\alpha} k(s) d s<\infty\)
\(0<\int_{1}^{\infty} s^{\beta} k(s) d s<\infty\)
for some \(\alpha<\underline{\text { index }} \mathrm{f}\) and \(\beta>\overline{\text { index }} \mathrm{f}\), then
\[
f(t) \quad \hat{f}(t) \quad(t+\infty) \text {, hence } \hat{f} \in R O \text {. }
\]
b. Suppose \(f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}\)is measurable, \(\lim _{t \rightarrow \infty} f(t)=\infty\) and there exist \(\lambda>1\), c > 0 such that
\[
\begin{equation*}
\inf _{t \leq t^{\prime} \leq \lambda t}\left\{f\left(t^{\prime}\right)-f(t)\right\}>-c \text { for all } t>0 \tag{4.17}
\end{equation*}
\]

Suppose \(\hat{f}(t)\) is finite for \(t>0\) and \(\hat{f} \in R O\).

Suppose the kernel \(k \in L^{1}(0, \infty)\) is non-negative and satisfies the assumptions
\[
\int_{0}^{1} k(s) d s>0, \int_{1}^{\infty} k(s) d s>0, \int_{1}^{\infty} s^{\beta} k(s) d s<\infty
\]
for some \(\beta>\overline{\text { index }} \hat{\mathbf{f}}\),
\[
\sum_{j=0}^{\infty} j \lambda^{-j} k\left(\lambda^{-j} s\right) \text { and } \sum_{j=0}^{\infty} j \lambda^{j} k\left(\lambda^{j} s\right)
\]
are bounded on finite intervals of \(\mathbb{R}^{+}\).

Then \(f \in\) RO.

\section*{Proof}
a. Since there exist \(c>1\) such that \(f(t x) / f(t) \leq c x^{\alpha}\) for \(t x \geq t_{0}, 0<x \leq 1\) by theorem 3.2 and cor. 3.4 , we have
\[
\overline{l i m}_{t \rightarrow \infty} \int_{t_{0} / t}^{1} k(s) \frac{f(t s)}{f(t)} d s \leq c \int_{0}^{1} k(s) s^{\alpha} d s<\infty
\]

Similarly we find
\[
\frac{1 i m}{t \rightarrow \infty} \int_{t / t}^{l} k(s) \frac{f(t s)}{f(t)} d s>0
\]

Since \(k\) is bounded on \((0,1)\) and index \(f>-1\) we have
\[
\left|\int_{0}^{t_{0} / t} k(s) \frac{f(t s)}{f(t)} d s\right| \leq(t f(t))^{-1} \int_{0}^{t_{0}} k(s / t)|f(s)| d s=o(1)(t \rightarrow \infty)
\]

Similarly we find that \(\int_{1}^{\infty} k(s) \frac{f(t s)}{f(t)}\) ds is bounded away from zero and infinity. This completes the proof of part a.
b. We write
\[
\begin{equation*}
\hat{f}(t)=\int_{0}^{\gamma} k(s) f(t s) d s+\int_{\gamma}^{\infty} k(s) f(t s) d s \tag{4.19}
\end{equation*}
\]
where \(\gamma>0\) is to be determined later and start by estimating the first term
at the right-hand side. There exists \(t_{0} \in[t, \lambda t]\) such that
\[
\begin{aligned}
& \inf _{t \leq t^{\prime} \leq \lambda t}\left\{f(\lambda t)-f\left(t^{\prime}\right)\right\} \geq f(\lambda t)-f\left(t_{0}\right)-1 \geq \\
& \geq \inf _{t_{0} \leq t^{\prime} \leq \lambda t_{0}}\left\{f\left(t^{\prime}\right)-f\left(t_{0}\right)\right\}-1 \geq-c-1 \text { by (4.17). }
\end{aligned}
\]

Since \(k\) is non-negative this implies
\[
\begin{aligned}
& \int_{0}^{\gamma} k(s) f(t s) d s \leq \sum_{j=0}^{\infty}\left\{{ }_{\gamma \lambda^{-j-1} \leq \xi \leq \gamma \lambda^{-j}}^{\sup } f(\xi t)\right\} \int_{\gamma \lambda^{-j-1}}^{\gamma \lambda^{-j}} k(s) d s \leq \\
& \leq \sum_{j=0}^{\infty}\left\{f\left(\gamma \lambda^{-j} t\right)+c+1\right\} \int_{\gamma \lambda^{-j-1}}^{\gamma \lambda^{-j}} k(s) d s .
\end{aligned}
\]

Repeated application of (4.17) gives \(f\left(\gamma \lambda^{-j_{t}}\right) \leq f(\gamma t)+j c\).
Hence
\[
\begin{equation*}
\int_{0}^{\gamma} k(s) f(t s) d s \leq c_{1} f(\gamma t)+c_{2} \tag{4.20}
\end{equation*}
\]
where \(c_{1}=\int_{0}^{\gamma} k(s) d s>0\) and \(c_{2}=c \sum_{j=0}^{\infty}(j+1) \int_{\gamma \lambda}^{\gamma \lambda^{-j}} k(s) d s+c_{1}<\infty\) by assumption (4.18).
We are now going to estimate the integral over ( \(\gamma, \infty\) ) in (4.19). Write \(\quad c_{3}=\int_{1}^{\infty} k(s) d s\). Then by (4.17) and (4.18) for \(t>0\)
\[
\begin{align*}
& \hat{f}(t)=c_{3} f(t)+\int_{0}^{1} k(s) f(t s) d s+\sum_{j=0}^{\infty} \int_{\lambda^{j}}^{\lambda^{j+1}} k(s)\{f(t s)-f(t)\} d s \\
& \geq c_{3} f(t)+\sum_{j=0}^{\infty} \int_{\lambda^{j}}^{j+1} k(s)\left\{f(t s)-f\left(t \lambda^{j}\right)-c j\right\} d s \tag{4.21}
\end{align*}
\]
\[
\geq c_{3} f(t)-c \int_{1}^{\infty} k(s) d s-c \int_{i}^{\lambda} \sum_{j=0}^{\infty} j \lambda^{j} k\left(\lambda^{j} s\right) d s=: c_{3}\left(f(t)-c_{4}\right)
\]

Hence
\[
\int_{\gamma}^{\infty} k(s) f(t s) d s \leq \int_{\gamma}^{\infty} k(s)\left\{c_{4}+\hat{f}(t s) / c_{3}\right\} d s
\]

By theorem 3.2, since \(\hat{\mathrm{f}} \in \mathrm{RO}\), there exist \(\mathrm{t}_{0}, \mathrm{c}_{5}>0\) such that \(\hat{f}(t s) \leq c_{5} \hat{f}(t) s^{\beta}\) for \(t>t_{0}, s>1\) where \(\beta>\frac{\hat{\text { index }}}{\hat{f}}\).

Hence
\[
\begin{equation*}
\int_{\gamma}^{\infty} k(s) f(t s) d s \leq \frac{c_{5}}{c_{3}} \hat{f}(t) \int_{\gamma}^{\infty} s^{\beta} k(s) d s+c_{4} \int_{\gamma}^{\infty} k(s) d s . \tag{4.22}
\end{equation*}
\]

Now choose \(\gamma\) such that \(c_{6}:=\frac{c_{5}}{c_{3}} \int_{\gamma}^{\infty} s^{\beta} k(s) d s \leq 1 / 2\).
Combination of (4.20) and (4.22) then gives
\[
\hat{f}(t) \leq \frac{1}{2} \hat{f}(t)+c_{1} f(\gamma t)+c_{2}+c_{4} \int_{\gamma}^{\infty} k(s) d s
\]
hence
\[
\hat{f}(t) \leq 2 c_{1} f(\gamma t)+2\left\{c_{2}+c_{4} \int_{\gamma}^{\infty} k(s) d s\right\} .
\]

The last inequality, together with (4.21), \(\lim _{t \rightarrow \infty} f(t)=\infty\) and \(\hat{f} \in\) Ro imply
\[
f(t) \quad \hat{f}(t)(t \rightarrow \infty) .
\]

Hence \(f \in\) RO.

\section*{IV.3. Discussion}

The results of theorems 4.1 and 4.2 (Tauberian theorems for \(R O\) and \(A B\) ) have been adapted from de Haan and Stadtmüller (1985). Theorem 4.4 ( a general kernel Tauberian theorem) has been adapted from Geluk (1985).

\section*{References.}
T. v. Aardenne-Ehrenfest, N.G. de Bruijn, J. Korevaar, A note on slowly oscillating functions, Nw. Arch. Wisk, 23, (1949), 77-86.
M. Abramowitz, I.A. Stegun, Handbook of mathematical functions, Dover, (1965).
S. Aljancić, R. Bojanić, M. Tomić, Slowly varying functions with remainder term and their applications in analysis, Serbian Acad. Sci. and Arts Monographs, vol. CDLXII. Section Nat. Math. Sci., 41, (1974), Beograd.
S. Aljancic, D. Arandelovic, O-regularly varying functions, Publ. I'Inst. Math. 22 (36), (1977), 5-22.
A.A. Balkema, Monotone transformations and limit laws, Mathematical Centre tracts 45, Amsterdam (1973).
A.A. Balkema, J.L. Geluk, L. de Haan, An extension of Karamata's Tauberian theorem and its connection with complementary convex functions, Quart. J. Math. Oxford, (2), 30, (1979), 385-416.
N. H. Bingham, C.M. Goldie, Extensions of regular variation I, II, Proc. Lond. Math. Soc., (3), 44, (1982), 473-496, 497-532.
N. H. Bingham, J.L. Teugels, Duality for regularly varying functions, Quart. J. Math. Oxford, (3), 26, (1975), 333-353.
N.H. Bingham, J.L. Teugels, Tauberian theorems and regular variation, Nieuw Arch. v. Wisk. (27), 2, (1979), 153-186.
N.H. Bingham, J.L. Teugels, Mercerian and Tauberian theorems for differences, Math. Z., 170, (1980), 247-262.
N.H. Bingham, C.M. Goldie, On one-sided Tauberian conditions, Analysis, 3, (1983), 159-188.
S. Bloom, A characterization of B-slowly varying functions, Proc. Amer. Math. Soc., 54, (1976), 243-250.
R. Bojanic, J. Karamata, On a class of functions of regular asymptotic behavior, Math. Res. Centre, U.S. Army, Madison, Tech. Summ. Rep. No. 436, (1963).
R. Bojanic, E. Seneta, A unified theory of regularly varying sequences, Math. Z., 134, (1973), 91-106.
N.G. de Bruijn, Pairs of slowly oscillating functions occurring in asymptotic problems concerning the Laplace transform., Nw. Arch. Wisk., 7, (1959), 20-26.
I. Csiszar, P. Erdös, On the function \(g(t)=\lim \sup _{x \rightarrow \infty}\{f(x+t)-f(x)\}\), Magyar Tud. Akad., Mat. Kut. Int. Köz1., Ser A, 9(1964), 603-606.
D. Drasin, Tauberian theorems and slowly varying functions, Trans. Amer. Math. Soc. 133, (1968), 333-356.
P. Embrechts, A second-order theorem for Laplace transforms, J.Lond. Math. Soc, 17, (1978), 102-106.
W. Feller, An introduction to probability theory and its applications, vol II, Wiley, (1971).
J. Galambos, E. Seneta, Regularly varying sequences, Proc. Amer. Math. Soc., 41, (1973), 110-116.
J.L. Geluk, Abelian and Tauberian theorems for 0-regularly varying functions, Proc. Am. Math. Soc, 93, (1985), 235-241.
J.L. Geluk, \(\Pi\)-Regular variation, Proc. Amer. Math. Soc., 82, (1981), 565-571.
J.L. Geluk, L. de Haan, On functions with small differences, Proc. Kon. Ned. Akad. v. Wet., Indag. Math., 84, (1981), 187-194.
J.L. Geluk, L. de Haan, U. Stadtmüller, A Tauberian theorem of exponential type, Can. J. Math., 38, (1986), 697-718.
C.M. Goldie, R.L. Smith, Slow variation with remainder: a survey of the theory and its applications, Quart. J. Math. Oxford 2, 38, (1987), 45-71.
L. de Haan, On regular variation and its application to the weak convergence of sample extremes, Math. Centre Tracts 32, Amsterdam (1970).
L. de Haan, An Abel-Tauber theorem for Laplace transforms, J, London Math. Soc., 13, (1976), 537-542.
L. de Haan, On functions derived from regularly varying functions, J. Austral. Math. Soc. Ser A, 23, (1977), 431-438.
L. de Haan, E. Omey, Integrals and derivatives of regularly varying functions in \(\mathrm{R}^{\mathrm{d}}\) and domains of attraction of stable distributions, Stoch. Proc. App1. 16, (1983), 157-170.
L. de Haan, S. Resnick, Asymptotically balanced functions and stochastic compactness of sample extremes, Ann. Prob., 12, (1984), 588-608.
L. de Haan, G. Ridder, Stochastic compactness of sample extremes, Ann. Prob. 7, (1979), 290-303.
L. de Haan, U. Stadtmuiller, Dominated variation and related concepts and Tauberian theorems for Laplace transforms, J.Math. Anal. App1., 108, (1985), 344-365.
P.R. Halmos, Measure theory, Springer (1950).
G.H. Hardy, Divergent series, Oxford (1948).
E. Hewitt, K. Stromberg, Real and abstract analysis, Springer (1969).
G.S. Jordan, Regularly varying functions and convolutions with real kernels, Trans. Amer. Math. Soc., 194, (1974), 177-194.
J. Karamata, Sur un mode de croissance régulière des fonctions, Mathematica (Cluj), 4, (1930), 38-53.
J. Karamata, Sur un mode de croissance régulière. Théorèmes fondamentaux. Bu11. Soc. Math, France, 61, (1933), 55-62.
J. Karamata, Neuer Beweis und Verallgemeinerung der Tauberschen Sätze, welche die Laplacesche und Stieltjessche Transformation betreffen, J. für reine u. ang. Math. 164, (1931), 27-39.
J. Karamata, Some theorems concerning slowly varying functions, Math. Research Center, Univ. of Wisconsin, Techn. Rep., (1962).
D.G. Kendall, Delphic Semi-groups, infinitely divisible regenerative phenomena and the arithmetic of p-functions, Zeitschr. f. Wahrsch., 9, (1967/1968), 163-195.
E.E. Kohlbecker, Weak asymptotic properties of partitions, Trans. Amer. Math. Soc., 88, (1958), 346-365
W. Matuszewska, Regularly increasing functions in connection with the theory of \(\mathrm{L}^{*}{ }^{\phi}\)-spaces, Studia. Math., 21, (1962), 317-344.
W. Matuszewska, A remark on my paper "Regularly increasing functions in connection with the theory of \(L^{*} \phi_{-s p a c e s ", ~ S t u d i a ~ M a t h ., ~ 25, ~(1965), ~ 265-~}^{\text {- }}\) 269.
E. Omey, Regular variation and its applications to second order linear differential equations, Bull. Soc. Math. Belg. Ser. B, 33, (1981), 207229.
E. Omey, E. Willekens, I-variation with remainder, Technical Report, University of Leuven, 1986.
S. Parameswaran, Partition functions whose logarithms are slowly oscillating, Trans. Amer. Math. Soc., 100, (1961), 217-240.
E.J.G. Pitman, On the behaviour of the characteristic function of a probability distribution in the neighbourhood of the origin, J. Austr. Math. Soc. 8, (1968), 423-443.
E. Seneta, Regularly varying functions, Springer (1976).
G. Simons, W. Stout, A weak invariance principle with applications to domains of attraction, Ann. Prob. 6, (1978), 294-315.
U. Stadtmüller, R. Trautner, Tauberian theorems for Laplace transforms, J. Reine Ang. Math., 311-312, (1979), 283-290).
M. Vuilleumier, Slowly varying functions in the complex plane, Trans. Am. Math. Soc., 218, (1976), 343-348.
E. Wagner, Ein reeller Tauberscher Satz für die Laplace-Transformation, Math. Nachr. 36 (1968), 323-331.
I. Weissman, A note on Bojanic-Seneta theory of regularly varying sequences, Math. Z., 151, (1976), 29-30.
D.V. Widder, The Laplace transform, Princeton (1941).

\section*{List of symbols}
page
\(\mathrm{RV}{ }_{\alpha}^{\infty}, \mathrm{RV}_{\alpha}^{0}\) ..... 3
index, regularly varying, slowly varying ..... 3
\(\lambda\) Lebesgue measure ..... 4
\(\mathrm{f}^{+}\)generalized inverse function ..... 9
\(f_{1}{ }^{\circ} f_{2}\) composition of \(f_{1}\) and \(f_{2}\) ..... 9
\(\mathrm{f}^{+}\)inverse function ..... 11
\(L^{*}\) conjugate slowly varying function ..... 15
I, II(a) ..... 19
\(\pi^{0}\) ..... 20
\(\mathrm{f}_{1} \stackrel{*}{\sim} \mathrm{f}_{2}\) inversely asymptotic ..... 32
r, \(\Gamma(\mathrm{b})\) ..... 35
BSV, Beurling slowly varying functions ..... 48
\(\mathrm{RV}_{\alpha}\)-sequence ..... 54
II(a)-sequence ..... 55
\(\mathrm{f}^{\mathrm{C}}, \mathrm{f}_{\mathrm{c}}\) complementary (inverse complementary) function ..... 59
\(\pi^{-}, \pi^{-}(a)\) ..... 62
\(\Gamma^{(0)}\) ..... 63
\({ }_{\mathrm{f}}^{\mathrm{f}} \mathrm{I}^{\sim} \mathrm{f}_{2}\) ..... 63
f Laplace transform ..... 67
\(\tilde{f}\) ..... 73
f (general kernel) ..... 92
slowly decreasing ..... 93
\(\mathrm{f}(\mathrm{x}) \asymp \mathrm{g}(\mathrm{x})\) ..... 97
RO, 0 -regularly varying ..... 101
index, index ..... 101
BI, Bounded increase ..... 106
PI, Positive increase ..... 106
AB , Asymptotically balanced ..... 108
\(\mathrm{f}_{1} \underset{\sim}{\sim} \mathrm{f}_{2}\) 0-inversely asymptotic ..... 115

\section*{MATHEMATICAL CENTRE TRACTS}

1 T. van der Walt. Fixed and almost fixed points. 1963.
2 A.R. Bloemena. Sampling from a graph. 1964.
3 G. de Leve. Generalized Markovian decision processes, part I: model and method 1964.
4 G. de Leve. Generalized Markovian decision processes, part
II: probabilistic background. 1964.
S G. de Leve, H.C. Tiims, P.J. Weeda. Generalized Markovian decision processes, applications. 1970.
6 M.A. Maurice. Compact ordered spaces. 1964.
7 W.R. van Zwet. Convex transformations of random variables. 1964.

8 J.A. Zonneveld. Automatic numerical integration. 1964.
9 P.C. Baayen. Universal morphisms. 1964.
10 E.M. de Jager. Applications of distributions in mathematical physics. 1964.
11 A.B. Paalman-de Miranda. Topological semigroups. 1964. 12 J.A.Th.M. van Berckel, H. Brandt Corstius, R.J. Mokken, A. van Wijngaarden. Formal properties of newspaper Dutch. 1965.

13 H.A. Lauwerier. Asymptotic expansions. 1966, out of print;
replaced by MCT 54 .
14 H.A. Lauwerier. Calculus of variations in mathematical physics. 1966.
15 R. Doornbos. Slippage tests. 1966.
16 J.W. de Bakker. Formal definition of programming languages with an application to the definition of ALGOL 60

17 R.P. van de Riet. Formula manipulation in ALGOL 60 pari 1. 1968.
18 R.P. van de Riet. Formula manipulation in ALGOL 60 , part 2. 1968
19 J . van der Slot. Some properties related to compactness. 1968.

20 P.J. van der Houwen. Finite difference methods for solving partial differential equations. 1968.
21 E. Wattel. The compactness operator in set theory and topology. 1968.
22 T.J. Dekker. ALGOL 60 procedures in numerical algebra, part I. 1968.
23 T.J. Dekker, W. Hoffmann. ALGOL 60 procedures in numerical algebra, part 2. 1968
24 J.W. de Bakker. Recursive procedures. 1971.
25 E.R. Paërl. Representations of the Lorentz group and projec tive geometry. 1969.
26 European Meeting 1968. Selected statistical papers, part I 1968.

27 European Meeting 1968. Selected statistical papers, part II
28 J . Oosterhoff. Combination of one-sided statistical tests. 1969.

29 J. Verhoeff. Error detecting decimal codes. 1969 30 H . Brandt Corstius. Exercises in computational linguistics. 1970.

31 W. Molenaar. Approximations to the Poisson, binomial and hypergeometric distribution functions. 1970.
32 L. de Haan. On regular variation and its application to the weak convergence of sample extremes. 1970.
33 F.W. Steutel. Preservation of infinite divisibility under mix ing and related topics. 1970
34 I. Juhász, A. Verbeek, N.S. Kroonenberg. Cardinal functions in topology. 1971
35 M.H. van Emden. An analysis of complexity. 1971.
36 J. Grasman. On the birth of boundary layers. 1971.
37 J.W. de Bakker, G.A. Blaauw, A.J.W. Duijvestijn, E.W. Dijkstra, P.J. van der Houwen, G.A.M. Kamsteeg-Kemper, K.J. Kruseman Arek, W.L. van der Sruseman, M.1. Symposium. 1971.
38 W.A. Verloren van Themaat. Automatic analysis of Dutch compound words. 1972.
39 H. Bavinck, Jacobi series and approximation. 1972. 40 H.C. Tijms. Analysis of \((s, S)\) inventory models. 1972. 41 A. Verbeek. Superextensions of topological spaces. 1972. 42 W. Vervaat. Success epochs in Bernoulli trials (with applicanons in number theory). 1972.
43 F.H. Ruymgaart. Asymptotic theory of rank tests for independence. 1973.

44 H. Bart. Meromorphic operator valued functions. 1973.
45 A.A. Balkema. Monotone transformations and limit laws. 973.

46 R.P. van de Riet. ABC ALGOL, a portable language for formula manipulation systems, part 1: the language. 1973. 47 R.P. van de Riet. ABC ALGOL, a portable language for formula manipulation systems, part 2: the compiler. 1
48 F.E.J. Kruseman Aretz, P.J.W. ten Hagen, H.L.
Oudshoorn. An ALGOL 60 compiler in ALGOL 60, text of the
49 H. Kok. Connected orderable spaces. 1974.
50 A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, C.H.A.
Koster, M. Sintzoff, C.H. Lindsey, L.G.L.T. Meertens, R.C
isker (eds.). Revised report on the algorithmic language
LGOL 68. 1976.
51 A. Hordijk. Dynamic programming and Markov potential heory. 1974.
52 P.C. Baayen (ed.). Topological structures. 1974
53 M.J. Faber. Metrizabillty in generalized ordered spaces 1974
54 H.A. Lauwerier. Asymptotic analysis, part I. 1974
55 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 1. theory of designs, finite geometry and coding theory. 1974. 56 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 2 raph theory, foundations, partitions and combinatorial graph theory, fond
57 M. Hall, Jr., J.H. van Lint (eds.). Combinatorics, part 3. combinatorial group theory. 1974.
8 W. Albers. Asymptotic expansions and the deficiency conept in statistics. 1975.
9 J.L. Mijnheer. Sample path properties of stable processes. 1975
60 F . Göbel. Queueing models involving buffers. 1975.
63 J.W. de Bakker (ed.). Foundations of computer science 975.

64 W.J. de Schipper. Symmetric closed categories. 1975
65 J. de Vries. Topological transformation groups, 1: a categor-
cal approach. 1975.
66 H.G.J. Pijls. Logically convex algebras in spectral theory and eigenfunction expansions. 1976
68 P.P.N. de Groen. Singularly perturbed differential operator f second order. 1976.
69 J.K. Lenstra. Sequencing by enumerative methods. 1977.
70 W.P. de Roever, Jr. Recursive program schemes: semantics and proof theory. 1976.
71 J.A.E.E. van Nunen. Contracting Markov decision rocesses. 1976
72 J.K.M. Jansen. Simple periodic and non-periodic Lane functions and their applications in the theory of conical waveguides. 1977.
73 D.M.R. Leivant. Absoluteness of intuitionistic logic. 1979
74 H.J.J. te Riele. A theoretical and computational study of
generalized aliquot sequences. 1976.
75 A.E. Brouwer. Treelike spaces and related connected topo logical spaces. 1977.
76 M. Rem. Associons and the closure statement. 1976.
77 W.C.M. Kallenberg. Asymptotic optimality of likelihood ratio tests in exponential families. 1918.
78 E. de Jonge, A.C.M. van Rooij. Introduction to Riesz spaces. 1977.
9 M.C.A. van Zuijlen. Emperical distributions and rank statistics. 1977.
0 P.W. Hemker. A numerical study of stiff two-point boundary roblems. 1977.
81 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer cience II, part I. 1976.
82 K.R. Apt, J.W. de Bakker (eds.). Foundations of computer science II, part 2. 1976.
83 L.S. van Benthem Jutting. Checking Landau's
"Grundlagen" in the AUTOMATH system. 1979.
84 H.L.L. Busard. The translation of the elements of Euclid from the Arabic into Latin by Hermann of Carinthia (?), books vii-xii. 1977.
85 J. van Mill. Supercompactness and Wallman spaces. 1977 86 S.G. van der Meulen, M. Veldhorst. Torrix I, a program ming system for operations on vectors and matrices over arbitrary fields and of variable size. 1978.
88 A. Schrijver. Matroids and linking systems. 1977.
89 J.W. de Roever. Complex Fourier transformation and analytic functionals with unbounded carriers. 1978

90 L.P.J. Groenewegen. Characterization of optimal strategies
in dynamic games. 1981
91 J.M. Geysel. Transcendence in fields of positive characteris 91 J.M. G
92 P.J. Weeda. Finite generalized Markov programming. 1979. 93 H.C. Tijms, J. Wessels (eds.). Markov decision theory. 1977.

94 A. Bijlsma. Simultaneous approximations in transcendental number theory. 1978
95 K.M. van Hee. Bayesian control of Markov chains. 1978 6 P.M.B. Vitanyi. Lindenmayer systems: structure, languages, and growth functions. 1980.
97 A. Federgruen. Markovian control problems; functional equations and algorithms. 1984.
98 R. Geel. Singular perturbations of hyperbolic type. 1978. 9 J.K. Lenstra, A.H.G. Rinnooy Kan, P. van Emde Boas (eds.). Interfaces between computer science and operations research. 1978.
100 P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceedings bicentennial congress of the Wiskundig Genootschap, part 1. 1979.

101 P.C. Baayen, D. van Dulst, J. Oosterhoff (eds.). Proceedings bicentennial congress of the Wiskundig Genootschap, part 2. 1979.

102 D. van Dulst. Reflexive and superreflexive Banach spaces.
1978
103 K. van Harn. Classifying infinitely divisible distributions
by functional equations. 1978 .
104 J.M. van Wouwe. Go-spaces and generalizations of metriability. 1979
105 R. Helmers. Edgeworth expansions for linear combinations order statistics. 1982
106 A. Schrijver (ed.). Packing and covering in combinatorics. 979.

107 C. den Heijer. The numerical solution of nonlinear operaor equations by imbedding methods. 1979.
108 J.W. de Bakker, J. van Leeuwen (eds.), Foundations of computer science III, part I. 1979.
109 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of computer science III, part 2. 1979.
110 J.C. van Vliet. ALGOL 68 transput, part I: historical review and discussion of the implementation model. 1979.
111 J.C. van Vliet. ALGOL 68 transput, part II: an implemen ation model. 1979
112 H.C.P. Berbee. Random walks with stationary increments and renewal theory. 1979.
113 T.A.B. Snijders. Asymptotic optimality theory for testing problems with restricted alternatives. 1979.
14 A.J.E.M. Janssen. Application of the Wigner distribution to harmonic analysis of generalized stochastic processes. 1979
115 P.C. Baayen, J. van Mill (eds.). Topological structures /I. part I. 1979
16 P.C. Baayen, J. van Mill (eds.). Topological structures II, part 2. 1979.
117 P.J.M. Kallenberg. Branching processes with continuous
state spoce 1979 . state space: 1979.
118 P. Groeneboom. Large deviaions and asymptotic efficiencies. 1980.
19 F.J. Peters. Sparse matrices and substructures, with a novel implementation of finite element algorithms. 1980
120 W.P.M. de Ruyter. On the asymptotic analysis of largescale ocean circulation. 1980
121 W.H. Haemers. Eigenvalue techniques in design and graph theory. 1980.
122 J.C.P. Bus. Numerical solution of systems of nonlinear equations. 1980.
23 I. Yuhász. Cardinal functions in topology - ten years later.
124 R.D. Gill. Censoring and stochastic integrals. 1980.
125 R. Eising. 2-D systems, an algebraic approach. 1980.
126 G. van der Hock. Reduction methods in nonlinear programming. 1980
127 J.W. Klop. Combinatory reduction systems. 1980. 128 A.J.J. Talman. Variable dimension fixed point algorithms and triangulations. 1980.
129 G. van der Laan. Simplicial fixed point algorithms. 1980. 130 P.J. W. ten Hagen, T. Hagen, P. Klint, H. Noot, H.J. Sint, A.H. Veen. ILP: intermediate language for pictures. 1980.

131 R.J.R. Back. Correctness preserving program refinements: proof theory and applications. 1980 132 H.M. Mulder. The interval function of a graph. 1980. 133 C.A.J. KJaassen. Statistical performance of location estimators. 1981.
134 J.C. van Vliet, H. Wupper (eds.). Proceedings interna
tional conference on ALGOL 68 1981.
135 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof (eds.). Formal methods in the study of language, part I. 1981 136 J.A.G. Groenendijk, T.M.V. Janssen, M.J.B. Stokhof (eds.). Formal methods in the study of language, part II. 1981 137 J. Telgen. Redundancy and linear programs. 1981.
138 H.A. Lauwerier. Mathematical models of epidemics. 1981 139 J. van der Wal. Stochastic dynamic programming, succes sive approximations and nearly optimal strategies for Markov decision processes and Markov games. 1981.
140 J.H. van Geldrop. A mathematical theory of pure
exchange economies without the no-critical-point hypothesis. 1981.

141 G.E. Welters. Abel-Jacobi isogenies for certain types of Fano threefolds. 1981.
142 H.R. Bennett, D.J. Lutzer (eds.). Topology and order structures, part l. 1981.
143 J.M. Schumacher. Dynamic feedback in finite- and infinite-dimensional linear systems. 1981
144 P. Eijgenraam. The solution of initial value problems using interval arithmetic; formulation and analysis of an algorithm 1981.

145 A.J. Brentjes. Multi-dimensional contimued fraction algo-
146 C.V.M. van der Mee. Semigroup and factorization methods in transport theory. 1981.
147 H.H. Tigelaar. Identification and informative sample size 1982.

148 L.C.M. Kallenberg. Linear programming and finite Markovian control problems. 1983.
149 C.B. Huijsmans, M.A. Kaashoek. W.A.J. Luxemburg, W.K. Vietsch (eds.). From A 10 Z, proceedings of a symposium in honour of A.C. Zaanen. 1982
150 M . Veldhorst. An analysis of sparse matrix storage schemes. 1982.
151 R.J.M.M. Does. Higher order asymptotics for simple linear rank statistics. 1982.
152 G.F. van der Hoeven. Projections of lawless sequences.
1982.

153 J.P.C. Blanc. Application of the theory of boundary value problems in the analysis of a queueing model with paired services. 1982.
154 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational methods in number theory, part I. 1982.
155 H.W. Lenstra, Jr., R. Tijdeman (eds.). Computational methods in number theory, part II. 1982.
156 P.M.G. Apers. Query processing and data allocation in distributed database sysiems. 1983.
157 H.A.W.M. Kneppers. The covariant classification of two dimensional smooth commutative formal groups over an alge-
158 JW
158 J.W. de Bakker, J. van Lecuwen (eds.). Foundations of
computer science IV, distributed systems, part 1. 1983
159 J.W. de Bakker, J. van Leeuwen (eds.). Foundations of
computer science IV, distributed systems, part 2. 1983 . computer science IV, distributed systems, part 2. 1983
160 A. Rezus. Abstract AUTOMATH. 1983.
161 G.F. Helminck. Eisenstein series on the metaplectic group, an algebraic approach. 1983.
162 J.J. Dik. Tests for preference. 1983.
163 H. Schippers. Multiple grid methods for equations of the second kind with applications in fluid mechanics. 1983.
164 F.A. van der Duyn Schouten, Markov decision processes with continuous time parameter. 1983.
165 P.C.T. van der Hoeven. On point processes. 1983.
166 H.B.M. Jonkers. Abstraction, specification and implemen tation techniques, with an application to garbage collection.
1983.

167 W.H.M. Zijm. Nonnegative matrices in dynamic program ming. 1983
168 J.H. Evertse. Upper bounds for the numbers of solutions of diophantine equations. 1983.
169 H.R. Bennett, D.J. Lutzer (eds.). Topology and order structures, part 2. 1983.

\section*{CWI TRACTS}

1 D.H.J. Epema. Surfaces with canonical hyperplane sections. 1984.

2 J.J. Dijkstra. Fake topological Hilbert spaces and characteri zations of dimension in terms of negligibility. 1984.
3 A.J. van der Schaft. System theoretic descriptions of physical systems. 1984.
4 J. Koene. Minimal cost flow in processing networks, a primal approach 1984.
5 B. Hoogenboom. Intertwining functions on compact Lie groups. 1984.
6 A.P.W. Böhm. Datafiow computation. 1984.
7 A. Blokhuis. Few-distance sets. 1984.
8 M.H. van Hoorn. Algorithms and approximations for queue. ing systems. 1984.
9 C.P.J. Koymans. Models of the lambda calculus. 1984 10 C.G. van der Laan, N.M. Temme. Calculation of special functions: the gamma function, the exponential integrals and error-like functions. 1984.
11 N.M. van Dijk. Controlled Markov processes; time
12 W.H. Hundsdorfer. The numerical solution of nonlinear stiff initial value problems: an analysis of one step methods.
13 D. Grune. On the design of ALEPH. 1985
14 J.G.F. Thiemann. Analytic spaces and dynamic program-
ming: a measure theoretic approach. 1985.
15 F.J. van der Linden. Euclidean rings with two infinite
primes. 1985.
16 R.J.P. Groothuizen. Mixed elliptic-hyperbolic partial differential operators: a case-study in Fourier integral opera tors. 1985.
17 H.M.M. ten Eikelder. Symmetries for dynamical and Hamihtonian systems. 1985
18 A.D.M. Kester. Some large deviation results in statistics. 1985.

19 T.M.V. Janssen. Foundations and applications of Montague grammar, part I: Philosophy, framewort, computer science. 198.

20 B.F. Schriever. Order dependence. 1986
21 D.P. van der Vecht. Inequalities for stopped Brownian
22 J.C.S.P. van der Woude. Topological dynamix. 1986.
23 A.F. Monna. Methods, concepts and ideas in mathematics: aspects of an evolution. 1986.
24 J.C.M. Baeten. Fithers and ultrafiters over definable subsets of admissible ordinals. 1986.
25 A.W.J. Kolen. Tree network and planar rectilinear location theory. 1986.
26 A.H. Veen. The misconstrued semicolon: Reconciling imperative languages and dataflow machines. 1986.
27 A.J.M. van Engelen. Homogeneous zero-dimensional absolute Borel sets. 1986.
28 T.M.V. Janssen. Foundations and applications of Montague grammar, part 2: Applications to natural language. 1986.
29 H.L. Trentelman. Almast invariant subspaces and high gain feedback. 1986.
30 A.G. de Kok. Production-inventory control models: approxi mations and algorithms. 1987.
31 E.E.M. van Berkum. Optimal paired comparison designs for factorial experiments. 1987
32 J.H.J. Einmahl. Multivariate empirical processes. 1987.
33 O.J. Vrieze. Stochastic games with finite state and action spaces. 1987.
34 P.H.M. Kersten. Infinitesimal symmetries: a computational approach 1987.
35 M.L. Eaton. Lectures on topics in probability inequalities. 1987.

36 A.H.P. van der Burgh, R.M.M. Mattheij (eds.). Proceed ings of the first international conference on incustrial and applied mathematics (ICIAM 87). 1987.
37 L. Stougie. Design and analysis of algorithms for stochastic integer programming. 1987.
38 J.B.G. Frenk. On Banach algebras, renewal measures and regenerative processes. 1987.

39 H.J.M. Peters, O.J. Vrieze (eds.). Surveys in game theory and related topics. 1987
40 J.L. Geluk, L. de Haan, Regular variation, extensions and Tauberian theorems. 1987.```

