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Introduction

Functions of regular variation were invented by Karamata in 1930 as a suitable
class of functions 1in connection with a Tauberian theorem for Laplace
transforms, Many other applications are known. The present text intends to
give a self-contained, smooth and coherent introduction to the theory of
regular variation and its main extensions. Disregarding the possible
applications we show how these classes of functions are a natural setting for
Tauberian theorems of the Laplace type. Also some results are given for
general kernel transforms.

In the text there is a clear separation between the various classes of
functions. We have tried to stick to the main line of the theory putting
little emphasis on various refinements, minimality of conditions and other
specialized topics. The theory is built in circles. After a full treatment of
regularly varying (RV) functions sections on the function classes N and T
follow. The theory of these function classes parallels closely the theory of
regular variation.

Next (chapter 2) Tauberian theorems for Laplace transforms are treated in
which these function classes (RV, I and T') play a central role.

Finally (chapter 3 and 4) the theory is further extended. Here limits are
replaced by upper and lower bounds. Chapter 3 gives the theory of these
further generalizations of regular variation and in chapter 4 Tauberian
theorems are given in which these generalizations play a central role.

Ideas and proofs from A.A. Balkema have been used in many places. We thank him
for these contributions.,

E11li Hoek van Dijke gave our poorly handwritten text the present form.



I. Regular variation and the class I

One way to think about regular variation is as a derivative at infinity. For a

real measurable function g write the differential quotient

g(y+h)h— g(y) (1.1)

where h # 0. Now we do not take the limit h + O for fixed y as usual but take
the limit y+» for fixed h., If this limit exists for all h # 0O, then it follows
(theorem 1.2 below) that the limit does not depend on h and we can write (see

prop. 1.7.3) g(y) = gy(y) + o(1) (y»») where g, is differentiable and

lim gé(y) = lim E&Xthlﬁ:_ELXl,

Yoo Y »oo

+

If the limit in (l.l1) as y»» exists, the function f: R' » RY defined by

f(t) = exp g(log t) satisfies

lim S8 - 00 for a1l x € B (1.2)
£(t)
tro
for some a € R. Then f is called a regularly varying function.
In this chapter these functions are studied thoroughly. Moreover we study the

more general class of functions f: R+ +> R for which

f(tx) - b(t)

+
) exists for all x e R (1.3)

lim
tao
where a > 0 and b are suitable chosen auxiliary functions. The results for
functions satisfying (1.3) are surprisingly similar to those for functions
satisfying (1.2).
Finally a different variant of (1.2) is studied, namely non-decreasing

functions £: R » R+ for which

. £t + x c(b))
o TTEe

t+oo

exists and is positive for all x ¢ R, (1.4)

where ¢ > 0 is a suitable auxiliary function. Here again analogous properties
are obtained. We shall see that the functions satisfying (1.4) are essentially
inverses of the functions satisfying (1.3)

The chapter closes with a discussion of regularly varying sequences.



I.1. Regularly varying functions

Definition 1.1

+

A Lebesgue measurable function f£: R + R which is eventually positive is

regularly varying (at infinity) if

lim £ex) o (x > 0) for some a € R. (1.5)
£(0)
t9oo
Notation: f Rv: or £ RV . &
We use the notation f ¢ RV2 if g ¢ RVfa where g(t): = £(1/t).

The number o in the above definition is called the index of regular variation.

A function satisfying (1.5) with o = 0 is called slowly varying.

Examples

For o, B ¢ R the functions x®

, x%(log X)B, x%(log log x)B are elements of RV, .
The functions 2 + sin log log x, exp{(log x)%} (0 < a < 1), x 1 log r(x),
Ipex 1/k, (log t)Sin log log t ,pe slowly varying. The functions 2 + sin x,

eiETlog x], 2 + sin log x, x exp sin log x are not regularly varying.

Our next result shows that it is possible to weaken the conditions in
definition 1.1.

Theorem 1,2

Suppose f: Rt » R is measurable, eventually positive and

f(tx)
1lim
£ o0 f( t)

(1.6)

exists, 1is finite and positive for all x in a set of positive Lebesgue

0
measure, then f ¢ RVa for some o ¢ R.

Proof
Define F(t):

log f(et). Then {lim F(t+x) - F(t)} exists for all x in a set K
t+oo
of positive Lebesgue measure. Define ¢: K » R by &(x):= lim{F(t+x) - F(t)}.
Lty
By Steilnhaus' theorem (cf. Hewitt, Stromberg p. 143) the set K-K:= {x~-y; x,

y € K} contains a neighbourbood of zero., Since K is an additive subgroup of R,

we have K = R and thus #(x) is defined for all x ¢ R and

o(x+y) = &(x) + o(y) for all x, vy ¢ R. (1.7)



It remains to solve the equation (1.7) for measurable &:

Consider the restriction of ¢ to an interval L © R. By Lusin's theorem (cf.
Halmos p. 242) there exists a compact set M ¢ L with positive Lebesgue measure
AM such that the restriction of & to M is continuous. Let £ > 0 be arbitrary.
Then there exists 6 > 0 such that ¢(y) - &(x) € (-¢, €) whenever x, y € M and
]x—y] < &8 (since the restriction of ¢ to M is uniformly continuous) and also
such that M-M contains the interval (-6, 8) (by Steinhaus' theorem).

For each s ¢ (-8, 8) © M-M there exists %y € M such that also x5 + s € M. Then
d(xts) = &(x) = o(s) = @(XO + 8) - @(xo) € (-e, €) for all x € R, hence ¢ is
uniformly continuous on R,

Since ®(n/m) =n 6 (1/m) = n & (1)/m for n, m € Z, m # O, we have by the
continuity of ¢, #(x) = ¢(1) x for x € R. Now (1.5) follows. Lod

Theorem 1.3 (uniform convergence theorem)
If f ¢ RVZ, then relation (1.5) holds wuniformly for x € [a,b] with
0<a<b< =

Proof

Without loss of generality we may suppose o = O (if not, replace £(t) by
£(t)/e*).

We define the function F by F(x):= 1ln f(eX). It is sufficient to deduce a
contradiction from the following assumption:

Suppose there exist § > 0 and sequences t, > ® X, > 0 (n+») such that
]F(tn +x)) - F(tn)| >6formn=1, 2, «.e

For an arbitrary finite interval J < R we consider the sets

o
I

$§
{y e |F(t +¥) - F(t)]| >3}
and

<
I

{y € J;|F(tn + xn) - F(tn + )| >-§}.

The above sets are measurable for each n and YiqaUY¥yq=J hence either
bd E]
A(Yl’n) > 1 A3 or MY, ) 2 $A(J) (or both) where A denotes Lebesgue
. Z

measure.



Now we define

§
Zn = {z;lF(tn + xn) - F(tn + X, - z)| > o X, T2z € J} = {z; X ~z¢€ Y }.

2,n
Then A(Zn) = X(YZ n) and thus we have either A(Yl n) > 4+ A(J) infinitely often
3 1] -
or A(Zn) > % A(J) infinitely often (or both).
Since all the Y, n's are gubsets of a fixed finite interval we have
3

A(lim sup Y1 ) = 1im A( U Yl
n+eo 0 k+e n=k °
(or both). This implies the existence of a real number Xq contained in

n) > % AMJ) or a similar statement for the Z,'s

infinitely many Yl,n or infinitely many Z , which contradicts the assumption
1lim F(t + xO) - F(t) = 0. &
tro
Theorem 1.4 (Karamata's theorem)
Suppose f ¢ RVZ.
There exists tg > 0 such that f(t) is positive and locally bounded for t Z.tO'
If a > =1, then

e [ £(s)ds

to .

If « < =1, or @ = =1 and g f(s)ds < =, then

=+ 1. (1.8)

t £f(t)

lim = - 1. (1.9)

Ere f f(s)ds
t

Conversely: if (1,8) holds with -1 < a € =, then f ¢ RVZ ; 1f (1.9) holds with
-» ¢ a < -1, then f ¢ Rv:. : &

Suppose f ¢ RVa.
By theorem 1.3, there exist t;, ¢ such that f(tx)/f(t) < ¢ for t > tgs
x € [1,2]. Then for t ¢ [Znto, 2n+1t0] we have

£(8) _ _£(t) g2 ey (27" g o+l
£(t,) £027 1) £(27 %) £(t,)

t

Hence f(t) is locally bounded for t > ty and f f(s)ds < = for t > toe
t
0



In order to prove (1.8), we first show f f(s) ds = » for a > -1.

o

Since f(2s) 2_2'1 f(s) for s sufficiently large, we have for n > ng

2n+1 2n 2n
f f(s)ds = 2 f f(2s)ds > f f(s)ds. Hence
2n 2n—l 2n—l
n +1
- - 2n+1 - 2 0
f f(s) ds = I f f(s)ds > I f f(s)ds = =,
n n=n, .n n=n,. n
2 0 02 0 9 0
t
Next we prove F(t):= f f(s) ds ¢ Rva+l for a > ~1. Fix x > 0. For arbitrary
t
0

€ > 0 there exists t; = tl(e) such that f(xt) < (1 + ) x% £(t) for t > ty.
Since lim F(t) = o,

tro
tx tx t
f f(s)ds f f(s)ds x f f(xs)ds
t t.x t
F(tx) _ 0 1 _ 1 -
F(t) ¢ T Tt (t>e)
[ f(s)ds [ f(s)ds [ f(s)ds
o 3! B3
and hence
F(tx)/F(t) < (1 + 2e)x%! (1.10)

for t sufficiently large. A similar lower inequality is easily derived and we
obtain F € RVa+1 for a > ~1.

In case a = -1 and F(t) » « the same proof applies. If a = -1 and F(t) has a
finite limit, obviously F e RV,.

Now

X
F(tt)fzt§(t) - { f(tu) 4o, X - — Ll (faw) (1.11)

by the uniform convergence theorem (theorem 1.3). Since F ¢ RVa+1, (1.8)
follows. For the proof of (1.9) we first show the finiteness of the function G
defined by



G(t): = [ £(s)ds.
t

Since, in case a < -1, there exists § > 0 such that £(2s) S'Z—I_Gf(s) for s

sufficlently large, we have for n; sufficiently large

n_ +1

© ) 2n+1 ) —6(n—n1) 2 1

Jf(s) ds = I [ f(s)ds< I 2 [ £(s)ds < =,

n n=n., .n n=n n

2 1 12 1 ) 1
The rest of the proof is analogous.
Conversely suppose (1.8) holds. Define

b(t): =t £(t)/F(t). (1.12)

Without loss of generality we suppose f(t) > 0 (t > 0).
Integrating both sides of b(t)/t = £(t)/F(t) we find for some real ¢y and all
x > 0 (note that log F is indeed an absolutely continuous function)

(t)
t

dt = log F(x) + ¢y (1.13)

K
T

(since the derivatives of the two parts exist and are equal a.e.). Using the
definition of b again we find from (1.13)
X

f(x) = cb(x) exp {f

b(t) - 1
1 t

dt} for all x > 0, (1.14)

with ¢ = e"%1 > 0, hence for all x, t > 0

X
f(tx) _ b(tx) b(ts) - 1
HOMEO) eXP{{ s dsh
Now for arbitrary e > O there is a t; such that Ib(ts) - a —ll < e for t > tg
and s Z_min(l, x). Hence the function f satisfies (1.5).
The last statement of the theorem ((1.9) implies f ¢ RVZ) can be proved in a

similar way. &
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Theorem 1.5 (representation theorem)

If f ¢ RVZ, there exist measurable functions a: R™ » R and c: B' + R with

lim c(t) = g (0 < g { «) and lim a(t) = « (1.15)

tro t oo
and t; ¢ R such that for t > tg
£ a(s)
£ = AT R 1.16
(£) = c(t) exp {{ — ds} ( )
0
Conversely if (1.16) holds with a and ¢ satisfying (1.15), then f € RVZ.

Proof

Suppose f € RVZ.

The function t~ % £(t) is slowly varying and hence has a representation as in
(1.16) by (l.14). Then f has such a representation with a(s) replaced by a(s)
+ a and c(t) replaced by tg c{t), Now the result follows. Conversely one
verifies directly that (l.5) follows from (1.16). &

Remarks

1) 1In fofmula (1.16) we may take ty € [0,») arbitrarily by changing the
functions c(t) and a(t) suitably on the interval [O, to].

2) The functions a(t) and c(t) (given (l.16)) are not uniquely determined. It

can easily be seen that it is possible to choose a(t) continuous: define

t t
fo(t): = exp {f a(v)dv/v} and bo(t): =t fO(t) / f fO(s)ds.
t t
0 0
Since fo € RV, we get (l.14) with f and b replaced by fO and by

respectively, i.e.
X
f(x) = c¢(x) ¢ bo(x) exp[f (bo(t) -1) dt/t]
1

for all x > 0 with bo(t) - 1 continuous.
It is possible to put all the undesirable behaviour of the function f into
the function c(t). We will prove (cor. 2.16) that it is possible to

construct a representation with a e C”.

We are going to list of number of consequences of the above theorems.



We need the following definition.

Definition 1.6

Suppose f: (t;, =) > R for some ty > —» is bounded on intervals of the form

(to, a) with a < » and 1lim f(t) = =,

troo

Since lim f(t) = =, the set {y; £(y) > x} is non-empty for all x ¢ R.

tew

Hence -» < inf{y; f(y) > x} < « for x € R. Note that this infimum is non-

decreasing in x. Since £ is bounded on intervals of the form (to, a),

lim
K>

inf{y; £(y) > x} = =,

Hence there exists x; ¢ R such that inf{y; f(y) > %} > -= for all x > x5. The

generalized inverse function £t (g, =) > R is defined by

f+(x):= inf {y; f(y) 2 x}. Led

Proposition 1,7 (properties of RV functions)

1.

If f ¢ RVZ then log f£(t)/log t » o (t + =), (1.17)

0if a <O

This implies lim £(t) = {_ ;f ° g

tarow

If £, ¢ Rv: , £, ¢ Rv: , then £, + £, ¢ RV"
1

2 ) 1 2 max(al,az)

If moreover lim £, (t) = », then the composition f, °® f_ ¢ RV . (1.18)
e 2 1 2 a0,

If f ¢ RVZ with a > 0 (o < 0) then f is asymptotically equivalent to a
strictly increasing (decreasing) differentiable function g with derivative
g' € RV if @ > 0 and - g' ¢ RV _; if a < 0.

As a consequence of this:

If £ ¢ RVa (a > 0) is bounded on finite intervals of R+, then

sup f(x) ~ £(t) (t+=). (1.19)
0<xLt

If f ¢ Rva (a < 0), then inf f(x) ~ f(t) (ts=).
0t



9.
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If f ¢ RVZ is integrable on finite intervals of R and o> -1,

t
then f f(s) ds is regularly varying with exponent a + 1.
0

3

If £ ¢ RV: and a < -1, then f f(s) ds exists for t
t

sufficiently large and is regularly varying with exponent o + 1. The

o

same is true for a = -1 provided f f(s) ds < o,
1

Suppose f ¢ RVZ. 1f §;, 8, > 0 are arbitrary, there exists t, = to(Gl, 62)

such that for t 2_t0, x> 1

a-8 ots
2 f(tx) 2
(1—61) x < HON < (1 + §,)x . (1.20)

Note that conversely if f satisfies the above property, then f € RVZ.

Suppose f € RVZ is bounded on finite intervals of R and a > 0. For gE>0
arbitrary there exist ¢ > 0 and t, such that for t > t, and 0 < x < £

f(tx)
—f_(—tT-S [ (1.21)

if f ¢ RVZ, o £ 0 is bounded on finite intervals of R" and §, £ > 0

arbitrary, there exist ¢ > 0 and t, such that for t 2_t0 and 0 < x £ §

fégt; < cxa—é. (1.22)
t

If f(t) = exp {f a(s) ds/s} (1.23)
0

with a continuous a(s) + a > 0 (s + =), then £° e RV where £ is the

1/a
inverse function of f.

Suppose f ¢ RVZ, a > 0, is bounded on finite intervals of R,
Then f¥ RVT/a' (Formally £t is only defined on a neighbourhood of
infinity; we can extend its domain of definition by taking fF zero

elsewhere).
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In particular, if £ € RVa, o > 0 and f is increasing, the inverse function

<
£ 1s 1n RV 4.

10. If f € RVZ, a > 0, there exists an asymptotically unique function h such
that f(h(x)) ~ h(f(x)) ~ x (x » ). Moreover h ~ ¥ if £ is bounded on
finite intervals of R'.

]

t
f(to) + f W(s)ds for t 2t with { monotone,

1. If £ ¢ RV (a > 0) and £(t)
t

then 0
lim O _ .
tdoo f(t)

Hence in case a > 0 we have § ¢ RV:—l'

Moreover if f ¢ RVZ (a £ 0) and f(t) = f ¥(s)ds < » with ¢ nonincreasing,
t
then t ¢ (t)/£f(t) + —a (t+»)., Hence in case o < 0 we have ¢ ¢ RVZ_

1
12, Any f e RVZ with a + 1 € N1s asymptotic to a function f; with the
property that the absolute values of all its derivatives are regularly

varying.

ad 1,2,3,4,5. Properties 1, 3 and 5 follow immediately from the representation
theorem (thm. 1.5). In order to prove regular variation of ]f'] in
property 3 one also needs remark 2 following thm. 1.5. Properties 2 and
4 are easy consequences of the uniform convergence theorem (thm. 1,3)

and theorem 1.4 respectively.

ad 6. Take £ > 0. By property 5 there exists to' such that if t 2_t0'

f(tx)
£(t)

< 2 x0t+l for x > 1.

Also, by property 3, if t 2t

sup f(u)

f(tx) < ugt
f(t) = f£(t)

<2 for 0<x< 1.



ad 7.

ad 8.

ad 9,

-12-

Hence, if t > t : = max (t,', ty'")s

f(tx)

oy < max (2, 2 2y for0<x <k

Apply property 6 above to the function gmots f(t).

Since f(t) + o (t+o) and f is eventually strictly increasing and
differentiable, there exists - for x sufficiently large - a wunique

differentiable inverse function g = £f¥ and
£(g(x)) = g(f(x)) = x for x > xg. (1.24)

Differentiating the second equality in (1.24) we get using (1.23)

g'(f(x)) f(x) _ 1
g(£(x)) T a(x)"’ (1.25)

Since f is continuous and f(x) + « (x+w), (1.25) implies
tg' (t)/g(t) » o~l (tsw).

Application of theorem 1.4 gives g' ¢ RV—1+1/a hence g = £ ¢ RVT/Q by
H
property 4 above.

Suppose f ¢ RVZ, a > 0. By theorem 1.5 and the remarks thereafter f has
the representation (1.16) with ty = 1 and a continuous. For arbitrary

€ > 0 there exists x( = xo(e) such that for x > xg

(eg =€) g(x) £ £(x) £ (¢ + ) g(x), (1.26)
x
where g(x) = exp {f a(s) ds/s}.
The inequality (1.56) implies

g°(x/(cg - €)) > £H(x) > g%(x/(cg + ©)) (1.27)

o«

for x sufficiently large. By property 8 above we have g€ e va/a'

Hence g+(x/(c0 +e) ~(cgt e)-l/ag+(x).
Since ¢ > 0 is arbitrary, (1.27) implies £t~ AN\

-

1/’



ad 10,

ad 1l.

ad 12.
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Without loss of generality we may and do suppose f bounded on finite
intervals of R'.

Then the proof of property 9 gives the existence of functions g and g*
such that f£(x) ~ g(x), f+(x) ~ g*(x) (x+), g(g¥(x)) = g*(g(x)) = x for
x sufficiently large.

This implies x = g9(g(x)) ~ g (f(x)) ~ f+(f(x)) (x+w), the first

-]

1/a and

asymptotic equivalence follows from f(x) ~ g(x) (x+), g+ € RV
the uniform convergence theorem.
The statement f(f+(x)) ~ X (x+») follows similarly.

Suppose now
f(hi(x)) ~ hi(f(x)) ~ X (X+o) for i =1, 2,

1 a
Now ii: f(hl(xn))/f(hz(xn)) = ii: {hl(xn)/hz(xn)} for any sequence

X, @ by the uniform convergence theorem, hence hl(x) ~ hz(x) (x>0) .

t
Suppose first ¢ 1is non-decreasing and f(t) = f(to) + f Y(s)ds for

t thO' Then for a > 1 and t 2 tg we have t0

ta-1) w(t) ? ty(tv)dv _ £(ta) - £(t)

£(0) i £(t) ’
o

Since f ¢ RVZ we find lim ;%zg) < 2 a:ll for all a > 1.
Letting a » 1 we get Ere

lim-%%%%l < a.

torow
Similar inequalities for 0 < a < 1 lead to lim E—%%%% 2 O

Lty

The cases ¢ non-increasing and a < 0 can be proved similarly.

This property will be proved in chapter 2 (see cor. 2.12). ed

Remarks

1. There is no analogue of property 3 in case a = 0; even if lim f(t) = »

with £ ¢ RVS

tre

0’ then f 1is not necessarily asymptotic to a non-decreasing

function as the fol%owing example (due to Karamata) shows.

Define f(x):= exp ([ e(s)ds/s), where
0
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0 for 0 {s <1

e(s) = a, for (2n-1)! < s < (2n)!, n=1, 2, 3, ...

I
—
-
N
-
w
-
.
.
°

-an/Z for (2n)! < s < (2nt1)!, n =

where the sequence a, is such that a, » 0 (n»») and a, log n » «» (nrw),

Then

sup f(x)/£((2m1)!)
0<x<(2n+1)!

£((2n)1)/£((2n+1) )

(2nt1)! a
= exp{~ f e(s)ds/s} exp{+ EE log (2nt1)} +» o (o),
(2n)!

Hence (1.13) does not hold.

2, Using the représentation theorem for regularly varying functions, it is
possible to show that if f 1is locally bounded and f ¢ RVm, then the

function sup f(x) is slowly varying.
0<x<t
t

3. Note that [ f(s)ds ¢ RVG+ with a > -1 does not imply f ¢ RV .
0

1
Example: f(t) = exp{log t].

4, Note that property 12 strengthens property 3.

The following result is a generalization of theorem 1.4 (the kernel function k
below is constant in theorem 1.4). A converse statement (thm. 2.34) will be

given in chapter 2.

Theorem 1.8

Let f ¢ RVZ and suppose f 1s (Lebesgue) integrable on finite intervals of R,

(1) If o > -1 and the function k: R » R is bounded on (0,1), then

1 1
lim [ k(s) f£(ts) ds/f(t) = [ k(s)s%ds. (1.28)
t+o 0 0
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(i) 1f t¥eT® k() is integrable on (1,») for some e > 0, then

[ k(s) £(ts) ds < », for t > 0 and
1

lim ? k(s) £(ts) ds/£(t) = ? k(s)s%ds. (1.29)

tee 1 1

(i) Note that for 0 < ¢ < otl the function t* €k(t) is integrable on (0,1).
Since there exists ¢ > 1 and ¢ > 0 such that f(tx)/£(t) < cx®"€ for
tx > t, 0 < x <1 by Prop. 1.7.5, we can apply Lebesgue's dominated

convergence theorem to obtain

1 1
[ k(s)-%%%?l ds » | k(s)s%ds, tiw,
t /t 0
0]
Furthermore
t /t t
1] ko EEL as | = (eeenTh O] ks/e) () |ds > 0 (eae)
0 £) 0

since k is bounded and tf(t) + o (t + «),
(1j) The second statement is proved in a similar way. &

Remark

N.G. de Bruijn (1959) noted that for any slowly varying function L there
exists an asymptotically wunique slowly varying function L% called the
conjugate slowly varying function satisfying L(x) L* (xL(x)) + 1,

LA (x) L (x L*(x)) » 1 (x+»).

Note that one can obtain L* as follows: define h(x):= =xL(x). Then L*(x) ~

x—1h+(x) (x»»), In special cases one has L*(x) ~ 1/L(x) (x»=).

Example: L(x) ~ (log x)%*(log log x)B (%x+0), a > 0, B ¢ R, i.,e., if h(x) ~
x(log x)% (log log X)B, (x+=), then h¥(x) ~ x(log x)~® (log log x)—B, Kroo,

If we replace x by x' and take B=0, we find £(x) ~ xY(log x)a, Yy >0, 8 ¢eR
implies fHx) ~ YG/Y x Uy (log x) =8/y (Xre) o

I.2. The class I

By way of introduction for the class I which is a generalization of the class

RV we formulate the RV property somewhat differently. A measurable function
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£f: R¥ » R is in RV if there exists a positive function a such that for all
x > 0 the limit

f(tx)

lim alt)

troo
exists and is positive,
An obvious generalization 1s the following: Suppose f: R + R is measurable

and there exist real functions a > 0 and b such that for all x > 0 the limit

f(tx) - b(t)

lim alt)

Lo

(1.30)

exists and the limit function is not constant (this is to avoid trivialities).
First note that (1.30) is equivalent to:

f(tx) -~ f(t)

P(x) := lim )

)

(1.31)

exlsts for all x > 0 with § not constant.
Next we identify the class of possible limit functions y.

Theorem 1.9
If f: R+ + R is measurable, a is positive. If (1.31) holds with ¢ not
constant, then

P
5—;1—1 (x > 0) (1.32)

W(x) =c .
for some p ¢ R, ¢ # 0 (for p = 0 read P(x) = ¢ log x). Moreover (1.31) holds

with a function a which is measurable and in RVp.

Proof
Since ¢ is not constant, there exists Xq > 0 such that w(xo) # 0, From (1.31)
it follows that we can choose a(t) = {f(xot) - f(t)}/w(xo). Hence without loss

of generality we may assume a to be measurable. For y > 0 arbitrary we have

a(ty) _ £(txyy) - £(t) ) f(ty) - £(¢) ) E(txyy) = £(ty)
a(t) a(t) a(t) alty)

>

P(xgy) = ¥(y)
> ————E?;ay———— (tr=),.
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Hence A(y):= lim a(ty)/a(t) exists (and is non-negative) for all y > O.
taow

a(txy) _ a(txy) a(tx)

Since =T8) =~ a(tx) al(t)

we have
A(xy) = A(x) . A(y) for all x, y > 0. (1.33)

Since a is measurable the function A is measurable. Moreover the only
measurable solutions of Cauchy's functional equation (1.33) are A(y) = yP for
some p € R (see the proof of theorem 1.2) and A(y) = 0 for y > 0.

However 1f A(y) = O for y > 0, then since A(y) ¥(x) = ¢(xy) - ¢(y) for all x,
y > 0, we have { is constant contrary to our assumption. Hence a ¢ RVp for

some p € R. As a consequence we have
yPu(x) = $(xy) - $(y) for all x, y > 0 (1.34)

If p = 0 we have Cauchy's functional equation again and P(y) = ¢ log x for
some ¢ # 0, x > 0.
Next suppose p # 0. Interchanging x and y in (1.34) and subtracting the

resulting relations we get

P(x) (1 - y°) = 9(y) (L - xP) for x, y > 0.

- P
-l—jji— for x > O,with ¢ # 0.

<

Hence P(x)/(1 - xp) is constant, i.e. P(x) =c .

The following theorem states that for p # 0 relation (1,31) defines classes of
functions we have met before. Note that it is sufficient to consider (1.32)

with ¢ > 0 since replacing f by -f in (1.31) changes the sign of c.

Theorem 1.10
Suppose the assumptions of theorem 1.9 are satisfied with p # 0 and ¢ > 0. If
p> 0 then f ¢ RV®, If p < 0 then f(w):= lim f(x) exists and f(») - £(x) ¢
oo O X0
RV .
p

Proof
The proofs of theorem 1.14 and corollary l.16 below can easily be adapted to

show that if p > 0 (p < 0) there is a non-decreasing (non-increasing) function
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g such that
£(t) - g(t) = o(a(t)) (t+=). (1.35)

Since we may assume a ¢ RVp (thm. 1.9) it follows that we also have

g(tx) - g(t) _  xP -1
1im NO) = ¢ 5 (1.36)

t>oo

It will become apparent that it is sufficient to prove the theorem for g. Take
y > 1 arbitrarily and define t; = 1 and ol = EnY for n = 1, 2, ... We have
by (1.36)

8(t ) ~ 8(Eh )
gle ) = 8(t)

lim
N+

= y°, (1.37)

Suppose p > 0. Then (1.37) immediately implies g(tn) + o (nro),

Further for any € > 0 there exists ny such that for any n > ng

n
8ltng) ~ 8ty qp) = I (a(tp) = Bt D) <
a 0
<Pe) T et ) - a(e)Y = yP(le) (st ) - 8l )
k=n 0
0
and a similar lower inequality. It follows that
gt )
1 [+
lim ~—= =y (1.38)
e 8(ED)
and hence
glt ) - glt)
a(e ) ~ —22 ~ 2 g, (1.39)
e(y® - /o
Further for x > 1
s 1= e el WL il U x? = 1 (a+=). (1.40)
gt ) g(t ) c a(t )/p

For any s > 0 choose n{s) ¢ N such that tn(s) s < tn(s)+1' Then by (1.38)
and (1.40)

g(sx) g(tn(s)+IX) g(tn(s)+1) y PP
8(8) = alt o) " 8lE ) Y

(n+w).
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Similarly

g(sx) g(tn<s)x) g(tn(s))
g(s) - g(tn(s)) g(tn(s)+l)

> xpy_p (n+x),

Since y > 1 1is arbltrary, we have proved g ¢ sz.
Combination with (1.36) gives a(t)/g(t) + p/c (t+=), With (1.35) this implies
£(t) ~ ca(t)/p (t*x) hence f ¢ RVE.

Suppose next p < 0., Then (1l.37) immediately implies lim g(tn) { =, Write

h(x):= lim g(t) - g(x). We have n>e

tao

h(t ) ] ; gt ) - 8le) ale)
at )~ . a(ty) a(t )"

Choose € > 0 and y > (1+€)-1/p_ Note that since a ¢ RVp the above expression
is bounded above for n > ng by

o P - o _
e 2t (14e) yP(rre¥ R s =L e
k=n o 1 - yP+e) P

which tends to -c/p as ¢ + O+. A similar lower bound is easily obtained and we

conclude
h(tn) c
limm=—“.
n¥o n p
Further for x > 1
h(tr1+l) -1 = a(tn) h(tn+1) - h(tn) > yp - 1 (nsw)
h(t ) h(t ) a(t )
The rest of the proof follows closely the case p > 0. ed

Definition 1.11
A measurable function f: R* » R is said to belong to the class II if there

exists a function a: R+ » RY such that for x >0

f(ex) - (1) _
ii: alt) = log X. (l.41)

Notation: £ ¢ I or f ¢ II(a).
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The function a is called an auxiliary function for f.
We say that f ¢ 0 if g € 1 where g(t) = £(1/¢t). &

Remarks
1. Note that any positive function a; is an auxiliary function for f if and
only if al(t) ~ a(t)»(t+m).

2, For the definition of I it is sufficient to require (1.41) for all x in a
set A satisfying the following requirements: A(A) > O and there exists a
sequence x

e A{n=1, 2, ...) such that x_ + 1 (n+»),

n TL

3. We can weaken the definition as follows: there exist functions a: Rt » B
and g: RY > R such that for x > O

f(tx) - g(t)

1lim alt) = log X.

t>o

Theorem 1,12
If f ¢ I(a), then lim a(tx)/a(t) = 1 for all x > 0. Moreover (1.41) holds with

tro
a function a which is measurable and hence in Rvg.
Proof
This is a special case of theorem 1.9, Led

Theorem 1.13
If f € N(a) and g: R" > R is measurable and satisfies

14m £L8) Et)(t) =c (1.42)
e @
for some ¢ € R, then (1.41) is satisfied with f replaced by g, hence g ¢ M(a).

&

This follows immediately from (1.24) and (1.25). Obviously for fixed auxiliary
function a the relation (1.25) between functions f, g ¢ I(a) is an equivalence
relation. We shall see below (proposition 1,17.3 and 6) that any equivalence

class contains a very smooth I-function.
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Theorem 1.14 (uniform convergence theorem)
If £ ¢ M, then for 0 ¢ a < b < « relation (l.41) holds uniformly for

x ¢ [a, b].

Proof
Define F(t):= f(el), A(t):= a(eb). It is sufficient to deduce a contradiction
from the following assumption: there exist 6§ > 0 and sequences t, + =, x, > 0

(n+»») such that for all n

I-‘(xn + tn) - F(tn)
A(tn)

> 6.

Consider the sets

J:= [-8/5, + &/5],

]
ful
i

oo = s [FGe, +y) = F(e))/ACe )| > 8/2, y € J,

Yy o = U3 [(BCey + %) = FCey + 9))/ACE) | > 8/2, 5 € 3.

The above sets are measurable for each n and Y 4 Y Yy, = J, hence either
’ 3
A 5 2 3 M) or MYy, D2 4 A(J) (or both), where A denotes Lebesgue
’ — ] -

measure. Define

Zl,n = {z;|(F(tn + x,) - F(t, + x, - z))/A(tn)I > 8/2, x, -z ¢ J}.
Then A(Zl,n) = A(Yz,n).

Since a ¢ RVO (theorem 1.9) we have the inequality A(tn) pa + A(tn + X, -z) for
zZ € Zl,n and n > n, by proposition 1.7.5. As a consequence Zl,n c Z2,n for
: n_Z_nO, where Z2,n is defined by

Z) 0= {z;|(F(ey + %) - F(r, + x, - 2))/ Aty + x, = 2)| > 8/4, x, = z € J}

n n

c [-6/4, +8/4] for n sufficiently large since x, + 0.

Hence we find A(lim sup Z2 n)‘Z A(lim sup Zl n) > % A(J) or A(lim sup Y
1 A e ’ are ’ e

l,n) 2
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This implies the existence of a real number x; contained in infinitely many
Y1 n °T infinitely many 22 n which contradicts the assumption

3 ’
Um{F(t + x,) = F(E)}/A(E) = x

tom

0°

Corollary 1.15
If f ¢ N(a), for any € > O there exist tg, ¢ > 0 such that for t 2ty x 21

f(tx) - £(t) €
—a(t)—_ S CX . (1.43)

Hence f(t) is locally bounded for t 2_t0.

Proof

By the uniform convergence theorem (theorem 1.14) we have

ftu) = £(t)

RESPTES

<2 for t > t, and 1 Cu<e. (1.44)
For x > 1 define n € N by en_s_x < e™1, Then

£(ex) = 10 _ "7 ey - £e*n) aet)

a(t) k=0 a(e"t) a(t)

+ f(tx) - f(ent) a(ent)
a(ent) a(t)

Using (1.44) and the inequality a(tx)/a(t) < clxE for some cy > 0, t > ty
(prop. 1.7.5) we find that for t 2 tp=: max(tl, tz)

n

£(tx) - £(t) { 2c, & eek < ce® ¢ ext.
a(t) = 1k=0 - -
For the last statement, take t = ty in (1.43). Led

Corollary 1.16
If £ ¢ M(a), there exists a non—decreasing function g such that £(t) -~ g(t) =

o(a(t)) (t+»), In particular g e T(a) by theorem 1.13,

Proof
By corollary 1.15 the function f 1s locally integrable on [to, «), Note that
by theorem 1.14



-23-

e e
lim | ‘f'(txi(:)f(t) %— = [ log x % = %
t+o 1 1

Now choose t; > t; such that f(ex) - £(x) > 0 for x > ty.
Then

te t
I f(tx) dx = f £f(x) dx - I £f(x) dx
1 ¥ t, ¥ t, X
1 1
ECI f£(x) t f(ex) - f(x)
= f " dx + f-————::—-———— dx =: go(t).
! !

Note that gy is non-decreasing and by (1.45)

go(t) - £(t)

1
lim ———e—— = =,
£ e a(t) 2

Now g, € NM(a) by theorem 1.13. Define g(t):= go(te-%). Then g ¢ N{a) and
g(t) - £(t) = o(a(t)) (t+=).

The following theorem gives a characterization of the class Il.

Theorem 1,17
Suppose f: [ R is measurable.
For tg > 0 let y: (to, o) + R be defined by

t
$(t): = £(t) - t71 [ £(s)ds.
%o

The following statements are equivalent:

a. f e 1.

(1.45)

(1.46)

(1.47)

b, The function w:(to, w) + R is well-defined for some ty 2. 0, eventually

positive and

f(tx) - £(t)
lim ——5————=% = log X
tow  V(ED
for x > 0.

(1.48)

c. The function w:(to, ©) » R is well-defined for t 2_t0 and slowly varying at

infinity.

(1.49)
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d. There exists p ¢ RVS such that
t
f(t) = p(t) + f p(s)ds/s. (1.50)
t
0

e. There exist Cys Cp € R, aj;, ag € RV

-]

0 with al(t) ~ az(t) (t+») such that

t
f(t) = c, + czal(t) + { a,(s) ds/s. (1.51)

If f satisfies (1.50) (or (1.51)) then f € T(p) (or £ ¢ H(az) respectively).
Hence p(t) ~ ap(t) ~ ¢(t) (t+=).

Proof

asb

Suppose f ¢ H(a).

Take ty as in cor. 1l.15, Then Y(t) is well-defined for t Z.tO‘
Note that for t Z_to

w(e) _ o £ Lofe) - £(tw)
a(t)  tao) T N } a(t) du. (1.52)
. ol t

From cor. 1l.15 it follows that f(t) = o(tS) (t+=) for any B > 0 (take t = ty
in (1.43)).

Since ta(t) ¢ RVT, (thm. 1.12) we have f(t) = o(ta(t)) (t+=),

We can apply Lebesgue'’s theorem on dominated convergence to the second term on

the right-hand side in (1.52) since by cor. 1.15 for tu > ty, 0 < u <l

f(tu/u) - £(tu)
a(to) L eu

aMbym@.LLSmrmztpO<uil

0 < a(tu)/a(t) < cqu”€,

1
Hence lim %%%% = = f log u du = 1, which proves the implication a + b.
treo 0

b+c

See theorem 1.12.

c > d

By Fubini's theorem we have
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t

f f(u) du = £(t) - p(t).
t

Hence (1.50) with p = ¢.

e + a

By the uniform convergence theorem (thm. 1.3) for functions in RV

frx) - £(t) c {al(tX) - 1} l(t) + ? az(tU) du > log x (tew)
a (t) al(t) a (t) 1 az(t) u
for all x > O. @
Corollary 1.18
If f ¢ U, then lim f(t)=: f(») { = exists.
t oo -
If the 1limit is infinite, then f ¢ RVO. If the limit is finite, f(=) - f(t)
€ RV;.
Proof

Consider the representation (1.50). Theorem 1.4 implies that
t
p(t) = o(f o(s) ds/s) (t+»), Hence, if f p(s) ds/s < w, p(t) » 0 (t+») and

lim £(t) = ¢ + f p(s) ds/s. Then f(«=) - f(t) f p(s) ds/s ¢ RV (prop.

t oo 1 t t
1.7.4). If f p(s) ds/s = », then £(t) ~ f p(s) ds/s ¢ RV (prop. 1.7.4). &
Remarks

1. Note that from the proof of cor. 1.18 it follows, using (1.46), $(t) ~ a(t)
(t+w) and theorem 1.4, that a(t) = o(£f(t)) (t+=). As a consequence, the
limit relation (1.42) above is strictly stronger than f(t) ~ g(t) (t+e),

2, Theorem 1.17 is also true -~ and the proof not much different - with ¢
replaced by ¢ defined as follows:

$(L):= ¢t f £(u) 2 — - £(1).
u
3. The result of cor. l.16 is reobtained from theorem 1.17 by taking

et
g(t) = f p(s) ds/s with p as in (1.50).

o
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Suppose f is locally integrable on R and a RVje. Then
f(tx) - £f(t) -
———;?EY_———_ > 0 (t+) for x > O (1.53)

and

£(e) -t [ £(s) ds
0

") + 0 (troe) (1.54)

are equivalent.

The proof follows closely the proof of theorem 1.17.

From theorem 1.17e it 1is clear that for any a ¢ RVm, there exists a

function f such that f e Ii(a).

Let t > 0 be such that f is locally integrable on (tl’ «), Then theorem
1.17 holds for any ty Z_tl’

We mention some properties of functions which belong to the class II.

Proposition 1.19

1.

2.

If f, g ¢ N then f + g ¢ H. If f ¢ M, and h ¢ RVZ, a >0, then £ ° h e I.

If f ¢ M, lim f(t) = » and h is differentiable with h' ¢ RV: (a > =1), then
t oo

h ®° f ¢ I, where h ° f denotes the composition of the two functions,

If f € T (a) is integrable on finite intervals of R+ and the function fl is
defined by

t
£.(t):= 7 [ £(s) ds (£ > 0, (1.55)
0

then f; ¢ n(a).

Conversely if fl e NM(a) and f is non-decreasing, then f ¢ N(a).

If f ¢ m(a), there exists a twice differentiable function £ with - " ¢ RV°:2
such that

. E(E) - E(e) _
1lim _——;?Ej__—_ = 0, (1.56)

t o0

In particular f is eventually concave. As a consequence of this:
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If f € N is bounded on finite intervals of R+

then sup £(x) = £(t) = o(a(t)) (t+=).
0<x<t

and lim f(t) = o
t+o

4, Suppose f ¢ 1 (a). For arbitrary 61, 62 > 0 there exists tg = tg (61, 62)
such that for x > 1, t > t,

-6, §
1 -x f(tx) - f(t)
(1-8,) 5, 8, < ()

i
x -1
< (1 + 62) 61 + 62. (1.57)

Note that conversely if f satisfies the above property, then f e I(a).

5. Suppose
t
£(t) = £(ty)) + [ g (s)ds, t >
o
. Then f € II. Conversely if f e 1 satisfies (1.58) with g non-

to (1.58)

00
with g € RV_'l
increasing, then g E'RVfl.
Moreover in this case tg(t) is an auxiliary function for £.

Similarly if

f(t) = ¢ +[ g (s) ds (1.59)
t
with g € RV0 then f ¢ 10 (see def. 1l.11). Conversely if f ¢ HO satisfies

_.1’
(1.59) with g non-increasing, then g ¢ RVEI.
Moreover in this case t-lg(t"l) is an auxiliary function for £(t71).
This property supplements a corresponding statement for functions in

Rv:, a #0 (cf. prop. 1.7.11).

6. If £ ¢ M(a) there is a function f; with (-1)“+1f1(“) € van for
n= 1,2,... such that fl(t) - f(t) = o(a(t)), toe,

" Proofs

ad 1. The statement f + g ¢ I is a consequence of the representation (1.50)
since the sum of two slowly varying functions is slowly varying (see
proposition 1.7.2).
If f € M(a) and h ¢ RVZ, then for x > 0 we have

(B () - £(h(e))

lim @ a(h(t)) = log x by the uniform convergence

30
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theorem (thm, 1.14).

For the last statement we expand the function h:

h(f(tx)) = h(f(t)) _ £(tx) - £(t) h'(f(r) + off(tx) - £(t)})
a(t)h' (£(t)) a(t) : h'(£(t))

for some 0 < 6 = 6(x, t) < 1. Now the second factor on the right-hand
side tends to 1 as t+» since h' ¢ RVZ and f ¢ Rvg (see corollary 1.18)

by the uniform convergence theorem (theorem 1.14).

t
Define ¢(t):= £(t) - 1 f f (s) ds for t > 0. If f ¢ N(a), we have by
theorem 1,17 0
f(t) - £ (¢t
() 1( ) . (t) _
lim ) = lim ETEY = 1.
t 3o a tro a

As a consequence f1 ¢ I (a) (see theorem 1.13).

Conversely suppose f1 e T (a). Then for x > 0 we have by definition
t

f ¥(s) ds/s = fl(t) and hence

0

fl(tx) - fl(t) ) x
a(t) ;

y(s) ds
a(t) s

1

Now fix x > 1. Since f1 e N(a) the above expression tends to log x as

t + », Since f is non-decreasing, ty(t) is non-decreasing. This implies

-1 w(e) L f w(es) ds
(1 -x7) " t)_g { a(t) s for t > O,
hence

Tm WE) Lo X ¢ 5 1, Similarly we find 1im WEL > = log X
tre 200 2 7 Tom (0

for 0 < x < 1.

Finally let x » 1 to obtain ¢(t) ~ a(t) (tre) , which implies

Y e RV.. The proof is finished by application of theorem 1,17.

0
We may assume without loss of generality that f is integrable on finite
intervals of R'.

Define the functions f; for i = 1, 2, 3 recursively by
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£
_.~1
£,(t)i=t g £,_,(s)ds for t > 0,

where f, = f.
Repeated application of theorem 1,13 and 1.17 gives

(t)} ~ 3a(t) (t+=),

2
£(t) - f4(t) = I {fi(t) - fi+1

1=0

Hence f3 € N(a) by theorem 1.13, Define £ by ()= f3(e3t), then
£(t) = () = ola(t)) (t+=), Furthermore f is twice differentiable and

E2E5(E) = (£,(0) = £,(6)) = £, (£) = £,(£)) ~ = a(t) (t+e)
by theorem 1.17.

From remark 2 following cor. 1.18 it follows that there exist functions

ag, b such that ao(t) ~ a(t), b(t) = o (a(t)) (t+») and

t a.(s)
£(e) = [ 2
‘t'

ds + b(t) for t > t'. (1.60)

Then for all e, &;, 83, §, > O there exists t = t; (e, 815 93, 54) such
that for all t > tg, x > 1 we have

x a.(ts)

£(tx) - £(t) = [ ——ds + (LX)
1
5

S a(tx) a(tx) - b(t)

X 1-1 61
[(1+ 63) [s ds + (1 + 64) x  + €] a(t)
1

IA

8
{11+ 65 + 1 + 6,)6,) 5—153—3-+ e(2 + 8,)} a(t)

1
using ao(t) ~ a(t), b(t) = o(a(t)) and prop. 1.7.5.
Hence f satisfies the stated upper inequality if we take €, 84 and §,
such that max{85 + e(l + §,)8;, e(2 + §)} = §,.
The proof of the lower inequality 1s similar.

ad 5.We give the proof of the first statement, the proof of the other

statement is similar.

£(tx) - £(t) _ & g(ts)
) = { 00 ds. (1.61)
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-
~1°
the uniform convergence theorem for regularly varying functions (theorem

If g € RV then the right-hand side in (1.61) tends to log x (t»=) by

1.3). Next suppose f ¢ I(a). We have

f(tx) = £(r) _ tg(v) X ts)
() = Tat) {g%t)_ds’

and the integral is at most x~1 when x > 1. Hence for x > 1, since

f e I, we get

Similarly we find 1im <848 ¢ 1B X ¢ o ¢ x ¢ 1.

oo a(t) - x-1
Let x + 1 to obtain tg(t) ~ a(t) (t+») and the last function is slowly
varying by theorem 1,12,

ad 6. See Corollary 2.16. od

Remark

A special case of the current subsection 1s obtained when the auxiliary
function a satisfies a(t) » p > 0 (t+x),

Note that the specialization of theorem 1.17 then gives the following
statement:

Suppose g: Rt » R' is measurable.

Then g € RVZ if and only 1if log g is locally integrable on (to, ) for some

tg > 0 and

1 1
1lim f 10g{§%§§l}ds = f log sPds = -0
tae tO/t 0

This can be seen by applying theorem 1.17 for £(t) = log g(t).

Examples
The functions f defined by

£(t) = log t + o(l) (t+x),
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f(t) = (log t)®* (log log t)s + o(log t)a_l (t+o), a > 0, B € R,
£(t) = exp{(log t)%} + o(log t)® ! exp{(log t)%} for 0 < a < 1, tre,
£(t) = t llog T(t) + o(1) (tsw)

are in 1.

The functions f defined by

f(t) [log t]

f(t) 2 log t + sin log t

are in RVS, but not in I.

The following result is a generalization of part of theorem 1.17 (the kernel

function k below is constant in theorem 1.17).

Theorem 1.20

Suppose f ¢ I(a). is integrable on finite intervals of rF.

+

(i) If the measurable function k : R' » R is bounded on (0,1), then

f(ts) - f(t)

1 1
g k(s) ") ds + é k(s) log s ds, ts+w . (1.62)

(ii) If t®k(t) is integrable on (1,») for some ¢ > 0, then

o

[ k(s) £(ts) ds < = for t > 0
1

and
2 f(ts) - f(t) e
e S +),
{ k(s) e s { k(s) log s ds (t+)
Proof

(1) Note that for 0 < e < 1 the function t ®k(t) is integrable on (0,1). We
proceed as in the first part of the proof of theorem 1.17. Applying

corollary 1.15 we have
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1

£Ces) = £(6) 4o 5 [ Kk(s) log s ds
0

1
f k(s) (D)

t
to/

by Lebesgue's theorem on dominated convergence. Since k 1is bounded,
-]

ta(t) e RVl and £(t) = o(tl/z) (t+w), we have
t /e £(ts) - £(t) t t
[ k() ==22=022 ds = [ [° k(s/t)E(s)ds ~- £(t) [ k(s/t)ds}/ta(
0 a(t) 0 0
+ 0, tiro,
(1i) The second statement is proved in a similar way. Lo

Definition 1.21

The functions f£;, f, : R" > R are inversely asymptotic (at infinity) if for

every constant ¢ > 1 there exists a t, = to(c) such that

£1(8) < fy(et) t>t
and ‘ (1.63)
. * %*
Notation: f1 ~ f2 or fl(t) ~ fz(t) (t+>), &

We use the notation fl(t) X fz(t) (t » O+) if fl(l/t) X f2(1/t) (tr=), .

It is easy to see that if f1 and f2 are increasing and unbounded, then fl ~ f2
at infinity if and only if the inverse functions are asymptotically equal
(Leee £](8) ~ £5(), o).

The relevance of this definition for functions in RVa and in the class I

follows from the next proposition,

Proposition 1.22

(1) Suppose £l € RVZ, o > 0 and f, is measurable. Then f; x £, if and only if
fl(t) ~ fz(t) (t+=), It then follows that £y € RVa.*

(ij) Suppose £, € I(a) and f, is measurable. Then £, ~ £, if and only if
fl(t) - fz(t) = o(a(t)), t+e, It then follows that £y ¢ m(a).
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Proof

(i) Since £, € RV, the inequalities (1.63) imply that for every ¢ > 1

¢ ® < Lim

which implies £,(t) ~ £,(t) (t»=).
Conversely, if fl(t) ~ fz(t) and f
£1(ct) > M2 £,(e) > £,(0).

The second inequality in (1.63) is obtained likewise.

1€ RVG (a > 0), then for t 2_t0

(1j) The second statement follows similarly since f1 e N(a) implies
fl(ct) = fl(t) + a(t) log c + o(a(t)) (t+x), &
*
As a consequence: if f; ~ f,, f; ¢ I, then there exist functions a: R > R+,

b: " » R such that

fi(tx) - b(t)

) > log x (t#»=) for 1 = 1,2, x > O. (1.64)

Note that every pair of admissible functions a > 0 and b gives rise to an
equivalence class of functions f e I satisfying (1.64). The next lemma shows

that every equivalence class contains a smooth function.

Lemma 1.23
a) Suppose f: R" > R is measurable and eventually positive. If £ € RVZ

(0<a< 1) or £ € I, then there exists a positive decreasing continuous
function s with s(t) + 0 (t+») such that

% t
f(t) ~ f s(x)dx (t + =), (1.65)
0

b) Suppose f satisfies (1.65) with s positive, eventually decreasing and
s(») = 0,
(1) If s ¢ RV:—I’ a > 0, then f ¢ RVZ and if s € RV
a(t) ~ ts(t) (t»»),
(1) If £ ¢ RV: (0 < a< 1), then s € Rv:_
If £ ¢ N(a), then s € RVf

Tl’ then f e N(a) with
T

1 and a(t) ~ ts{t) (t+w).

Proof
a) If f ¢ RVZ (a > 0) the statement is an immediate consequence of prop. l.7.3

and prop. 1.22. Next suppose f ¢ II. By proposition 1.19.3 there exists
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~ %
f ~ f which is twice differentiable and (by iteration) we may suppose its
derivative ;(t) to be convex and decreasing for t > tye Hence

t

B(t) = (t ) + [ s(x) dx for all t > t_.
o
The right-hand side it not yet exactly of the required form.

Note that since f is eventually positive lim £(t) - ts(t) > 0 by remark 1
Tty
following cor. 1.18.

Take t; > t, such that E(t) > ts(t) for t > t . The function f( defined by
t

1
£o(t) = g s(x)dx with

f(tl)/tl for 0 < x < t1
s(x) =

(%) for x 2_t1

*
satisfies fO(t) ~ f(t) (trx).

The final step is to redefine the function s on the interval (0, Ty + 1)

t +1
1

without changing f s(x)dx in such a way that s 1is decreasing and
0

continuous.

b) The implication s ¢ RV:—l’ a >0+ f ¢ RVZ is an immediate consequence of
the propositions 1.7.4 and 1.22 (i). The converse implication 1is a
consequence of the propositions 1.7.11 and 1.22 (i). The proof of the
corresponding statements for the class II are similar.

&

Remark

A similar result holds for functions f ¢ RVZ with a > 1 or a < 0. We leave the
formulation to the reader. The statement of lemma 1.23 will be used in chapter
2.

I.3 The class T

For RV functions propositions 1.7.9 and 1.7.10 show that (generalized)
inversion gives again an RV function. For non-decreasing unbounded functions
in the class 11 we obtain the following class by inversion (cf. theorem 1.27
below).
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Definition 1.24

A non-decreasing function f: R + R which is eventually positive, is said to
belong to the class I' if there exists a function b: R + K" such that for all

X € R

lim f(ch(rt:): b(t)) _ X, (1.66)
tro

Notation: f ¢ T or £ ¢ T'(b).

The function b is called an auxiliary function for £. &

Remarks

1. Note that (1.66) implies f(») = o,

2. From lemma 1.25 below it follows that relation (1.66) holds uniformly on
each bounded interval.
Hence any positive function by is an auxiliary function for f if and only
if bl(t) ~ b(t) (t+»); the "only if" part of this statement follows by

contradiction.

Lemma 1,25
Suppose the functions f, fn '+ R » R are non—-decreasing for n=1,2,..., f is
continuous and fn(x) + £f(x) (n+») for x ¢ R.

Then convergence 1s uniform on bounded intervals of R.

Proof
By contradiction. Suppose there exists a sequence xi, x%, .s2s € [a,b] such
that
1y _ 1
fn(xn) f(xn) 2¢ >0, (1.67)

bsay, for all n.

Let X),%Xy,.., be a subsequence of xi, X ese with x_ + x_ € [a,b] (n+=).

i " %
Choose ng such that f(xy) > f(xo) - ¢/3 forn > mge

Choose & > 0 such that f(x, + €) < f(x,) + ¢/3.

Choose n; such that fn(xo + ¢) < f(xo + e) + ¢/3 forn 2 ng.
Choose n, such that xn.S.xo + e for n 2> ny.

Combination of the above four inequalities contradicts (1.67). %
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In order to show that the class T consists of the fuctions which are inverse
to a non-decreasing fM-function we need the following lemma. Recall (def 1.6)
that if f: (tO, ©) + R is bounded on intervals of the form (to, a) with a € =

and lim f(t) = «, then the generalized inverse function f* is defined by
t+oo
f+(x) = inf{y; f(y) > x} for x sufficiently large.

Lemma 1,26

Suppose the functions f : R" + R are nondecreasing, lim £ (t) = = for
t o0
n=1,2,... and fn(x) + £f(x) (n+») for every continuity point of f. Suppose

also lim f(t) = =,
t-roo
Then fn+(y) > f+(y) (n+=) for every continuity point of £+,

Proof

Let y be a continuity point of £, Fix e > 0. We have to prove that for a » nj
£5( - e < £ LT + e

We are going to prove the right inequality, the proof of the left-hand
inequality is similar.

Choose 0 < ¢; < ¢ such that f+(y) - gy is a continuity point of f. This is
possible since the continuity points of f form a dense set. Since £* is
continuous in y, f+(y) is a point of increase for f, hence f(f+(y) - el) < ¥,
Choose § < y - £ (f+(y) - el). Since f+(y) - €; 1s a continuity point of f,
there exists n, such that fn(f+(y) - el) < f(f+(y) - el) + 8 < y for n.z.no.
The definition of the function fn+ then implies f+(y) - g < f+n(y)‘

@

Theorem 1.27
(i) Suppose f: R > R.
If f ¢ N(a) and £(») = =, then £ ¢ I'(b) with b(t) ~ a(fT(t)) (t>w).

(1j) Conversely, if g e T(b), then g+ e N(a) with a(t) ~ b(g+(t)) (t+=).
As in proposition 1.,7.9 the domain of definition f+(g+) can be extended to R

(R+ respectively) by defining the function to be zero on a neighbourhood of -«
(0 respectively).
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Proof

(1)

(13)

Suppose f ¢ l(a). Note that f is locally bounded on intervals of the form
(to, a) for tg sufficiently large, hence £t is well-defined. Using the
definition of £ we have £f((1 - ¢€) f+(s)) s < E(L+ #) f+(s)) for any

€ > 0. As a consequence we have for x > 0

£xf'(s)) = s 5 £ (a)) = £(E7(s)) | £+ e) £(s)) = £(E(s)) |
a(£ () a(£ () a(£"(s))

The right-hand side in the above inequality tends to log (x/(l+e)) since
f ¢ N(a) and lim f+(s) = o,
S+

Using a similar upper inequality we find

+
lim f(xf is)) -5
s+» a(f (s))
1.26 then shows

= log x since ¢ > 0 is arbitrary. Application of lemma

f+(s + xa(f+(s))) = infly; f(zf+§s)) =5y 4} » eF (srm).
£ (s) attf(s))

Conversely suppose g € TI'(b)., By the definition of g+ we have
+ +
glg'(t) = 0) <t <alg(t) +0). (1.68)

Hence for any € > 0 we have g(g+(t:) - & b(g+(t))) Lt g(g"'(t) + €
b(g+(t))) since the function b is positive.

Division by g(g+(t)) throughout and application of (1.66) shows that
£ ~ g(g"(£)) (t»e).

We thus have by (1.66)

Lim BECE) + % bt _

t e* for x « Re

t+o

By lemma 1.26 we find

ghen - g (t)  inflv; g(v) > tx} - g7()

(gt () (gt (1))

= inf{y; g(g"(t) +y b(g"(£))) > tx} +» 1n x (t+m)

for x > 0. o2
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Remarks
l. Note that if f: R* + R is nondecreasing and f(x) = o, then for any
continuity point of f we have £(t) = inf{y; f+(y) > t}, hence the

generalized inverse of the generalized inverse gives us the original

function.

2. If g € N(b), then the composition b ° g+ € RVS.

Next we prove a representation theorem for the class T.
Theorem 1.28

Suppose f: R » R+ is non—-decreasing.

The following statements are equivalent:.

(1) ferT. (1.69)

{(ij) There exists a differentiable function B: R+ » RBY with B (x) » 0 (x+x)

such that
t ds
£(t) ~ exp {{ B(S)} (t+xo). (1.70)
t X
£(t). [ [ £(s) ds dx
(iij) 1im — =1. (1.71)
t+o (f f(s) ds)?
0
Proof
(i) » (i

Theorem 1.27 implies that e m Proposition 1.19.3 shows that there exists a

*
function g, twice differentiable with - g" ¢ RVT and g ~ f+. The latter

2
relation implies g (t) ~ £(t), t+w, by definition l.21. (Note that £ ¢ T
implies f(t+) ~ £(t-), t+=).
o0 "
Since =-g" < RV_2 we have EET%%% + =1 (t+o) by theorem l.4. Replacing t by
. g
g (t) gives

- (OO (©) _ gf)g"@ )
{(eH(B)}2 g'(g¥(e)

» =1 (tr=),
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« +

Hence {————%————— '=1- (t)i ) (L) + 0 (t+w),
(1ng )'(t) {tg(r)}?
Define the function B by 8(t) = 1/(ln g‘)'(t). Then B satisfies the

requirements of the theorem and for some constant c

ds
B(s)

log g“(t) = + c. (1.72)

—t—_t

Then f ~ g+ satisfies (1.70) since we can modify B on the interval (1,2) in
such a way that (1.72) holds with ¢ = 0.

(13) » (1)
First we note that B'(t) » 0 (t+=) implies

B(t + xB(t))

0 + 1 (t+w) (1.73)

uniformly on finite intervals of R, since
- 1+ B(t + xB(t))/B(t) = xB'(t + © x B8(t)) with @ = o(t,x) and 0 < 06 < 1,

The right-hand side is easily seen to tend to zero uniformly as t+w,
Now by (1.70)

£Ce+ xa(e)) | as b= explf B8 gy}

£(t) FPL L B 5 BLEHVB(ED)

and the integral on the right—-hand side tends to x as t+w,

(1), (13) » (iiJ)

t

First we prove that f£f ¢ TI'(b) implies f f(s) ds € T(b). By the previous proof
0

we may assume that £ ¢ T (B) with B(t) ~ b(t) (t»*x), 8 as in thm. 1.28 (ij)

and such that (1.70) holds. ¢
Define the function g by g(t) = exp {f
0

ds
B(S)}'

t
Since 8' » 0 we have (Bg)' = B'g + g ~ g, hence B(t)g(t) ~ f g(s)ds (trw),
0

Since f(t) ~ g(t) (t+=), this implies
t t
[ g(s) ds [ £(s) ds

0 0
B(E) ~ =~ T EHD

(t>), (1.74)
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It follows that (cf. (1.73))

t+x8(t) t

f f(S) dS/I f(S) ds ~ (t + XB(t)) f(t + XB(t))
0 0

B(t) £(t)

t
This implies f f(s)ds ¢ T(B). The proof also shows that if a function h

satisfies h ¢ r(B), then B(t) ~ f h(s) ds/h(t) (t+=). Applying this for
h(t):= f f(s)ds entails
0

t x t
B(t) ~ [ [ £(s) ds dx / [ £(s) ds (ts+w). (1.75)
00 0

The statement (1.71) is implied by (1.74) and (1.75).

(i13) » (i)

t x t
Define the function e by e(t) =1 - £(t) (f f f(s)dsdx)/([ f(s)ds)2 and the
Tt ox t 00 0
function h by h(t) = f f f(s) ds dx / f £(s) ds, t > 0.
00 0

t
Then e(t) + 0 (t+x) by (1.71) and h(t) = h(1l) + f e(s)ds. It follows (as in

the part (ij) + (i) of this proof) that

1im h(t + xh(t))/h(t) =1 (1.76)
tao

for all x uniformly on finite intervals and hence

t x t ds
é é £(s) ds dx = ¢ exp{f h(s)} € I'(h). (1.77)
1
1 x
Note that ¢ = f f f(s) ds dx.
00
By (1.76) and (1.77) we then have
t 1 t x
[ £(s) ds = WO [ [ £(s) ds dx e T(h) (1.78)
0 00

t t x
and hence f(t) ~ (f f(s) ds)2 / f f f(s) ds dx (t+w). Combination with (1.77)
0

and (1.78) gives f ¢ T'(h). Lo



—41~

Remark
Note that for the dimplication (1.70) =+ (l.66) or (1.71) + (1l.66) the
monotonicity of £ has not been used. The question of defining a function class

like T without monotonicity remains unsettled.

Corollary 1,29
1. If £ € (b)), then

t
f f(s) ds

() ~ 2

———§(E7_— (tr=),

Hence b can always be taken measurable.

Moreover the function B8 in the above theorem satisfies B8(t) ~ b(t) (t+w).
Hence if f e T(b), then b(t + xb(t)) ~ b(t) (t+x) uniformly on finite
intervals of R.

t
2. £ e T(b) implies [ £(s) ds € I(b).
0

252; ds}, where c(s) + ¢ > 0 (s+»).

. t
3. We may replace (1.70) by f£(t) ~ exp{/
1

4., £ ¢ I'(b) implies b(t)/t + 0, t+~ (since the same holds for the function B.)

&
The next theorem provides another characterization of the class T.
Theorem 1.30
If £ € T, then for all positive a
t
[ {£(s)} ds
1im - ==, (1.79)
B 1)} [e(s) as
0

Conversely, if a positive non-decreasing function f satisfies (1.79) for some

positive o # 1, then f € T,

Proof

Suppose f ¢ T(b). Then lim
tre £()*

[£(t + xb(t)/a)}* = &F

hence £* ¢ I'(b/a). Applying corollary 1.29.1 twice, we get
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t t

[ {£()}% ds  b(E) [ £(s) ds

0 ~ ~ 9 (t')‘”),
[E(e) ]} a @ £(t)

which is equivalent to (1.79).

For the proof of the converse statement we define the function p by

t
a f {f(s)}a ds
p(t) = 5 } 7 if(t)} (1- 9 n ] g(t), where
[{£¢s)}%s GEENTY [ £(s) ds
0 0
t t .
g(t) = (o [ {£(s)1® ds / [ £(s)as)t/ (=) ¢ 5 0, (1.80)
0 0
t

Then g(t) = ¢ + f p(s)ds, hence using (1.79) twice we find
0

o(t) _ 1 {£(e)}°® £(t)

2(0) ~ ST ~ T (too), (1.81)
[{£(s)}%as [ £(s)ds
0 0

Note that (1.79) and (1.70) imply g(t) ~ £(t) (t+=).

t t
Hence f g(s)ds ~ f f(s) ds (t+») and combination with (1.81) gives
0 0

t
1im p(t) f g(s)ds / {g(t)}2 = 1. By the proof of theorem 1.28 (cf. the remark
t o 0

following the theorem) we have lim p(t + xb(t))/p(t) = e® for all x ¢ R
troo
uniformly on finite intervals with b(t) = g(t)/p(t).

Hence for x ¢ R since g(t) ~ f(t) (t+«) and f(t) + « we have

t+xb(t)
f p(s)ds < N
O )L TS (] saerso)
c + f p(s)ds 0 0
0
~ X = 1 (taw),
Hence g € T. Since f(t) ~ g(t) (t+w), we find f ¢ T. &

_ Next we list some properties of the class T
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Proposition 1.31

1.

3.

If £ € I', then log f(t)/log t + = (t+w).

Moreover lim £(ex) _ { 0if 0 < x< 1
£(t) > 1
troo

The class T 1s closed under multiplication:
if £, € F(bl), £y € F(bz), then £,f, € I'(b)
with b(t):= by(t) by(t)/{by(t) + by(t)}.

If f e T, he Rv: with « > 0, then h ® f ¢ I', where h ° f denotes the
composition of the two functions. If f € T and h is differentiable with
h' € RVZ, a> -1, then £ ° h €T,

t t
If £ ¢ I'(b) then f f(s)ds € TI'(b). Conversely if f f(s)ds € T'(b) and f is
0 0

non-decreasing, then f ¢ T(b).

If f € I'(b), there exists £y ¢ C” with fén) € T(b) for n =1, 2, ... such
that fo(c) ~ f(t) (t¥w),

Suppose f € I'(b). If 815 85 > 0 are arbitrary, there exists t; = to(Gl, 89)
such that for t > tgy, x > 0

5
b(t + xb(t)) f(t + xb(t))y 2
O LR ST .

£(t + xb(t)))62

(1 -8 £(t)

<

t
Suppose f ¢ I'(b). Define the function g by g(t) = 1/{ f ds/f(s)}. Then
g e I'(b). 1

Proof

ad

1. The proof is an Iimmediate consequence of theorem 1.28, cor. 1.29.4 and

de 1'Hopital's rule.

ad 2. By theorem 1.28 it is sufficient to prove that

1im 4 {8 (t)_1 + B (t)-l} = 0 with B, and B, as defined there.
¢ dt 1 2 1 2

>0

This follows immediately since B1» 82: R+

for 1 =1, 2.

> B satisfy Bi(t) + 0 (t+e=)
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ad 3. If £ ¢ T(b) and h ¢ RVZ with a > 0, by the uniform convergence theoren

for regularly varying functions we have h(f(t + xb(t)/a))/h(f(t)) » ¥
(t+=), If f ¢ T(b) and h is differentiable with h' ¢ RVa, a > -1, by the
uniform convergence theorem for regularly varying functions (thm. 1.3)

and lemma 1.25 we have for some 6 = 8(x, t) ¢ (0, 1)

xb(h(£)) h'(t + exb(h(£))/h'(£)).
f(h(t + —FT?ET__)) . f(h(t) + xb(h(t)) YO) )) y o
f(n(t)) B f(h(t))

as t+= (note that b(h(t))/th'(t) = bﬁ?ig)) . tESEZ)

1.29.4 since h' ¢ RV, with o > -1).

+ 0 (t+») by cor.

t
ad 4. Since f f(s)ds e T(b), for x > O the right-hand side of the inequality
0

t+xb(t)
[ f(s)ds
£f(t) b(t) ¢ t
t - t
[ £(s)ds x [ £(s)ds
0 0

tends to (e* - 1)/x as t+e, Let now x + O+ to obtain

t
lim f(t) b(t) f f(s)ds £ 1. Similarly, for x < O we have
tro 0
t
f £(s)ds
t+xb(t) £(t) b(t)
- t L3 >
x [ £(s)ds [ £(s)ds
0 0 t
which implies lim £(t) b(t)/[ £(s)ds > 1.
tro 0

t t
Hence f(t) b(t) ~ f f(s)ds. Since f f(s)ds e I'(b) we have b{t + xb(t))
0 0

~ b(t) (cor. 1.29.1). Combining these results, we find f e I'(b).

ad 5. From theorem 1.28 it follows that without loss of generality we may
suppose f to be strictly increasing and continuous. Application of
theorem 1.27 (ij) shows that the inverse function £% € I(a) with a(t) ~
b(E(t)) (or a(£(t)) ~ b(t) (t+=)).
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Since ¥ ¢ I(a), there exists a function g ¢ (a) satisfying 8g x £
and (_1)n+1g0(n) € van for n = 1, 2, ... (see prop. 1.19.6 and prop.
1.22 (i3)).

By the definition of the relation X we have g;(t) ~ f(t) (t»=), hence
a(gg(t)) ~ a(£(t)) ~ b(t) (by the uniform convergence theorem for RV

functions), which is equivalent to

a(t) ~ b(gp(t)) (r+=). (1.82)
On the other hand we find

a(t) ~ tgb(t) (t+=) (1.83)

by application of lemma 1,23b.
We claim that the function £ defined by fo(t):= gg(t) for all
suffiently large t satisfles the assumptions.
First note that fo(t) ~ f(t) which implies £y € T(b) since f ¢ T(b). We
shall prove that for n € N we have

£,(1)

(n)
£ (t) ~ ———— (tro), (1.84)
0 (e

which implies fén) ¢ T(b) (since fo e I(bv)).
Substituting go(t) for t shows that (1.84) is equivalent to

£ (gy(1)) {blgg(D)IYe > 1 (tam).

Combination of (1.82) and (1.83) shows that the last limit relation is

equivalent to
£ (g (1)) (et (L > 1 (£sw) (1.85)
o ‘8 80 :

We will prove (1.85) by induction using Fa3 di Bruno's formula (see e.g.
Abramowitz and Stegun, p. 823):
Since fo(go(t)) = t for all t sufficiently large, we have for n > 1



ad 6,

46~

(k)
d n L oomogy (B e
0= (HE)“fo(go(t)) - mfofgm)(go(t)) I'n! kzl(——ET———) P (1.86)

where I' denotes summation over all ay's satisfying a; + 2a5 + ... + na,

=n and a; + +.. + a_ = m.
Since (—l)n+1gén) € van, we have by repeated application of theorem l.4

tk_lggk)(t) -
BTy + (-1) (k=1)! (t+e) for all k > 2, (1.87)
0

Hence

o gék)(t) 3 1 n-m o m-n O ' -1
T () o~ CDTEHENTETT T (kT L a 1) ()
k=1 k k=1

Substitution gives

0 = &) (g (t)) = (1+o(1)) (5™ (g (60 (el (e
= ac’ fol8o ol 2, to B %0
L. (1.88)
D™ 2o (k k. ak!)_l (tr=).
=1

The proof of (1.85) for n = 1 is immediate from fO(gO(t)) = t and
(1.87).
Now suppose (1.85) holds for 1 { n £ N-1.

Then the existence of lim ng)(go(t)) {tg(')(t)}Nt_l is a consequence of
e n n ay -1
(1.88). Moreover this limit is 1 since I (—l)m I (k ak!) =0

m=0 k=1
for n € N (this can be seen e.g. by taking fo(t) = exp t in (1.86)).

We only prove the second inequality. The proof of the first inequality
is similar. Suppose f ¢ T'(b), Since there exists a strictly increasing
£, € Ir'(b) satisfying fl(t) ~ f(t) (t+=) (theorem 1.28), we may suppose
without loss of generality that f 1s strictly increasing. We apply
proposition 1.7.5 to the function b ° f£f*, which is slowly varying by
theorem 1.27 (ij) and theorem 1.12 to obtain
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. $
b(f (52)) i (1 + 5l)y 2 for s _>_ 50’ y Z L.

b(£ ()

Now take s = f(t) and y = £(t + xb(t))/£f(t) in the resulting inequality.

ad 7. By theorem 1.28 there exists a function B(t) ~ b(t) (t+=) such that
t

B'(t) + 0 and 1/£(t) ~ exp{~ [ ds/8(s)} (t+=).
1

t t s
Hence g(t) = 1/{f ds/£(s)} ~ 1/[ exp(- [ du/B(u))ds (t+w).
1 1 1

Since f ¢ T(B) we have

t
exp(~ [ du/Bg(u))
gt + x6(t)) _ 1
g(t) t+xB8(t)
(1 + x8'(t)) exp(- [ du/g(w)
i

~ ™ (tow)

by de 1'Hbpital's rule.
Hence g € T'(B), which implies g € I'(b) by remark 2 following def. 1.24.
&

In theorem 1.17 it is shown that for f ¢ N(a) it is possible to construct a
representation in terms of the function a., Our last result for the class T

gives a similar statement for functions £ ¢ T(b).

Proposition 1.32

If £ € T(b) with b such that 1/b is locally integrable on rR" (this can always
be achieved since any auxiliary function is asymptotic to a positive
continuous one), then there exists a non-decreasing function f1 € RVI such

that

£(r) = £;(h(t)), (1.89)
£
where h(t):= exp(é ) ds).

Conversely if f satisfies (1.89) with h as above, then f e T(b).

Proof
Suppose f € I'(b). Define fl(t):= f(h¥(v)).
Note that h* e I(a), where a(t) ~ b(h*(t)) (t+=) by theorem 1.27.
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By lemma 1.25 we have for x > 0

f (tx) <« « <« < s
tin 2L < g £05 + (0700 = b)) D))
1

t+o t+o f(h+(t))

<« “
exp(lim h(tx) - h (B)y _
tro  B(RT(E))

Xe

Conversely, if f satisfies (1.89), where f1 € RVy, then for x > 0

£t + x b(D) _ o £, ({h(t + x b(£))/h(t)} h(t)) )

lim im
om | E(D) o £,(h(E)
= lim h(t + x b(t))/h(t) = e~. &
troo

I.4 Beurling slowly varying functions

The class of auxiliary functions b for functions in the class T (cf. cor.
1.29.1) is an interesting class in its own right since it can be used in other

contexts as well. We now give some results for this class of functions.

Definition 1.33

A measurable function b: R + R which is eventually positive is Beurling slowly

varying (at infinity) if

b(t + xb(t))

1im ) = 1 for all x € R. (1.90)
£t
Notation: b ¢ BSV. &

Remark
This c¢lass of functions was used by A. Beurling in connection with a

generalization of Wiener's Tauberian theorem (unpublished, cf. Bloom 1976).

Before discussing further properties of the class T', we give two results

concerning the class BSV,

Theorem 1.34
If b ¢ BSV is continuous, relation (1.90) holds uniformly for x ¢ [a, b] with
- o< a<b[(w,
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We prove the result for a = 0, b = 1, the argument for an arbitrary interval
being similar.
Suppose (1.90) does not hold locally uniformly. Then there exist ¢ ¢ (0,1) and

sequences {xn} c (0,1) and t, * = (n+») such that
|b(tn + an(tn))/b(tn) - 1| >eforn=1, 2, ..

The function fn(t):= b(tn + tb(tn))/b(tn) -~ 1 is continuous and lim fn(t) =0

for fixed t. ne

Hence there is an integer N and a sequence o, € (0,1) (n=1, 2, ...) such that
[by)/b(t) = 1| = € for n > N, (1.91)
where y, = t  + anb(tn).

We introduce three sequences of sets:

b(t + ab(t ))

Vi (o € (0, 2003 | —Rgrm—i—- 1] < 4,
b(y + ub(y )) e
Wi G € (0D | == 1] < iy,
b(t -+ ab(t )) e
W o= {a € (0, 2+e); | ————Sz§;j—————'— 1] < ETTIET} =

b(y_ )
b(tn)

{o € (0, 2+€); a = @ + u and p € Wn}.

Since b € BSV we have lim A(Vn) = 2+¢ and lim A(Wn) = 1 (A denotes Lebesgue

n->co >
measure).
Hence a, € (0,1) and (1.91) imply lim x(w;)_z l-g.
For a e Wa we have ne
b(tn + ab(tn)) 1| ) ' b(yn) s b(yn) {b(tn + ab(tn)) —1}|
b(t_) B(E) BCE_) EIE)
b b
> l _EZBZ._ 1| - _EZEl —_—> e - £_£
=~ b(tn) b(tn) * 2(1+€) = 2 2
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hence V, n w; = ¢, Since V, Wg c (0, 2+¢), this implies

2+¢e

v

lim A(V_ U W
n+e n

1) > lim (MV)) + MHD)) > 2+e + l-e = 3

which gives a contradiction. @

Next we prove a representation for BSV functions which satisfy (1.90) locally

uniformly.

Theorem 1.35
If b € BSV and (1.60) holds uniformly on finite intervals, then there exists a

integrable function € such that lim e(t) = 0 and
tro
t
b(t) ~ f e(s)ds (t+w). (1.92)
0

Conversely, if b: R » R is measurable, eventually positive and satisfies
(1.92) with e(t) + 0 (t»=), then (1.90) holds uniformly on bounded iIntervals
of R.

Suppose (1.90) holds uniformly on finite intervals. Then there exists tg >0
such that for t > ty and all x ¢ [-1, 1] we have b(t + xb(t)) > 3 b(t). Define
the sequence {tn} by t .4 =t + b(tn), n=20, 1, 2, «co

Then the sequence {tn} is increasing and we claim that tn + o (n+o),
n -]

If not then lim t =P < o, Now £, =t + I b(tk_l). Then the series I b(t,)
n+w k=1 k=1
converges and, in particular, lim b(tn) = 0. Since p > tO’

n+w

b(y) > % b(p) for all y ¢ [p - b(p), p + b(p)].
Note that b(t) is positive for t 2_t0 and this is contradicted by

0 = 1im b(t_) > lim b(y) > ¥ b(p).
n>eo n y>p
This proves t, > = (n+e),
Define the function b* by b*(t) = 0 on (O, ty), br(t) = b(t) for t = ty (n =
1, 2, ...) and linear on the interval [t thpy] (=0, 1, 2, ...). Then,

since convergence in (1.90) is uniform, we have b(t) ~ b*(t) (t+x).
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Moreover b* satisfies the representation
t
b*(t) = [ e(s)ds, £ > 0
0
with e(s) = 0 on (O, ty) and

b*(tn+1) - b*(tn) B b(tn+l) - b(tn)
t -t B b(tn)

e(s) =
ntl
for t, < s < t 4y, n=20,1, 2, ... Since e(s) » 0 (s+») b satisfies the
required representation.

t
For the converse part we may assume that b(t) = f e(s)ds.

We prove that (1.90) holds uniformly for x ¢ [a, b].
By (1.92) there exists ty such that

b(e) , _L
0 <2 < g7 for £2 5

For any €3 > O there exists t; > tg such that |e(t)| < g for t > ty.

Consequently for t > 2t; we have t(l + v 2%520 > t; and hence Je(t + vb(t)] <

€9 for all v > min (0, a). It follows that

bt + xb(t)) ~ b(t)
| b(t)

X
< | f ]e(t + vb(t))|dv I < eo|x] S-EO max(|a|, b)
0

for t > 2ty and all x ¢ [a, Db]. &

Remark

From the proof it follows that it is possible to take ¢ continuous in (1.92).

We close this section with an application of the Beurling slowly varying

_functions and the class T.

Theorem 1.36
Suppose y is a positive solution of the second order differential equation

3 ) S

y" = fy satisfying y(x) + « (x+«), where f is continuous and 1//E € BSV.

Then y e T(1/YE).
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Proof
a. First we suppose that f is differentiable and (1//£(x))' = - f'(x)/2f3/2(x)

+ 0 (x+o), Define the function w by

1
w(x) 1= — LX) (1.93)
y(x) YE(x)
Then w(x) > 0 for all x sufficiently large (if not then y'(xk) = 0, hence
y"(uk) = y(uk) f(uk) = 0 for some sequences xp, up + © (k+) which gives a

contradiction).

Note that
£ /. £ /o n?
w' o= ~/E (w+ gzt 1+t —gm - S 1) (L94)
4LE 16f 4f 16f

We shall prove w(x) + 1 (x+») and consider the following three cases:
a.l. w'(x) > 0 for all x > x4

Then w is increasing and lim w(x)=: A ¢ {0, ] exists. If A = », then

X >0
(1.94) implies w'(x)/Vf(x) + —» (x+») which contradicts w' > 0.
1
If A < =, from (1.94) it follows that lim wi(x) _ 1- A2.
‘ x+0 VE£(x)
If A# 1 this implies
9 X
w(x) ~ (1 - A%) [ /E(s)ds. (1.95)
0

Since w(x) < A+ 1 for all sufficiently large x we have

v ] X
VE(X) = y(§>($zx) 2-(A£1§x;(x) and y(x) + « entails g VE(s)ds + o (x+x),

Combination with (1.95) then gives w(x) + o which gives a contradiction

as above. Hence w(x) + 1 (x+»).

a.2. As in part a.l we find lim w(x) = 1 in case w'(x) < 0 for all x > X(e
X+

a.3., If w'(x) = 0 infinitely often we have

SN L1¢ NI 1163}

45(x) 32 1682 (x)

for every x where w'(x) = 0.



Since w is monotone between consecutive zeros of w' we find

lim w(x) = 1.

KXo

The proof can be completed as follows.

Since £ = y"/y and lim w(x) = 1 we have (y'(x))zly(x)y"(x) * 1 (x+w)
which is equivalentng_y" € T(b) by theorem 1.28. Moreover since w(x) + 1

we have

L) oy 1 w
b(x) y'(x) yr(x) VEx) (x3e).

Application of cor. 1.29,2 then finishes the proof.

be If f 1is not differentiable then, by theorem 1.35 there exists a

differentiable function g such that g(x) ~ £(x) (x+») and ( L }' + 0
/g(x)

(x>).

Then for any ¢ > 0 there exists x; = xl(e) such that
(1~e)g(x) £ £(x) £ (I+e)g(x) for x > xy.

Now consider the positive solutions of the differential equations
u" = (l-g)gu and v" = (l+e)gv which tend to infinity.

Note that for x > x; we have

g—};{y'(X)u(X) = uw (x)y(x)} = y(x)ul(x){f(x) - (l-e)g(x)} > O.
Hence for x > x; we have

y'(x)u(x) - u"(x)y(x) > ¢, where ¢ is a constant.

This implies

¥y (x) N c R €]
y(x) YE(x)  wx)y(x) /E(x) u(x) /E(x)

for x > x.. (1.96)

=1

By part a of the proof we have u'(x) ~ u(x) v(l-g)g(x) (x+»), which implies
—u A (1.97)
u(x) Y£(x)

hence u(x)y(x) Yf(x) ~ /i-¢ —1u'(x)y(x) + o gince y(x) +» o (x+») and

u'(x) + » (note that u' e I).
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Combination of (1.96) and (1.97) gives lim-——z—gil-—— pa /1-¢ and similarly
we find 1im y'(x)/{y(x) /f?;_}‘s Yire. y(x) VEG)

Since € > 0 is arbitrary this implies y'(x) ~ y(x) /E(x) and the proof can
be completed as in a.l. Lo

I. 5 Sequential versions of regular variation.

In this paragraph we consider representation and embedding theorems for RV-

sequences and l-sequences. We start with a formal definition.

Definition l.37

A sequence of positive numbers {cn 3y n=20,1, 2, ...} is said to be regularly

varying (RV) if

_ L0
lim C[xn]/cn = x (x > 0) for some a € R. (1.98)
n+e

Notation: {cn} is a RV, - sequence. &

It is clear that if the function [x] is regularly varying with index a, then
{cn} is a RV ,~sequence.
The next theorem gives a converse result, which enables us to use earlier

results about RV-functions by "embedding" the sequence in an RV~-fuanction.

Theorem 1.38

If the sequence {c_} of positive numbers satisfies 1im c
n+
x > 0, where 0 < (x) < = for x > 0, then £(x) : = c[X] is regularly varying.

]/c ¥(x) for

[xn
In particular {cn} is a RV -sequence.

Proof

We first prove c 1/c + 1 (n+e),

Since n-l[nﬂ] = maxf%;-% < n}, we have [n_l[nn]] n~1 for all n € N.

Hence

c ‘lanl]l L Mal] S[an] -1
c_ c R e LA IR COR (1.99)
n n [nn] n

Hence lim cn_l/cn exists.
n+o
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c[[n/2]2] _ { 1 if n is even

Since c ,/c_ if n is odd
n—-1""n

and moreover lim c[[n/2]2]/cn =

n n-+ow

$(2) v(d), we find $(2) $(3) = ¥(m w(r ) = 1.

Combination with (1.99) then gives lim cn_llcn = 1.
n+o

Then also cn+k/cn + 1 (n+w) for any fixed k ¢ 2.

Since 0 < tx ~ [t] x € {x] + 1 we have for any fixed x > 0

£(ex) _ Crx[t c[tX]
fexn) _ dx(e]] » W) (tre),
£0) e T Crregx

hence f € RV, by theorem l.2. &

Corollary 1.39
{cn} is a RV -sequence with & > -1 if and only if

n
" -
1lim — z Sy = ol with o > -1.
n>e n k=1
Proof:
Use theorem 1.38, 1.2 and 1l.4. &

Next we prove a similar statement concerning the class II. Here however, we

have to require beforehand that the auxiliary function is in RVje

Definition 1.40

A sequence of positive numbers {cn, n=20, 1, 2, ...} is said to be a I(a)-

sequence if there exists a RVy-sequence {a,} such that

(o3 - C
lim 12X 2 = log x for all x > O. (1.100)

n+o %
Lo
The next result shows that it is possible to use earlier results obtained in

this chapter for the class II.

Theorem l.41
If the sequence {cn} is a N(a)-sequence, then the function f defined by
f(t): = ] belongs to the class II.
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Proof

Since {an} is a RV sequence, by definition 1.40 we have

g Llexlz] = % g Cffnxlz] T “fnx]  *[nx]

a a a
n+o n n+o [nx] n
lnx] " c
4+ Um —2 % - 3n z + 1n x for all X, z > 0.
n+eo n

This implies (take x = m, z = 1) that

[od - C c - C

lim n—i L 0, which implies lim-—-r—lig—--——--rl =
nso n n+eo n
ke . ,-c,.a_.
- 1qm p-2Rdsl b oo g por ke 2 fixed,
a_, . a
n+e j=1 nt+j n

since {an} is a RVy-sequence.

Hence for all x > 0 we have

im Lexl T Crel o Slex) T Cflelx] Plex]

+
o 2[¢] tm qex] q¢)
c -c
b 1o ST CEL
tro [t]
(use the fact that [tx] - [[t]x] is bounded). &

The final theorem is not concerned with RV sequences proper but it provides a
criterion for regular variation when ‘one only has convergence through a

certain sequence of reals tending to infinity.

Theorem 1,42
Let f: R" » R+ be continuous and let the positive sequence {an} satisfy a, * @

and an+1/an + 1 (nro).
f(a_t)
Suppose lim ———— = P(t) exists for all t in an open interval V of R+, where
nsw n
by, and P(t) are finite and positive for n > 1 and t e V.

Then f € RVZ for some o € R.
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Proof

Note that V n u!

V # f for all u in a non—empty interval K.

f(anut) w(ut)

If t, ut ¢ V we have f(ant) > WE)

(n+e),

Hence 1if we write fu(t) = f(ut)/f(t) we have

P(ut)
fu(ant) > ey (n+e)

for all t e V n (u_IV).

Now write f*(t):= fu(et), an*:= log a,.
Then f*(t + an*) converges as n»» for all t in a non—empty open interval J.
Let € > 0 be arbitrary.

Define for k € Z, m ¢ N

Ck,m’= n {t e Ry £2(t + an*) € {ke~e, ketell.
n>m
Hence, since the set Ck o is closed for all k, m, J is non—empty and open and
2

Je v Ck o e can apply Baire's category theorem (see Hewitt and Stromberg
k,m

p. 68). It follows that one of the sets C o contains an open interval I,
bl
which means that

ke=e < £*(t + a *) { kete for n 2 m, t € L.

Since an* + oo - an* + 0, it follows that U a * + I contains an

a%
o1 oon

interval of the form [to, ®), hence
ke~e < f*(t) £ kete for all t > toe

Hence lim fu(t) = lim f(ut)/£f(t) exists and is finite and positive for all
tae tre
u € K. The proof is finished by an application of theorem l.2. e

I.6 Discussion
We do not attempt to give a full bibliographic account of the material of this

chapter. Instead, we give at least one key reference for each of the main

topics.
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Most of the results from section 1.1 are already present in J. Karamata's
papers (1930) and (1933) in some form. The present form of the uniform
convergence theorem (th. 1.,3) and of the representation theorem (th. 1.5) is
due to Van Aardenne-Ehrenfest et al. (1949) and de Bruijn (1959). Our method
of proof for theorem 1.2 stems from Cziszar and Erdds (1964) and has been used
also by Bingham and Goldie (1982). Theorem 1.8 (a general-kernel Abelian
theorem) is due to Karamata (1962).

Properties 1 up to 4 from prop. 1.7 originate from Karamata's original papers.
A reference for the inequalities in properties 5 up to 7 is Pitman (1968). A
reference for the statements on inverses of RV functions is de Haan (1970).
Property 11 has been taken from Feller (1971) and property 12 from de Haan
(1977).

Some of the results of section 1.2 (class 1) appear in Bojanic and Karamata
(1963), many of them have been taken from de Haan (1970) after a recursion to
monotone functions via the uniform convergence theorem (th. 1.14), Theorem
1.20 is a version of a theorem due to Bingham and Teugels (1980); the present
form is believed to be new., The notion of inversely asymptotic functions and
its applications have been taken from Balkema, de Haan and Geluk (1979).

The material of section 1.3 (class T) has been taken mainly from de Haan
(1970). Some of the properties of prop. 1.31 are new. The problem how to
extend the theory of the class T' to functions which are not monotone is still
open, The results on Beurling slowly varying functions (section 1.4) are due
(with different proofs) to Bloom (1976).

The application to differential equations (th. 1.36) is due to Omey (1981).
The section on regularly varying sequences is a compilation (except for the
material on [(a) sequences) of the articles by Bojanic and Seneta (1973),
Galambos and Seneta (1973) and Weissman (1974), the latter with improved
proof.

Theorem 1.42, due to Kendall, has been presented here with a new short proof
due to Balkema.

We end with some remarks about generalizations.

A theory of regular variation for functions f: R + C has been developed by
Vuilleumier (1976).

A reference for the notion of regular variation and I—-variation for functions
f: R; -+ R+ is de Haan and Omey (1983).

Generalizations of the class NI can be found in Geluk: I-regular variation
(1981) and Omey and Willekens: II-variation with remainder (1986). The latter
title alludes to the notion of "slow variation with remainder", see Aljancié,
- Bojanié and Tomié (1974), Goldie and Smith (1987). A somewhat different

generalization will be discussed in chapter 3.
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I1. Transforms of regularly varying functions

In this chapter all functions we consider are assumed to be measurable unless
otherwise stated.

In Chapter 1 we have seen that regular variation is preserved under certain
transformations. Under suitable regularity conditions we have for example:

t
if £ e RV, (a > 0), then [ £(s)ds e RV sup f(t) e RV,
0

]
17 ocecx

and the generalised inverse ff ¢ Rrv -1* Under somewhat more restrictive
conditions the converse statements al;z hold. In this chapter we study two
other transforms that preserve regular variation: the complementary function
(see definition 2.1) and the Laplace transform (see definition 2.11). In fact,
when discussing the Laplace transform we will need the results about the

complementary function.

IT 1. The complementary function

Definition 2.1

+

a. Suppose f: R' + R is bounded on finite intervals of R+, f(») = o and

f(t) = o(t) (t+»), Then the complementary function £f¢ is defined by

£9(y) = sup {f(x) - xy; x> 0}, vy > O.

b. Suppose f: B" » R is bounded in every interval (a,») for a > 0 and

f(0+) = =, Then the inverse complementary function f. is defined by

fc(x) inf {f(y) + xy; vy > 0}, x > 0. Lo
We shall concentrate on results for the complementary function, which plays a
role in Tauberian theorems for Laplace transforms. Similar results hold for
inverse complementary functions.
In case

X

£(x) = [ s(t) dt < » for x > 0 (2.1)
0
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with s: (0, =) » (0, =) continuous and strictly decreasing, then the transform
f® takes a particularly simple form. We find the supremum by differentiation:

“+

s (y)
£9(y) = £(s(y)) - ys¥(y) =
0

s(uw)du - ys (y) = f s (wdu, (2.2)
y

where s¥ is the inverse function of s.

Note that any complementary function f£¢ is convex, since the concave upper
hull of f has the same complementary function as f itself. Compare (2.1) and
(2.2).

Now a regularly varying function with index between 0 and 1 is close in a
certain sense to a concave function (see lemma 1.23). In order to derive
relations similar to (2.1) and (2.2) for functions in RV or II, we use the
concept of inversely asymptotic functions (see definition 1,21). The following
lemma is an immediate consequence of definition 2.1 and enables us to derive

the asymptotic behaviour of £ from the behaviour of f.

Lemma 2.2

Suppose f1!.f2= R+ + R are bounded on finite intervals of R+, tend to « and

fi(t) = o(t) for t+w, i =1, 2,

(1) If £, < £, then £] < £,.

(i1) If f; = £, on a neighbourhood of «, then fi = f; on a right-neighbour—
hood of 0.

(iii) 1If fz(t) = fl(at) with a > 0, then f;(s) = fi(s/a).

Rod
Theorem 2.3
Suppose f satisfies the assumptions of definition 2.1 and let s: g+ gt
be decreasing and continuous, s(t) » 0 (t+=) and
1
f s(x)dx < =,
0
Then
% t
f(t) ~ f s(x)dx (t+w) (2.3)
0

implies
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*(ﬂ
£u) ~ [ s (x)dx  (u > O4), (2.4)
u
where s* is the inverse function of s.
Conversely if f is non-decreasing and s e RVf} with 0 < vy { 1 (hence
s¥ e RV0 _1), then (2.4) implies (2.3). &
-Y
Before giving the proof of the theorem we state the followlng corollary which
is immediate by lemma 1.23.

Corollary 2.4
Suppose f: R" » R satisfles the assumptions of definition 2.la.

(1) Let a,B be related by o ! + g™l = 1,

Then

f e Rv: with 0 ¢ a ¢ 1 (2.5)
implies

£ ¢ Rvg with 8 < 0 . (2.6)
(13) Also

fel (2.7)
implies

£ ¢ 10, (2.8)

Conversely if f is non-decreasing (2.6) implies (2.5) and (2.8) implies
(2.7). $

Proof of theorem 2.3

First we prove the Abelian part (the implication (2.3) + (2.4)).
Recall that (definition 1.21) the relation (2.3) means: For every a > 1 there
exists a constant tg = to(a) such that

t/a ta
f s(x)dx L f(t) < f s(x)dx for t Z.to’
0 0

The three implications in lemma 2.2 give for some uy > 0

f s+(x)dx S_fc(u) < f s+(x)dx for 0 < u (_po,
ua u/a

which means that (2.4) holds.
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Conversely, suppose (2.4) holds and f is non-decreasing.

Note that the function f© satisfies the assumptions of definition 2.1b. Hence
(fc)c exists and is in fact the concave upper hull of f, Application of the
analogue of the Abelian part ((2.3) + (2.4)) of theorem 2.3 for the inverse

complementary function of £¢ shows that
% t
fl(t) = (fc)c(t) ~ é s(x)dx (t » =),

Application of lemma 1.23 gives f1 e Il or RVT_Y with 0 < y < 1.

By the definition of the classes @I and RV this implies for y e (0,1] and
0< el

fl(t(1+a)) - fl(t) 1}-5 - } -
1im = s 'ds/ s 'ds < 1, (2.9)
oo fl(t) - fl(t(l—e)) 1 12¢

where the case y = 1 corresponds to f; ¢ Il.

As a consequence of this asymptotic concavity, for fixed a > 1 any interval
(t,at) for t sufficiently large will contain a point x with f(x) = fl(x)
(apply (2.9) with (1 + ¢)/(1 - €) = a)., Hence since f is non-decreasing fl(t)
< fl(x) = f(x) < f(at). Since obviously f < fl’ we find f i f. and hence f

1
satisfies (2.3). od

It follows from the above discussion that theorem 2,3 and corollary 2.4 above
give results in case f ¢ RV, with 0 < ¢ < 1 and in case f ¢ T, which can be
seen as an extension to a = 0. It is also possible to prove an extension for a
= l. In order to see which order of magnitude for f is appropriate for such an
extension, we recall that the existence of £¢ requires f(s) = o(s), s+
(definition 2.la). It turns out that, as in the case o = 0, the appropriate
function class is again closely related to the class T.

In order to formulate the results we define two classes of functions, related
with the classes T and T' and the relation ~ (def. 2,6), which is the analogue

*
of the relation ~ (see definition 1.21) appropriate for this context,

Definition 2.5

+

A measurable function f: R' > R is said to belog to the class I’ if there

exists a positive function a such that for all x > 0

f(tx) - f(t) _ -
lim T = log x.

tro
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Notation: f ¢ T" or f ¢ I (a).

If the function f: R' » R+ is non-increasing and if there exists a positive

function b such that

o f(ut+x b(u)) . X

1i; ) e " for x > 0, (2.10)

u+0+
then f belongs to the class F(O).
(compare definition 1.24). &
Notation: f ¢ P(O).

Note thét f ¢ I if and only if -f € H. Also it can be proved to see that
£(t) ¢ {0 if and only if £(1/t) e I.

From theorem 1.28 it follows by a change of variable that if f ¢ F(O), then
there exists a differentiable function B: R+

g(u) + 0 (u » 0+) and

» RT such that B'(u) » 0,

o«

dx

f(u) ~ exp {£ B(X)} (u » 0+). (2.11)
Conversely, if
f(u) ~exp { [ ZE:; dx} (u + O+), (2.12)
u

where c(x) + ¢ > 0 (x + O+) and B as above, then f ¢ F(O).

Definition 2.6
Suppose fl’ fZ: R+ + R. We say

fl(t) ~ fz(t), tro (or £, % £.) (2.13)

1 2

if for every constant a > 1 there exists a t, = t,(a) such that for all t > t
0 0 = 0

£,(ta) < a f,(t)
and (2.14)
£,(ta) < a £y(t). &
(D), £,(0)

Note that fl(t) ~ fz(t) (t+=) if and only if- e rl
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Before formulating an extension of theorem 2.3 above to the case y = 0 (or a =
1 in cor. 2.4) we give a lemma that is helpful for understanding the role of
the classes I~ and (%),

Lemma 2.7
IR+

+ B, Then f(t)/t € T if and only if there is an

(i) Suppose f:

eventually decreasing continuous function s ¢ I such that
t
£(t) & [ s(x)dx (te), (2.15)
0

(13j) Suppose £: BF > B 1s non-increasing. Then f € P(O) if and only 1if there
is a decreasing t € F(O) such that

f(u) ~ f t(x)dx (u » O+). (2.16)
u

Proof
(1) Suppose f(t)/t e I'. By Lemma 1l.23a there exists a decreasing continuous
function ¢ with -y ¢ I(a) such that - £(t)/t t -p(t) (t+=).
Application of theorem 1.17 gives

. te
~-p(t) + (te) = [ (x)dx = o(a(t)).
0

1

* -
Hence ~y(t) ~ - t Y(xe)dx by proposition 1.22 (ij) and (2.15) is

I O-—rr

satisfied with s(x) P(xe).

t

Conversely, if s ¢ ' then ¢! f s(x)dx e T (see theorem 1.17).
0

From (2.15) and prop. 1.22 (ij) it then follows that f(t)/t e I .

(i3) If £ ¢ r(0) ye have the representation (2.11). The derivative of the
right~hand side of (2.11) is
1y B'(x)
t(u) = - ¢ exp{f ——B—(—X—)'—dx} (c e R,
u
which is in r€0) since it satisfies the representation (2.,12).
The converse part is a consequence of the analogue for F(O) of corollary
1.29.2 and proposition 1.31,7.
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Theorem 2.8
Suppose f satisfies the assumptions of definition 2.la and let s: R+ > R+ be
1
decreasing, s(«) = 0 and [ s(x)dx < =.
Then 0
t
f(t) ~ f s(x)dx  (tow) (2.17)
0
implies
-]
£%Cu) ~ [ s¥(x)dx (u > OH). (2.18)
u

Conversely if f£(t)/t 1is non-increasing, s e I is decreasing, then (2.18)
implies (2.17). &

Before we prove theorem 2.8 we state the following corollary which is an

immediate consequence of theorem 2.8 and lemma 2.7.

Corollary 2.9
Suppose f: R+ > R satisfies the assumptions of definition 2.la.

Then f(t)/t e¢ T implies £€ ¢ F(O).
Conversely if f(t)/t is non-increasing £ ¢ F(O) implies f(t)/t ¢ I . od

Proof of theorem 2.8

Suppose f satisfies (2.17). By definition 2.6 this means : for every a > 1
there exists a constant to(a) such that for all t Z_to
t/a

1ta
= [ s(x) d&x £ £(t) < a [ s(x) dx.
) - -0

Application of lemma 2.2 then gives for some u, >0

-ﬁ s*(x)dx < fc(u) £ a s*(x)dx for 0 < u ¢ ugs

e~—8
e—8

which means that (2.18) holds.
Conversely, suppose (2.18) holds and f is non-decreasing.
Note that the function f¢ satisfies the assumptions of definition 2.1b.

Hence (fc)C exists and is in fact the concave upper hull of f.
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Application of the analogue of the Abelian part ((2.17) + (2.18)) of theorem

2.8 for the inverse complementary function of fC shows that
c t
fl(t): = (f )c(t) ~ f s(x)dx (x+®), (2.19)
0

Application of lemma 1.21 gives fl(t)/t eI
Suppose a is the auxiliary function of s ¢ I « Then (2.19) implies

fl(t(1+e)) - 2fl(t) + fl(t(l—e))

lim
t ta(t)

£,(t(l+e))  £,(1) £(c(1-e))  £,(1)
lim[(1+e) { TS I Y+ (lme) sy T T Y1/a(e)
t+oo

= ~(14+e) 1In(l+e) - (l-€) 1In(l-e) < O

for 0 < ¢ < I, Since f; is the concave upper hull of f it follows that for
fixed a > 1 any interval (t, at) contains a point x such that fl(x) = f(x)
provided t 1is sufficiently large. Since fl is concave, fl(t)/t is non-

increasing. Hence

£, (ae) p O ) {ON
at - X x — t

for all t sufficiently large. On the other hand we find since f; > f

fl(t) fl(at) f(at)
T2 3t 2 Ta

This proves f ~ f_, hence (2.17). <&

l’

Results similar to theorem 2.8 with a suitable definition of the complementary
function can be given in case o > ! and o < 0. This possibility is mentioned

in the paper of Bingham and Teugels (1975).

IT 2. The Laplace transform

J. KRaramata introduced the concept of regular variation in 1930 for use as a
suitable condition for Abelian and Tauberian theorems for Laplace transforms.

His Tauberian theorem generalized an earlier result of Hardy and Littlewood
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(1930) for functions f(x) asymptotic to x% (a > 0) as xs=, We start here with
Karamata's result (theorem 2,11). Next we treat a similar generalization of
the case f(x) = c log x + o(1) (this involves the class II; see theorems 2.l4
and 2.16), We proceed with a generalization of the case log f(x) ~ x* (0 < a <
1), due to Kohlbecker (corollary 2.20a) and end with the borderline cases a =
0 (which corresponds in some sense to the case o = » in Karamata's Tauberian
result; see cor., 2.20b) énd a = 1 (see theorem 2,26). That way the whole
spectrum from functions like log x to functions like exp(x/log x) 1s covered.

Note that for o > 1 the Laplace transform does not converge (see definition

2.10).

Definition 2.10

4

Suppose f : R* + R is measurable and [ e_txlf(x)ldx < » for all t > 0.
0

The Laplace transform f of the function f is for t > 0 defined by

£e) = t [ & £(x) dx. (2.20)
0

If £ is non-decreasing and f(0+) = 0 we can write f(t) = f e_tx df(x) .
0

Theorem 2.11 (Karamata, 1931)

Suppose a > 0 and f satisfies the assumptions of definition 2,10. If

£ e RV: (2.21)
then

£ e rVO (2.22)
and

E(1/t) ~ T(1 + )E(t) (&t > o). (2.23)

Conversely if xB f(x) is positive and non-decreasing for some B ¢ [0,1) and
all x > 0, then (2.22) implies (2.21). &
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Proof

The implication (2.21) + (2.23) is a special case of theorem 1.8. Now (2.22)
follows.

Next suppose xsf(x) is non-decreasing for some 0 < 8 < 1 and (2.22) holds. For
a,v > 0

£(v) > v [ e VEE(x)dx > £(a)/q(av)
a

with q(v):= {vB f u-Be_udu}-l.
v

Hence for t,x,p > O
xPE(xt) /£(p/t) < xPq(px). (2.24)

Since xBf(xt)/f(t-l) is non-decreasing in x for all t > 0 and bounded by
qu(x), we can apply the selection principle (Widder (1941), p. 26): if

t, o there exists a subsequence tar + @ and a function ¢ such that

lim £(xt_)/£Ce Y = 4(x) (2.25)
' n n
n' e
for each continuity point x of ¢. It is now sufficient to prove that each such

function is of the form ¢(x) = x%*/T(l+a). Note that (2.22) and (2.25) imply

Lim £(xt_,)/E(p/t!) = p* ¢(x) (2.26)

n'so

for each continuity point x of ¢.

By Lebesgue's theorem on dominated convergence (note that q(v) ~ eV, v »

and q(v) ~ cv_B, v + 0+), we get for s > p (using (2.24) and (2.26))

b

~X8s ~Xs

lim s [ e p%p(x) dx < .
n'+w» 0

f(xtn,)/z(p/tn,) dx =s [ e
0

But then also, since f(p/tn,) ~ f(t;})p_a (n' + ),

00
. -XS
lim s f e
n'swo 0

£(xt_,)/E(E Ddx = s é e 4(x)dx

which 1s now true for all s > 0. On the other hand we know
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R - ~ _1 -~ ~ _1 -
lim s é e xsf(xtn,)/f(tn, Yx = lim £(s/t_,)/f(t ) = s °

n'+e n' -+

The uniqueness property of the Llaplace transform (Widder (1941) p, 80) now
gives ¢(x) = x*/T(1+a) for x > O, $

Remarks

1. For non-decreasing f it is also possible to prove the implication (2.23) »
f ¢ RV. For details the reader is referred to Drasin's paper (1968).

2. Note that if f : R" » R is locally bounded and measurable and if

log f(x) = o(x) (x + =),

then f(t) < « for t > 0.
In particular this is true if log f(x) = o(x) is replaced by £ e RV.

Corollary 2,12 (= proposition 1,7.12)

Any f ¢ RVZ with a + 1 € N is asymptotic to a function f1 with the property

that the absolute values of all its derivatives are regularly varying.

Proof

If a > 0, there is an increasing function fo(t) ~ f(t) (t+*=) by proposition
1.7.3. g

Define fl(t) = ;o(llt)/r (1 + a). For o < 0 a similar proof can be given. ¢

Our next result contains an o-version of the above theorem.

Theorem 2,13
Suppose f satisfies the assumptions of definition 2,10 and let g € RVZ with
a> 0,
1f
£(t) = o(g(t)) (t»=) (2.27)

then

E(1/t) = o(g(t)) (tse). (2.28)
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Conversely if f is non-decreasing and (2.28) holds, then (2.27) is true.

Proof
Suppose (2.27) with g ¢ RV,, @ > 0. Without loss of generality we may suppose
that g satisfies the assumptions of definition 2.10.

For € > 0 arbitrary, there exists t, such that f(t) < e g(t) for t Z_to. Hence
e_s/tf(s)ds (- £

(o] o

1 s/t

e g(s)ds < 2 & T'(l+a) g(t).

o
]
s
8

g

for t sufficiently large by theorem 2.11.
Since g € RVa with a > 0 we have
to o
't—l f e_s/tf(s)dsl < - f | £(s)|ds = o(g(t)) (t+=).
0 0

Combination of the above inequalities then gives (2.28) since e > 0 is
arbitrary. The converse impriéation for non—decreasing f follows immediately
since f(t) < e f(1/t) by (2.24). &

For positive functions f ¢ 1 it is possible to improve the result for a = 0 in

theorem 2.11.

Theorem 2.14
Suppose f satisfies the assumptions of definition 2.10. Then

fel (2.29)
implies
£er. (2.30)

Conversely 1if f 1is non-decreasing then (2.30) implies (2.29). Moreover
f € M(a) implies

2.1
f(e) = f(c ) _
tiz a(t) =Y (2-31)

where vy is Euler's constant. ed
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Proof
The implication (2.29) + (2.31) is a special case of theorem 1.18.
Note that f ¢ N(a) and (2.31) imply f € H (s%e theorem 1,13).

In case f(t) # 0 on (0, ¢t o)s note that | ¢! f —s/t £(s) ds | £ ¢!
0
f If(s)lds and the right-hand side is o(a(t)) (t+»), which shows that (2.31)

is also satisfied in this case. Conversely suppose f € HO and £ 1is non-

decreasing. Without loss of generality we may suppose that f(0+) = 0, Then the

Laplace transform of the non-decreasing function g defined by
t

g(t) = f sdf(s) satisfies
0

£(t) = [ g(s)ds. (2.32)

-~ t
Hence g ¢ RV?1 by proposition 1.19.5. This in turn implies g ¢ RV? by theorem
2.11. Application of theorem 1l.17 finally gives f ¢ I o

Corollarz 2,15
If £(tx) - £(t) » log x (t>), then £(t 'x 1) = £t~ 1) » log x (t+m).

The converse holds under the assumption f is non-decreasing. Moreover then
£(t) = £Ct71) > y, trw,
It is possible to glve a Mercerian result here of a restricted type:
-~ . 4t
if (f(t) - f(t 1))/t 1f sdf(s) + y (t+») with f non-decreasing and

0
f(0+) = 0, then f ¢ Il. See Embrechts (1978). Ded

Example
If £f(t) = clog t+o(l) (¢ > 0) then f(t—l) = ¢ log t =cy + o(l), t+e,

The converse holds under the assumption f i{s non—decreasing.

Note that the statement "f(t) - f(t—l) + vy implies £(t) = log t + o(1l)" is not
correct: take for example f(t) = t + log (t+l).

Corollary 2.16 = Proposition 1.19.6

Any £ ¢ N(a) has a companion function f] such that (—1)n+1 fl(n) € Ran for

n=1,2,... and fl(t) - £(t) = o(a(t)), t+» (define f1 by fl(t) = E(t—le—Y)).
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Theorem 2.17
Suppose that £: E" > R is integrable on finite intervals of R" and that
L € RV.. Then

0
1im f(ex) - £C8) 0 for every x > 0 (2.33)
L(t)
o
implies
lim Eggzi(z/f§8) = 0 for every x > 0. (2.34)
s+0+ s
and
£(e) - £
i - o. (2.35)
Eoroo L(t)

Conversely if f is non-decreasing, then (2.34) implies (2.33).

Proof «
Define the function g by g(t) = tf(t) - f f(s)ds,
0

Note that t:_1 g(t) is locally bounded on t > 0 and that conversely

t
£(t) = 5£%2-+ | Bigl ds. We then have
0 s

- © 1 -5
f(t) - £(1/t) _ g(t) _ -s g(ts) l-e g(ts)
1E) = tL(t) g e fei(oy 48 7 g s ter(ty 5 F

® =g
- e glts)
{ s tsL(t) ds.

If (2.33) holds the first term on the right-hand side tends to zero as t+= by
remark 3 following corollary 1.18, the second term tends to zero by theorem
2.13 and the last two terms tend to zero by similar arguments as in the proof
of theorem 2.14., This proves (2.35), Now (2.34) follows from (2.33) and (2.35)

since L ¢ RVO. Conversely suppose (2.34) holds. Then with the function g as

defined above we have

FTER N T /o WL S €0 Wl
L(t) i tL(t) < tL(t) °



- 73 -

Hence g(t-l) = o (tL(t)) (t»>x), Application of theorem 2.13 and remark 3
following corollary 1.18 then gives (2.33). This finishes the proof. Lod

Next we turn to Tauberian theorems for functions that grow faster than
polynomials.

Roughly speaking we shall prove theorems connecting regular variation of log £
at infinity with regular variation of log E at zero. It is now convenient to
switch notation: instead of log f we will write f. This has the consequence
that log % has to be considered as a function of log f, which is done in the
next definition:

Definition 2.18

Suppose f : RY » R is such that the Laplace transform of exp f is finite. We
define the function f by the relation

f(s) = log s [ exp {£(t) - st} dt, s >0 . (2.36)

0 3

In the proof of theorem 2.19 we use the concept of an inversely asymptotic
function (see‘definition 1.21) in order to treat the cases I and RVa with 0 <
a < 1 simultaneously. Tt turns out that the transform f defined above and the
complementary function f€ whose properties were described in the first part of

*
this chapter, are the same up to ~ equivalence.

Theorem 2,19

Suppose f : R* » R is such that f(s) is finite for s > 0 and let
1
s: RY + B" be decreasing, continuous, f s(x)dx € =, t s(t) » o (trx) (2.37)
0 -
and
s ¢ RV, with =1 < a < 0. (2.38)
Then

% t
f(t) ~ f s(x) dx, tee (2.39)
0



- 74 -

implies

£ (v X s +(x) dx, u » O+ , (2.40)

o8

where s+ is the inverse function of s.
Conversely if f is non—decreasing and if there exists a function s satisfying
(2.37) and (2.38), then (2.40) implies (2.39). o

Corollary 2.20
Suppose f : R' » R is such that f(s) is finite for all s > O.

Ly q—1 =1,

a. Let p, g be related by p
Then f € sz with 0 < p ¢ 1 (i.e. a = p=1 > =1) implies T ¢ Rvg with q < 0.
If f ¢ RVE, then (2.39) is equivalent to (cf. prop. 1.22)
¢ -1
£(t) ~ f s(x)dx ~ p t s(t) (t+w)
0

and (2.40) is equivalent to

Fu) ~ [ s (x)dx ~—q u s¥(w) (u > OH).
u
b. The case p = 0 translates into the following: f ¢ I (i.e. a = =-1) with

auxiliary function ts(t)+o(trm) (s decreasing) implies fe HO with
auxiliary function b(u) ~ u s <_(u) + o (u+0+F), If £ ¢ I, then (2.39) is

equivalent to (cf. prop. 1.22)
t
f(t) = f s(x)dx + o(t s(t)) (t+»)
0

and (2.40) is equivalent to
~ ? . <«
f(u) = f s (x)dx + o(u s (u)) (u +» O0+).
u
Converse statements are true under the assumption that f is non-decreasing. ¢

We prove the two statements in theorem 2.19 separately. For the proof of the

Abelian part we need three lemmas.
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Lemma 2.21

Suppose s Rt

» R is decreasing, s(«)
and let exp f(t) be locally integrable.

Define the function f by

t
fo(t) HE é s(x)dx.

Then
*
£(t) ~ £ (t) (tr)
implies
~ *
f(u) ~ fo(u) (u > 04).
Proof

Fix ¢ > 1. We claim that

exp ;o(u) - exp ?o(cu) + = for

—-ct

1
=0, [ s(x) dx < =, ts(t) + = (t>w)
0

u + K,

If we define t  such that e—to = ce “"o, then t, < 1 and

-

exp Eo(u) - exp ?0(cu) = f efo

o

efo(t/u)(e_t - ce_Ct) dt

(efo(t/u) - efo(to/u))(e—t

o8 O— 8

(t)(ue—ut

- ce—cc)dt.

cu

e

—cut
)

dt

(2.41)

(2.42)

(2.43)

(2.44)

Since f0 is non-decreasing the integrand in the last expression is non-

negative, hence the right—hand side is at least

©

(ef0(2/u) - efo(to/u)) f (e_t - ce_Ct)dt.

2

Note that ts(t) + = (t+=) implies exp (f0(2/u) - fo(to/u)) =

2
exp {[ s(x/w)/u dx} +» », u + O+,
t

[o]

(2.45)
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Hence the expression (2.45) tends to infinity which proves (2.44).

Now by (2.42) there exists t) = tl(c) such that f(ct) 2_f0(t) for t > ty.
Define the function f1 by fl(t):= min (fo(t), f(ct)).

~ ~ t
Then efo(u) - efl(u) = u fl (efo(t) - efl(t)) e_Ut dt = o(1l)

0
(u » 0+). Together with (2.45) this gives fo(cu) < fl(u) for all u suffi-

ciently small. The right—~hand side is at most f(u/e) since fl(t) < f(et).
Hence %o(cu) < ' (u/c) for u < u .

Similarly we find f(cu) < ?0 (u/c) for u £ ). This finishes the proof since
¢ > 1 is arbitrary. Lo

Lemma 2,22

If £ is non-decreasing and fc, f are well-defined, then
E(s) > £°(s) for s > 0. (2.46)

Proof

For u, s > 0 we have

exp t(s) = s | e_xs+f(x)dxlz s [ e_xs+f(x)dx_2 ef(u) s [ e XSdx
0 u u

= exp{f(u) - s u}.

The proof is finished by taking the supremum over u > 0 on the right-hand
side. Lod

Lemma 2,23
t
If f(t) = f s(x)dx, t > 0, where the function s is continuous, decreasing and

5 € RVq with -1 < o < 0, then for all £t > 0

F(s(t)) = £5(s(t)) + logls(t) [ e W

-t

du}, (2.47)

where the function A is defined by

A(u):= u s(t) - f(t+u) + £(t). (2.48)
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Moreover the function A is convex, positive for u # 0, u > -t, A(0) = 0 and
satisfies the inequality
A(t+u) > (1-2%') u s(t) for u > 0 (2.49)

and all t sufficiently large, where o < a' < 0.

Proof

By the definition of the complementary function f¢ we have

E(s(t))

£(t) - t s(t) + log{s(t) | e_A(u)du}
-t

£(s(t)) + log{s(t) [ e MWy,
-t

Since s € RVa we have s(2t) S_ZG's(t) for t > tos where o < a' < 0. Now fix

t > ty. Then since s ié decreasing we have
AT(u) = s(t) - s(t+u) > s(t) - s(2t) > (1 - 2% )s(t)

for u > t. Hence we have

t+u t+u '
Attu) = [ A%(x) dx > [ A"(x)dx > (1 - 2% ) us(t)
0 t
for u > 0. @

Proof of theorem 2.19 (Abelian part)

t

f s(x)dx with s ¢ RV,
o -

(-1 £ a < 0) continuous, decreasing and ts(t) » o (tsx).

In view of lemma 2.21 we may assume that f(t)

Application of lemma 2.23 gives

H(s(r)) = £5(s(£)) + logls(r) [ e 2(Way)
-t

t )
< £%(s(t)) + log s(t) {f l.du+ [ & 8(EWay ¢
Zt 0

< £5(s(t)/c) - (£°(s(t)/e) - £5(s(t))) + log{2es(t) + (1-2% )13,
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Now we have for any ¢ > 1

¢ S(t)<- -1
£5(s(t)/e) = £5(s(1)) = [ sT(x)dx ) (1-c” es(e),
s(t)/c

hence
F(s(r)) < £5(s(t)/e) - (1-c"Lyes(t) + log{2ts(t) + (1-2%")71},

Now let t+wo, Then s(t) + O and ts(t) + = by assumption. The last inequality
then gives ?(s) < fc(s/c) for sufficiently small s,

Combination with lemma 2.22 now gives £(s) o fc(s), s + O+,

In view of theorem 2.3 this finishes the proof. g

Before giving a proof of the Tauberian part of theorem 2.19 we discuss its
main line. We have seen that under the main assumptions (2.38) and (2.39) the
complementary transform and the ~—-transform have the same behaviour up to i
equivalence,
1f f satisfles (2.40), by the analogue of theorem 2.6 for the transform f, its
inverse complementary function (E)c satisfies
~ x t
h(t):= (f)C (t) ~ f s(x) dx (t+«),
0
It is then sufficient to prove h % f. The proof is by contradiction. We show
that if the relation f : h is not true, then f X fi cannot be true.

oo

~ *
Since on the other hand h(u) ~ f sé(x)dx (u + 0+) by theorem 2.3 and
u
~ x* % .
f(u) ~ [ s (x) dx (u » O+) by assumption,

u

this gives the required contradiction. In order to evaluate f we separate the
domain of integration (0,») into two parts: an interval I and 1its complement

1%,

Lemma 2.24 below shows that the contribution of I® is small, i.e.

h(t) - ts(t)

log s(t) fc e dt S-ﬁ(cs(t))
1

for t sufficiently large.
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Lemma 2,24 ¢

Suppose f(t) = f s(x) dx (t > 0) with s continuous, decreasing and s ¢ RVZ

with -1 { o < 0. Suppose moreover ts(t) + ®» (t + »). Then for every 0 < g < 1

there exist constants c¢ > 1 and t, such that for t Z_to

log s(t) | du < ¥ (es(t)), (2.50)

I

. ef(u)-v-us(t)

where I = (t - Bt, t + Bt).

Proof

Fix t > t, and define the function A as in (2.48). Application of lemma 2,23
1
gives A(Bt) = A(—g-t +-§t) > (1 - 2®

depending on B and t > t.

) %tsfgt) > YlBts(t) for some y; > 0 not

Similarly A(-Bt) > Yy Bts(t) for t > ty. Since A is convex and A(0) = 0,

o

s(e) [ Llw-us(e) g £(8) = es(t) [ oA (W)
t+Bt Rt
QF(D)-t(E) ) T mACBE)=A(umBE) g
Bt
¢ F(EIES(D) (g -y BEs(D) T M

du £

u = e-YIBtS(t)S(t) T oE (1) — us(
0 t

This together with the corresponding inequality for the integral over (0,t—8t)

gives

log s(t) [ ef(u)—us(t)

IC

du < T(s(t)) - yts(t), (2.51)

where yi= 8 min (v}, v,).
Application of theorem 2.19 (Abelian part) gives

Flu) x f s+(x)dx , u > O+, (2.52)
u

Hence for any e€ > O there exists u_ such that for u_ﬁ_u0

o
f(u) < f s (x)dx < J s (x)dx + 3 ¢ u s ((1-e)w) <
(1-¢g)u (14+2¢)u

(2.53)
F((1+ed)w) + 3 € u s ((1-e)u)
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since s¥ is decreasing. Since s* e RV?I/G (see proposition 1.7.9) we have
s ((1-e)u) RN

is a constant. Substitution in (2.53) gives for uiﬁ_uO

s*(u) for u sufficiently small, where e, = co(e) > (l—s)—l/a

Ew) ¢ H(+e)u) + 3 & c u s (w).

The proof 1is completed by application of the inequality (2.51) if we take
c=1+¢> 1 s0 that 3 ¢ c, <y and u = s(t). &

Proof of theorem 2.19 (Tauberian part)
Define the function h by h(t): = (?)c(t). From T > £€ (lemma 2.22) it follows
that

h(t) > (£9) (t) > £(¢t). (2.54)
The latter inequality follows since (fc)c is the concave upper hull of £,

~ x 2
From f(u) ~ | s(x) dx (u » O+) it follows by theorem 2.3 that
u
* t =]
h(t) ~ f s(x)dx, t + » with s € RVa (-1 < a<0). (2.55)
0

It remains to prove that f(t) i h(t) (t » «), The proof is by contradiction.
If £(t) : h(t) is not true, then since f and h satisfy (2.54), there exists a
sequence T, + @ (n+») and a constant ¢ > 1 such that h(rn/c) Elf(TnC)' This
implies since h and f are non-decreasing, that h(t/c) > f(t) for L <t < ety

or (with t = 7, Ye, B =1 - c_%)

h(t/e) > £(t) for t eI : = (t

a Bt_ t +Btn). (2.56)

n "~ Ptn,tn
Together with (2.54) this gives for s > 0

f(s) = log s | of(w—us < log (s f ohlu/e)-us,
0 1
n

+ s f eh(u)—usdu). (2.57)

IC

n

t
Note that (2.55) implies by lemma 1.23 that h(t) = f SI(X) dx where s; mnon-
0

increasing and sl(t) ~ s(t) (t+w), So if we take £ = h and t = £t in lemma
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2.24 we can estimate the second integral at the right-hand side in (2.57). As

a consequence there exists c¢' > 1 such that (with syt = 51 (tn))
. ﬁ(csn) ﬁ(c'sn) -
f(sn) < log(e + e ) < h(c"sn) + 1, (2.58)

c¢" = min (c,c') > 1.

Now appllcatlon of the direct statement of theorem 2.19 shows that (2.55)

implies h(u) ~ f s (x)dx, u + O+. Since also xs (x) + o (x + O+), we have
u
ﬁ(sn Jey - ﬁ(snc") + o (nre),

This takes (2.58) into the form %(sn) < h (sn/c") for sufficiently large n,

hence f and i are not inversely asymptotic.

* o
On the other hand by assumption f(u) ~ f s+(x)dx and we already found

© u

~ *

h(u) ~ f s+(x)dx , u > O+, hence a contradiction is obtained. &
u

Now that the proof of theorem 2,19 has been completed, let us pause to
consider its place with respect to the previous results., In theorem 2.11 we
considered functions f ¢ RVZ (0 & < =»). Theorem 2.19 concerns functions f£

such that log f ¢ RVZ, (0 <a'< 1) or log f ¢ T (the case ' = 0). We argue

that the case a' = 0 of theorem 2.19 can also be considered as the borderline
case o = o of theorem 2.11. To this purpose note that f ¢ RVZ is equivalent
(a> 0) to
o (O
t-m

for all x > 0 provided that 1lim a(t) = o. Now (2.59) with lim a(t) = « is
tyoo troo
equivalent to log f ¢ 1N(a) which is the condition for theorem 2.19 with

a' = 0.
Incidentally, also the condition for theorem 2,14 (the refinement of theorenm
2.11 for a = 0, which is f ¢ 1T, is of the form (2.59) namely with the

condition lim a(t) =
tro

() 1/ale) | g0 EED )y L (S o (e

log x ~ log(Frey™ (o) HEO)
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We mention that an alternative result for the case a' = 0 of theorem 2.19 has
been proved by Parameswaran (1961). Without proof we mention the result here

for completeness.

Theorem 2.25
E" » R is such that ?(s) is finite for s > 0.

o«

0

Suppose f:
Then £(t) ~ {L(t)}"! (t+=), L ¢ RV
Fu) ~ L' (1/0) (u > 04).

Conversely if f is non-decreasing, ?(u) ~ L*(l/u) (u > O+) with L ¢ RVS, then
£(r) ~ {(L()}") (tom). ®

*
and L. is non~decreasing imply

In the above theorem the funtion IL* is the conjugate slowly varying function

as defined in chapter ! (see the remark following theorem 1.8).

The final theorem of this chapter gives a result for functions growing even
faster than the functions from theorem 2.19. This result can be considered as
the borderline case a = 1 of theorem 2.19. Note that a > 1 is impossible,

since then the Laplace transform does not exist any more.

Theorem 2.26
Suppose f: ®" » R is such that ?(s) is finite for s > 0. Let (see definition
2.5)

1
5 R > R+ be decreasing, continuous, s(«) = 0, f s(x)dx < =
0 (2.60)
and s ¢ " (a).
Then
t
£(t) & [ s(x)dx, t+e (2.61)
0
implies
e 0 <«
f(u) ~ [ sT(x)dx, u » O+, (2.62)
u

Conversely suppose f 1is non-decreasing, f(t)/t 1s non-increasing and s

satisfies (2.60). Then (2.62) implies (2.61). Lo



- 83 -

Remark
Theorem 2.26 does not hold without the condition f(t)/t non-increasing. For a
counterexample the reader is referred to Geluk, de Haan, Stadtmiiller [1986].

It is also possible to relax the assumptions on s in the theorem.

Corollary 2.27
Suppose f : R" + R is such that ?(s) is finite for s > 0.

If f(t)/t € I (see definition 2.5) and lim £(t)/t = O, then T ¢ F(O) (def.
2.5). e
Conversely, if f(t) is non—decreasing, f(t)/t non-increasing,

1im £(t)/t =0 and f ¢ P(O)

tre

, then f(t)/t ¢ I .

Moreover (2.61) with s as in (2.60) is equivalent to

f(t) = ts(t/e) + o(ta(t)), trwm. (2.63)

Proof of cor. 2.27

(0))

For the first'part (the implications f(t)/t e Il = fer we use theorem

2.26 and lemma 2.7. In order to prove (2.63) notice that - s ¢ l(a) and

f(t) *

s(x) dx (t+=),

[
l'flv—-
Qe-—rr

hence by proposition 1.22 and theorem 1.17

t
£ _ L f g(x)dx + ofa(t)) =
t t 0
—1 t
= s(t) + {—s(t) +t f s(x) dx} + o(a(t))
0

s(t) + a(t) + ola(t)) = s(t/e) + ola(t)) (t+w),

The last equality follows directly from the definition of I (a). &

We prove the two statements of theorem 2.26 separately.

For the proof of the Abelian part we need two lemmas.
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Lemma 2.28 , t

1f s satisfies (2.60) and f(t) = [ s(x)dx, then (2.62) holds.
0

Proof

Since s ¢ I (a) we have s(t) - s(2t) > %a(t) log 2 for t > tye Fix t > t, and
define the function A as in (2.48). Recall that A(u) is convex and non-
negative for u > -t. Moreover A'(t) = s (t) - s(2t) > } a(t) log 2, whence for
u>0

AQuk2E) > ACE) + (wE)A'(E) > uA'(r) > 4u a(t) log 2. (2.64)
We have (lemma 2.22 and 2.23)
£50s(t)) < H(s(t)) = £5(s(t)) + log s(t) [ e 2Way . (2.65)
-t

The integral on the right-hand side can be estimated using (2.63):

2t

s(t) Wy, <s(t) [ 1. du+ s(t) | e-A(u+2t)du_g
-t -t 0
£ 3ts(t) + 2s(t)/(a(t) log 2). (2.66)

o

Consider this expression for t+w, Now s ¢ I, a € RV0

s(t) = o (log t), t+» (prop. l.7.1). So

and hence ta(t) + =, log

log s(t) f MWy o log t (t+x), (2.67)
-t

By theorem 2.8 f£%(u) ~ f s+(x)dx, u > 0+,

u
In view of (2.65) and (2.66) the proof is finished if we show that

log t - log t

po T + 0 as t»w, (2.68)
f s+(x)dx f s(x)dx ~ ts(t)
s(t) 0
t (-]
An application of theorem 1.17 shows that f s{x)dx -~ ts(t) is in va'
0

It follows that the left-~hand side of (2.68) is in RV

-1 hence (2.62) follows.



- 85 -

Lemma 2.29
If the assumptions of lemma 2.28 are satisfied, for any &§ > 1

(£/6)(u) - F(5u)/6% » =, u > OF (2.69)
(85)7(w) ~ 62(u/8) + =, u » OF. (2.70)
By (af)” we mean g with g(é) : = af(t) for a > O.
Proof

Fix & > 1. Since £© < ¥ (lemma 2.22) and F(u) ~ £5(u) (thm. 2.3 and lemma
2.27)

(£/6)"(w) > (£/8)(u) = £5(su)/6 ~ E(Su)/ 8, u » O+.

This proves (2.69) since f(u) + ® ags u +» O+, In order to prove (2.70) note
that

5 F(u/8) > § £5u/8) = (85)%(u) ~ (8£) (u), u » O+. &

Proof of theorem 2.26 (Abelian part)
t
Define the function fo by fo(t) = f s{x)dx.
0
Fix 6§ > 1 and define the function f; by fl(t) = min{fo(t)/d, £f(t/8)}.

Since f ~ fo it follows that £,(t) = fo(t)IG for t > t . Hence

exp(£_/8)"(u) = exp(¥ () = (2.71)
%

u f {exp(fo(t)/s) - exp(fl(t))}e-utdt = o(1), u » O+,
0

Now (2.69), (2.71) and £,(t) < £(t/6) imply £(éu) _>_'f“1(u) > ?0(5u)/52 for u
sufficiently small. Similarly we find 52€0(u/5) > F(u/8) for u sufficiently
small by introducing the function fz(t) = max(éfo(t), £(ts)).
This proves f(u) ~ ?o(u),u + O+, and the latter 1is asymptotic

to f s+(x)dx by lemma 2.28. Lo
u
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In order to prove the Tauberian part of theorem 2.26 we need an analogue of

lemma 2.24.

Lemma 2.30 "

Suppose f(t) = f s(x)dx with s ¢ T (a), s non-increasing, continuous and
0

s(») = 0.

For every 0 < B < 1 there exist ¢ > 1 and t, > O such that for t 2 t,

log s(t) f ef(u)-us(t)duls g(s(t))/c, (2.72)

IC

where I = (t-Bt, t+8t).
Proof
For t > 0 fixed and u > -t define A(u): = us(t) - f(t+u) + f(t) as in (2.49).
Then as before

A'(u) > s(t) - s(ttu)
and, using s ¢ n1"(a), for t > to u 2> gt/2

A'(u) > 4 a(t) log (1 +-§) = 2cy a(t).
This implies

Bt

A(Bt) = A(Bt/2) + f A'(u) du > ¢
gt/2

o Bt a(t)

and since A is convex and A(0) = 0, for t Z_to

s(t) | of(w)-us(e) , - £(t) - ts(t)s(t) | RCPR
t+Bt at

¢ ef(E)=ts(t) (py ? e-A(Bt) - Au - Bt)g,

Bt

¢ f(D) = Es(8) = ¢, Bra(t)grey [ oMWy, -
0

ool ? SE(W-us(t),

t
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Similarly for some ¢; > 0 and t sufficiently large

o t-?t SF(W) = us(B)g, ¢ gmepBralt) () } JEw) = us(0)y
0 0

Combination of the two inequalities gives for some c,y > 0 and t sufficiently
large

f(t) = us(t)

log s(t) fc e du < F (s(t)) - czsta(t).
I

It is now sufficient to prove that ta(t) ~ ?(s(t)) (t+x),
This follows from the direct statement of theorem 2.26:

00 t
¥s(t)) ~ [ sT(du =t {t7} [ sCu)du - s(£)} ~ ta(t) (t+=),
s(t) 0

the last asymptotic equality being a consequence of s ¢ II'(a) and theorem
1.17. @

Proof of theorem 2.26 (Tauberian part)
Suppose (2.62) holds. The function h defined by h(t):= (f)c(t) is concave by
the definition of the 1inverse complementary function (definition 2.1).

Moreover h 1s eventually positive. Hence h(t)/t is eventually non-increasing.
By lemma 2.22 we have h(t) > (fc)c(t). Also (fc)c is (by definition) the
convex upper hull of f, hence (£%)_ > f.

As a consequence, for ¢ > 1 we have for sufficiently large t
n(e) > (£9) _(e) > £(e).

From (2.62) it follows by the analogue of theorem 2.8 for the inverse
complementary function that

t

h(t) ~ f s(x)dx (t+=), (2.73)

0
It remains to prove that f(t) ~ h(t). The proof is by contradiction. Suppose
that f(t) * h(t) 1is not true, then, since £(t) < h(t), there exists a
sequence T > and a constant ¢ > 1 such that

f(rn) h(crn)

{ ——/—
T et
n n
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Now f(t)/t and h(t)/t are non-increasing, so for T, <t < 1 /c we have
e g - 1/4
f(t)/t S_f(rn)/rn < h(TnC)/TnC.S h(tvYe)/tVc. Hence for t,=T1,c and

g=1- U e get

f(t) < h(te)
t te

on In:= (tn - Btn, tn + Btn). (2.74)

We want to apply lemma 2.30 with f = he. In order to do so, we have to show

t
that there exists a non-increasing function s; such that h(t) = f sl(x)dx and

sy € T-. Since h is concave, there exists a non~increasing funé%ion 8y such
that h(t) = } sl(x)dx. Since s ¢ I (a) we have, by lemma 2.7 (i), in view of
(2.73) h(t)/% € T (a). This, together with proposition 1.19,2, shows that
5] € M (a).

Now we can apply lemma 2.30 with f = h. For n sufficiently large with 8, =
Sl(tn) by (2.74)

?(sn) _<__log{sn f exp(h(te)/c ~ tsn)dt + s, f exp(h(t) - snt)dt}

In Ic
n

S_log{exp(h/c)~(sn/c) + exp(ﬁ(sn)/c)}-

Since (h/c)”(sn/c) ~ (h/e)¢ (sn/c) = hc(sn)/c ~ ﬁ(sn)/c (n+~) by the Abelian
parts of the theorems 2.8 and 2.26, we find for all ¢ > 0 and sufficiently

large n
¥ (s_) < log (eh(sn)(1+e)/c te h(sn)/c) < ﬁ(sn)(1+e)/c 1

and hence %(sn) S_E(sn)/fz for nlz_no, which meanstthat £(s) ~ B(s) (s + 0F)
cannot be true. But on the other hand since h(t) ~ f s(x)dx (t+«) implies that
0

ﬁ(s) ~ f s+(x)dx ~ ?(s) (s » O+) by the Abelian parts of the theorems 2.8 and
s
2.26 and we have obtained a contradiction. ed

We give some examples, showing the scope of applicability of the above

results.

Example 1
Suppose
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f(t) = (log t)* (log log t)B + o((log t)“-l(loglog t)B) (t+=) (2.75)

o> 0, BeR.
By theorem 2.14

E(u) llog ula (1og|10g uI)B—(Y + o(1)) ]10g u]a_l(logilog u|)B

(u » O+). (2.76)

Conversely, if f is non-decreasing, (2.76) implies (2.75).

Example 2
Suppose

£(t) ~ tYlog )8 (t » =), a> 0, B ¢ R (2.77)
By theorem 2.11

£(t) ~ T(1+a) u *|log u|® (u » 0+). (2.78)

Conversely if f is non~decreasing (2.78) implies (2.77).

Example 3
Suppose f(t) ~ t%(log t)B’ tv@, B € R, 0 < a < 1. In order to derive the

asymptotic behaviour of f we can apply theorem 2.19 : relation (2.39) is

t
equivalent to f(t) ~ f s(x)dx (t+=) (see proposition 1.22).
0

The function s satisfies s(t) ~ a t% 1 logh® t, tow,

a tl—a 8

We define the function ¢ by ¢(t):= 3] log— t, to,

As in the remark following theorem 1.8 we find

-B/(l—(:t)tl/(l-cc)(1og )B/(l-a)

+
$ (£) ~ (1 - a) t t oo,
As a counsequence the inverse function of s satisfies

S~ §7E) ~ (1m0 I QU= (1o o HU7ysoy,
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Application of theorem 2.19 then gives

- O

Fu) ~ f s*(x)dx and the last expression 1s asymptotic to 1 u s¥(u)
u

by theorem 1.4. Hence we find

)(l—u-B)/(l—a) aa/(l-a)u-a/(l-a)(_log u)B/(l'a)

?(u) ~ (l-a , u > O+

and a converse statement holds under the assumption that £ 1s non-decreasing.

Example 4

Consider the function
£(t) = t/(log t)B + o(t/(log t)B*L, tse, g > O. (2.79)

We want to derive the asymptotic behaviour of the transform f defined by

o

?(s) = log s f exp{f(u) ~ su} du
0

as s + O+ (see definition 2.18).

Note that the funmction f(t)/t is in I (a) with a(t) ~ B(log t)—(8+1), t+» (see
definition 2.5). So we may apply theorem 2.26 and we have to find a functon
s € I (a) satisfying (2.60) and such that

t
f(t) ~ f s(x)dx, t+e, (2.80)
0

Our first try is —-(x/(log x) ) (log x) -8 B(log x)“B-1 = ((log(ex))™® +
o((log 781 (o). .
Now (log ex))” B is positive and decreasing for x > 1 and f(t) = f (log ex)_sdx
+ o(t(log ©)7B7 1), s 1
We define s(x):= (log ex)_B for x > 1 and decreasing and integrable on (0, 1).

t
Note that -s ¢ H(a), hence = = f s(x)dx ¢ I(a).
Since f(t)/t = -1 f s(x)dx + O(a(t)), we have (see proposition 1.22)
t 0
% -
- f(t)/t ~ -t 1 f s(x)dx (t+»), hence (2.80). Application of theorem 2.26
0

then gives

Fu) ~ [ sS(x)dx (u > O+).

u



- 9] -

It remains to evaluate the right-hand side. Now s (%) = exp(~1 + x_l/s) and

hence

u1+1/a -1/a

Fu) ~ a exp(-1 + u ), (u » O4) (2.81)
by de 1'Hopital's rule, Note that by theorem 2.8 the complementary function £¢
has the same asymptotic behaviour.

Conversely if f satisfies (2.81), f is non-decreasing and f£f(t)/t non-

increasing, then f satisfies (2.79).

Example 5
If £(t) = t/(log t)B + B(1 + B)t (log log t)/(log t)1*® + g (1 - log B)
t/(log t)1F8 + o(t/(log £)1B), tse (2.82)

for some B > 0, then T(s) ~ exp(s_l/s), s » O+ and the converse statement

holds under the assumptions f non~decreasing and f(t)/t non-increasing.

Proof

1/8,

Suppose f satisfies f(s) ~ exp(s— s + 0+, £ is non-decreasing and f(t)/t

is non-increasing. We derive the asymptotic behaviour of f using theorem 2.26.
Note that T e T(O).

-1-1/8

Since f(u) ~ %-f b4 exp(x_l/B)dx (u > 0+)
u

we have s¥(x) ~ B_lx-l-l/eexp(x—l/s) (x » O+)

and s*((log y)7B) ~ g7ly(log y)!*B (yse).

As in the remark following theorem 1.8 we find by inversion
s(x) = {log Bx - (1+B) log log Bx + 0(1)}—5.

Hence by lemma 2.7, theorem 2.26 and corollary 2.27 we find

t _, Bt
f(t) 3 f dx 6 : 8 1 dx B
0 {log Bx ~ (1+B) log log BRx} 0 {log x - (148) log log x}
and
f(te/B) = te/8 + o(t/(log t)1™8y.

{log t = (1+8) log log t}B
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Since
{ log t }B -
log t = (1+B) log log t
- log log t 2.1log log ty2,8B
{1+ (1+8) Yos vt (1 + o(1))(1+B) (__§3§_%__) }
= 1+ p(1ep) LOBIOBE 4 p1igy2(1 4 o(1)) (228108 £y2
log t log t
we find
fee/p) = —SLB— s o(repy ERBLEL, (L,
(log t) (log t) (log t)

which is (2.82).

I1.3. General kernel transforms

Two 1mportant subjects in the preceding section of this chapter were Abelian
and Tauberian theorems for the Laplace transform of functions belonging to the
classes RV and II. In this section we replace the Laplace transform by a more
general kernel and derive Tauberian results. We restrict our attention to

positive kernels and use the following notation.

Definition 2,31

Suppose k, f : R+ + R are measurable. In this section the transform f is
defined for t > 0 by

£(t) = [ k(s) £(ts)ds (2.83)
0
and is supposed to be finite for t > Q. Lo

In ch. 1 it was observed (thm, 1.8) that if f ¢ RV: and t%(t) max (t”F%, t+e)

is integrable on (0, =) for some ¢ > 0, then
£()/£Ct) + [ s%k(s) ds (tsw).
0

As a consequence, 1f the last integral 1s positive, the function f ¢ RVa.
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We prove a converse statement, thereby using Wiener's Tauberian theorem.

Definition 2.32

The function g : R" » R is slowly decreasing if

lim 1im inf {g(tu) - g(t)} > O. (2.84)
>+ tae uefl,y]
Without proof we quote the following result (see e.g. Hardy (1948)).

Lemma 2.33 (Wiener-Pitt)
Suppose the kernel ko € L1 (0, =) satisfies the condition

oo
f ko(s) s_ix ds # 0 for all x € R (2.85)
0

and the function g : R" > R is bounded and slowly decreasing.
Then

1
t

o 8

S [- )
kofg) g(s) ds » ¢ é ko(s) ds (t+w) (2.86)
implies

g(t) + ¢ (t+=), (2.87)
e

Two Tauberian theorems are proved, the first one for functions in RV, the
second one for functions in 1. The corresponding Abelian statements were

derived in theorems 1.8 and 1,20 respectively. Lo

Theorem 2.34
Suppose f: R+ > P+ satisfies: tB f(t) is non-decreasing for some 8 2> 0 and
f e RVZ with o > 0. If the kernel k is non-negative, t® k(t) max (t%, t7%) is

integrable on (0,~) and
7 -1
[ k(s) s¥*ds #£ 0 for all x ¢ R,
0

then
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f(t) ~ (f smk(s)ds)—1 . E(t) (t + »), hence f ¢ RVZ .
0

Proof

Without loss of generality we may assume f k(s) ds/sB > 0 (if not reformulate
1
the theorem for kl(t):= k(ct) for a suitable constant ¢ > 0). For t > 0 we

have the inequality
£(r) = [ k(s) £(ts) ds > £(t) [ k(s) ds/s® > o,
0 1
hence the function 6 defined by
o(t) = f(t)/£f(t) 1is bounded for t > 0 and positive.

Note that for 1 <u <y, t >0

8(tu) - 8(t) 2£(_t2_ {_%g’-_)__ -1 2 f(t) { 2 f(t),. -1},
f(t) uf(tu) f(t) u sup f£(tu)
uell,u]

-~

Since f ¢ RVa, by the uniform convergence theorem (theorem 1.3.3), we have

Un  inf {6Ctw) - 6¢t)} > Lim 28X 1=y By = ~(1-y"%") Tim oce),

t+o uell,u] ta+o £(t) t+o

which implies that O is slowly decreasing.

We proceed as in the proof of theorem 1.8, applying Lebesgue's theorem while
using the inequalities from prop. 1l.7.5 and the fact that 6 is bounded. It
follows that

K(s) o(ts) (X5 _ 5% ds > 0 (tow) .
£(t)

o8

Since

? k(s) 8(ts) ixiﬁil ds = ? k(s) f(ts)ds _
0 £(t) 0 £(t)

this implies

[ k(s) o(ts) s¥ ds » 1 (t+=),
0
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Application of the Wiener-Pitt theorem (lemma 2.33) above with ko(t) = k(t)t®
and f(t) = 0(t) shows that

o(t) = £()/E(t) » ([ k(s) s%s)™} (tow). &
0

Note that the Tauberian part of theorem 2.11 (Karamata's theorem) is a special

case of theorem 2.34.

Remark
Under certain additional assumptions it is possible to prove that

f(t)/f(t) » a (ts>») implies f ¢ RV (Jordan 1974).

Theorem 2.35

+

Suppose f : R =+ RT is non-decreasing and f ¢ T(a). Suppose the kernel k is

non-negative, k(t) max (t®, t™®) is integrable on (0, ») and k satisfies the
Wiener condition

[ k(8)s Mdx # 0 for all x ¢ R.

0
Then f ¢ H(ao) with

a (t) ~ ([ k(s) ds)”! a(t) (t»w) and
0

£(t) - £(t) [ k(s) ds
0
a(t)

+ [ k(s) log s ds (t»w).
0

Proof

As in the proof of theorem 1.17 we define the function y by

t
p(t) = £(t) - t71 [ £(s) ds , t > O.
0

R R Lt
Now observe that y(t) = f(t) - t L f f(s) ds. Application of theorem 1,17
0

©
.

(a » ¢) gives, since f € II(a), P(t) ~ a(t) (t+») and ¢ € RVO

Since f is non-decreasing, the function t ¢(t) is non-decreasing and we can

apply theorem 2.34 to obtain ¢ ¢ RVy and y(t) ~ a(t) (f k(s) ds)_1 (tr).
0



- 96 ~

A second application of theorem 1.17 (c + a) now gives f ¢ H(ao)
7 -1
with ao(t) ~ (é k(s) ds) a(t).

The last 1limit relation is a consequence of theorem 1.20 (the Abelian

counterpart of the present theorem). od

Note that the Tauberian part of theorem 2.14 is a special case of theorem
2.35.

II.4. Discussion

The connection between an RV function and its complementary function has been
noted first by Matuszewska (1962). See also Bingham and Teugels (1975). The
present exposition, both for RV and I/r (th., 2,3 and th. 2.8) has been adapted
from Balkema, Geluk and de Haan (1979).

The main theorem for the Laplace transform, theorem 2.11 (for RV functions) is
of course due to Karamata (1931). No exposition is given here of the Mercerian
implication: E(l(t) ~ T(l+a) f(t) (t>w») implies f ¢ RV. This has been proved
by Drasin (1968).

Theorem 2.14 (class II) has been adapted from de Haan (1976). The o-results of
theorems 2,13 and 2,16 stem from Geluk and de Haan (1981)., Theorem 2.19
(concerning functions like e.g. exp{(log x)B x%}, 0 Lax< 1, 8> 0 1is a
combination of results from Kohlbecker (1958) and Balkema, Geluk and de Haan
(1979) for the cases 0 < a < 1 and a = O respectively.

Finally theorem 2,25 (concerning functions like e.g. exp{x/log x}) has been
adapted from Geluk, de Haan and Stadtmiiller (1986). Wagner (1968) contains a
somewhat similar result,

General kernel results like th., 2.34 and 2.35 can be found in Bingham and

Teugels (1979) and Bingham and Teugels (1980) respectively.
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I11. O~-Regular variation and O-versions of the class I

In this chapter we Investigate what can be said if we only assume

— f(tx)

lim
£ >o0 f(t)

{ o for x > 0, (3.1)

instead of the existence of the limit (i.e. £ ¢ RV) as in chapter 1. We also
consider a similar extension of the class 1.

For this wider class of functions it 1is possible to derive results which are
analogous to those of chapter 1. In fact straightforward generalizations of
many of the characterizations from that chapter are possible. Part of the
material of this chapter has been treated in greater generality in two
articles by Bingham and Goldie (1982).

I1I. 1. O-regular variation

The following notation is useful in this section:

Definition 3.1

The functions f and g are of the same order at infinity, notation f(x) X g(x)
(x+») if f and g are both positive and if there exist 0 < ¢y < ¢y < » and Xq
such that c; < f(x)/g(x) L ¢y for x > xq» Lod

Theorem 3.2 below offers results analogous to the results of theorems 1.4, 1.5
and prop. 1.7 for regularly varying functions., Recall from theorem 1.2 that
if 1im £(tx)/f(t) exists for all x > O, then the limit has the form x%

tao
for some index o e R. Theorem 3.2 alsc offers an analogue of this result (part

iij) for functions satisfying (3.1).

Theorem 3.2

Suppose f: R" > R is measurable and eventually positive. The following

statements are equivalent:
- f(tx)

(i) iiz ??ET_ { o for all x > 0. (3.2)

(ij) There exist a, B ¢ R, tg and ¢ > 1 such that

—lXB ¢ £{tx)

= f(t)

e <ecx®forall x> 1, t > tg,. (3.3)



(iiJ)

(iv)
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log Tim f(tx)/f(t)
t>oo

A= 1lim exists and A < +w (3.4)
log x
Koo
and
log lim f£(tx)/f(t)
B:= lim L exists and B > -, (3.5)
log x
Koo
There exist ty 2 0 and o ¢ R such that

st E(s)ds X t96(t) (tow). (3.6)

0

t—

(v) There exists 1t ¢ R such that
[ s lE(s)ds X £TE(D) (tow). (3.7)
t
(vi) There exist ty > 0 and measurable functions a and c with c(t) 1 and a
bounded such that for t > ty
t
f(t) = c(t) exp {f a(s)ds/s}. (3.8)
t
. 1
(vii) There exist a, B ¢ R, ty > 0, x; > 1 such that
8 f(tx) o
X LD < x* for t_>_t2, x_>_x1.
Proof
(1) » (13)

Define the function F by F(t):= 1ln f(et). First we prove that if I ¢ R is an

arbitrary finite interval, then

Tim sup {F(t+u) - F(t)} < . (3.9
tro uel

Suppose the contrary holds. Then there exist sequences t,o> @, X € I

143

(n=1, 2, ...) such that

F(tn + xn) - F(tn) > n.
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For an arbitrary finite interval J © R we consider the sets

v
[}

n
{y e J; F(tn +y) - F(tn) > E} and

=
]

n
{y e d5 F(t +x) - F(t_ +y) >3}

The above sets are measurable for each n and Y VY =J hence either
’

1,n

A(Yl n) > $A(J) or A(Yz n) > 4+x(J) (or both) where A denotes the Lebesgue
bl - Hd -

measure.

Now define

- . - - h - = . -
Zn = {z,F(tn + Xn) F(tn + X z) > 7> X, = 2 € J} {z, X -z¢€ Y2,n}'

Then A(Zn) = A(YZ n) and thus we have elther
»
A(Yl,n) >4 AJ) or AMZy) > D)

for infinitely many n ¢ N (or both), where all the Yl n's and Zn's are subsets
’

of a fixed finite interval.

]

Hence we have A(lim sup Y )= 1lim M VU Y
1,n _. Ll,n

n+o ks n=k
for the Zn's (or both). This implies the existence of a real number Xq

) > $A(J) or a similar expression

contained in infinitely many Y, a °F in infinitely many Z,e This coutradicts
3
the assumption lim F(t + xo) - F(t) < », Hence (3.9) is proved.

too
Next we apply (3.9) with I = [0,1]. There exists a constant cqy such that

F(t+u) - F(t) ico for all1 0 {u <1l and t zto. Then for t zto and y > 0
[yl-1

F(t+y) - F(t) = F(t+y) - F(t+[y]) + I {F(t+k+l) = F(t+k)}
k=0

< (Iyl+D ey £ cgy + cqe

This finishes the proof of the right-hand inequality in (3.3). The proof of
the left—hand inequality can be given if we replace f by 1/f in the above

proof.

(i3) » (4ij) Trivial.
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(iij) » (i)
From (iij) it follows that for some a, B € R, Xq > 1 we have

XB < o(x) < a(x) £ =%

for all x Z_xo > 1 with

e T f(tx)
3(x):= ti: 6 (3.10)
and
o f(tx)
(%) &= ti: o) (3.11)

This gives (3.2) for x > xy. For x ¢ (1, xo) we have the inequality

___ f(exxy) ) £(exxg)  (xx )
< Tim —r—c / lim <
e L(E) o () = 8

0
Similarly one proves ¢(x) > O for all x > 1. These two inequalities imply
3(x) < » for all x > 0.

_ = f(tx)
00 = U E

< o,

(1) » (div) and (ij) » (v)
The function

1
f sc--1 ££§£st (3.12)
to/t

t
y(t):= [ s° L ofesyds/tO%(e) =
t
0
is bounded away from zero and infinity by (3.3) if we choose ty as in (3.3)

and o > -B. The proof of (ij) + (v) is similar.

f£(t)

(iv) » (vi) and (v) » (vi)
With v defined as in (3.12) we have

—) = log so_lf(s)ds + c

0 o

for t > ty and some ¢y € R (since both sides have the same derivatives a.e.).

0

+—rt

t
ds

/

t

The last relation implies
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t

a o -1 o
4;—;%57}‘~\£ g% £(s)ds = t% £(r) v(t) < t% £(b).
0 0

Hence f has the required representation with a(s): = y(s)_1 - .

exp{

=

The proof of (v) » (vi) is similar.

(vi) » (i) and (ii) » (vij)’+ (iij)

Trivial.

This finishes the proof of the theorem.

Definition 3.3

A function f 1s O-regularly varying (at infinity) if £ satisfies

conditions of theorem 3.2.

Notation: £ ¢ RO.

the

The limits at the left-hand sides of (3.4) and (3.5) are called the upper and

lower index of f respectively.

Notation: index f and index f.

Remark

Note that if f ¢ RO, g measurable and f(t) xx g(t) (t+=), then g ¢ RO,

It is obvious that if k = 1/f, then index k = - index f and index k =

- index f.

Examples
1. £(x) = explln x]. Then index f = index f = 1, but f ¢ RVT.

2. Let f(x) 0 x<e

exp{o log x + B(log x) (sin log log x)}, x > e.
Then for every sequence {tk} with ty > = we have

lin £(t, x)/£(t,) = ¢(x)
ks
if and only if

lim{g(s, + y) - 8(s )} = log sCe”)
k4o

&
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with g(x):= log f(e¥), y = log x and s, = log t,.
Because sk{sin(log s + log (1 + y/sk) - sin log sy} - y cos log s, + 0 as

k+» we have

lim{g(s,+ y) - g(s,)} = a y + B vy lim (sin log(s, + y) + cos log s ).
kaoo k k ko k k

The 1imit points of f(tx)/f(t) are thus given by
$(x) = x% with ¢ ¢ [a - |8] Y2, a + lB] /21,

Hence index f = o + |B| Y2 and index f = o - IB[ V2.
Note that, if 8 = 1 and 1 < a < ¥2, lim £(0) = = but index f < O.

£ty

3. In example 2 the limit functions ¢(x):= lim f(th)/f(tk) have the form
k-)eo
o(x) = x®, It is not necessarily true that the limit function is of this

form however.

Example: if f(t) = tB(Z + sin(log t)), t > 0, B € R, then £ ¢ RO and

_ B 2 + sin(a + log x)
o(x) = x° . 5+ sin a , & € R
An example of a monotone RO function of this type is
t
£(t) = exp ([ {2 + sin(log s)}ds/s).
1

In that case we have ¢(x) = x2

exp(— cos(a + log x) + cos a).

In the above theorem the two-sided bounds can not be replaced by one-sided
bounds, For example: the right-hand inequality in (3.3) is not equivalent to
(3.4). The following is a counterexample: take F(x) = 1n f(e*) and let F be
continuous, piecewise linear with F(3n) = F(3n + 2) = —(n—l)2 and F(3n + 1) =
-n2, Then (3.4) is satisfied, but not the right-hand inequality in (3.3).

Corollary 3.4

(i) The constants a, f and ¢ in (ij) and (vij) are not uniquely determined.
If £f ¢ RO we can take any B < index f and o > index f. The constant
¢ > 1 in (3.3) however cannot be taken arbitrarily small for given f as
the following example shows:

£(t) = 2% y (t), n € N, where x is the indicator-function.

[zn, 2n+1)

(ij) Note that (3.6) holds for any ¢ > - index f and (3.7) holds for any

T £ - index f.
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(iij) 1If £ e RO, there exists fo(t) = f(t) with fo continuous. It is even
possible to obtain fo € C* by a construction similar to the one in

remark 2 following theorem 1.5. Ped

Remark
If f is non-decreasing, we can omit the lower inequalities in theorem 3.2.

Also, instead of 1lim f(tx)/f(t) < = for all x > 1, it then is sufficient to

require tre
1im f(txo)/f(t) < » for some X, > 1. (3.13)
troo
Proof
Suppose (3.13). Then f(txo)/f(t) L ¢ for t > t, and some X, > 1. With
p=1n ¢/1n x, we find
n n n~-1
f(txo ) } f(tx0 ) f(txo ) f(txo) < x 0P
£(t) f(txon_l) f(txon—z) £(t) °

Hence if x > 1 is arbitrary, there exists n € N such that xc.“—1 L£xKL xon and
f(tx)/£(t) 5_x°np S_XOQXQ.

This shows that the right-hand inequality in (3.3) is satisfied for all x > 1.
The left—hand inequality follows immediately from the monotonicity of f. &

In view of the use of this class of functions for Tauberian theorems, we are
especially interested in monotone RO-functions. We do not restrict ourselves
to the class of functions described in the previous remark however, but
conslder next a class of RO functions for which there is a positive lower
bound on the growth of the function:

Note that if f € RO and index f > € > 0, then f is at least of the same order

of magnitude as a monotone functlon that increases as a power function:

t
£(t) < ¢ [ £(s)s ' Cds,
o
t + o ((3.6), cf. cor. 3.4).



-104-

The next theorem characterizes this class of functions.

Theorem 3.5

Suppose f : Rt > R" is measurable. The following statements are equivalent
(i) o(x) = 1lim £§E§) < = for all x > 1 (3.14%4)

(13)

(113)

(iv)

(v)

(vi)

(vij)

t+oo

and there exists X, > 1 such that

o(x) = llﬂ'g%%ﬁ% > 1 for all x > x,. (3.15)
tro

There exist a, B> 0, t; > 0 and ¢ > 1 such that

-1 xB f(tx)

£(t)

< ex® for all x > 1, € > ¢t . (3.16)

Thaf g

1n 1im £(tx)/£(t)
t+o

1lim o % { @
X+
and
In 1lim £(tx)/f(t)
lim 5 >0,
In x
X+

There exist t, 2 0 and ¢ > 0 such that

s 9 L) ds<t™OE(t) (taw) .

fte—rt

[o]

There exists T > 0 such that

s T le(e) dsX 7T £(E)  (taw) .

- 8

There exist t, > 0 and measurable functions a and c with

c(t)X1 and a(t)<X1 (t+») such that

t
£(t) = c(t)exp {f a(s) ds/s} . (3.17)
to
1im f%%%% { o for all x > 0 and there exists %y > 1 such that
f£ro .
f(txl)
1im m—)— > 1.

t oo
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(viij) There exist 0 < B < a < =, ty> 0, x; > 1 such that

f(t
<P < g(i; _<_xu' for t > tos X 2 Xye
Proof
(1) » (vij)

We have to prove that ¢ (x) < «» for all x > 0, where the function & is defined

by &(x):= 1im f(tx)/£f(t).
too
Since ¢(x) > 1 for x > x, we have & (x) < 1 for x < xo_l.

By assumption & (y) < « for y > 1.
Now the inequality & (xy) < ¢ (x) & (y) and the last two statements show that
$(x) < = for x € (xo_l, 1), which finishes the proof.

(vij) » (1)

Since f ¢ RO, by (3.3) we have (1) > LB 2 ¢, for v « [i, X1]’ where
¢yt= min (c—l, 1 xls) > 0.

Define n, = min [n; o ¢(x1)n > 1}. Then for x_)_xlno there exists m > n, such

that x;™ < x < xlnﬂ'l and $(x) > ¢(x/x™) . ¢(xy™ > e $(xI™ > L.

(1), (vij) > (iJ)
Since f ¢ RO the second inequality in (3.16) follows and we only have to prove

that the second inequality holds for sufficiently large x. Take Xy > xg,
define X; = log X, 1= 0,1 and define the function F as in the proof of
theorem 3.2. We shall prove that for an arbitrary finite interval I < [Xl’ )

lim inf {F(t+u) - F(t)} > O. (3.18)
tro  uel

First we shall prove this for I = [Xl, 2X1].
Suppose the contrary holds. Then there exist sequences t, > o x, €1
(n =1,2,...) such that F(tn+xn) - F(tn) < 1/n. Define

J = [Xoa X1/2]’

Y= {ys F(t, + y) = F(ty) < V2n, y e J},

<
N
|

= {y; F(ty + x) - F(t+y) < 1/2n, vy € J}.

and 2 = {z; F(tn+xn) - F(tn+xn—z) <1/2n, x_ - z € J}

n

= {z; x,~ z ¢ Yz,n} < 4%, 2% - Xgl.
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Proceeding exactly as in the proof of theorem 3.2 one obtains (3,18) for

I= [Xl’ 2X%;], 1.e. there exist constants c, > 0 and t, such that
F(t + u) = F(t) > ¢, for all t > t, and u € [X;, 2X;]. Then for t > t  and

y > X, we have

F(t +y) = F(t) = F(t +y) = F(e+ {[y/%;] -1}X)) +

ly/%,1-2

+ X {F(t + (k + DX)) = F(t + kXD } > [y/Xley >
k=0

(-1 + y/Xl)co.

This proves (3.18) and the second inequality in (3.16). We omit the rest of

the proof, which is similar to the proof of theorem 3.2, &

Definition 3.6.

Suppose f:IIé+ + R 1s measurable and eventually positive, The function f 1s of
bounded increase (f ¢ BI) 1f f satisfies (3.14).

The function f is of positive increase (f ¢ PI) if f satisfles (3.15). As a
consequence, 1f f satisfies the assumptions of theorem 3.5 above, then

f ¢ BI n PI. e

Corollary 3.7

ae.

If £f € BI n PI and g: BY » R s measurable, g(t) X £(t) (t+«), then
g € BI n PI.

BI n PI < RO,

If £ ¢ RO, then there exists B > O such that B £f(t) € BI n PI.

f ¢ BI n PI if and only if f e RO and index f > 0.

If £ € BI n PI, then there exists a strictly increasing function fo such

that f(t)><fo(t), t+o, It follows that if f ¢ BI n PI is locally bounded,

then sup f£(x)><1inf £(x) X £(t), trw,
0<x$t Xt
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t
f, 1If fo(t) = exp {f a(s)ds/s} with a(s) X 1 (s+»), then the inverse function
t
f: is in BI n PI.°(Proof: similar to the proof of proposition 1.7.8).

g If f € BI n PI 1s bounded on finite intervals of R+, the generalized
inverse function f' is as in definition 1.6 and fo is as in e above, then
fHe) X f; (t) (t»=), hence f' ¢ BI n PI.

(Proof : by theorem 3.5 there exist ¢ > 1 and t, = to(c) such that
¢l E (0) < E() < e () for t > ¢,
Hence £ (t/c) < £5(£) < £ (ct).

Also f; (et) X f; (t) ~ f; (t/c) by property e above.) &

t
he If f € BI n PI and f(t) = f(to) + f Y(s)ds for t 2_t0 with § monotone,

t
then t $(t) = £(t) (t+w). (Proof: s?milar to the proof of prop. 1l.7.11).

In the sequel we need the following lemma, which can be obtained from cor. 3.7

in a way similar to the proof of proposition 1.7.6 and 1.7.7.

Lemma 3.8

a. Suppose f € BI n PI is bounded on finite intervals of R+.
For arbitrary £ > 0, there exist ¢ > 0 and t, such that f(tx)/f(t) L c for
tltoand0<x_<_£.

b. Suppose f € RO is bounded on finite intervals of R'. For arbitrary £ > 0
and o < index f, there exist ¢ > 0 and t, such that f(tx)/f(t) S_CXG for
tztoand0<x_<_5. &

The reader is invited to prove the equivalence of the following statements for

non—~decreasing f ¢ PI.

Exercise

Suppose f : rRY » R is non-decreasing.

Then the following statements are equivalent:
ftx)

a., lim HOR > 1 for some x > 1,

troo
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b. There exist B, t;y and ¢ > 0 such that

B

2 cx for all x > 1, t 2> tg.

Ce l/f mePI.

t
f f(s) ds

d. lim
tao

0
ETICON < 1.

t
e. There exists ¢ > 0O such that t~1"€ [ £(s)ds is increasing.
0

III. 2. O-versions of the class II: asymptotically balanced functions

Definition 3.9

Suppose £:R" » R is measurable. The function f is asymptotically balanced if

there exists a function a : R+ + R such that

(1) w(x): = Tim 280 = £CO) L eor a1 x > L.
a(t)
oo
(ii) ﬁ(x): = 1im £££§2—:-£££l > —-o for all x > 0.
_— a(t)
treo
(iii) There exists x;j > 1 such that

V() =:.:_igﬂt—’a‘z?;—f(-ﬁ> 0 for all x > xg-

-

Notation: f ¢ AB or f ¢ AB(a).

Examples
£f(t) = log t + 0(1) (t+»») is in AB(1).

f(E) =c -t % ceR, a >0 is in AB(t™%.
The function exp (f(t)) ¢ BI n PI if and only if f < AB(l).

Lemma 3,10

(3.19)

(3.20)

(3.21)

If f ¢ AB(a), then lim a(tx)/a(t) < = for all x > 0. Moreover we may take a

t>o0
measurable in definition 3.9 and hence in RO.
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Proof
Fix x > 0 and define y : = 1+ max (xo, i-l) with Xy as in (3.21).

Since

a(tx) _ {f(txy) - f(t) _ £(tx) - f(t)}/f(txy) - f(tx)
a(t) = a(t) a(t) a(tx) ’

we have

1 a(tx)

too

Yy) = W) ’
ao ST Wy <™ (3.22)

This finishes the first part of the proof, since x > 0 is arbitrary. The proof
is finished by observing that we may take a(t):= f(txo) -~ f(t) where xq is as
in (3.21). %

We are golng to prove a characterization theorem for functions in the class

AB. To this end we need two lemmas.

Lemma 3.11
Suppose f : B > R is measurable and a € RO.
(1) Suppose there exists X5 2 1 such that

¥(x) : = 1im ELEE%?ETESEL < = for all x > Xge

t9oo

Then for any Xy > x02 there exist ty and ¢ € R such that

f(tx) - £f(t)

2(t) (3.23)

< x% for x 2 x;, €2t

In (3.23) we may take any ¢ > index a.

(13j) Suppose there exists xg 2 1 such that

f(tx) — f(t)

P(x) = tﬂ a(D)

S0

> 0 for all x > Xy

Then for any Xy >x02 there exist ty and ¢ > 0 such that

f(tx) - f(t)

alt) (3.24)

2 c for x > X t > to.
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In (3.24) we may replace c by x' for any t < index a.

Proof

(1) Similar to the proof of theorem 3.2 (i) + (ij).

We pass to additive arguments and write F(x) : = f(e¥), A(x) : = a (%) and
X;:= log x4 for i = 0,1. First we shall prove that for an arbitrary finite
interval I c [Xl, )

Tim sup {F(t+u) - F(t)} / A(t) < =, (3.25)
t+o uel

We first prove this for I = [Xl, 2X1]. Suppose the contrary holds, then there

exist sequences t + =, X €¢I (n = 1,2,...) such that

n
[Fle, + %) = F(e ) }/ACE) > n.

Define J:= [Xo, X1/2] and

Yy oo = 1y (Fleg +y) = F(e))/ACe) > 0/2, y e T},

<
N
I

o = 1y (Fle, + %)) = F(ep + y))/AC) > n/2, v € T},

= {z; (F(t:n + xn) - F(t:n + x_ - z))/A(tn) > n/2, Xy~ Z € J}.

n

Since a € RO we have ¢ > O, ny such that A(tn) 2c A(tn + x_ - z) for n > my

and z € Zl,n by theorem 3.2. As a consequence Zl,n c ZZ,n ?or nzno, where
ZZ,n is defined by

Zyn = {z5 (P(ry + x) = F(r, + x
[Xg, 2% = Xgl.

n ~ Z)/A(e, + x - 2) > en/2, x -zelJ}ec

n n

As before we find A(lim sup 22 n) > AM1lim sup Z; ) > + 2 (J) or
n+o ? n+ew ?
A(lim sup Y1 n) > % A(J), which contradicts our assumption.
»

n+e
As a consequence we find that for some cyy by
{f(tx) - f(t)}/a(t) _<_c1 for X ixixlz, t Ztl' We shall choose ey > 0.
Finally choose x > x;, then xlmix < x1m+1 for some m > 1.
Since a € RO, there exist a, cy > 0 such that a(tx)/a(t) < cy x% for x > 1 and
t > ty.
Hence for t > max (tl’ t5)
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P £(x,*0) = £, ) atx e
) RN =1 a0 T
= a(x1 t)
£(xt) - f(xlm_lt) a(xlm-lt)
+ <
a(xlm-lt) a(t) =
n k-1 o (k-1)a
< I ¢, a(x t)/a(t) < T c,c.x
£k oam $ Z 1%

it

clcz(xlma-l)/(xla-l) 5_c1c2(x1“—1)_1xa, where ¢; € R,

(ij) We omit the proof of the second part, which is similar. o
Lemma 3.12
Let £ : R* » R be measurable and a e RO. If Y and ¥ are defined as in lemma

3,11 and - = < p (x) < ¥ (x) < = for all x > 1, then there exist constants tg
and g, ¢ > 0 such that

[{f(tx) = £(e)}/a(t)| < e x% for x> 1, t > tg. (3.26)
Moreover for any ¢ > index a there exist c¢ > 0 and £y such that (3.26) holds,
Proof
By lemma 3.11 we have {f(ty) - f(t)}/a(t) iyq for t_>_t0 and nyl, where o

is a positive constant.

Then for x € [1,2] and t 2 tge

flex)~-f(t) f(2xlt) - f(t) f(2x1 t) - f(xt) a(tx)

a(t) - a(t) - a(xt) a(t)
£(2x,t) = £(¢) (zx1)° a(tx)  £(2x;t) - £(t) o
2 700 - a(t) 2 (o) - cgx

for some a € R and ) > 0 since a ¢ RO, Hence

1im inf £££§l.:.£££l

e xell,2] alt) 2 (2x1) - ¢, max (1,2% > -=. (3.27)
tro xell,2

Replacing f by —-f we find a similar upper inequality.
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An iteration procedure as in the proof of lemma 3.11 then gives (3.26). ed

We now proceed to give a characterization for functions of the class AB. First
we derive a representation for monotone functions of the class AB. We then
show that any function of the class 1is close to a monotone function in a

certain sense.

Theorem 3.13

+

Suppose f : R + R is non—-decreasing. Then f ¢ AB(a) if and only 1if there

exists r > 0 such that the function g defined by
t
g(t) : = [ s¥ df(s) (3.28)
0
is in BI n PI, In that case we have g(t:):< T a(t) (t+w).

Proof

Assume that £ e AB(a).

Since we may take a € RO by lemma 3.10, we have tF a(t) e BI n PI (see cor.
3.7) for arbitrary r>-index a. It is thus sufficient to prove tf a(t) = g(t)
(t>=).

Application of Fatou's lemma gives

1
lim () in r | £(t) - £(tv) v lay 2
0

tro tla(t) tow a(t) =
1
f(t) -~ £(tv) a(tv) r-1
>r é iiﬂ 20t a(t) v dv > 0

since £ e AB(a) and a ¢ RO. Next we prove iim g(t)/tFa(t) < ». By lemma 3.11
tam
(1) and theorem 3.2, there exist ¢, a, o, tgs ¥; > 1 such that

for tv > t; and vl xq. Write

tO/t 1/xl 1
g(t) = r{ f + f ¥ f } fgt) - f(tV) Vr—ldv.
tTa(t) 0 g/t UUx, a(t)

By (3.29) we have
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1/x _ _ 1/x ~
Tim r f 1 f(t;(t)f(tV) vr ldV S rec f 1 v oa-otr ldV
t+eo to/t 0

and the last integral is finite if we take r > o - a.

Moreover we have

t /
— f(t) - f(tv) |f§t)|
Lin | f Ne) dvlsg: a(t)( %" .

f(to)tg Tim t “/a(t).
troo
The last expression is finite if we choose r sufficiently large, since

If(t)[ < t%0 and a(t) £ tBo for t > to and some %> BO € R by lemma 3.12 and
theorem 3.2 respectively.

Finally, since f is non-decreasing and f e AB(a), we have

1 f(t) - £(t/x,) -
Tmr | ﬁiEl_%E§$EXl v lay < Tim ———___?ET_—_l— - xlr) < o,
tro 1/ 2 tao @

Combination of the above results gives g (t) X tt a(e).

Conversely, assume that g ¢ BI n PI. Using (3.28) we obtain

t
£(t) = £(0)+ [ s © d g(s) (3.30)
0
and hence
o0 - 6(0) | R Ty, G0 e (3.31)
Ta(t) 1 8(8) TTa(t)
Since g is monotone, for x > 1
lim(—tx)——-—-)-<(1-x y 1im gz’)‘) 11 ﬂ%—’s‘)—-l<m.
tro t Tg(t) tso 8

Also, with the function h defined by h(x): = 1lim g(tx)/g(t), by (3.31),
tae

Lin f(tx) - £(t) > f «

1h(u)du + x‘rh(x)-l =1 k (x).
tre t Tg(t)

Since h(t) > 1 for t > 1, but h(t) # 1 on (1l,»), we find that for x
sufficiently large
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x
k(x) >r [ T du+ xT -1 = 0.
1
Hence f ¢ AB(a) with a(t) = t~T g(t), t+w. Lol

Remark
It follows from the proof that in the above result we may take any

r > - index a.

Corollary 3.14

Suppose f is non-decreasing. Then f e AB if and only 1f there exists a non-

decreasing function g ¢ BI n PI and constants r > 0 and ¢ such that

t
£(t) = c + g(t) tT+ ¢ [ sT7L g(s) ds.
0

Proof
This is (3.30). Lol

In the sequel we will need the following variant of this result.

Lenmma 3.15‘
Suppose g: R" > B" is measurable and the function f defined by

t
£(t): = | g(s)ds/s2 is finite for all t > 0.
0

Then g ¢ BI n PI implies f € AB(a) with index a > -~l1. The converse statement

is true if g is non—~decreasing.

Proof

Suppose g € BI n PI, Since

£(ex) = £(e) _ ] gte) ds
) 1 88 27

f ¢ AB(a) with a(t) = g(t)/t and index a > ~1.

Conversely 1f f ¢ AB(a) with index a > -1 we obtain for x > 1 (use the
monotonicity of g)
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f(tx) - £(t) _ f g(ts) ds g(t) a-4
a(t) ta(t) | 2 ta(t) X

and for 0 ( x < 1

f(t) - £f(tx) < g(t) l
a(t) ——ta(t)

= 1):
hence g(t) < ta(t). Then g € BI n PI follows. $

For regularly varying functions and functions in the class 1, the notion of
inversely asymptotic functions (see definition 1.21) proved useful. Lemma

1.23 a shows that for any function f € T or f € RV it is possible to find a
smooth function f; which is inversely asymptotic to £, i.e. for all a > 1
there extfts tg(a) such that fo(t/a) < f(v) £ fo(at) for t > tg (this is
relation ~, see definition 1.21). We show that for any function f e AB, there
exists a smooth (namely non-decreasing) function fO such that the above
inequalities hold for some a > 1 and all t sufficlently large.

We start with a formal definition.

Definition 3,16
+

The functions f, f3 : R+ R are O-inversely asymptotic if there exist

constants a > 1 and tj = to(a) such that

£(t) < £o(at) t >ty
and (3.32)
fo(t) £ f(at) t 2> tge

Notation : f 9 fO or f(t) 9 fo(t), t+oo, o3

*

The reader should compare this with definition 1.21 (relation ~). It is easy

to see that if f and f; are increasing and unbounded, then f Q fq 1f and only

if the inverse functions satisfy £ = O(fo*) and f0+ = 0(f+), in other words,
g *

if £7 £y,

The relevancy of this definition for functions £ in BI n PI follows from the

following lemmas.

Lemma 3,17
Suppose £, fo € BI n PI,
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Then £(t) 2 £(t) (t»=) 1f and only if £(t) X £o(t), tre.

Proof 0 1 + index fo
Suppose f ~ f;, We then have f(t) < fp(at) < ca

fo(t) by (3.32)
and theorem 3.5. A lower inequality is obtalned similarly.
Conversely, suppose f(t) < b fo(t) for t > tg and b > 0.

By theorem 3.5 we have

-1 1 index £,
fO(at) >ca T fo(t) for t > ty, a > 1 and some ¢ > 1.

Hence f(t) S_fo(at) for t 2_max(t0, tl) if we choose a > 1 such that c—1

}index £
a— OZ »
The proof of a converse inequality is similar. od
Lemma 3.18
Suppose fO e BI nPI, £ : R" > R measurable and f 9 fge
Then £ ¢ BI n PI.

Proof

Directly from lemma 3.17 and cor. 3.7a. ed

For asymptotically balanced functions a statement analogous to that of lemma
3.18 is correct, although the proof is somewhat different, since the analogue

of lemma 3.17 is no longer true.

Lemma 3.19
Suppose fn e AB(a), f: R" + R is measurable and f Q fo- Then £ e AB(a) and

£(t) = £45(t) = 0(a(t)), tow. (3.33)
Proof

Fix x > 1.
For t sufficiently large, by definition 3.16, there exists ¢ > 1 such that

fo(tcx) - fo(t/c) f(tx) - £(t) fo(tx/c) - fO(tc)
> > .
a(t) = a(t) - a(t)

(3.34)
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For x sufficiently large, the right—hand side in (3.34) has a positive limes
inferior as t+w, since fO ¢ AB(a).

The rest of the proof is easy. Lo

Remark

There is a statement like that of lemma 3.19 for the class II: if f z fO and
fg € n(a), then £(t) - fo(t) = o(a(t)). See proposition 1.22 (ij). Th: latter
relation has a converse : 1f f5 e T, f(t) - fo(t) = o(a(t)), then f ~ fy and
hence f ¢ T (see theorem 1.13 and prop. 1.22 (ij)). The corresponding converse
of relation (3.33) is not correct as the following example shows. Note that

this remark reduces the value of corollary 3.21 below.

Example
Take fo(t) = £, £(t) =t + (-1y[log tl,,

Then fO e AB(a) with a(t) = t and f(t) - fo(t) = 0(a(t)), tro, but for

x = 2] 454 eanji t <_e2m+1 (m,n ¢ N) we have {f(tx)‘— f(t)}/t = -2, hence
lim {f(tx) - f(t)}/t < 0 for x = e3, es, e7, seey Lloes £ is mot in AB(a),

t >0

Note that the relation 9 is an equivalence relation for functions of the class
AB. The next theorem shows that every equivalence class contains a smooth
function, namely a non-decreasing function and for such functions a

representation is available.

Theorem 3.20

Suppose f: BF » R is measurable. Then the following statements are equivalent

(1) £ e AB(a).

(ij) There exists a non-decreasing function fO ¢ AB(a) such that f(t) 9 fO(t)
(taw),

Proof

(1) » (i)

Suppose f ¢ AB. Then, by lemma 3.11 (ij) there exist tg and Xy such that
f(tx) > £(t) for t 2_t0, X Z.Xl’ Now define the function fO by

fO(tOXT = f(toxT) for n = 0, 1, 2, ... and linear in between. Note that f; is

non—-decreasing. Further for s > 2 we have
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s—2 [s]=-1, _ [s]-1 s
fo(tox1 ) £ fO(tox1 ) = f(tox1 ) S_f(toxl)
IO A I NSt W NORASR

Hence we obtain fo(t/x?) < f(r) < fo(txi) for t > t0x2

1 Note that fO e AB(a)
by lemma 3.19.

(13 » (1)

This 1s an immediate consequence of lemma 3.19. od

Corollary 3.21
If f e AB(a), then there exists a non—decreasing f; ¢ AB(a) such that f(t) =

£q(t) + 0(a(t)), tre.

Proof
Use lemma 3.19 and theorem 3,.20. &

We use the above corollary to derive a more specific result.

Theorem 3.22

Suppose f : R" > R is measurable.

Then the following statements are equivalent.

(1) £ ¢ AB(a)

(1j) There exists a non-decreasing function g ¢ BI n PI and constants r > 0

and ¢ such that g(t) = t? a(t) and
0 t
f(t) ~e+r [ s~r-1 g(s)ds. (3.35)
0

Proof

N

Suppose f ¢ AB(a). Application of theorem 3.20 and corollary 3.14 shows that
we have

r

f(t) 9 fo(t)i=c + g(t)yt T+ r g1 g(s)ds,

Ot—rr

where g ¢ BI n PI is non-decreasing, r > 0 and g(t) tTa(t).
We prove that f;(t) 9 fl(t) (t+=), where fl(t) denotes the right-hand side in
(3.35).
By theorem 3.5 (viij) and the monotonicity of g for some x; > 1, t4 > 0,
"0 <8< r we have for t > tyand x >y > x;
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£ (tx) - £.(t) x — y o o_._
B S D r f g(ts) s © 1ds -1>r f s T 1ds +
t Tg(t) 1 8(0) T
& (3.36)
X B-r-1 -r, B bs B-r
rfs ds = 1 =y (;:E y - 1) - =X -
y
We take y = yg > x; such that §:= ;éa yg - 1> 0. TheP the right-hand side in
' y
(3.36) is positive for all x satisfying x BT 5 ?;:E%—E. Hence fl(tx) 2 £t

for some x > 1 and t > t(.
The reverse 1inequality follows since fl(t) < fo(t) < fo(tx). Hence we find
folt) g £,(t) (t+=), which implies (3.35).
Conversely, if f satisfies (1j), we have by Fatou's lemma

fl(tx) - fl(t)

® (ts) -r-1
lim ———f:;———————-2_r f 1im ETET_ s ds > 0
t+o t g(t) 1 too 8

8

for x sufficiently large, since g ¢ BI n PI is non-decreasing. od

Corollary 3.23
If f ¢ AB(a), then there exists a non-decreasing function g € BI n PI and

constants r > 0 and ¢ such that g(t) ;(tra(t) and

t
£(t) =c+r | s lgte)ds + 0t Tg(t)), tow. (3.37)
0

Remark

Suppose f: ®" > R is measurable and satisfies (3.37) with r > 0 and r < index
g S_IEHZ; g < =,

Then f ¢ AB(a) with a(t) ;:t—r g(t). This 1s a partial converse of corollary
3.21. %

III.3. Discussion

A reference for O-regularly varyling functions 1is Aljancié and Arandelovié
(1977).

A reference for the classes BI, PI and AB is de Haan and Resnick (1984).

There are many other possible generalizations of the classes RV and II; see the
two papers by Bingham and Goldie (1982). We have chosen the present ones since
they seem to be useful and since the results and proofs for those classes
follow quite closely the theory of RV and . The results presented after def.

" 3.16 are new and partly due to Balkema.
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IV. Tauberian theorems for O-varying functions.

In this chapter Tauberian theorems are proved for the classes of functions RO
and AB (O~regularly varying functions and asymptotically balanced functions).
Note that the results are straightforward generalizations of the corresponding
statements for the classes of functions RV and I respectively (Karamata's

theorem ~ theorem 2.11 - and theorem 2.14).

IV. 1. The Laplace transform

Theorem 4.1

Suppose f: R" » R is measurable and has a finite Laplace transform %(t) for
t > 0.
1f

f € RO with index f > -1 (4.1)

(see definition 3.2), then

£(1/t) e RO with index f(1/t) > -1 (4.2)
and

£(t) = £(1/¢). (4.3)

Conversely if t®f(t) is non-decreasing for some o e [0,1), then (4.2) or (4.3)
implies (4.1).

Proof

First suppose (4.1) holds.

Since tf(t) e BI n PI we may apply theorem 3.5.
By (3.16) there exist ¢ > 1, o, B8 > 0 such that

1ol ¢ E(ex)/E(e) < exPh for xt > £y, 0 < x < 1.

Now write
~ o1, Eolt 1 o
f(t 7)) _ -x £(tx) -x f(tx) -x f(tx)
OB g OR dx + tf/t O dx + { e Ho dx
0

H Il + 12 + I3.
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Then 0 < lim T, < Tim I,
tro £t
Since index f > -1 we have tf(t) » = (t+x). Hence

<{ = for i = 2, 3. Next we conslder I;.

o

'X/t|f(x)|dx/tf(t) <[ M) |ax/tf(t) + 0 (t+=).
0

%o
IIll.S [ e
0
This proves %(t-l) f(t) (t+»), Since f ¢ RO, it follows that %(t-l) € RO.
Hence (4.1) implies (4.2) and (4.3).
Conversely suppose t%*f(t) is non-decreasing and (4.2) holds, Then

%(s) = | et
0

o

f(t/s) dt Z_a“ f(a/s) f 7% 7t at = : c(a)f(a/s) (4.4)
a

for all s, a > 0.

Hence for B > 1 and sufficiently small s

-t -0

B . .
£(e/s) dt < 8%E(8/s) [ 7% dr + (17! [ et E(s/t)at
: B

E(s) = f e
0 0

B - o

< 8% £(8/s) f t % tae + c(l) 1f(s) f e tctYdt,
0 B8

for some c > 0; Y ¢ R, the last inequality being a consequence of theorem 3.2

(applied to the function £ (1/x)). -

Now choose 8 = B > 1 in such a way that c(l)_1 f e teeVar < 3.

Then we find B0

- B _ . _
£(s) < 2 82 £(8/s) [° £ %

! dt = : ¢, f(Bo/s) for all s < s,. (4.5)

Combination of (4.4) and (4.5) gives

Tim £ ¢ o oyt Tip £
tro £(£) 2 treo f(BO/t)

for x > 1. Note that index £ > — a > =1 since t(t) is non-decreasing. Hence
f € RO.

Finally suppose t% f£(t) is non~decreasing (for some o ¢ [0,1)) and (4.3)
holds,

We use the 1lnequality (4.4) again and find for x > 0 fixed

= f(tx) -1 — %glltg -
iii I7E9) < c(x) 1lim £(t) < o,

tro

Hence f ¢ RO. @
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Theorem 4.2

Suppose f : Rt > R 1s measurable and has a finite Laplace transform
f(t) for t > 0.

If
f ¢ AB (af) with index a; > -1, (4.6)
then
£f(1/t) e AB (a.) with index a. > = 1 (4.7)
f £
and
£(e) L E(1/t) (& > ®). (4.8)

(see def. 3.16).
Conversely if f is non—-decreasing, then (4.7) implies (4.6).

Proof

Since we may replace f(t) by f(t) + c without affecting f or f ¢ AB, we may

suppose without loss of generality f(0+) = 0.

ae

We first prove the equivalence of (4.6) and (4.7) under the assumption that
f is non-decreasing. Suppose (4.6) holds. Since index ag > =1, we may apply
theorem 3.13 with r = 1, Hence the function g, defined by

t
g(t) : = tf(t) - [ f(s)ds
0

is monotone, in BI n PI and g(t) xx ta(t) (t + =). Theorem 4.1 then gives
g(1l/t) ¢ BI n PI.

Now observe that

d

- 14 15 -
L F s =-Ef(—)+‘g3£etls

t f(t)dt = é (1/s)/s?
and hence (note that E(w) = f(O+) = 0)
~ S A
£(1/s) = [ g (1/t) dt/t2,
0

Application of lemma 3.15 then gives £(1/s) e AB (a.) and
- £
a.(t) = g(1/t)/t, hence index a. > -1, It 1s clear that this reasoning can
f f
be followed in reversed order. Hence we have proved the equivalence of

(4.6) and (4.7) in case f is non~decreasing.
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Next we prove (4.6) > (4.7) without the assumption of monotonicity for f.
For arbitrary f ¢ AB, by theorem 3.20, there exists a non-decreasing

function fo and constants tos Xg > 1 such that for t Z_to

£,(t/x) < £(£) < £, (tx)). (4.9)
Define the function fl by

fl(t) = max (f(t), fo(txo)).
Then fl(t) = fo(txo)) for t > t,, hence

t /t
-~ ~ (o]
£,(1/t) - £ (1/ex ) = £ e °{f,(ts) - £ _(tx s)}ds <

-1

£t ° e—s/tlfl(s) - fo(xos)]ds < c/t (4.10)

Ot

t
for all t sufficiently large, where c : = [° |f1(s) - fo(xos)|ds.
- - 0
Since f(t) S.fl(t)’ we have £(1/t) £ fl(llt). Combination with (4.10) gives

£(1/6) < F (1/ex)) + e/t € E(1/tx))

for some x; > X, and all t sufficiently large, since fo(I/t) € AB(a,. ) with

index a. > -1 by part a of the proof. fo

f
Introducgng the function fz(t) = min {f(t), £, (t/xo)} one finds similarly

£(1/t) > fo(let) for some %, > X and t sufficiently large.

t{e)

Hence f£(1/t) Eo (1/t), t + =

By part a we have fo(l/t) € AB(a. ). Application of lemma 3.19 then

£
finishes the proof of (4.7). °

Finally we prove the implication (4.6) » (4.8).
By theorem 3,22

0 toor-1
f(e) ~c+r [ s gls)ds =t £,(¢) (4.11)
0

where r > 0 and ¢ are constants and g € BI n PI is non-decreasing.



- 124 -

Since we have proved in part b that if £ 2 fo and £, non-decreasing then

£f(1/t) 9 fo(I/t), it is sufficient to prove fz(l/t) 2 fz(t) (t+>),

Since f ¢ AB(a) with index a > =1, we may take r=l in (4.11). (see the
remark following theorem 3.13.)
Now it follows that

£,(tx) = £,(1/¢)

X -S w =g
1im — > [ 18— 1im ggig) ds - [ &~ Tim Eﬁ—)s)- ds
treo t g(t) 0 s trw & X s troo

by Fatou's lemma, theorem 3.2 and the dominated convergence theorem.

Since the first integral 1is positive and the second integral is finite, the
right-hand side in (4.12) is positive for x sufficiently large. This proves
fz(txo) ELEZ(I/t) for t 2_t0 and some x; > 1. The pfoof of the converse
inequality needed for (4.8) is similar. Hence fz(t) 9 fz(l/t) (tr»), &

Corollary 4.3
Under the assumptions of theorem 4.3 we have f£(t) - £f(1/t) = 0(a(t)), tre=,

Examples:
1. Suppose f(t) = (log t)* + 0((log t)u—l) (o > 0) and £f(u) < « for u > 0,
Since f ¢ AB (a) with a(t) = (log t)a'l, we have f(1/t) = (log t)* +

0((log t)“‘l) and the converse implication is true if f 1s non-~decreasing.

2, A condition like index a > -1 is necessary for the theorem. This is shown
by the following example:
Let f(t) = 0 on [0, 1] and £(t) = 1 -t™% for t > 1, where o >1is a
constant.

Then f(tx) - £(t) X t™% as t » =, whereas

tHntifa=1

£(1/tx) - £(1/6)%
1/t if a> L.

Remark

Without proof we mention the following variant of theorem 4.2 and corollary
4,3, See de Haan, Stadtmiiller (1985).
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+

Suppose a ¢ RO with index a > -1, f : R » R+ is non-decreasing, f(0+) = 0

and £(t) < = for t > 0. Then the statements

(1) Tig £ — £ o for a11 x> 1 (4.13)
a(t)
tre
(ii) T f(l/tX)(;)f(l’t) ¢ = for all x > 1, (4.14)
) a
are equivalent and they imply
£(t) - £(1/t) = 0 (a(t)), tawm. (4.15)
$

IV.2. General kernel transforms

Next we prove a generalization of theorem 4.1 for more general kernels. We
restrict our attention to positive kernels as we did in the corresponding
theorem on RV functions. Moreover the monotonicity assumption for £ is

weakened (see condition (4.17) below).
From now on we use the notation
-~ «© .
f(t) = [ k(s) f(ts) ds (see definition 2.31). (4.16)
0
Theorem 4.4
a. Let £ ¢ RO with index f > =1 and suppose f is (Lebesgue) integrable on
finite intervals of R'. If the function k:R" + R' is bounded on (0,1) and
1
0< [ s%(s)ds < «
and 2
0 < [ sPr(s)ds < =
1

for some a < index £ and B > index f, then

f(t) f(t) (t+=), hence f ¢ RO.

b. Suppose f : Y » R is measurable, 1lim f(t) = » and there exist A > 1,
¢ > 0 such that e
inf {f(t') - f(t)} > -~ ¢ for all t > 0. (4.17)

et
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Suppose f(t) is finite for t > 0 and £ ¢ RO.

Suppose the kernel k € Ll (0, =) is non-negative and satisfies the

assumptions

1 o )
[ k(s) ds > 0, [ k(s) ds > 0, [ sPk(s) ds < =
0 1 1

~

for some B > index f,

L] . = L . .
I A k(A Is) and 1 3a7k(ads)
j=0 3=0

are bounded on finite intervals of R'. (4.18)
Then £ € RO.
Proof

a. Since there exist ¢ > 1 such that £(tx)/f(t) < cx® for tx 2t 0<x<1

by theorem 3.2 and cor. 3.4, we have

‘ 1 1
Tim f k(s) %%E§l ds < ¢ f k(s) s™ds < w,
tro £/t t 0

Similarly we find

1
lim [ k(s)
t+oo tO/t

£(ts)
f(t)

ds > 0.

Since k is bounded on (0, 1) and index f > -1 we have

tolt o
| f k(s) %%%?l ds[ S_(t:f(t:))_1 f k(s/t)lf(s)lds = o(1) (to=),
0 0
Similarly we find that f k(s) f(ts) ds is bounded away from zero and infinity.

f£(t)
This completes the proo% of part a.

b. We write
N Y o«
f(t) = f k(s) f(ts) ds + f k(s) £(ts) ds, (4.19)
0 Y

where vy > 0 is to be determined later and start by estimating the first term
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at the right-hand side. There exists t ¢ [ t, At] such that

inf [£(ae) = £C*) } > £(ae) = £(£ ) =1 >
t<tT AL °

> inf {gCen) = £t ) } =12 - c -1y (4.17).
t Sefdat

Since k is non—-negative this implies

Y ® P
JX(e) £(ts) ds ¢ £ { _, ysup _. f (g} [ .  k(s)ds <
0 50 ya I heegya™ I
o - YA-j
<z [E( ) 4+ e+ 1} [ 4oy Ko)s.
i=0 YA

Repeated application of (4.17) gives f(xy A_jt) < f(yt) + je.

Hence

Y
| k(s) £ (ts) ds < ey £(yE) + ¢ (4.20)

>
0 2

: =]
Y ® YA
where ¢; = [ k(s)ds > O and ¢y = ¢ T (1) [_, k(s)ds + ¢, < =
0 3=0 it 1

by assumption (4.18).
We are now going to estimate the integral over (y, «) in (4.19).

Write cy3 = [ k(s) ds. Then by (4.17) and (4.18) for t > 0
. 1 . B!
f(t) = cq f(t) + f k(s) f(ts)ds + f_ k(s) {f(ts) - f(t)}ds
0 =0 A’
]

© Aj+1
> ey £() + I [ k(s) (£(ts) - £(£ad) - cj)ds (4.21)

o A o R
> cq f(t) - ¢ f k(s)ds - ¢ f j Aj k(AJs)ds =3 ca(f(t) - c4).

1 1 3=0

Hence

K(s) £(te)ds < [ K(s) {e, + E(ts)/c,}ds.

<8

=<
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By theorem 3.2, since f ¢ RO, there exist tos €5 > 0 such that
£(ts) < c () s® for t > t,, s > 1 where g > Index f.

Hence
o cs ~ ) B ]
f k(s) f(ts)ds < - f(t) f s"k(s) ds + C, f k(s)ds. (4.22)
Y 3 Y Y
g o
Now choose y such that cg = = f sBk(s) ds £ 1/2 .
3y

Combination of (4.20) and (4.22) then gives

£() < K1) + ¢ E(yD) + ¢

st ey £ k(s)ds,

hence

o

£(£) < 2 ¢ £(yt) + 2 {c, + ¢, [ k(s) ds}.
Y
The last inequality, together with (4.21), lim £(t) = » and £ ¢ RO imply
‘ tso

£(t)  £(t) (tom).

Hence f ¢ RO. g

IV.3. Discussion

The results of theorems 4.1 and 4.2 (Tauberian theorems for RO and AB) have
been adapted from de Haan and Stadtmiiller (1985). Theorem 4.4 ( a general
kernel Tauberian theorem) has been adapted from Geluk (1985).
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