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Introduction 

Functions of regular variation were invented by Karamata in 1930 as a suitable 

class of functions in connection with a Tauberian theorem for Laplace 

transforms. Many other applications are known. The present text intends to 

give a self-contained, smooth and coherent introduction to the theory of 

regular variation and its main extensions. Disregarding the possible 

applications we show how these classes of functions are a natural setting for 

Tauberian theorems of the Laplace type. Also some results are given for 

general kernel transforms. 

In the text there is a clear separation between the various classes of 

functions. We have tried to stick to the main line of the theory putting 

little emphasis on various refinements, minimality of conditions and other 

specialized topics. The theory is built in circles, After a full treatment of 

regularly varying (RV) functions sections on the function classes II and r 

follow. The theory of these function classes parallels closely the theory of 

regular variation. 

Next (chapter 2) Tauberian theorems for Laplace transforms are treated in 

which these fun<;tion classes (RV, II and r) play a central role. 

Finally (chapter 3 and 4) the theory is further extended. Here limits are 

replaced by upper and lower bounds. Chapter 3 gives the theory of these 

further generalizations of regular variation and in chapter 4 Tauberian 

theorems are given in which these generalizations play a central role. 

Ideas and proofs from A.A. Balkema have been used in many places. We thank him 

for these contributions. 

Elli Hoek van Dijke gave our poorly handwritten text the present form. 
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I. Regular variation and the class TI 

One way to think about regular variation is as a derivative at infinity. For a 

real measurable function g write the differential quotient 

g(y+h) - g(y) 
h 

( 1. 1) 

where h * O. Now we do not take the limit h + 0 for fixed y as usual but take 

the limit y+oo for fixed h. If this limit exists for all h * O, then it follows 

(theorem 1.2 below) that the limit does not depend on hand we can write (see 

prop. 1.7.3) g(y) = g0(y) + o(l) (y+oo) where g0 is differentiable and 

lim g(y+h) - g(y) 
g0(y) = lim h 

y+oo y+oo 

If the limit in (1.1) as y+oo exists, the function f: IR++ IR+ defined by 

f(t) = exp g(log t) satisfies 

lim ~i~)) = x0 for all x € IR+ 
t+oo 

for some a E IR. Then f is called a regularly varying function. 

(1.2) 

In this chapter these functions are studied thoroughly. Moreover we study the 

more general class of functions f: IR++ IR for which 

lim f(tx) - b(t) exists for all x € IR+ 
a( t) 

t+oo 
(1.3) 

where a > 0 and b are suitable chosen auxiliary functions. The results for 

functions satisfying (1. 3) are surprisingly similar to those for functions 

satisfying (1.2). 

Finally a different variant of (1.2) is studied, namely non-decreasing 

functions f: IR+ IR+ for which 

f(t + X c(t)) 
lim f(t) exists and is positive for all x € IR, 
t+oo 

( 1.4) 

where c > 0 is a suitable auxiliary function. Here again analogous properties 

are obtained. We shall see that the functions satisfying (1,4) are essentially 

inverses of the functions satisfying (1.3) 

The chapter closes with a discussion of regularly varying sequences. 
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1.1. Regularly varying functions 

Definition 1.1 

A Lebesgue measurable function f: IR+ + IR which is eventually positive is 

regularly varying (at infinity) if 

lim f(tx) = x11 (x > O) for some ll E IR. 
t f( t) 

+a> 

( 1.5) 

Notation: f ERV"" or f ERV. 
ll ll 

We use the notation f E RVO if g ERV"" where g(t): = f(l/t). 
ll -a 

The number a in the above definition is called the index of regular variation. 

A function satisfying (1.5) with a= 0 is called slowly varying. 

Examples 

For a, 13 E !R the functions x11 , x11 ( log x) 13, x11(1og log x) 13 are elements of RV 11, 

The functions 2 + sin log log x, exp{(log x) 11} (O < a < 1), x-l log r(x), 

!:k<x 1/k, (log t) sin log log t are slowly varying. The functions 2 + sin x, 

exp[log x], 2 + sin log x, x exp sin log x are not regularly varying, 

Our next result shows that it is possible to weaken the conditions in 

definition 1, 1. 

Theorem 1.2 

Suppose f: IR++ IR is measurable, eventually positive and 

1 . f(tx) 
l.m f(t) 

t+o<> 
( 1. 6) 

exists, is finite and positive for all x in a set of positive Lebesgue 

measure, then f ERV"" for some a E IR. 
ll 

Proof 

Define F(t):= log f(et). Then {lim F(t+x) - F(t)} exists for all x in a set K 
t+o<> 

of positive Lebesgue measure. Define~: K + IR by ~(x):= lim{F(t+x) - F(t)}. 
t+o<> 

By Steinhaus' theorem (cf. Hewitt, Stromberg p. 143) the set K-K:= {x-y; x, 

y EK} contains a neighbourhood of zero, Since K is an additive subgroup of IR, 

we have K =!Rand thus ~(x) is defined for all x E IR and 

~(x+y) ~(x) + ~(y) for all x, y E !R. (1.7) 
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It remains to solve the equation (1.7) for measurable J: 

Consider the restriction of J to an interval L c IR, By Lusin' s theorem (cf. 

Halmos p, 242) there exists a compact set Mc L with positive Lebesgue measure 

AM such that the restriction of J to Mis continuous. Let e > 0 be arbitrary. 

Then there exists o > 0 such that J(y) - J(x) E (-e, e) whenever x, y EM and 

jx-yj < o (since the restriction of J to Mis uniformly continuous) and also 

such that M-M contains the interval (-o, o) (by Steinhaus' theorem). 

For each s E (-o, o) c M-M there exists x0 EM such that also x0 + s EM. Then 

J(x+s) - J(x) = J(s) = J(x0 + s) - J(x0) E (-e, e) for all x E IR, hence J is 

uniformly continuous on IR, 

Since J(n/m) = n J (1/m) = n J (1)/m for n, m E z, m * O, we have by the 

continuity of J, J(x) = J(l) x for x E IR. Now (1,5) follows. ◊ 

Theorem 1.3 (uniform convergence theorem) 

If f E RVco, then relation (1.5) holds uniformly for x E [a,b] with 
Cl 

0 <a< b < co. 

Proof 

Without loss of generality we may suppose Cl = 0 (if not, replace f(t) by 

f(t)/t(l). 

We define the function F by F(x) := ln f(ex), It is sufficient to deduce a 

contradiction from the following assumption: 

Suppose there exist o > 0 and sequences tn + co, xn + 0 (n+co) such that 

For an arbitrary finite interval Jc IR we consider the sets 

and 

The above sets are measurable for each n and Yl,n u Y2,n = J, hence either 

A(Y1,n) 2_ ½ A(J) or A(Y2,n) 2_ ½A(J) (or both) where A denotes Lebesgue 

measure, 
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Now we define 

Then ).(Zn) = ).(Yz,n) and thus we have either ).(Y1,n) l_ ½ ).(J) infinitely often 

or ).(Zn) l_ ½ ).(J) infinitely often (or both). 

Since all the Yl,n's are iubsets of a fixed finite interval we have 

).(lim sup Y1 ) = lim A( u Y1 ) > ½ ).(J) or a similar statement for the Zn's 
n+oo ,n k+oo n=k ,n -

( or both). This implies the existence of a real number x0 contained in 

infinitely many Yl,n or infinitely many Zn, which contradicts the assumption 

lim F(t + x0) - F(t) = O. ◊ 

t+oo 

Theorem 1.4 (Karamata's theorem) 

Suppose f E RV00
• 

Cl 

There exists t 0 > 0 such that f( t) is positive and locally bounded for t l_ t 0 • 

If a 2_ -1, then 

lim/f(t) a+l. 

t+oo J f(s)ds 

00 

If a< -1, or a= -1 and f f(s)ds < 00 , then 
0 

lim t f(t) -a - 1. 

t+oo j f(s)ds 

t 

(1. 8) 

( 1. 9) 

Conversely: if (1.8) holds with -1 <a< 00 , then f € RV 00 if (1.9) holds with 
Cl 

00 

-oo <a< -1, then f € RV(l. ◊ 

Proof 

Suppose f € RVa. 

By theorem 1,3, there exist t 0 , c such that f(tx)/f(t) < c for t > t 0 , 

x € [1,2]. Then fort€ [2nto, zn+ 1tol we have 

lli.L = f(t) 

f(t 0 ) f(2-1t) 

t 

n+l 
C 

Hence f(t) is locally bounded for t l_ t 0 and f f(s)ds < 00 for t l_ t 0 • 

to 



-6-

In order to prove (1.8), we first show f f(s) ds 00 for a > -1. 

to 

Since f(2s) ~z-l f(s) for s sufficiently large, we have for n~n0 

2n+l 2n 2n 

J f(s)ds = 2 J f(2s)ds > J f(s)ds, Hence 

2n 2n-l 2n-l 

2n+l 
n0+1 

00 00 00 2 

J f(s) ds i: J f(s)ds > i: J f(s)ds 00, 

2 
no n=no 2n n=no 

2 
no 

t 
Next we prove F(t):= f f(s) ds E RVa+l for a> -1. Fix x > O. For arbitrary 

to 

e: > 0 there exists t 1 = t 1(e:) such that f(xt) < (1 + e:) x0 f(t) fort> t 1• 

Since lim F(t) = 00, 
t+00 

tx tx t 

J f(s)ds J f(s)ds X J f(xs)ds 

F(tx) to 

F(t) = t 

t 1x tl 
( t+00) 

t t 

J f(s)ds J f(s)ds J f(s)ds 

to tl tl 

and hence 

F(tx)/F(t) < (1 + 2e:)xa+l ( 1.10) 

fort sufficiently large. A similar lower inequality is easily derived and we 

obtain FE RVa+l for a> -1. 

In case a= -1 and F(t) + 00 the same proof applies. If a -1 and F(t) has a 

finite limit, obviously FE RV0 • 

Now 

F(tx) - F(t) 
t f( t) 

xf f(tu) d xa+l - l 
l f(t) u + a+ l 

(t+00) (l.ll) 

by the uniform convergence theorem (theorem 1.3). Since FE RVa-t-1' (1.8) 

follows. For the proof of (1.9) we first show the finiteness of the function G 

defined by 
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Since, in case a < -1, there exists t5 > 0 such that f(2s) i_ 2-l-tSf(s) for s 

sufficiently large, we have for n1 sufficiently large 

2n+l 
-tS(n-n ) 

nl+l 
00 00 00 2 

f f( s) ds i:: f f{s) ds < i:: 2 1 f f(s)ds < "°• 

2 
nl n=n1 2n n=n1 

2 
nl 

The rest of the proof is analogous. 

Conversely suppose (1.8) holds. Define 

b(t): t f(t)/F(t). {1.12) 

Without loss of generalUy we suppose f(t) > 0 (t > 0). 

Integrating both sides of b{t)/t = f(t)/F(t) we find for some real c 1 and all 

x > 0 (note that log Fis indeed an absolutely continuous function) 

X b(t) f -- dt = log F{x) + c1 
1 t 

( 1.13) 

( since the derivatives of the two parts exist and are equal a.e.). Using the 

definition of b again we find from (1.13) 

f(x) = cb(x) exp {f b(t) - 1 dt} for all x > O, 
1 t 

(1.14) 

with c e-cl > O, hence for all x, t > 0 

X 
f(tx) _ b(tx) {f b(ts) - 1 d} 
f(t) - b(t) exp 1 s s • 

Now for arbitrary e: > 0 there is a t 0 such that jb(ts) - a -1 j < e: for t l_ t 0 

and sl_min{l, x). Hence the function f satisfies (1.5). 

The last statement of the theorem ((1.9) implies f E RV 00
) can be proved in a 

(l 

similar way. ◊ 
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Theorem 1.5 (representation theorem) 

If f E RVm, there exist measurable functions a: R+ +Rand c: R+ + R with 
a 

lim c(t) = c0 
t+m 

(O < c0 < m) and lim a(t) = a 
t+m 

and t 0 ER+ such that fort> t 0 

f( t) 
t 

c(t) exp {f a(s) <ls}. 
s 

to 

Conversely if (1.16) holds with a and c satisfying (1.15), then f E RVm. 
a 

Proof 

Suppose f E RVm. 
a 

(1.15) 

(1.16) 

The function t-a f(t) is slowly varying and hence has a representation as in 

(1.16) by (1.14). Then f has such a representation with a(s) replaced by a(s) 

+ a and c( t) replaced by t~ c( t). Now the result follows. Conversely one 

verifies directly that (1,5) follows from (1.16). ◊ 

Remarks 

1) In formula (1.16) we may take t 0 E [O,m) arbitrarily by changing the 

functions c(t) and a(t) suitably on the interval [O, t 0J. 

2) The functions a(t) and c(t) (given (1.16)) are not uniquely determined. It 

can easily be seen that it is possible to choose a(t) continuous: define 

t t 

exp {J a(v)dv/v} and b0{t): 

to 

t f 0(t) / J f 0(s)ds. 

to 

Since f 0 E RVa we get (1.14) with f and b replaced by f 0 and bo 

respectively, i.e. 

X 

f(x) = c(x) c b0(x) exp[f (b0(t) -1) dt/t] 
1 

for all x > 0 with b0(t) - 1 continuous. 

It is possible to put all the undesirable behaviour of the function f into 

the function c(t). We will prove (cor. 2.16) that it is possible to 

construct a representation with a E Cm. 

We are going to list of number of consequences of the above theorems. 
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We need the following definition. 

Definition 1. 6 

Suppose f: (t0, oo) + \R for some t 0 2 -oo is bounded on intervals of the form 

(t0, a) with a< oo and lim f(t) = ... 
t+oo 

Since lim f(t) = ""• the set {y; f(y) 2_ x} is non-empty for all x € \R. 

t+oo 
Hence -oo ~ inf{y; f(y) 2 x} < oo for x € !R. Note that this infimum is non-

decreasing in x. Since f is bounded on intervals of the form (t0, a), 

lim inf{y; f(y) 1 x} = 00 • 

x+oo 
Hence there exists x0 € \R such that inf{y; f(y) 2 x} > - 00 for all x 2 x0 • The 

generalized inverse function f+: (x0 , oo) + \R is defined by 

f+(x) := inf {y; f(y) 2 x}. ◊ 

Proposition 1,7 (properties of RV functions) 

1. 

2. 

If f € RV 
00 

then log f(t)/log t + a (t + oo) • 
a 

This implies lim f( t) = 
t+oo 

If f1 € RV 00 
, f 2 € RV 

al 

If moreover lim f 2(t) 
t+oo 

00 

a , 
2 

{o if a < 0 
00 if a > o· 

then fl+ f2 
00 

€ RV ( ) • max a 1,a2 

oo, then the composition f 1 ° f € RV00 

2 a 1a 2 

(1.17) 

(1.18) 

3. If f € RV00 with a > 0 (a < 0) then f is asympt.otically equivalent to a 
a 

strictly increasing (decreasing) differentiable function g with derivative 

g' € RV0 _ 1 if a> 0 and - g' € RV0 _ 1 if a< O. 

As a consequence of this: 

If f € RV 0 (a> O) is bounded on finite intervals of IR+, then 

sup f(x) ~ f(t) (t+oo). 
O<x<t 

If f € RV 0 (a< O), then inf f(x) ~ f(t) (t+oo). 
x>t 

(1.19) 
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If f 
00 

integrable on finite intervals of nt and a 2_ -1, ERV is 
a 

t 
then f f( s) ds is regularly varying with exponent a+ 1. 

0 
00 

If f 
00 

and a < -1, then f f( s) ds exists for E RV t 
a 

t 

sufficiently large and is regularly varying with exponent a+ 1. The 

same is true for a= -1 provided f f(s) ds < 00 , 

1 

S. Suppose f ERV:. If a1, a2 > 0 are arbitrary, there exists t 0 

such that for t 2_ t 0 , x 2_ 1 

(1. 20) 

Note that conversely if f satisfies the above property, then f E RV00
• 

a 

6. Suppose f E RV 00 is bounded on finite intervals of R+ and a> 0. For;> 0 
a 

arbitrary there exist c > 0 and t 0 such that for t 2_ t 0 and O < x ~ ; 

f(tx) < 
f(t) - c. 

(1.21) 

7. If f E RV00
, a < 0 is bounded on finite intervals of R+ and a, ; > 0 

a 

arbitrary, there exist c > 0 and t 0 such that for t ~ t 0 and O < x ~ ; 

f(tx) < 
f(t) 

a-a 
ex 

t 

8. If f(t) exp {J a(s) ds/s} 
0 

(1. 22) 

( 1.23) 

with a continuous a( s) + a > 0 ( s + co), then f+ E RV l/ a where f+ is the 

inverse function off, 

9. Suppose f E RV 00
, a> 0, is bounded on finite intervals of R+, 

a 
Then f+ E RV7/a" (Formally f+ is only defined on a neighbourhood of 

infinity; we can extend its domain of definition by taking f+ zero 

elsewhere). 
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In particular, if f € RVa, a> 0 and f is increasing, the inverse function 

f+ is in RVl/a• 

10. If f € RVm, a > O, there exists an asymptotically unique function h such 
a 

that f(h(x)) ~ h( f(x)) ~ x (x + m). Moreover h ~ f+ if f is bounded on 

finite intervals of st"~ 

t 
11. If f € RV: (a 2 O) and f(t) = f(tO) + f ljl(s)ds for t .?_ t O with 1jl monotone, 

then to 

lim 
t+m 

Uttl.=a. 
f(t) 

Hence in case a > 0 we have 1jl € Rv:,_1 • 

Moreover if f € RVm (a< 0) and f(t) = f ij,(s)ds < m with 1jl nonincreasing, 
a - t 

then t 1jl (t)/f(t) + -a (t+m). Hence in case a< 0 we have 1jl € RVm 1• 
a-

12. Any f € RV: with a + 1 € IN is asymptotic to a function f 1 with the 

property that the absolute values of all its derivatives are regularly 

varying. 

Proof 

ad 1,2,3,4,5. Properties 1, 3 and 5 follow immediately from the representation 

theorem (thm. 1.5). In order to prove regular variation of jf' I in 

property 3 one also needs remark 2 following thm. 1.5. Properties 2 and 

4 are easy consequences of the uniform convergence theorem ( thm. 1. 3) 

and theorem 1.4 respectively. 

ad 6. Take ~ > O. By property 5 there exists t 0 
1 such that if t .?_ t 0 ' 

a+l 
X for X ~ 1. 

Also, by property 3, if t .?_ t 0 
1 ' 

sup f(u) 

( u~t 
;(~)) ~ f(t) < 2 for O < X < 1. 
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for O ( X ~ /',;o 

ad 7. Apply property 6 above to the function t-a+o f(t). 

ad 8, Since f(t) + oo (t+oo) and f is eventually strictly increasing and 

differentiable, there exists - for x sufficiently large - a unique 

differentiable inverse function g = f+ and 

f(g(x)) = g(f(x)) = X for X) Xo• (1.24) 

Differentiating the second equality in (1.24) we get using (1.23) 

g'(f(x)) f(x) 1 
g(f(x)) = a(x)' 

(1.25) 

Since f is continuous and f(x) + 00 (x+00), (1.25) implies 

tg'(t)/g(t) + a-l (t+oo), 

Application of theorem 1.4 gives g' € RV_l+l/a, hence g = f+ € RV;/a by 

property 4 above. 

ad 9. Suppose f € RV00
, a> 0, By theorem 1,5 and the remarks thereafter f has 

a 

the representation (1.16) with t 0 = 1 and a continuous. For arbitrary 

e > 0 there exists x0 = x0(e) such that for x > x0 

(c0 - e) g(x) ...$._ f(x) ...$._ (c0 + e) g(x), 

X 

where g(x) = exp {f a(s) ds/s}. 

The inequality (l.~6) implies 

for x sufficiently large. By property 8 above we have g+ € Rv;10• 

Hence g+(x/(c0 .::!::.. e)) ~ (c0 .::!::.. e)-l/ag+(x), 

Since e > 0 is arbitrary, (1.27) implies f+ ~ g+ € Rv;10. 

(1.26) 

( 1. 27) 
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ad 10, Without loss of generality we may and do suppose f bounded on finite 

intervals of IR+. 

Then the proof of property 9 gives the existence of functions g and g+ 

such that f{x) ~ g(x), f+(x) ~ g+{x) {x+oo), g(g+{x)) = g+(g(x)) = x for 

x sufficiently large. 

This implies x = g+(g{x)) ~ g+(f{x)) ~ f+(f(x)) (x+oo), the first 
+ 00 

asymptotic equivalence follows from f(x) ~ g(x) {x+oo), g e: RV l/a. and 

the uniform convergence theorem. 

The statement f(f+(x)) ~ x (x+oo) follows similarly. 

Suppose now 

1, 2. 

a. 
Now lim f(h1{xn))/f{h2(xn)) = lim {h1(xn)/h2{xn)} for any sequence 

n+oo n+oo 

xn + oo by the uniform convergence theorem, hence h1(x) ~ h2(x) {x+oo), 

t 
ad 11. Suppose first 1jJ is non-decreasing and f(t) 

t ~ t 0• Then for a > 1 and t ~ t 0 we have 

f(t0 ) + f lj!(s)ds for 

to 

a 
t(a-1) p(t) < f tp(tv)dv = f(ta) - f(t) 

f(t) - l f(t) f(t) ' 

Since f e: RV 00 we find lim ..!.fil2. ~ a a.a=l l for all a > 1. 
a. t+oo f(t) 

Letting a+ 1 we get 

-1· ~ < 
im f(t) a., 

t+oo 

Similar inequalities for O <a< 1 lead to lim ~>a., 
t+oo f{t) -

The cases 1jJ non-increasing and a.< 0 can be proved similarly. 

ad 12. This property will be proved in chapter 2 (see cor. 2.12). 

Remarks 

1. There is no analogue of property 3 in case a.= O; even if lim f(t) = oo 
t+oo 

with f e: RV~, then f is not necessarily asymptotic to a non-decreasing 

function as the following example (due to Karamata) shows. 

Define f(x):= exp (f e(s)ds/s), where 
0 



e:( s) 

-14-

for O < s < 1 

for (2n-l)! < s ~ (2n)!, n = 1, 2, 3, 

for (Zn)! < s ~ (2n+l)!, n = 1, 2, 3, 

where the sequence an is such that an+ 0 (n+oo) and an log n + 00 (n+00 ), 

Then 

sup f(x)/f((2ntl)!) f((2n)!)/f((2n+l)!) 
O<xi(2n+l)! 

(2n+l)! 
exp{- J e:(s)ds/s} 

( 2n) ! 

a 

exp{+/ log (2n+l)} + oo (n+oo), 

Hence (1.13) does not hold, 

2, Using the representation theorem for regularly varying functions, it is 

possible to show that if f is locally bounded and f e: RV~, then the 

function sup f(x) is slowly varying • 
. O<x<t 

t 

3. Note that f f(s)ds e: RVa+l with a> -1 does not imply f e: RV 0 • 

0 
Example: f(t) = exp[log t]. 

4. Note that property 12 strengthens property 3. 

The following result is a generalization of theorem 1.4 (the kernel function k 

below is constant in theorem 1,4), A converse statement (thm. 2.34) will be 

given in chapter 2. 

Theorem 1.8 

Let f e: RV 00 and suppose f is (Lebesgue) integrable on finite intervals of R+. 
a 

(i) If a> -1 and the function k: R+ + R is bounded on (0,1), then 

1 

lim J k(s) f(ts) ds/f(t) 
t+oo 0 

1 

J k(s)s 0 ds, 
0 

( 1.28) 
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(ij) If t+e:+a k(t) is integrable on (l,oo) for some E > O, then 

Proof 

00 

f k(s) f(ts) ds < oo, fort> 0 and 
1 

lim f k(s) f(ts) dslf(t) 
t+oo 1 

f k(s)s 0 ds, 
1 

( 1.29) 

(i) Note that for O < E < a+l the function ta-Ek(t) is integrable on (O, 1). 

Since there exists c > 1 and E > 0 such that f(tx)lf(t) i_ cxa-E for 

tx2._ t 0 , 0 <xi_ 1 by Prop. 1.7.5, we can apply Lebesgue's dominated 

convergence theorem to obtain 

1 f(ts) f k(s) ~ ds + 
t It 

0 

1 
f k(s)s 0 ds, t+oo, 
0 

Furthermore 

t It 
I 0 f k(s)f~~~~ ds J = (tf(t))-l 

0 

t 

f0 I k(slt) f(s)Jds + 0 (t+oo) 
0 

since k is bounded and tf(t) + oo (t + oo). 

(ij) The second statement is proved in a similar way. 

Remark 

◊ 

N.G. de Bruijn (1959) noted that for any slowly varying function L there 

exists an asymptotically unique slowly varying function L* called the 

conjugate slowly varying function satisfying L(x) L* (xL(x)) + 1, 

L*(x) L (x L*(x)) + 1 (x+oo), 

Note that one can obtain L* as follows: define h(x) := xL(x). Then L*(x) ~ 

x-lh+(x) (x+oo), In special cases one has L*(x) ~ llL(x) (x+oo). 

Example: L(x) ~ (log x) 0 (log log x)B (x+oo), a > 0, 8 E IR, i.e. if h(x) ~ 
x(log x) 0 (log log x)B, (x+oo), then h+(x) ~ x(log x)-a (log log x)-8, x+oo, 

If we replace x by xY and take B=O, we find f(x) ~ xY(log x) 0 , y > O, o E IR 

implies f+(x) ~ yoly x lly (log x) -oly (x+oo), 

I. 2. The class JI 

By way of introduction for the class JI which is a generalization of the class 

RV we formulate the RV property somewhat differently. A measurable function 
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f: o,t + IR is in RV if there exists a positive function a such that for all 

x > 0 the limit 

lim f(tx) 
t+ao a(t) 

exists and is positive. 

An obvious generalization is the following: Suppose f: IR+ + IR is measurable 

and there exist real functions a> 0 and b such that for all x > 0 the limit 

lim f(tx) - b(t) 
a(t) 

( 1.30) 
t+ao 

exists and the limit function is not constant (this is to avoid trivialities). 

First note that (1.30) is equivalent to: 

w(x):= lim f(tx) - f(t) 
a(t) 

(1.31) 
t+ao 

exists for all x > 0 with$ not constant. 

Next we ide.ntify the class of possible limit functions W• 

Theorem 1.9 

If f: 11,1+ + R is measurable, a is positive. If (1.31) holds with $ not 

constant, then 

xp - 1 
= c • --- (x ) 0) 

p 
(1.32) 

for some p E IR, c * 0 (for p = 0 read w(x) =clog x). Moreover (1.31) holds 

with a function a which is measurable and in RVP, 

Proof 

Since$ is not constant, there exists x0 > 0 such that w(x0) * O. From (1.31) 

it follows that we can choose a(t) = {f(x0t) - f(t)}/$(x0). Hence without loss 

of generality we may assume a to be measurable. For y > 0 arbitrary we have 

a(ty) _ f(tx0y) - f(t) 

a(t) - { a(t) 

f(ty) - f(t) f(tx 0y) - f(ty) 

a(t) } / a(ty) + 

w<xoy) - $( y) 
+ ----,---,-- (t+ao) 0 

w<xo) 



-17-

Hence A(y):= lim a(ty)/a(t) exists (and is non-negative) for ally) O. 
t+co 

Since a( txy) = a( txy) a( tx) we have 
a(t) a(tx) a(t) 

A(xy) = A(x) • A(y) for all x, y > O. (1.33) 

Since a is measurable the function A is measurable. Moreover the only 

measurable solutions of Cauchy's functional equation (1.33) are A(y) = yP for 

some p E ~(seethe proof of theorem 1.2) and A(y) = 0 for y > O. 

However if A(y) 0 for y > O, then since A(y) ljl(x) ljl(xy) - ljl(y) for all x, 

y > O, we have 1jl is constant contrary to our assumption. Hence a E RVP for 

some p E ~.Asa consequence we have 

ljl(xy) - ljl(y) for all x, y > 0 

If p = 0 we have Cauchy's functional equation again and ljl( y) 

some c * O, x > O. 

(1.34) 

c log x for 

Next suppose p * O. Interchanging x and y in (1.34) and subtracting the 

resulting relations we get 

ljl(x) (1 - yP) = ljl(y) (1 - xP) for x, y > O. 

p 1 - xp 
Hence ljl(x)/(1 - x) is constant, i.e. ljl(x) = c. --- for x) O,with c * O. 

p 

◊ 

The following theorem states that for p * 0 relation (1.31) defines classes of 

functions we have met before. Note that it is sufficient to consider (1. 32) 

with c > 0 since replacing f by-fin (1.31) changes the sign of c. 

Theorem 1. 10 

Suppose the assumptions of theorem 1.9 are satisfied with p * 0 and c > O. If 

p > 0 then f E RV 00
• If p < 0 then f(co):= lim f(x) exists and f(co) - f(x) E 

p 
x+co 

Proof 

The proofs of theorem 1.14 and corollary 1.16 below can easily be adapted to 

show that if p > 0 (p < 0) there is a non-decreasing (non-increasing) function 
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g such that 

f(t) - g(t) o(a(t)) (t+.,,). 

Since we may assume a E RVP (thm. 1.9) it follows that we also have 

lim g(tx) - g(t) 
a(t) 

xp - 1 
c---

p 

( 1.35) 

( 1. 36) 

It will become apparent that it is sufficient to prove the theorem for g. Take 

y > 1 arbitrarily and define t 1 = 1 and tn+l = tny for n = 1, 2, ••• We have 

by (1.36) 

Suppose p > O. Then (1.37) immediately implies g(tn) + "'(n+.,,). 

Further for any e > 0 there exists n0 such that for any n > n0 

and a similar lower inequality. It follows that 

and hence 

Further for x > 1 

g(tnx) - g(tn) 

g(tn) 

( 1.37) 

( 1.38) 

( 1.39) 

For any s > 0 choose n(s) E iN such that tn(s) ~ s < tn(s)+l' Then by (1.38) 

and (1.40) 
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Similarly 

Since y > 1 is arbitrary, we have proved g € RV 00
• 

p 

Combination with (1,36) gives a(t)/g(t) + p/c (t+oo). With (1.35) this implies 

f(t) ~ ca(t)/p (t+oo) hence f € RV 00
• 

p 

Suppose next p < O. Then (1.37) 

h(x):= lim g(t) - g(x). We have 
t+oo 

immediately implies lim g(tn) < 00 , Write 
n+oo 

Choose e: > 0 and y > (l+e:)-l/p. Note that since a€ RVP the above expression 

is bounded above for n 1. n0 by 

l+e: 
·-c 

p ' 

which tends to -c/p as e: + o+. A similar lower bound is easily obtained and we 

conclude 

Further for x > 1 

The rest of the proof follows closely the case p > O. 

Definition 1.11 

A measurable function f: IR+ + IR is said to belong to the class II if there 

exists a function a: IR++ IR+ such that for x > 0 

lim 
t+oo 

f( tx) - f( t) 
a(t) 

Notation: f € II or f € II(a). 

log x. (1.41) 
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The function a is called an auxiliary function for f. 

We say that f E ITO if g E IT where g(t) = f(l/t). 

Remarks 

◊ 

1. Note that any positive function a 1 is an auxiliary function for f if and 

only if a 1(t) ~ a(t) (t+oo). 

2. For the definition of IT it is sufficient to require (1.41) for all x in a 

set A satisfying the following requirements: >.(A) > 0 and there exists a 

sequence xn EA (n = 1, 2, •• ,) such that xn + 1 (n+00). 

3. We can weaken the definition as follows: there exist functions a: 11,t + IR+ 

and g: IR++ IR such that for x > 0 

li f(tx) - g(t) 
m a(t) 

t+oo 
log x. 

Theorem 1.12 

If f E IT(a), then lim a(tx)/a(t) = 1 for all x > O. Moreover (1.41) holds with 
t+oo 

a function a which is measurable and hence in RV;. 

Proof 

This is a special case of theorem 1.9. 

Theorem 1.13 

If f E IT(a) and g: IR++ IR is measurable and satisfies 

lim f( t) - g( t) 
a(t) 

= C (1. 42) 
t+oo 

for some c E IR, then (1.41) is satisfied with f replaced by g, hence g E IT(a), 

◊ 

This follows immediately from (1.24) and (1.25). Obviously for fixed auxiliary 

function a the relation (1.25) between functions f, g E IT(a) is an equivalence 

relation. We shall see below (proposition 1.17.3 and 6) that any equivalence 

class contains a very smooth IT-function. 
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Theorem 1.14 (uniform convergence theorem) 

If f € IT, then for O < a < b < 00 relation (1.41) holds uniformly for 

x E [ a, b] • 

Proof 

Define F(t):= f(et), A(t):= a(et). It is sufficient to deduce a contradiction 

from the following assumption: there exist o > 0 and sequences tn + 00 , ¾ + 0 

(n+00 ) such that for all n 

--__,--, ___ n_ > o. F(xn + tn) - F(t) I 
A(tn) 

Consider the sets 

J:= [-o/5, + o/5], 

Yl,n = {y;l(F(tn + y) - F(tn))/A(tn)I > o/2, y € J}, 

Y2 ,n = {y;l(F(tn + xn) - F(tn + y))/A(tn) I> o/2, y E J}. 

The above sets are measurable for each n and Yl,n u Y2 ,n = J, hence either 

X(Y1,n) 2_ ½ X(J) or X(Y2 ,n) 2_ ½ X(J) (or both), where X denotes Lebesgue 

measure. Define 

Since a € RV O ( theorem 1. 9) we have the inequality A( tn) 2_ ½ A( tn + xn -z) for 

z E z1,n and n 2_ nO by proposition 1.7.5. As a consequence z1 ,n c z2 ,n for 

n 2_ nO, where z2,n is defined by 

c [-o/4, +o/4] for n sufficiently large since xn + O. 

Hence we find X(lim sup z2 n) 2 X(lim sup z1 n) 2 ½ X(J) or 
n+~ , n+oo , 

X(lim sup Y1 ) > 
,n 

n+00 
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This implies the existence of a real number x0 contained in infinitely many 

Yl,n or infinitely many z2,n which contradicts the assumption 

lim{F(t + xo) - F(t)}/A(t) = Xo· ◊ 
t+ao 

Corollary 1,15 

If f E II(a), for any e: > 0 there exist t 0 , c > 0 such that for t .?.. t 0 , x > 1 

lf(tx) - f(t)I < e: 
a(t) - ex • (1. 43) 

Hence f(t) is locally bounded for t.?.. t 0 • 

Proof 

By the uniform convergence theorem (theorem 1.14) we have 

-2 < f(tu) - f(t) < 2 fort_> t 1 and 1 < u < e. 
- a(t) -

(1. 44) 

For x > 1 define n € N by en< x < en+l, Then 

f(tx) - f(t) 
a(t) 

Using (1.44) and the inequality a(tx)/a(t) ~ c1xe: for some c1 > 0, t > t 2 

(prop. 1.7.S) we find that fort.?_ t 0=: max(tl' t 2) 

lf(tx) - f(t)I < 2 ~ e:k < ne: < e: 
a(t) _ c 1 ~ e _ ce _ex. 

k=O 

For the last statement, take t = t 0 in (1.43). 

Corollary 1. 16 

If f € II(a), there exists a non-decreasing function g such that f(t) - g(t) 

o(a(t)) (t+00). In particular g € II(a) by theorem 1.13, 

Proof 

◊ 

By corollary 1.15 the function f is locally integrable on [t0, 00), Note that 

by theorem 1.14 
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e e 
lim f f(tx) - f(t) dx = f log dx 1 
t+aol a(t) X 1 x~=z· 

Now choose t 1 ~ t 0 such that f(ex) - f(x) > 0 for x > t 1• 

Then 

e te t 
f f(tx) dx = f f(x) dx - f f(x) dx 

1 X tl X tl X 

etl t 
f f(x) dx + f f(ex) - f(x) dx =: gO(t), 

X t X 
tl 1 

Note that g0 is non-decreasing and by (1.45) 

. g0(t) - f(t) 1 

lim · a(t) = 2' 
t+ao 

Now g0 E Il(a) by theorem 1.13. Define g(t):= g0(te-½), Then g E Il(a) and 

(1. 45) 

g(t) - f(t) = o(a(t)) (t+ao), ◊ 

The following theorem gives a characterization of the class rr. 

Theorem 1.17 

Suppose f: IR++ IR is measurable. 

For t 0 ~ 0 let ip: (t0, ao) + IR be defined by 

ljl( t): 
t 

f(t) - t-l f f(s)ds. (1. 46) 

to 

The following statements are equivalent: 

a. f E rr. (1.47) 

b. The function 1jl:(t0 , 00) + IR is well-defined for some t 0 ~ O, eventually 

positive and 

lim f(tx) - f(t) 
ljl( t) 

log x (1.48) 
t+ao 

for X ) 0, 

c. The function 1jl:(t0 , 00 ) + IR is well-defined for t ~ t 0 and slowly varying at 

infinity. (1. 49) 
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d. There exists p ERV; such that 

t 

f(t) p(t) + f p(s)ds/s. (1. 50) 

to 

e. There exist c1, c2 € ~. a1, a 2 ERV; with a1(t) ~ a 2(t) (t+00 ) such that 

f( t) 
t 

c1 + c 2a 1(t) + f a 2(s) ds/s. 
1 

(1.51) 

If f satisfies (1.50) (or (1.51)) then f € II(p) (or f € II(a2) respectively). 

Hence p(t) ~ a 2(t) ~ w(t) (t+oo). 

Proof 

a + b 

Suppose f E II(a). 

Take t 0 as in cor. 1. 15. Then w( t) is well-defined for t 2._ t 0 • 

Note that fort 2._ t 0 

~_to f(t) 1 f(t) - f(tu) 
a(t) - t a(t) + f a(t) du. 

t 0/t 
( 1.52) 

From cor. 1.15 it follows that f(t) = o(t 8) (t+"') for any B > 0 (take t t 0 

in (1. 43)). 

Since ta(t) E Rv7, (thm. 1.12) we have f(t) = o(ta(t)) (t+oo). 

We can apply Lebesgue's theorem on dominated convergence to the second term on 

the right-hand side in ( 1. 52) since by cor. 1. 15 for tu 2._ t 0, 0 < u < 1 

lf(tu/u) - f(tu)I < cu-e 
a(tu) -

and by prop. 1. 7 .5 for tu 2._ t l' 0 < u < 1 

0 < a(tu)/a(t) ~ c 1u-e. 

1 
Hence lim fill= - flog u du= 1, which proves the implication a+ b, 

t+oo a(t) 0 

b + c 

See theorem 1.12, 

C + d 

By Fubini's theorem we have 
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t 
~ds 

t 
f(s) ds -

t s 
f(u) du f f f f ds 

s s 2 
to to to to s 

= l. 
t 

f f(u) du f(t) - lj,(t). 
t 

to 

Hence ( 1.50) with p lj,. 

e + a 

By the uniform convergence theorem (thm. 1,3) for functions in RV 

f(tx) - f(t) 
a2(t) 

for all x > O. 

Corollary 1.18 

If f E IT, then lim f(t)=: f(co) i 00 exists. 
t+co 

◊ 

If the limit is infinite, then f E RV;. If the limit is finite, f(co) - f(t) 

E RV;, 

Proof 

Consider the representation (1.50). Theorem 1.4 implies that 
t co 

p(t) = o(f p(s) ds/s) (t+co). Hence, if f p(s) ds/s < co, p(t) + 0 ( t+co) and 
1 co 1 co 

lim f(t) = C + f p( S) ds/s. Then f ( co) - f(t) = f p(s) ds/s E 
co 

(prop. RV0 
t+co co 1 t t 
1.7.4). If f p(s) ds/s = co, then f( t) ~ f p(s) ds/s E Rv; (prop. 1.7.4). ◊ 

1 1 

Remarks 

1, Note that from the proof of car, 1.18 it follows, using (1.46), lj,(t) ~ a(t) 

(t+co) and theorem 1,4, that a(t) = o(f(t)) (t+co), As a consequence, the 

limit relation (1.42) above is strictly stronger than f(t) ~ g(t) (t+co). 

2. Theorem 1. 17 is also true - and the proof not much different - with 1j, 

replaced by~ defined as follows: 

co 
du 

~(t):= t f f(u) 2 - f(t). 
t u 

3. The result of cor. 1.16 is reobtained from theorem 1.17 by taking 
et 

g(t) = f p(s) ds/s with p as in (1.50). 

to 
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4. Suppose f is locally integrable on R+ and a E RV0• Then 

and 

f(tx) - f(t) + 0 
a( t) 

-lt 
f(t) - t f f(s) ds 

(t+oo) 

----,--,--0 ___ + 0 
a( t) 

are equivalent. 

for X ) 0 

(t+oo) 

The proof follows closely the proof of theorem 1.17. 

(1.53) 

(1. 54) 

5. From theorem l.17e it is clear that for any a ERV~, there exists a 

function f such that f E rr(a). 

6. Let t 1 2._ 0 be such that f is locally integrable on (t 1, oo). Then theorem 

1.17 holds for any t 0 ~ t 1• 

We mention some properties of functions which belong to the class TI, 

Proposition 1. 19 

1. If f, g E rr then f + g E rr. If f E rr, and h E RV00
, a > O, then f • h E rr. 

a 

If f € rr, lira f(t) 
t+oo 

oo and his differentiable with h' E RV00 (a> -1), then 
a 

h • f Err, where h O f denotes the composition of the two functions. 

2. If f E TI (a) is integrable on finite intervals of R+ and the function f 1 is 

defined by 

t 
f 1(t):= t-l f f(s) ds (t > 0), 

0 

then f 1 E rr(a). 

Conversely if f 1 E rr(a) and f is non-decreasing, then f E rr(a). 

( 1.55) 

3. If f E TI(a), there exists a twice differentiable function f with - f" E Rv:2 

such that 

f(t) - f(t) lira---'--'-~.,.--'--'~ 
a( t) 

t+oo 
o. (1. 56) 

In particular f is eventually concave. As a consequence of this: 
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If f € n is bounded on finite intervals of R+ and lim f(t) m, 

then sup f(x) - f(t) = o(a(t)) (t+m). 
O<x~t 

4. Suppose f € n (a). For arbitrary 61, 62 > 0 there exists t 0 

such 

( 1. 57) 

Note that conversely if f satisfies the above property, then f € Il(a). 

5. Suppose 

t 
f(t0) +Jg (s)ds, t > t 0 

to 
f(t) (1.58) 

with g € Rv:1• Then f € n. Conversely if f € n satisfies (1.58) with g non­

increasing, then g € Rv:1• 

Moreover in this case tg(t) is an auxiliary function for f. 

Similarly if 

f(t) = c +Jg (s) ds 
t 

(1.59) 

with g € RV~1, then f € n° (see def. 1.11). Conversely if f € n° satisfies 
0 

(1.59) with g non-increasing, then g € RV_1• 

Moreover in this case t-1g(t-1) is an auxiliary function for f(t- 1). 

This property supplements a corresponding statement for functions in 

RV:, a* 0 (cf. prop. 1.7.11). 

6. If f € Il(a) there is a function f 1 with (-l)n+lf1(n) € RV:n for 

n = 1,2, ••• such that f 1(t) - f(t) = o(a(t)), t+m. 

Proofs 

ad 1. The statement f + g € n is a consequence of the representation (1.50) 

since the sum of two slowly varying functions is slowly varying ( see 

proposition 1.7.2). 

If f € Il(a) and h € RVm, then for x > 0 we have 
a 

f(h( tx) h( t)) - f(h( t)) 
h(t) 

lim ---a~a""'(h-,("'""t""")""") ___ _ 
t+m 

log x by the uniform convergence 
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theorem (tlnn. 1.14). 

For the last statement we expand the function h: 

h(f(tx)) - h(f(t)) 
a(t)h'(f(t)) 

f(tx) - f(t) 
a(t) 

h'(f(t) + e{f(tx) - f(t)}) 
h'(f(t)) 

for some O < 8 = 8(x, t) < 1. Now the second factor on the right-hand 

side tends to 1 as t+oo since h' e: RV: and f e: RV; ( see corollary 1. 18) 

by the uniform convergence theorem (theorem 1.14). 

t 
ad 2. Define lj,(t) := f(t) - t-1 J f (s) ds for t > O. If f e: n(a), we have by 

theorem l, 17 
0 

f(t) - f 1(t) 

lim a(t) 
t+oo 

lim ljl((t)) = 1. 
t+oo at 

As a consequence f 1 e: n (a) (see theorem 1.13). 

Conversely suppose f 1 e: Il (a). Then for x > 0 we have by definition 
t 
J lj,(s) ds/s = f 1(t) and hence 
0 

f/tx) - f 1(t) _ x filtlds 

a(t) - { a(t) s • 

Now fix x > 1. Since f 1 e: Il(a) the above expression tends to log x as 

t + ""• Since f is non-decreasing, tlj,(t) is non-decreasing. This implies 

(1 - x-1) fill< j ljl(ts) ds for t > O, 
a(t) - 1 a(t) s 

hence 

lim fill < ~ for x > 1. Similarly we find lim .wi!2_ > - log x 
t+oo a(t) - l-x-1 t+oo a(t) - x-1 - 1 

for O ( X ( 1. 

Finally let x + 1 to obtain lj,(t) ~ a(t) (t+oo) , which implies 

1j, e: RV;. The proof is finished by application of theorem 1.17. 

ad 3. We may assume without loss of generality that f is integrable on finite 

intervals of 11t. 
Define the functions fi for i 1, 2, 3 recursively by 
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where fo = f. 

Repeated application of theorem 1.13 and 1,17 gives 

2 
f(t) - f 3(t) = I: {fi (t) - fi+l (t)} ~ 3a(t) (t+00), 

i=O 

Hence f 3 E Il(a) by theorem 1.13. Define f by f(t):= f 3(e 3t), then 

f(t) - f(t) o(a(t)) (t+00). Furthermore f is twice differentiable and 

by theorem 1. 17. 

ad 4. From remark 2 following cor. 1.18 it follows that there exist functions 

a 0 , b such that a0(t) ~ a(t), b(t) = o (a(t)) (t+00) and 

t ao(s) 
f(t) = f -- ds + b(t) fort> t'. 

t' s 
( 1. 60) 

Then for all e, o1, o3, o4 > 0 there exists t = t 0 (e, o1, o3, o4) such 

that for all t 1. t 0, x 1. 1 we have 

x a (ts) 
- f(t) = f O ds + b(tx) a(tx) - b(t) 

1 s a(tx) 
f(tx) 

x 01-1 o1 
+ o3) J s ds + e(l + o4) x + e] a(t) 

1 

using a0(t) ~ a(t), b(t) = o(a(t)) and prop. 1.7.5, 

Hence f satisfies the stated upper inequality if we take e, o3 and o4 

such that max{ o3 + e(l + 64) o1, e(2 + o4)} = o2• 

The proof of the lower inequality is similar. 

ad 5. We give the proof of the first statement, the proof of the other 

statement is similar. 

f(tx) - f(t) 
tg(t) 

x cdt.,). 

{*s. (1.61) 
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If g € Rv:1, then the right-hand side in (1.61) tends to log x (t+00 ) by 

the uniform convergence theorem for regularly varying functions (theorem 

1.3). Next suppose f E Il(a). We have 

X 

f(tx) - f(t) = .!fil.!2 J ~s 
a(t) a(t) 1 g(t) ' 

and the integral is at most x-1 when x > 1. Hence for x > 1, since 

f Err, we get 

lim _!:fil..!2_ > ln x. 
- a(t) - x-1 
t+oo 

Similarly we find lim ..!fil.!2.. < ln x for O < x < 1, 
t+oo a(t) - x-1 

Let x + 1 to obtain tg(t) ~ a(t) (t+00) and the last function is slowly 

varying by theorem 1.12, 

ad 6. See Corollary 2,16. 

Remark 

A special case of the current subsection is obtained when the auxiliary 

function a satisfies a(t) + p > 0 (t+oo). 

Note that the specialization of theorem 1.17 then gives the following 

statement: 

Suppose g: R+ + R+ is measurable. 

Then g ERV; if and only if log g is locally integrable on (t 0 , 00) for some 

t 0 > 0 and 

lim 
t+oo 

1 

J log{~}ds 
t /t g(t) 

0 

-p. 

This can be seen by applying theorem 1.17 for f(t) 

Examples 

The functions f defined by 

f(t) log t + o(l) (t+oo), 

log g(t), 
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f(t) (log t)a (log log t)f3 + o(log t)a-l (t+oo), a) 0, f3 ER, 

f(t) exp{(log t)a} + o(log t)a-l exp{(log t)a} for 0 <a< 1, t+oo, 

f(t) t- 1log r(t) + o(l) (t+oo) 

are in Il, 

The functions f defined by 

f(t) [log t] 

f(t) 2 log t + sin log t 

are in RV;, but not in rr. 

The following result is a generalization of part of theorem 1. 17 ( the kernel 

function k below is constant in theorem 1, 17). 

Theorem 1,20 

Suppose f E Il(a) is integrable on finite intervals of R+, 

(i) If the measurable function k : R+ + R is bounded on (0,1), then 

f k(s) f(t:~t) f(t) ds + f k(s) logs ds, t+oo, 
0 0 

(ii) If te:k(t) is integrable on (1,oo) for some e: > 0, then 

and 

Proof 

J k(s) f(ts) ds < oo fort> 0 
1 

00 00 

J k(s) f(ts~(~) f(t)ds + J k(s) logs ds (t+00). 

1 1 

(1. 62) 

(i) Note that for 0 < e: < 1 the function t-e:k(t) is integrable on (0,1). We 

proceed as in the first part of the proof of theorem 1. 17. Applying 

corollary 1.15 we have 
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k(s) f(ts) - f(t) ds + 
a( t) 

1 

J k(s) log s ds 
0 

by Lebesgue I s theorem on dominated convergence, Since k is bounded, 

ta(t) € Rv7 and f(t) = o(t 1/ 2) (t+oo), we have 

t /t 
oJ k(s) f(ts) - f(t) ds 

0 a( t) 

+ 0, t+oo, 

t 

{ J0 k(s/t)f(s)ds - f(t) 
0 

(ii) The second statement is proved in a similar way. 

Definition 1.21 

t 

J0 k(s/t)ds}/ta( 
0 

The functions f 1, f 2 : IR+ + IR are inversely asymptotic (at infinity) if for 

every constant c > 1 there exists a t 0 = t 0 (c) such that 

and (1.63) 

* It is easy to see that if f 1 and f 2 are increasing and unbounded, then f 1 ~ f 2 

at infinity if and only if the inverse functions are asymptotically equal 
+ + 

(i,e, f 1(t) ~ f 2(t), t+oo), 

The relevance of this definition for functions in RV O and in the class II 

follows from the next proposition. 

Proposition 1.22 

(i) Suppose f 1 € RV:, a> 0 and f 2 is measurable. Then f 1 * 

f 1(t) ~ f 2(t) (t+oo), It then follows that f 2 € RV 0 • * 

(ij) Suppose f 1 € II(a) and f 2 is measurable. Then f 1 ~ 

f 1(t) - f 2(t) = o(a(t)), t+00 , It then follows that f 2 

~ f 2 if and only if 

f 2 if and only if 

€ II(a). 
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Proof 

(i) Since f 1 E RV0 the inequalities (1.63) imply that for every c > 1 

which implies f 1(t) ~ f 2(t) (t+00). 

Conversely, if fi(t) ~ f 2(t) and f 1 ERV: (a> 0), then for t ~ t 0 

f 1 (ct) ~ ca/Z f 1 (t) ~ f 2(t). 

The second inequality in (1.63) is obtained likewise. 

(ij) The second statement follows similarly since f 1 E IT(a) implies 

f 1(ct) = f 1(t) + a(t) log c + o(a(t)) (t+oo). ◊ 

* .I- .!-As a consequence: if f 1 ~ f 2, f 1 E IT, then there exist functions a: R + R, 

b: R+ +~such that 

fi(tx) - b(t) 
a(t) + log x (t+oo) for i 1,2, X > 0. (1.64) 

Note that every pair of admissible functions a > 0 and b gives rise to an 

equivalence class of functions f E IT satisfying ( 1.64). The next lemma shows 

that every equivalence class contains a smooth function. 

Lemma 1.23 

a) Suppose f: R+ + R is measurable and eventually positive. If f E RV00 

a 
(0 < a < 1) or f E IT, then there exists a positive decreasing continuous 

functions with s(t) + 0 (t+oo) such that 

* t 
f(t) ~ f s(x)dx (t + oo). 

0 

b) Suppose f satisfies (1.65) withs positive, eventually decreasing and 

s(oo) = O. 

(1.65) 

(i) If s € RV 
00 

a-1' 
a > O, then f E 

00 

and if 
00 

then f E IT(a) with RV s € RV_ 1 , 
a 

a(t) ~ ts(t) (t+oo) 0 

(ij) If f € RV00 (0 < a < 1), thens 
00 

ERV a-1 • a 
If f € IT(a), thens E Rv:1 and a(t) ~ ts(t) ( t+oo) • 

Proof 

a) If f E RV00 (a> O) the statement is an immediate consequence of prop, 1.7,3 
a 

and prop. 1.22. Next suppose f E IT. By proposition 1.19.3 there exists 
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- * f ~ f which is twice differentiable and (by iteration) we may suppose its 

derivative s(t) to be convex and decreasing for t l_ t 0 • Hence 

t 

f(t) f(t) + f s(x) dx for all t > t. 
0 t 0 

0 

The right-hand side it not yet exactly of the required form. 

Note that since f is eventually positive lim f(t) - ts(t)) 0 by remark 1 
t+00 

following cor. 1.18. 

Take t 1 l_ t 0 such that f(t) > ts(t) for t 2_ t 1 • The function f 0 defined by 
t 

f 0(t):= f s(x)dx with 
0 

s(x) 

s(x) for XL tl 

* satisfies f 0 (t) 

The final step is 

f(t) (t+00) • 

to redefine 
t 1+1 

the functions on the interval (0, t 1 + 1) 

without changing 

continuous. 

J s(x)dx in 
0 

such a way that s is decreasing and 

The implication s 
00 

E RV 
a-1' 

(l > 0 + f 
00 

E RV 
(l 

is an immediate consequence of 

the propositions 1. 7 .4 and 1.22 ( i). The converse implication is a 

consequence of the propositions 1. 7 .11 and 1.22 ( i) • The proof of the 

corresponding statements for the class IT are similar. 

◊ 

Remark 

A similar result holds for functions f E RV00 with a> 1 or a< 0. We leave the 
(l 

formulation to the reader. The statement of lemma 1.23 will be used in chapter 

2. 

I.3 The class r 

For RV functions propositions 1.7.9 and 1.7.10 show that (generalized) 

inversion gives again an RV function. For non-decreasing unbounded functions 

in the class IT we obtain the following class by inversion (cf. theorem 1.27 

below). 
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Definition 1.24 

A non-decreasing function f: IR + IR which is eventually positive, is said to 

belong to the class r if there exists a function b: IR+ IR+ such that for all 

X € IR 

lim f(t + x b(t)) 
f(t) t+co 

Notation: f € r or f € r(b). 

X 
e • 

The function bis called an auxiliary function for f. 

Remarks 

1. Note that (1.66) implies f(co) ""• 

(1.66) 

◊ 

2. From lemma 1,25 below it follows that relation (1.66) holds uniformly on 

each bounded interval. 

Hence any positive function b1 is an auxiliary function for f if and only 

if b1(t) ~ b(t) (t+co); the "only if" part of this statement follows by 

contradiction, 

Lemma 1.25 

Suppose the functions f, fn : IR + IR are non-decreasing for n=l, 2, ••• , f is 

continuous and fn(x) + f(x) (n+co) for x € IR. 

Then convergence is uniform on bounded intervals of IR. 

Proof 

By contradiction. Suppose there exists a sequence xi, x}, . . . . € [ a, b] such 

that 

f (x1) - f(x1) > C > o, 
n n n 

( 1.67) 

say, for all n. 

Let x1,x2, ••• be a subsequence of xi• x}, ••• with xn + x0 € [a,b] (n+co), 

Choose n0 such that f(xn) > f(x0 ) - c/3 for n 1. n0 • 

Choose E > 0 such that f(x0 + E) < f(x0 ) + c/3. 

Choose n1 such that fn(x0 + E) < f(x0 + E) + c/3 for n 1. n1• 

Choose n2 such that xn ~ x0 + E for n 1. n2• 

Combination of the above four inequalities contradicts (1.67). ◊ 



-36-

In order to show that the class r consists of the fuctions which are inverse 

to a non-decreasing II-function we need the following lemma. Recall (def 1.6) 

that if f: (t0 , 00 ) + R is bounded on intervals of the form (t0, a) with a< 00 

and lim f(t) = oo, then the generalized inverse function f+ is defined by 
t+oo 

f+(x) = inf{y; f(y) 2_ x} for x sufficiently large. 

Lemma 1.26 

Suppose the functions fn: R+ +Rare nondecreasing, lim f (t) = 00 for 
t+oo n 

n = 1,2, ••• and fn(x) + f(x) (n+oo) for every continuity point off. Suppose 

also lim f(t) =• 
t+oo 

Then fn+(y) + f+(y) (n+oo) for every continuity point off+, 

Proof 

Let y be a continuity point of f+. Fix e: > O. We have to prove that for n 2_ n0 

We are going to prove the right inequality, the proof of the left-hand 

inequality is similar. 

Choose O < e: 1 < e: such that f+(y) - e:1 is a continuity point of f, This is 

possible since the continuity points of f form a dense set. Since f+ is 

continuous in y, f+(y) is a point of increase for f, hence f(f+(y) - e: 1) < y. 

Choose o < y - f (f+(y) - e: 1). Since f+(y) - e:1 is a continuity point of f, 

there exists n0 such that fn(f+(y) - e:1) < f(f+(y) - e:1) + o < y for n 2_ n0 • 

The definition of the function fn+ then implies f+(y) - e: 1 < f+n(y). 

Theorem 1. 27 

(i) Suppose f: R+ + R. 

If f € II(a) and f(oo) 00 , then f+ € r(b) with b(t) ~ a(f+(t)) (t+oo), 

(ij) Conversely, if g € r(b), then g+ € Il(a) with a(t) ~ b(g+(t)) (t+=). 

As in proposition 1. 7. 9 the domain of definition f+ ( g +) can be extended to R 

(R+ respectively) by defining the function to be zero on a neighbourhood of-= 

(0 respectively). 
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Proof 

(i) Suppose f € Il(a). Note that f is locally bounded on intervals of the form 

( t 0, a) for t 0 sufficiently large, hence f+ i_s well-defined, Using the 

definition of f+ we have f((l - e) f+(s)) i_ s i_ f((l + e) f+(s)) for any 

e > 0, As a consequence we have for x > 0 

+ + + + + 
f(xf (s)) - s > f(xf (s)) - f(f (s)) _ f((l + e) f (s)) - f(f (s)) 

a(f+(s)) - a(f+(s)) a(f+(s)) 

The right-hand side in the above inequality tends to log (x/(l+e)) since 

f € Il(a) and lim f+(s) = ®• 
S+® 

Using a similar upper inequality we find 

+ 
lim f(xf is)) - s = log x since e > 0 is arbitrary, Application of lemma 
s+® a(f (s)) 

1.26 then shows 

+ + + 
f (s + xa(f (s))) = inf{y; f(yf ;s)) - s ~ x} + ex (s+m), 

f+(s) a(f (s)) 

(ij) Conversely suppose g € r(b). By the definition of g+ we have 

( 1. 68) 

Hence for any e > 0 we have g(g+(t) - e b(g+(t))) i_ t i. g(g+(t) + e 

b(g+(t))) since the function bis positive. 

Division by g(g+( t)) throughout and application of ( 1.66) shows that 

t ~ g(g+(t)) (t+m), 

We thus have by (1,66) 

g(g+(t) + x b(g+(t))) 
lim - - t - ex for x € IR, 
t+m 

By lemma 1, 26 we find 

+ + 
g ( tx) - g ( t) 

b(t(t)) 

for X ) 0, 

inf{v; g(v) ~ tx} - g+(t) 

b(g+(t)) 

◊ 
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Remarks 

1. Note that if f: IR+ + IR is nondecreasing and f( 00) = 00 , then for any 

continuity point of f we have f( t) 

generalized inverse of the generalized 

function, 

2. If g e: II(b), then the composition b 0 g+ 

inf{y; 

inverse 

00 
e: RV0 , 

f+(y) ~ t}, hence the 

gives us the original 

Next we prove a representation theorem for the class r. 

Theorem 1.28 

Suppose f: IR+ IR+ is non-decreasing, 

The following statements are equivalent:_ 

(i) f e: r. (1.69) 

(ij) There exists a differentiable function S: IR+ + IR+ with S'(x) + 0 (x+00) 

such that 

(iij) lim 

t+00 

Proof 

(i) + (ij) 

t ds 
f(t) ~ exp {J S(s)} (t+00), 

1 

t X 

f(t). f f f(s) ds dx 
0 0 

1 • 
t 

<f f(s) ds) 2 

0 

( 1. 70) 

(1.71) 

Theorem 1.27 implies that f+ e: II, Proposition 1,19,3 shows that there exists a 
00 * + 

function g, twice differentiable with - g" e: RV_2 and g ~ f • The latter 

relation implies g+(t) ~ f(t), t+00, by definition 1.21. (Note that f e: r 

implies f(t+) ~ f(t-), t+00), 

Since -g" e: Rv:2 we have~+ -1 (t+00) by theorem 1.4. 
g' ( t) 

Replacing t by 

+ + 
-g (t)(g )" (t) 

{(g+)'(t)}2 
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Hence { ! } 1 = 1- g +(t)(g +)"(t) + 0 (t+oo). 

(lng )'(t) {(g+)'(t)}2 

Define the function 8 by 8(t) = 1/(ln g+)'(t). Then 8 satisfies the 

requirements of the theorem and for some constant c 

( 1. 72) 

Then f ~ g+ satisfies (1.70) since we can modify 8 on the interval (1,2) in 

such a way that (1.72) holds with c = 0. 

(ij) + (i) 

First we note that 8'(t) + 0 (t+00) implies 

8(t + x8(t)) 1 (t ) 
8(t) + +oo (1. 73) 

uniformly on finite intervals of R, since 

- 1 + 8(t + x8(t))/8(t) = x8'(t + 0 x 8(t)) with 0 = 0(t,x) and 0 < 0 < 1. 

The right-hand side is easily seen to tend to zero uniformly as t+00 , 

Now by (1. 70) 

f(t + x8(t)) t+x 8(t) ds {xf 8(t) 
f(t) ~ exp{ [ 8(s)} = exp O 8(t+v8(t)) dv} 

and the integral on the right-hand side tends to x as t+00 • 

(i), (ij) + (iij) 
t 

First we prove that f E f(b) implies f f(s) ds E r(b). By the previous proof 
0 

we may assume that f Er (8) with 8(t) ~ b(t) (t+00), 8 as in thm. 1.28 (ij) 

and such that (1.70) holds. 
t ds 

Define the function g by g(t) = exp {f 8(s)}. 
0 

t 
Since 8 1 + 0 we have (8g)' = 8'g + g ~ g, hence 8(t)g(t) ~ f g(s)ds (t+00). 

0 

Since f(t) ~ g(t) (t+00), this implies 

t 

f g(s) ds 

B(t) ~ O g(t) 

t 

f f(s) ds 
0 
--f--,-(-,t)- (t+co) • (1.74) 
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It follows that (cf, (1.73)) 

t+x8(t) t 
I f(s) ds/J f(s) d 8(t + x8(t)) f(t + x8(t)) 
o o s ~ 8(t) f(t) 

t 

X 
+ e • 

This implies J f(s)ds E r(8), The 
0 

proof 
t 

also shows that if a function h 

satisfiEs h E r(s), then 

h(t):= J f(s)ds entails 

8(t) ~ J h(s) 
0 

ds/h(t) (t+oo). Applying this for 

0 
t X t 

8(t) ~ J J f(s) ds dx / J f(s) ds (t+00), (1.75) 
0 0 0 

The statement (1.71) is implied by (1.74) and (1.75). 

(iij) + (i) 

Define the function Eby E(t) 
t X 

function h by h(t) = J J f(s) 
0 0 

t X t z 
= 1 - f(t) (J J f(s)dsdx)/(J f(s)ds) and the 

t O O 0 
ds dx / J f(s) ds, t > O. 

0 
t 

Then E(t) + 0 (t+oo) by (1. 71) and h(t) = h(l) + f E(s)ds. It follows (as in 
1 

the part (ij) + (i) of this proof) that 

lim h(t + xh(t))/h(t) = 1 
t+oo 

for all x uniformly on finite intervals and hence 

t x t ds 
J J f(s) ds dx = c exp{f1 h(s)} E r(h). 
0 0 

1 X 

Note that c = J J f(s) ds dx. 
0 0 

By (1,76) and (1.77) we then have 

t l t X 

J f(s) ds = h(t) J J f(s) ds dx E r(h) 
0 0 0 

t t X 

(1. 76) 

(1. 77) 

( 1. 78) 

and hence f(t) ~ (f f(s) ds) 2 / J J f(s) ds dx (t+00). Combination with (1,77) 
0 0 0 

and (1.78) gives f E r(h). ◊ 
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Remark 

Note that for the implication (1.70) + (1.66) or (1.71) + (1.66) the 

monotonicity off has not been used. The question of defining a function class 

liker without monotonicity remains unsettled. 

Corollary 1. 29 

1. If f € r(b), then 

t 

f f(s) ds 

b(t) ~-0--,---,-- (t+oo), 
f(t) 

Hence b can always be taken measurable. 

Moreover the function B in the above theorem satisfies B( t) ~ b( t) ( t+00). 

Hence if f € r(b), then b(t + xb(t)) ~ b(t) (t+oo) uniformly on finite 

intervals of IR, 

t 
2. f € r(b) implies f f(s) ds € r(b). 

0 

t 

3. We may replace (1.70) by f(t) ~exp{[;~:~ ds}, where c(s) + c > 0 (s+00). 

4. f € r(b) implies b(t)/t + 0, t+oo (since the same holds for the functions.) 

◊ 

The next theorem provides another characterization of the class r. 

Theorem 1,30 

If f € r, then for all positive a 

t 

f {f(s)} 0 ds 

lim -0-------= ..!. t 
t+oo {f(t)}a-l ff(s) ds 

a 

0 

(1.79) 

Conversely, if a positive non-decreasing function f satisfies (1.79) for some 

positive a* 1, then f € r. 

Proof 

Suppose f € r(b), Then lim {f(t + xb(t)/a)}a 

t+oo f(t) 0 

X 
e 

hence fa€ r(b/a). Applying corollary 1,29,1 twice, we get 
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t 

f f(s) ds 
0 
---- (t+o,), 

a f(t) 

For the proof of the converse statement we define the function p by 

t 
f {f(s) }ads 

{f(t)}° p(t) 
1 

(1 -
0 ) g(t), where =a"="! t t 

f{f(s) }ads (f(t))a--l f f( s) 
0 0 

t t 

g(t) = (a f {f(s)}a ds / f f(s)ds)l/(a--l), t > 0. 
0 0 

t 
Then g(t) = c + f p(s)ds, hence 

0 

p(t) ~ l {f(t)}a 
g( t) a t 

f{ f( s)} ads 
0 

using (1.79) twice we find 

_f-(~t)_ (t+o,). 
t 

f f(s)ds 
0 

Note that (1.79) and (1.70) imply g(t) ~ f(t) (t+.,). 

t t 

ds 

Hence f g(s)ds ~ f f(s) ds (t+.,) and combination with (1.81) gives 
0 0 

(1 .80) 

(1. 81) 

t 
lim p(t) f g(s)ds / {g(t)} 2 = 1, By the proof of theorem 1.28 (cf. the remark 
t+oo 0 

following the theorem) we have lira p(t + xb(t))/p(t) = ex for all x ER 
t+oo 

uniformly on finite intervals with b(t) = g(t)/p(t), 

Hence for x ER since g(t) ~ f(t) (t+.,) and f(t) +., we have 

g(t + xb(t)) _ l 
g(t) 

t+xb( t) 
f p(s)ds 

X t 
__ t ____ ~ b(t) f p(t +(utb)(t))du/(J p(s)ds/p(t)} 

t O P 0 
c + J p(s)ds 

0 

Hence g Er. Since f(t) ~ g(t) (t+oo), we find f Er. 

Next we list some properties of the class r 

◊ 
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Proposition 1.31 

1. If f Er, then log f(t)/log t + oo (t+oo). 

f(tx) { 0 if O ( X ( 1 
Moreover lim f(t) = 00 if x > l. 

t+oo 

2. The class r is closed under multiplication: 

if f1 E r(b1), f2 E r(b2), then f1f2 E r(b) 

with b(t):= b1(t) b2(t)/{b1(t) + b2(t)}. 

3. If f E r, h E RV00 with a> O, then h • f E r, where h • f denotes the 
a 

composition of the two functions. If f E r and h is differentiable with 

h' E RV00
, a> -1, then f • h Er. 

a 

t 
4. If f E r(b) then f f(s)ds E r(b), Conversely if 

0 
non-decreasing, then f E r(b). 

t 

f f(s)ds E r(b) and f is 
0 

5. If f E r(b), there exists fo E C00 with f~n) E r(b) for n 

that f 0(t) ~ f(t) (t+oo), 

1, 2, • • • such 

6. Suppose f E r(b), If 81, 82 > 0 are arbitrary, there exists t 0 t 0(81, 82) 

such that for t ~ t 0 , x ~ 0 

8 8 
(l _ 8 )(f(t + xb(t))) 2 < b(t + xb(t)) < (l + 8 )(f(t + xb(t))) 2 

1 f(t) - b(t) - 1 f(t) ' 

t 
7. Suppose f E r(b). Define the function g by g(t) = 1/{ f ds/f(s)}, Then 

g E r(b), 
1 

Proof 

ad 1. The proof is an immediate consequence of theorem 1.28, cor, 1,29,4 and 

de l'H8pital's rule. 

ad 2. By theorem 1,28 it is sufficient to prove that 

0 with s1 and s2 as defined there. 

This follows immediately since Si, s2 : 11t + 11t satisfy s1 ( t) + 0 ( t+oo) 

for i = 1, 2. 
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ad 3. If f E r(b) and h E RV00 with CL > O, by the uniform convergence theorem 
CL 

for regularly varying functions we have h(f(t + xb(t)/CL))/h(f(t)) + ex 

(t+00), If f € f(b) and his differentiable with h' € RVCL, CL) -1, by the 

uniform convergence theorem for regularly varying functions (thm. 1,3) 

and lemma 1.25 we have for some e = e(x, t) E (O, 1) 

f(h(t + xb(h(t)))) 
h' (t) 

f(h(t) + xb(h(t)) h'(t + 8xb(h(t))/h'(t))) 
---------,--,--,-,---h_'_(,__t_,_) _____ + ex 

f(h(t)) f(h(t)) 

as t+00 (note that b(h(t))/th 1 (t) = b~~g)) , t~~~~) + 0 (t+00 ) by cor. 

1,29.4 since h' E RVCL with CL> -1). 

t 

ad 4. Since J f(s)ds E r(b), for x > 0 the right-hand side of the inequality 
0 

t+xb( t) 
J f(s)ds 

f(t) b(t) < __ t ___ _ 

t - t 

f f(s)ds x J f(s)ds 
0 0 

tends to (ex - 1)/x as t+co, Let now x + o+ to obtain 
t 

lim f(t) b(t) J f(s)ds i 1, Similarly, £or x < 0 we have 
t+co 0 

t 
J f(s)ds 

_t+_x_b~(_t~) ___ < f(t) b(t) 
t - t , 

x J f(s)ds J f(s)ds 

0 0 t 

which implies lim f(t) b(t)/J f(s)ds ~ 1. 
t+co 0 

t t 
Hence f(t) b(t) ~ J f(s)ds. Since J f(s)ds E r(b) we have b(t + xb(t)) 

0 0 
~ b(t) (cor. 1,29,1). Combining these results, we find f E r(b), 

ad 5, From theorem 1,28 it follows that without loss of generality we may 

suppose f to be strictly increasing and continuous, Application of 

theorem 1,27 (ij) shows that the inverse function f+ E Il(a) with a(t) ~ 
b(f+(t)) (or a(f(t)) ~ b(t) (t+co)). 



-45-

Since f+ E IT(a), 

and (-l)n+lgO(n) 

* + 
there exists a function g0 E IT(a) satisfying g0 ~ f 

E RV00 for n = 1, 2, ••• (see prop. 1.19.6 and prop. 
-n 

1.22 (ij)). 

By the definition of the relation~ we have g;(t) ~ f(t) (t+00), hence 

a(g~(t)) ~ a(f(t)) ~ b(t) (by the uniform convergence theorem for RV 

functions), which is equivalent to 

(1.82) 

On the other hand we find 

( 1. 83) 

by application of lemma 1,23b. 

We claim that the function fo defined by f 0(t):= g~(t) for all 

suffiently large t satisfies the assumptions. 

First note that f 0(t) ~ f(t) which implies f 0 E r(b) since f E r(b), We 

shali prove that for n EN we have 

f (n)(t) ~ fo(t) 
--- (t+oo), 

0 {b(t)}n 

which implies fbn) E r(b) (since f 0 E r(b)). 

Substituting g0(t) fort shows that (1.84) is equivalent to 

(1.84) 

Combination of (1.82) and (1.83) shows that the last limit relation is 

equivalent to 

(1.85) 

We will prove (1.85) by induction using Fa~ di Bruno's formula (see e.g. 

Abramowitz and Stegun, p. 823): 

Since f 0(g0(t)) = t for all t sufficiently large, we have for n > 1 
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o = (~)nf (g (t)) = ~ f 0(m)(g0(t)) 
dt O O m=O 

(k) 
n go (t) ak 1 

II ( k! ) -a 1 ' 

k=l k" 
(1.86) 

where E' denotes summation over all ak's satisfying a 1 + 2a2 +•••+nan 

= n and a 1 + ••• + an = m. 

Since (-l)n+1g0(n) € RV00
, we have by repeated application of theorem 1.4 

-n 

Hence 

Substitution gives 

0 
n 

(l+o(l)) E {f~m)(g0 (t))(tg0(t))mt- 1} 
m=O 

n ak -1 
(-l) n-mn! , II (k ') ( ) E , ak. t+oo • 

The proof of ( 1. 85) for n 

(1,87). 

k=l 

1 is immediate from f 0(g0(t)) 

Now suppose (1.85) holds for 1 < n < N-1. 

(1.87) 

(1.88) 

t and 

Then the existence of lim f~N)(g 0(t)) {tg0(t)}Nt-l is a consequence of 
t+oo 

n n a 
(1,88). Moreover this limit is 1 since E (-l)m E' II (k kak!)-l = 0 

m=O k=l 

for n € N (this can be seen e.g. by taking f 0(t) = exp tin (1.86)). 

ad 6. We only prove the second inequality. The proof of the first inequality 

is similar. Suppose f € r(b), Since there exists a strictly increasing 

f 1 € r(b) satisfying f 1(t) ~ f(t) (t+oo) (theorem 1.28), we may suppose 

without loss of generality that f is strictly increasing. We apply 

proposition 1. 7. 5 to the function b O f+, which is slowly varying by 

theorem 1.27 (ij) and theorem 1.12 to obtain 
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Now takes= f(t) and y = f(t + xb(t))/f(t) in the resulting inequality. 

ad 7. By theorem 1.28 there exists a function 8(t) ~ b(t) (t+co) such that 
t 

8 I ( t) + 0 and 1/f(t) ~ exp{- f ds/ S(s)} ( t+co) • 
1 

t t s 
Hence g(t) = 1/{J ds/f(s)} ~ 1/ f exp(- f du/S(u))ds (t+co). 

1 1 1 
Since f € f(8) we have 

t 

exp(- f du/S(u)) 
g(t + x8(t)) 

g(t) 
_______ l __ t_+_x_8...,.(-t""") ____ ~ ex (t+co) 

(1 + xS'(t)) exp(- f du/8(u)) 
1 

by de l'H8pital's rule. 

Hence g € r(S), which implies g € r(b) by remark 2 following def. 1.24. 

◊ 

In theorem 1. 17 it is shown that for f € IT( a) it is possible to construct a 

representation in terms of the function a. Our last result for the class r 

gives a similar statement for functions f € f(b), 

Proposition 1.32 

If f € r(b) with b such that 1/b is locally integrable on~+ (this can always 

be achieved since any auxiliary function is asymptotic to a positive 

continuous one), then there exists a non-decreasing function f 1 € RV 1 such 

that 

(1.89) 

t 1 
where h(t):= exp(b b(s) ds). 

Conversely if f satisfies (1.89) with has above, then f € r(b), 

Proof 

Suppose f € r(b). Define f 1(t):= f(h+(t)). 

Note that h+ € Il(a), where a(t) ~ b(h+(t)) (t+co) by theorem 1.27. 
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By lemma 1.25 we have for x > 0 

fl(tx) f(h+(t) + {(h+(tx) - h+(t))/b(h+(t))} b(h+(t))) 
lim f(t) = lim 
t+oo 1 t+oo f(h+(t)) 

exp(lim h+(tx) +- h+(t)) 

t+oo b(h ( t)) 
x. 

Conversely, if f satisfies (1.89), where f 1 E RV1 , then for x > 0 

lim f(t + x b(t)) 
f( t) 

t+oo 

f 1({h(t + x b(t))/h(t)} h(t)) 
lim ------.,.-,.......,--,------

f1(h(t)) t+oo 

lim h(t + x b(t))/h(t) 
X 

e • 
t+oo 

I.4 Beurling slowly varying functions 

◊ 

The class of auxiliary functions b for functions in the class r (cf. cor. 

1.29.1) is an interesting class in its own right since it can be used in other 

contexts as well. We now give some results for this class of functions. 

Definition 1. 33 

A measurable function b: R + R which is eventually positive is Beurling slowly 

varying (at infinity) if 

1i b(t + xb(t)) 

t m b( t) 
+oo 

1 for all x E R. ( 1.90) 

Notation: b E BSV, ◊ 

Remark 

This class of functions was used by A. Beurling in connection with a 

generalization of Wiener's Tauberian theorem (unpublished, cf. Bloom 1976). 

Before discussing further properties of the class r, we give two results 

concerning the class BSV. 

Theorem 1,34 

If b E BSV is continuous, relation (1.90) holds uniformly for x E [a, b] with 

- oo < a < b < 00 0 



Proof 

We prove the result for a 

being similar. 
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0, b = 1, the argument for an arbitrary interval 

Suppose (1.90) does not hold locally uniformly. Then there exist e E (0,1) and 

sequences {xn} c (0,1) and tn + m (n+m) such that 

The function fn(t):= b(tn + tb(tn))/b(tn) - 1 is continuous and lim fn(t) 0 

for fixed t. 
n+m 

Hence there is an integer Nanda sequence <\i E (0,1) (n= 1, 2, ••• ) such that 

e for n ~ N, 

where Yn = tn + anb(tn)• 

We introduce three sequences of sets: 

b( t + ab(t )) 

vn:= {a€ <o, z+e); I \ct) n -11 <½l, 
n 

(1.91) 

b(t + ab(t )) 

W~ {a E (0, 2+e); I nb(y) n - lj < Z(~+e)} 
n 

Since b E BSV we have lim ).(V ) = 2+e and lim ).(W ) 
n n 

1 (). denotes Lebesgue 

measure). 
n+oo n+oo 

Hence an E (0,1) and (1.91) imply lim ).(W~) 2_ 1-e. 

For a E W' we have n+m 
n 



hence V n W' 
n n 

-so-

~. Since Vn, W~ c (O, 2+e), this implies 

2+£ 2_ lim )..(Vn u W~) ~ lim (A(Vn) + A(W~)) ~ 2+£ + 1-e 3 
n+oo 

which gives a contradiction. ◊ 

Next we prove a representation for BSV functions which satisfy (1,90) locally 

uniformly. 

Theorem 1.35 

If b € BSV and (1.60) holds uniformly on finite intervals, then there exists a 

integrable function E such that lira e(t) = 0 and 

t 

b(t) ~ f e(s)ds (t+oo). 
0 

t+oo 

( 1.92) 

Conversely, if b: IR + IR is measurable, eventually positive and satisfies 

(1.92) with E(t) + 0 (t+oo), then (1.90) holds uniformly on bounded intervals 

of IR. 

Proof 

Suppose (1.90) holds uniformly on finite intervals. Then there exists t 0 > 0 

such that for t L t 0 and all x € (-1, l] we have b(t + xb(t)) L ½ b(t). Define 

the sequence {tn} by tn+l = tn + b(tn), n = 0, 1, 2, ... 
Then the sequence {tn} is increasing and we claim that tn + oo (n+oo). 

n 

If not then lim tn = p < oo. Now tn t 0 + E b(tk_1). Then the series E b(tk) 
~l ~l n+oo 

converges and, in particular, lim b(tn) O. Since p ~ t 0 , 
n+oo 

b(y) L ½ b(p) for ally € [p - b(p), p + b(p)]. 

Note that b( t) is positive for t L t 0 and this is contradicted by 

0 lim b(tn) z_ lim b(y) .~ ½ b(p). 
n+oo y+p 

This proves tn + oo (n+00), 

Define the function b* by b*(t) = 0 on (O, t 0), b*(t) = b(t) fort= tn (n = 

1, 2, ... ) and linear on the interval [tn, tn+ll (n = 0, 1, 2, ... ). Then, 

since convergence in (1.90) is uniform, we have b(t) ~ b*(t) (t+oo), 
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Moreover b* satisfies the representation 

with E(s) 

b*(t) 
t 

f E(s)ds, t > 0 
0 

0 on (O, t 0) and 

b*(tn+l) - b*(tn) b(tn+l) - b(tn) 

b(tn) 

for tn ~ s < tn+l• n = O, 1, 2, ••• Since E(s) + 0 (s+"') b satisfies the 

required representation. 

For the converse part we may assume that b(t) 
t 

f E( s)ds, 
0 

We prove that (1,90) holds uniformly for x € [a, b], 

By (1,92) there exists t 0 such that 

b(t) 1 
o < -t- < zfaT for t ~ t 0 • 

For any Eo > 0 there exists t 1 ~ t 0 such that IE( t) I < Eo for t > t 1• 

Consequently fort> 2t 1 we have t(l + v b~t)) > t 1 and hence IE(t + vb(t)I < 

Eo for all v ~min (O, a), It follows that 

lb(t + xb(t)) - b(t) I I xf I I I b(t) < IE(t + vb(t)) ldv < E0 1xl i_ EO max( a, b) 
0 

fort> 2t 1 and all x € [a, b], ◊ 

Remark 

From the proof it follows that it is possible to take E continuous in (1,92), 

We close this section with an application of the Beurling slowly varying 

functions and the class r. 

Theorem 1. 36 

Suppose y is a positive solution of the second order differential equation 

y" = fy satisfying y(x) + "'(x+"'), where f is continuous and 1/fl € BSV. 

Then y € r(l/fl). 
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Proof 

a. First we suppose that f is differentiable and (1/ ✓ f(x))' 

+ 0 (x+co), Define the function w by 

w( x) : = -~Y'-1-'(,_x_,_)_ 

y(x) ✓ f(x) 

(1.93) 

Then w(x) > 0 for all x sufficiently large (if not then y'(xk) = O, hence 

y"(uk) = y(uk) f(uk) = 0 for some sequences xk, uk + co (k+co) which gives a 

contradiction), 

Note that 

w' - f' / i£r f' / (f 1 )
2 

-✓ f (w + ~/2 + 1 + 3 )(w + ~/2 - 1 + --) 
4f 16f 4f 16f3 

(1.94) 

We shall prove w(x) + 1 (x+co) and consider the following three cases: 

a.I. w'(x) > O for all x > x0• 

Then w is increasing and lim w(x)=: A E [O, co] exists. If A= co, then 
x+co 

(1,94) implies w'(x)/ ✓ f(x) + -co (x+co) which contradicts w' > O. 

If A< 00 , from (1.94) it follows that lim w'(x) = 1 - A2, 

If A* 1 this implies 

2 X 

w(x) ~ (1 - A) f ✓ f(s)ds. 
0 

x+co ✓ f(x) 

Since w(x) ~ A + 1 for all sufficiently large x we have 
X 

(1.95) 

✓ _ y'(x) y'(x) 
f(x) - y(x) w(x) L (A+l) y(x) and y(x) + co entails f ✓ f(s)ds + 00 (x+co), 

0 
Combination with ( 1. 95) then gives w(x) + 00 which gives a contradiction 

as above. Hence w(x) + 1 (x+co), 

a.2. As in part a.I we find lim w(x) 
x+00 

1 in case w'(x) < 0 for all x > x0• 

a.3. If w'(x) 0 infinitely often we have 

w(x) _ f' (x) + / 1 + .... {_f_' (.,_x__.)_._}_2 

4f(x) 312 16f3(x) 

for every x where w'(x) O. 



-53-

Since w is monotone between consecutive zeros of w' we find 

lim w(x) = 1. 
x+00 

The proof can be completed as follows. 
2 

Since f = y"/y and lim w(x) = 1 we have (y'(x)) /y(x)y"(x) + 1 (x+00) 

which is equivalentxt;;' y" E r(b) by theorem 1.28. Moreover since w(x) + 1 

we have 

~ filL.. 1 
b(x) ~ y"(x) ~ y'(x) ~-=:::= (x+co). 

✓ f(x) 

Application of cor. 1.29,2 then finishes the proof. 

b. If f is not differentiable then, by theorem 1. 35 there exists a 

differentiable function g such that g(x) ~ f(x) (x+00) and (-1-)' + 0 
/g(x) 

(x+00). 

Then for any€> 0 there exists x1 = x1(€) such that 

(l-€)g(x) ~ f(x) ~ (1+€)g(x) for x L x1• 

Now consider the positive solutions of the differential equations 

u" = (l-€)gu and v" = (l+e:)gv which tend to infinity, 

Note that for x L x1 we have 

d 
tcfY'(x)u(x) - u'(x)y(x)} y(x)u(x){f(x) - (1-e:)g(x)} 2 O. 

Hence for x 2_ x1 we have 

y' (x)u(x) - u' (x)y(x) L c, where c is a constant. 

This implies 

y' (x) ) C + 

y(x) ✓ f(x) - u(x)y(x) /f(x) 

u'(x) for x > x. 
-- - 1 u(x) ✓ f(x) 

(1.96) 

By part a of the proof we have u'(x) ~ u(x) ✓ (1-e:)g(x) (x+00), which implies 

u'(x) + ✓ l-€ 

u(x) ✓ f(x) 

hence u(x)y(x) ✓ f(x) ~ ✓ 1-e: -lu'(x)y(x) + 00 since y(x) + 00 (x+co) and 

u'(x) + 00 (note that u' Er). 

( 1. 97) 
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Combination of (1.96) and (1.97) gives lim y'(x) > ✓ 1-e and similarly 

we find lim y'(x)/{y(x) /f(x)} ~ ✓ l+e. x+oo y(x) ✓ f(x) -

Since e > 0 is arbitrary this implies y'(x) ~ y(x) ✓ f(x) and the proof can 

be completed as in a. 1. ◊ 

I. S Sequential versions of regular variation. 

In this paragraph we consider representation and embeddiug theorems for RV­

sequences and IT-sequences. We start with a formal definition. 

Definition 1. 37 

A sequence of positive numbers {en 

varying (RV) if 

n = O, 1, 2, ••• } is said to be regularly 

lim c[ 1;c xn n n+oo 

(l 

X (x > 0) for some a€~. 

Notation: {en} is a RV0 - sequence, 

(1.98) 

◊ 

It is clear that if the function c[x] is regularly varying with index a, then 

{en} is a RV0 -sequence. 

The next theorem gives a converse result, which enables us to use earlier 

results about RV-functions by "embedding" the sequence in an RV-function, 

Theorem 1.38 

If the sequence {en} of positive numbers satisfies lim c[xn]/cn = w(x) for 
n+oo 

x > O, where O < w(x) < 00 for x > O, then f(x) : = c[x] is regularly varying. 

In particular {en} is a RV0 -sequence, 

Proof 

We first prove cn_ 1/cn + 1 (n+oo), 

-1 k k -1 
Since n [nn] =max{-;;-;< n}, we have [n [nn]] n-1 for all n € IN. 

Hence 

C 
-1 

C 
-1 C C 

n-1 = [n [nn]] [n [nn]] ~ + $( n - 1 ) • $( n) • 
C C c[ nn] C 

n n n 
(1. 99) 

Hence lim cn-1/cn exists, 
n+oo 
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Si c[[n/2]2] { 1 if n is even 
nee c = c 1/c if n is odd and moreover lim c[[n/ 2] 2]/cn 

n n- n n+m 

$(2) $(½), we find $(2) $(½) = w(~) $(~-l) = 1. 

Combination with (1,99) then gives lim c 1/c = 1, 
n- n 

n+m 

Then also cn+k/cn + 1 (n+m) for any fixed k € z. 

Since 0 ..s_ tx - [t] x ..s_ [x] + 1 we have for any fixed x > 0 

hence f € RVa by theorem 1.2, 

Corollary 1.39 

{en} is a RVa-sequence with a> -1 if and only if 

n 
lim - 1- I: ck = - 1- with a> -1, 
n+m n en k=l o+l 

Proof: 

Use theorem 1.38, 1.2 and 1,4. 

◊ 

◊ 

Next we prove a similar statement concerning the class II. Here however, we 

have to require beforehand that the auxiliary function is in RV0• 

Definition 1, 40 

A sequence of positive numbers {en, n = O, 1, 2, ... } is said to be a II(a)­

sequence if there exists a RV0-sequence {an} such that 

lira 
n+m 

C - C 
[nx] n 

a 
n 

log x for all x > 0. ( 1. 100) 

◊ 

The next result shows that it is possible to use earlier results obtained in 

this chapter for the class II. 

Theorem 1.41 

If the sequence {en} is a II(a)-sequence, then the function f defined by 

f(t): = c[t] belongs to the class II. 



-56-

Proof 

Since {an} is a RVo sequence, by definition 1,40 we have 

C - C 
lim [[nx]z) n 

n+oo 

+ lim 
n+oo 

a 
n 

C - C 
[nx] n 

a 
n 

This implies (take x = n, z 

c[[ ) ) - c[nx) lim nx z 

n+oo 

a[nx) 

a 
n 

ln z + ln x for all x, z > O. 

a 

cn+k - en 
O, which implies lim __ a __ _ 

n+oo n 

- lim 
n+oo 

since {an} is a RV0-sequence. 

Hence for all x > 0 we have 

lim c[tx) - c[t) 

t+oo a[t) 

+ lim c[[t)x) - c[t] 

t+oo a[ t] 

n+oo 

ln x 

(use the fact that [tx] - [[t)x] is bounded), 

n 

◊ 

The final theorem is not concerned with RV sequences proper but it provides a 

criterion for regular variation when one only has convergence through a 

certain sequence of reals tending to infinity. 

Theorem 1. 42 

Let f: R+ + R+ be continuous and let the positive sequence {an} satisfy an+ 00 

and an+1/an + 1 (n+oo), 
f(ant) 

Suppose lim --b-- = w(t) exists for all tin an open interval V of R+, where 
n+oo n 

bn and w(t) are finite and positive for n > 1 and t EV, 

Then f E RV00 for some a ER, 
a 
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Proof 

Note that V n u-1 V *~for all u in a non-empty interval K. 

f(anut) ~ 
If t, ut € V we have f(a t) + w(t) (n+00). 

n 

Hence if we write fu(t) = f(ut)/f(t) we have 

f (a t) + 1/1( ut) ( n+oo) 
u n w(t) 

for all t EV n (u-1v). 

Now write f*(t):= fu(et), an*:= log an. 

Then f*(t + an*) converges as n+00 for all t in a non-empty open interval J. 

Let e > 0 be arbitrary. 

Define fork E Z, m EN 

{t € IR; f*(t + a *) E [ke:-e, ke+e] }. 
n 

Hence, since the set ck,m is closed for all k, m, J is non-empty and open and 

Jc u Ck , we can apply Baire's category theorem (see Hewitt and Stromberg 
k,m ,m 

p. 68). It follows that one of the sets ck,m contains an open interval I, 

which means that 

ke-e ~ f*(t + an*) i_ ke+e for n 2_ m, t E I. 

Since an*+ 00 , a~1 - an*+ O, it follows that u 
n)m 

interval of the form [t0, 00), hence 

ke-e ~ f*( t) ~ ke+e for all t 2. t 0• 

a*+ I contains an 
n 

Hence lim f (t) = lim f(ut)/f(t) exists and is finite and positive for all 
t+oo U t+oo 

u EK. The proof is finished by an application of theorem 1.2. ◊ 

I.6 Discussion 

We do not attempt to give a full bibliographic account of the material of this 

chapter. Instead, we give at least one key reference for each of the main 

topics. 
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Most of the results from section 1.1 are already present in J. Karamata's 

papers (1930) and (1933) in some form. The present form of the uniform 

convergence theorem (th. 1.3) and of the representation theorem (th. 1.5) is 

due to Van Aardenne-Ehrenfest et al. ( 1949) and de Bruijn (1959). Our method 

of proof for theorem 1.2 stems from Cziszar and Erdos (1964) and has been used 

also by Bingham and Goldie ( 1982). Theorem 1.8 (a general-kernel Abelian 

theorem) is due to Karamata (1962). 

Properties 1 up to 4 from prop. 1.7 originate from Karamata's original papers. 

A reference for the inequalities in properties 5 up to 7 is Pitman (1968). A 

reference for the statements on inverses of RV functions is de Haan (1970). 

Property 11 has been taken from Feller ( 1971) and property 12 from de Haan 

(1977). 

Some of the results of section 1,2 (class IT) appear in Bojanic and Karamata 

(1963), many of them have been taken from de Haan (1970) after a recursion to 

monotone functions via the uniform convergence theorem ( th. 1. 14). Theorem 

1,20 is a version of a theorem due to Bingham and Teugels (1980); the present 

form is believed to be new. The notion of inversely asymptotic functions and 

its applications have been taken from Balkema, de Haan and Geluk (1979). 

The material of section 1.3 (class r) has been taken mainly from de Haan 

(1970). Some of the properties of prop, 1.31 are new. The problem how to 

extend the theory of the class r to functions which are not monotone is still 

open, The results on Beurling slowly varying functions (section 1.4) are due 

(with different proofs) to Bloom (1976). 

The application to differential equations (th. 1.36) is due to Omey (1981). 

The section on regularly varying sequences is a compilation (except for the 

material on IT(a) sequences) of the articles by Bojanic and Seneta ( 1973), 

Galambos and Seneta (1973) and Weissman (1974), the latter with improved 

proof. 

Theorem 1.42, due to Kendall, has been presented here with a new short proof 

due to Balkema. 

We end with some remarks about generalizations. 

A theory of regular variation for functions f: IR + ([ has been developed by 

Vuilleumier (1976). 

A reference for the notion of regular variation and IT-variation for functions 

+ + f: !Rn+ IR is de Haan and Omey (1983), 

Generalizations of the class IT can be found in Geluk: IT-regular variation 

(1981) and Omey and Willekens: IT-variation with remainder (1986). The latter 

title alludes to the notion of "slow variation with remainder", see Aljancic, 

Bojanic and Tamie (1974), Goldie and Smith (1987). A somewhat different 

generalization will be discussed in chapter 3. 
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II, Transforms of regularly varying functions 

In this chapter all functions we consider are assumed to be measurable unless 

otherwise stated. 

In Chapter 1 we have seen that regular variation is preserved under certain 

transformations. Under suitable regularity conditions we have for example: 

t 

if f E RVa (a> 0), then f f(s)ds E RV~1• sup f(t) E RVa 
0 O<t<x 

and the generalised inverse f+ E RV _1• Under somewhat more restrictive 
a 

conditions the converse statements also hold, In this chapter we study two 

other transforms that preserve regular variation: the complementary function 

(see definition 2,1) and the Laplace transform (see definition 2.11). In fact, 

when discussing the Laplace transform we will need the results about the 

complementary function, 

II 1. The complementary function 

Definition 2,1 

a. Suppose f: IR+ + IR is bounded on finite intervals of IR+, f( a,) = "' and 

f(t) = o(t) (t+"'), Then the complementary function fc is defined by 

sup {f(x) - xy; x > O}, y > O, 

b. Suppose f: IR+ + IR is bounded in every interval (a,"') for a > 0 and 

f(o+) ="'•Then the inverse complementary function fc is defined by 

fc(x) = inf {f(y) + xy; y > O}, x > O, ◊ 

We shall concentrate on results for the complementary function, which plays a 

role in Tauberian theorems for Laplace transforms, Similar results hold for 

inverse complementary functions. 

In case 

f(x) 
X 

f s(t) dt <"' for x > 0 
0 

( 2 .1) 
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withs: (O, 00) + (O, 00) continuous and strictly decreasing, then the transform 

fc takes a particularly simple form. We find the supremum by differentiation: 

s+(y) 

f s(u)du - ys+(y) 
0 

wheres+ is the inverse function of s. 

( 2. 2) 

Note that any complementary function fc is convex, since the concave upper 

hull of f has the same complementary function as f itself. Compare (2.1) and 

(2.2). 

Now a regularly varying function with index between O and 1 is close in a 

certain sense to a concave function ( see lemma 1. 23). In order to derive 

relations similar to (2.1) and (2.2) for functions in RV or II, we use the 

concept of inversely asymptotic functions (see definition 1.21). The following 

lemma is an immediate consequence of definition 2,1 and enables us to derive 

the asymptotic behaviour of fc from the behaviour off. 

Lemma 2, 2 

Suppose f 1 , f 2 : 11t + IR are bounded on finite intervals of IR+, tend to 00 and 

fi(t) = o(t) for t+00, i = 1, 2. 

(i) If f 1 i_ f 2 then f~ if~. 

(ii) If f 1 = f 2 on a neighbourhood of 

hood of O. 

00, then fc 
1 

f~ on a right-neighbour-

Theorem 2.3 

Suppose f satisfies the assumptions of definition 2.1 and lets: IR++ IR+ 

be decreasing and continuous, s(t) + 0 (t+00) and 

Then 

implies 

1 
f s(x)dx < 00, 
0 

f( t) 
* t 

f s(x)dx 
0 

(t+oo) ( 2. 3) 
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fc(u): j s+(x)dx (u + o+), 
u 

wheres+ is the inverse function of s. 

Conversely if f is non-decreasing ands E RVm with O < y i 1 (hence 

( 2. 4) 

+ 0 -y 
s ERV _ 1), then (2.4) implies (2.3). ◊ 

-y 

Before giving the proof of the theorem we state the following corollary which 

is immediate by lemma 1.23. 

Corollary 2.4 

Suppose f: ~++~satisfies the assumptions of definition 2.la. 

(i) Let a,S be related by a-1 + s-1 = 1. 

Then 
m 

0 < a < 1 f E RV with 
Cl 

(2,5) 

implies 

fc E 0 
RVS with S < 0 • ( 2. 6) 

(ij) Also 

f E II (2.7) 

implies 

( 2. 8) 

Conversely if f is non-decreasing (2.6) implies (2.5) and (2.8) implies 

(2.7). ◊ 

Proof of theorem 2.3 

First we prove the Abelian part (the implication (2.3) + (2.4)), 

Recall that (definition 1.21) the relation (2.3) means: For every a> 1 there 

exists a constant t 0 = t 0(a) such that 

t/a ta 
J s(x)dx i f(t) i J s(x)dx fort 2_ t 0 • 
0 0 

The three implications in lemma 2,2 give for some u0 > 0 

m 

I 
+ C 

s (x)dx if (u) i 
ua 

which means that (2,4) holds, 

m 

J s+(x)dx for O < u <_uO, 
u/a 
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Conversely, suppose (2.4) holds and f is non-decreasing. 

Note that the function fc satisfies the assumptions of definition 2.lb. Hence 

(fc)c exists and is in fact the concave upper hull of f. Application of the 

analogue of the Abelian part ((2.3) + (2,4)) of theorem 2,3 for the inverse 

complementary function of fc shows that 

* t 
f s(x)dx (t + oo), 

0 

Application of lemma 1,23 gives f 1 € IT or RV;_y with O < y < 1, 

By the definition of the classes IT and RV this implies for y E (0,1] and 

0 < E < 1 

l+E 1 
f s-yds/ f s-yds < 1, (2.9) 
1 1-E 

where the case y = 1 corresponds to f 1 E IT. 

As a consequence of this asymptotic concavity, for fixed a > 1 any interval 

(t,at) for t sufficiently large will contain a point x with f(x) f 1 (x) 

(apply (2,9) with (1 + E)/(1 - E) = a). Hence since f is non-decreasing f 1(t) 

* i_ fi{x) = f(x) i_ f(at). Since obviously f < fl' we find f ~ f 1 and hence f 

satisfies (2.3), ◊ 

It follows from the above discussion that theorem 2.3 and corollary 2.4 above 

give results in case f E RVa with O <a< 1 and in case f E IT, which can be 

seen as an extension to a= O. It is also possible to prove an extension for a 

= 1. In order to see which order of magnitude for f is appropriate for such an 

extension, we recall that the existence of fc requires f(s) = o(s), s+oo 

(definition 2, la). It turns out that, as in the case a 

function class is again closely related to the class IT. 

O, the appropriate 

In order to formulate the results we define two classes of functions, related 

with the classes IT and rand the relation~ (def. 2.6), which is the analogue 

* of the relation~ (see definition 1.21) appropriate for this context. 

Definition 2,5 

A measurable function f: IR+ + IR is said to belog to the class IT if there 

exists a positive function a such that for all x > 0 

lim f(tx) - f(t) 
a(t) 

- log x. 
t+oo 
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Notation: f Err- or f E rr-(a), 

If the function f: IR+ + IR+ is non-increasing and if there exists a positive 

function b such that 

1 . f(u+x b(u)) 
im f(u) 

u+o+ 

e-x for x > O, 

then f belongs to the class r<O), 

(compare definition 1.24). 

Notation: f E r< 0>. 

(2.10) 

◊ 

Note that f E rr- if and only if -f E rr. Also it can be proved to see that 

f(t) E r<O) if and only if f(l/t) Er. 

From theorem 1.28 it follows by a change of variable that if f E r(O), then 

there exists a differentiable function 13: IR++ IR+ such that 13'(u) + O, 

13(u) + 0 (u + o+) and 

f(u) ~ exp {j 131:)} (u + o+), 
u 

(2.11) 

Conversely, if 

f(u) ~ exp { j ~~:j dx} (u + o+), 
u 

(2.12) 

where c(x) + c > 0 (x + o+) and 13 as above, then f E r< 0>. 

Definition 2.6 

Suppose f 1, f 2 : IR++ IR. We say 

(2.13) 

if for every constant a > 1 there exists a t 0 = t 0(a) such that for all t ~ t 0 

and 

Note that f 1 ( t) 

(2.14) 

◊ 
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Before formulating an extension of theorem 2.3 above to the case y = 0 (or a= 

1 in cor. 2.4) we give a lemma that is helpful for understanding the role of 

the classes n- and rCO). 

Lemma 2. 7 

(i) Suppose f: R+ + it. Then f(t)/t € If" if and only if there is an 

eventually decreasing continuous functions€ n- such that 

t 
f(t):., f s(x)dx 

0 
(t+oo) • (2.15) 

(ij) Suppose f: R+ + it is non-increasing. Then f € rCO) if and only if there 

is a decreasing t € rCO) such that 

Proof 

00 

f(u) ~ f t(x)dx 
u 

(u + o+). ( 2. 16) 

(i) Suppo.se f(t)/t € n-. By Lemma 1.23a there exists a decreasing continuous 

* functi9n W with -w € Il(a) such that - f(t)/t ~ -w(t) (t+00). 

Application of theorem 1.17 gives 

1 te 
-w(t) + (te)- f w(x)dx = o(a(t)). 

0 

* -1 t 
Hence -w(t) ~ - t f w(xe)dx by proposition 1.22 (ij) and (2.15) is 

0 
satisfied with s(x) = w(xe). 

t 
Conversely. ifs€ n- then t-1 f s(x)dx € n- (see theorem 1.17). 

0 
From (2.15) and prop. 1.22 (ij) it then follows that f(t)/t € n-. 

(ij) If f € rCO) we have the representation (2.11). The derivative of the 

right-hand side of (2.11) is 

1 1 + B'( ) 
t(u) = - c exp{f B(x) x dx} (c € R) • 

u 

which is in rCO) since it satisfies the representation (2.12). 

The converse part is a consequence of the analogue for rCO) of corollary 

1.29.2 and proposition 1.31.7. 
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Theorem 2.8 

Suppose f satisfies the assumptions 
1 

of definition 2.la and lets: R+ + R+ be 

decreasing, s(oo) = 0 and f s(x)dx < oo. 

Then 

implies 

t 
f(t) :., f s(x)dx 

0 

00 

0 

( t+oo) 

fc(u) ~ f s+(x)dx (u + o+). 
u 

(2.17) 

( 2. 18) 

Conversely if f(t)/t is non-increasing, s E IC is decreasing, then (2.18) 

implies (2.17). ◊ 

Before we prove theorem 2.8 we state the following corollary which is an 

immediate consequence of theorem 2.8 and lemma 2.7. 

Corollary 2. 9 

Suppose f: R+ + R satisfies the assumptions of definition 2.la. 

Then f(t)/t E IT- implies fc E r< 0). 

Conversely if f(t)/t is non-increasing fc E r(O) implies f(t)/t E IT-. ◊ 

Proof of theorem 2.8 

Suppose f satisfies (2.17). By definition 2.6 this means 

there exists a constant t 0 (a) such that for all t 2_ t 0 

1 ta t/a 
- f s(x) dx < f(t) < a f s(x) dx. 
a O - 0 

Application of lemma 2.2 then gives for some u0 > 0 

00 

s+(x)dx ~ fc(u) < a f 
u 

which means that (2.18) holds. 

Conversely, suppose (2.18) holds and f is non-decreasing, 

for every a > 1 

Note that the function fc satisfies the assumptions of definition 2.lb. 

Hence (fc)c exists and is in fact the concave upper hull off. 
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Application of the analogue of the Abelian part ((2.17) + (2.18)) of theorem 

2.8 for the inverse complementary function of fc shows that 

(x+oo). 

Application of lemma 1,21 gives f 1(t)/t En-. 
Suppose a is the auxiliary function of s E IT-. Then (2.19) implies 

f 1(t(l+e)) - 2f 1(t) + f 1(t(l-e)) 
lim -------t-a~(-t~)------­
t+oo 

= -(l+e) ln(l+e) - (1-e) ln(l-e) < 0 

(2.19) 

for O < e < 1. Since f 1 is the concave upper hull of f it follows that for 

fixed a > 1 any interval (t, at) contains a point x such that f 1(x) = f(x) 

provided t is sufficiently large. Since f 1 is concave, f 1(t)/t is non­

increasing. Hence 

for all t sufficiently large. On the other hand we find since f 1 ~ f 

f 1(t) f 1(at) f(at) 
-->--->--. 

t - at - at 

This proves f ~ f 1 , hence (2.17). ◊ 

Results similar to theorem 2.8 with a suitable definition of the complementary 

function can be given in case a > 1 and a < O. This possibility is mentioned 

in the paper of Bingham and Teugels (1975). 

II 2. The Laplace transform 

J. Karamata introduced the concept of regular variation in 1930 for use as a 

suitable condition for Abelian and Tauberian theorems for Laplace transforms. 

His Tauberian theorem generalized an earlier result of Hardy and Littlewood 



- 67 -

(1930) for functions f(x) asymptotic to x0 (a~ O) as x+oo. We start here with 

Karamata's result (theorem 2.11). Next we treat a similar generalization of 

the case f(x) = c log x + o(l) (this involves the class JI; see theorems 2.14 

and 2.16). We proceed with a generalization of the case log f(x) ~ x0 (O <a< 

1), due to Kohlbecker (corollary 2.20a) and end with the borderline cases a 

0 (which corresponds in some sense to the case a= co in Karamata's Tauberian 

result; see cor, 2.20b) and a = 1 (see theorem 2.26). That way the whole 

spectrum from functions like log x to functions like exp(x/log x) is covered. 

Note that for a > 1 the Laplace transform does not converge (see definition 

2.10). 

Definition 2.10 

Suppose f: R+ + R is measurable and j e-txjf(x)!dx < co for all t > 0, 
0 

The Laplace transform f of the function f is fort> 0 defined by 

f( t) 

00 

t f e-tx f(x) dx. 

0 

If f is non-decreasing and f(o+) 

Theorem 2.11 (Karamata, 1931) 

0 we can write f(t) 

00 

f e-tx df(x) • 

0 

Suppose a> 0 and f satisfies the assumptions of definition 2.10. If 

f E 
00 

RV 
a 

then 

f E RVO 
-a 

and 

f(l/t) ~ r(l + a)f(t) (t + 00) 0 

( 2. 20) 

◊ 

(2.21) 

(2.22) 

(2.23) 

Conversely if x 8 f(x) is positive and non-decreasing for some 8 E [O, 1) and 

all x > O, then (2.22) implies (2.21). ◊ 
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Proof 

The implication (2.21) + (2.23) is a special case of theorem 1.8. Now (2.22) 

follows. 

Next suppose xSf(x) is non-decreasing for some O ~ $ < 1 and (2.22) holds, For 

a,v > 0 

00 

J -vx 
f(v) > v e f(x)dx ~ f(a)/q(av) 

a 

V 

Hence for t,x,p > 0 

(2.24) 

$ A 1 
Since x f(xt)/f(t- ) is non-decreasing in x for all t > 0 and bounded by 

xSq(x), we can apply the selection principle (Widder ( 1941), p. 26): if 

tn + 00 , there exists a subsequence tn' + oo and a function$ such that 

liin 
n'+oo 

A -1 
f(xt , )/f(t , ) 

n n 
$(X) (2.25) 

for each continuity point x of$, It is now sufficient to prove that each such 

function is of the form $(x) = xa/r(l+a), Note that (2.22) and (2.25) imply 

A 

lim f(xtn,)/f(p/t~) 
n'+oo 

(2.26) 

for each continuity point x of$, 

By Lebesgue's theorem on dominated convergence (note that q(v) ~ ev, v + co, 

and q(v) ~ cv-S, v + o+), we get for s > p (using (2.24) and (2.26)) 

lim 
n'+oo 

-xs A sf e f(xt ,)/f(p/t ,) dx 
0 n n s J 

0 

-xs 
e 

A A -1 -a 
But then also, since f(p/tn,) ~ f(tn,)p (n' + oo), 

lim 
n'+oo 

00 

s J 
0 

-xs 
e $(x)dx 

which is now true for alls> 0, On the other hand we know 
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"' I -xs A -1 
s e f(xt 1 )/f(t 1 )dx 

0 n n lim 
n'+oo 

-a 
s 

The uniqueness property of the Laplace transform (Widder (1941) p, 80) now 

gives <f,(x) = xa/r(l+a) for x > O. ◊ 

Remarks 

1. For non-decreasing fit is also possible to prove the implication (2.23) + 

f ERV. For details the reader is referred to Drasin's paper (1968), 

2. Note that if f R+ + R is locally bounded and measurable and if 

log f( x) o(x) (x + co), 

then f(t) < 00 fort> O. 

In particular this is true if log f(x) o(x) is replaced by f ERV. 

Corollary 2.12 (= proposition 1.7.12) 

Any f E RV00 wi-th a + 1 E IN is asymptotic to a function f 1 with the property 
a 

that the absolute values of all its derivatives are regularly varying. 

Proof 

If a > O, there is an increasing function f0 (t) ~ f(t) (t+00) by proposition 

1. 7. 3. 
A 

Define f 1(t) = f 0 (1/t)/r (1 + a). For a< 0 a similar proof can be given. ◊ 

Our next result contains an a-version of the above theorem. 

Theorem 2.13 
co 

Suppose f satisfies the assumptions of definition 2.10 and let g E RV a with 

a 1. O. 

If 

f(t) o(g(t)) (t+co) (2.27) 

then 

f(l/t) o(g(t)) (t+co), ( 2. 28) 
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Conversely if f is non-decreasing and (2.28) holds, then (2.27) is true. 

Proof 

Suppose (2.27) with g E RV0 , a~ 0. Without loss of generality we may suppose 

that g satisfies the assumptions of definition 2.10, 

For e: > 0 arbitrary, there exists t 0 such that f(t) i_ e: g(t) for t ~ t 0 • Hence 

fort 

Since 

00 

t-1 J / t 1 00 -s/ t e-s f(s)ds < e: t- f e g(s)ds ~ 2 e: r(l+a) g(t), 
t 

0 

sufficiently 

g € RV0 with 

t 

I t-1 f 
0 

0 

large by theorem 

a > 0 we have 

e-S/tf(s)dsj _$ t-1 

t 
0 

2.11. 

t 
0 

J I f(s) ids o(g(t)) (t+oo), 
0 

Combination of the above inequalities then gives ( 2. 28) since e: > 0 is 

arbitrary, The converse imprication for non-decreasing f follows immediately 

since f(t) i_ e f(l/t) by (2.24). 

For positive functions f E IT it is possible to improve the result for a= 0 in 

theorem 2. 11. 

Theorem 2.14 

Suppose f satisfies the assumptions of definition 2.10, Then 

f E IT (2.29) 

implies 

~ 0 
f E IT • ( 2. 30) 

Conversely if f is non-decreasing then (2.30) implies (2.29). Moreover 

f E IT(a) implies 

f(t) - f(t- 1) lim -----'--__;'-C--'-

a(t) t+oo 
y ' (2.31) 

where y is Euler's constant. 
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Proof 

The implication (2.29) + (2.31) is a special case of theorem 1,18. 
A 0 

Note that f E IT(a) and (2.31) imply f E IT (sEe theorem 1.13). 

In case f(t) I= 0 on (O, t 0 ), note that I t-l f0 e-s/t f(s) ds I~ t-l 
t 0 
f0 !f(s)!ds and the right-hand side is o(a(t)) (t+00), which shows that (2.31) 
0 
is also satisfied in this case. Conversely 

A 0 
suppose f E IT and f is non-

decreasing, Without loss of generality we may suppose that f(Ot) 

Laplace transform of the non-decreasing function g defined by 

O. Then the 

t 

g(t) = f sdf(s) satisfies 
0 

f( t) f g(s)ds. (2.32) 

A O t 0 
Hence g E RV_ 1 by proposition 1.19.5, This in turn implies g E RV 1 by theorem 

2,11. Application of theorem 1.17 finally gives f E IT. ◊ 

Corollary 2.15 

If f(tx) - f(t) + log x (t+00), then f(t-lx- 1) - f(t- 1) + log x (t+oo), 

The converse holds under the assumption f is non-decreasing, Moreover then 
A -1 

f(t) - f(t ) ➔ y, t+oo, 

It is possible to give a Mercerian result here of a restricted type: 

if (f(t) - f(t- 1))/t- 1f sdf(s) + y (t+00) with f non-decreasing and 
0 

f(Ot) = O, then f E IT, See Embrechts (1978), ◊ 

Example 
A -1 

If f(t) = clog t+o(l) (c > 0) then f(t ) =clog t -cy + o(l), t+oo, 

The converse holds under the assumption f is non-decreasing. 

A -1 
Note that the statement "f(t) - f(t ) + y implies f(t) log t + o( 1)" is not 

correct: take for example f(t) = t + log (t+l). 

Corollary 2,16 = Proposition 1,19,6 

Any f E IT(a) has a companion function f 1 such that (-l)n+l f 1(n) E RV00 for 
-n 

n = 1,2, ••• and f 1(t) - f(t) = o(a(t)), t+00 (define f 1 by f 1(t) = f(t-le-y)). 
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Theorem 2. 17 

Suppose that f: R+ + R is integrable on finite intervals of R+ and that 

L E RV~. Then 

lim 
f(tx) - f(t) 

0 for every x > 0 
t+00 L(t) 

implies 

A A 

lim 
f(sx) - f(s) 

0 for every x > O. 
s+o+ 

L(l/s) 

and 

lim 
f(t) - f(t - 12 o. 

t+00 L(t) 

Conversely if f is non-decreasing, then (2.34) implies (2.33). 

Proof 
t 

Define the function g by g(t) = tf(t) - f f(s)ds. 
0 

Note that t-1 g(t) is locally bounded on t > 0 and that conversely 
t 

f(t) = g(~) + f ~ ds. We then have 
0 s 

A 00 1 -s 
f(t) - f(l/t) _ .iliL_ _ f -s ~ d + f l.::L_ fil!&_ ds + 

L(t) - tL(t) O e tsL(t) s O s tsL(t) 

00 -s 
f e fil!&_ 

- l -s- tsL(t) ds. 

(2.33) 

( 2. 34) 

(2.35) 

If (2.33) holds the first term on the right-hand ~ide tends to zero as t+00 by 

remark 3 following corollary 1, 18, the second term tends to zero by theorem 

2, 13 and the last two terms tend to zero by similar arguments as in the proof 

of theorem 2.14. This proves (2.35). Now (2.34) follows from (2.33) and (2.35) 

since L E RV;. Conversely suppose (2.34) holds. Then with the function g as 

defined above we have 

f(2-lt-l) - f(t- 1) 

L(t) 
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~ -1 
Hence g(t ) = o (tL(t)) (t+oo). Application of theorem 2.13 and remark 3 

following corollary 1.18 then gives (2.33). This finishes the proof, ◊ 

Next we turn to Tauberian theorems for functions that grow faster than 

polynomials. 

Roughly speaking we shall prove theorems connecting regular variation of log f 

at infinity with regular variation of log f at zero, It is now convenient to 

switch notation: instead of log f we will write f, This has the consequence 

that log f has to be considered as a function of log f, which is done in the 

next definition: 

Definition 2.18 

Suppose f : R+ + R is such that the Laplace transform of exp f is finite. We 

define the function f by the relation 

f(s) log s J exp { f( t) - st} dt, s > 0 • 
0 

( 2. 36) 

◊ 

In the proof of theorem 2, 19 we use the concept of an inversely asymptotic 

function (see definition 1,21) in order to treat the cases IT and RV 0 with O < 

a< 1 simultaneously. It turns out that the transform f defined above and the 

complementary function fc whose properties were described in the first part of 

* this chapter, are the same up to~ equivalence. 

Theorem 2.19 

Suppose f: R+ + R is such that f(s) is finite for s > 0 and let 

1 
s: R+ + R+ be decreasing, continuous, f s(x)dx < oo, t s(t) + oo (t+oo) 

0 

and 

Then 

00 

s € RV with -1 <a< 0, 
a 

t 
*~ J f(t) s(x) dx, t+oo 

0 

(2.37) 

(2.38) 

( 2. 39) 
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implies 

* 00 

f (u) ~ J s +(x) dx, u + o+, (2.40) 
u 

+ 
wheres is the inverse function of s. 

Conversely if f is non-decreasing and if there exists a functions satisfying 

(2.37) and (2.38), then (2.40) implies (2.39). 

Corollary 2. 20 

Suppose f: ~++~is such that f(s) is finite for alls> 0. 

a. Let p, q be related by p-l + q-l = 1. 

Then f € RV00 with 0 < p < 1 (i.e. a= p-1 > -1) implies f € RVO with q < 0. 
00 p q 

If f €RV, then (2.39) is equivalent to (cf. prop. 1.22) 
p 

t 
f(t) ~ f s(x)dx ~ p-l t s(t) (t+oo) 

0 

and (2.40) is equivalent to 

00 

~ + -1 + 
f(u) ~ J s (x)dx ~ -q us (u) (u + o+). 

u 

b. The case p = 0 translates into the following: f € II (i.e. a = -1) with 

~ 0 auxiliary function ts(t)+00(t+00) (s decreasing) implies f € II with 

auxiliary function b(u) ~ u s +(u) + oo (u + o+). If f € II, then (2.39) is 

equivalent to (cf. prop. 1.22) 

t 
f( t) f s(x)dx + o(t s(t)) ( t+oo) 

0 

and ( 2. 40) is equivalent to 

00 

f(u) f s +(x)dx + o(u s+(u)) (u + o+), 
u 

Converse statements are true under the assumption that f is non-decreasing,◊ 

We prove the two statements in theorem 2.19 separately. For the proof of the 

Abelian part we need three lemmas. 
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Lemma 2.21 
1 

Suppose s : IR+ + IR+ is decreasing, s( 00) 

and let exp f(t) be locally integrable, 

Define the function f 0 by 

O, f s(x) dx < 00, ts(t) + 00 (t+00) 
0 

t 
f 0 (t) f s(x)dx. 

0 

Then 

* f(t) ~ f 0 (t) ( t+00) 

implies 

f(u) * ~ ~ f 0 (u) (u + o+). 

Proof 

Fix c > 1, We claim that 

exp f (u) - exp f (cu)+ 00 for u + o+, 
0 0 

If we define t 0 such that e-to ce-cto, then t 0 < 1 and 

exp f (u) - exp f (cu)= j efo(t)(ue-ut - cue-cut)dt 
0 0 0 

00f f (t/u)( -t -ct dt e o e - ce ) 
0 

(2.41) 

(2.42) 

(2.43) 

◊ 

(2.44) 

Since f 0 is non-decreasing the integrand in the last expression is non­

negative, hence the right-hand side is at least 

(efo( 2/u) - efo(to/u)) j (e-t - ce-ct)dt, 

2 

2 
exp {f s(x/u)/u dx} + 00, u + o+. 

t 
0 

( 2. 45) 
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Hence the expression (2.45) tends to infinity which proves (2.44). 

Now by (2.42) there exists t 1 = t 1(c) such that f(ct) 2,_ f 0 (t) fort 2,_ t 1• 

Define the function f 1 by f 1(t):= min (f0 (t), f(ct)). 
~ ~ t 

Then efo(u) - efl(u) = u J1 (efo(t) - efl(t)) e-ut dt = o(l) 

0 
(u + o+). Together with (2.45) this gives f 0 (cu) ~ 11(u) for all u suffi-

ciently small. The right-hand side is at most f(u/c) since f 1(t) .s.. f(ct). 

Hence f (cu)< f (u/c) for u < u. 
0 - - 0 

Similarly we find f(cu) < f (u/c) for u < u1• This finishes the proof since 
- 0 

c > 1 is arbitrary. ◊ 

Lemma 2.22 

If f is non-decreasing and fc, fare well-defined, then 

(2.46) 

Proof 

For u, s > 0 we have 

m m m 

exp f(s) =sf e-xs+f(x)dx >sf e-xs+f(x)dx > ef(u) sf e-xsdx 

0 u u 

exp{f(u) - s u}. 

The proof is finished by taking the supremum over u > 0 on the right-hand 

side. ◊ 

Lemma 2.23 
t 

If f(t) = f s(x)dx, t > O, where the functions is continuous, decreasing and 
0 

s € RVa with -1 .s_ a< O, then for all t > 0 

m 

f(s(t)) = fc(s(t)) + log{s(t) f 
-t 

where the function A is defined by 

A(u):= u s(t) - f(t+u) + f(t). 

(2.47) 

(2.48) 
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Moreover the function tJ. is convex, positive for u t- 0, u > -t, tJ.(0) 

satisfies the inequality 

IJ.(t+u) l_ (1-2°') u s(t) for u > 0 

and all t sufficiently large, where a< a'< O. 

Proof 

By the definition of the complementary function fc we have 

00 
f(s(t)) = f(t) - t s(t) + log{s(t) f e-tJ.(u)du} 

-t 

00 
fc(s(t)) + log{s(t) f e-tJ.(u)du}. 

-t 

0 and 

(2.49) 

Since s E RV 0 we have s(2t) ~ 2°' s(t) for t > t 0 , where a < a' < O. Now fix 

t > t 0 • Then since sis decreasing we have 

tJ.'(u) = s(t) - s(t+u) l_ s(t) - s(2t) l_ (1 - 2°')s(t) 

for u > t. Hence we have 

IJ.(t+u) 
t+u 
f tJ.'(x) dx > 
0 

t+u 
f tJ.'(x)dx ~ (1 - 2°') us(t) 
t 

for u > O. 

Proof of theorem 2.19 (Abelian Eart) 
t 

In view of lemma 2.21 we may assume that f( t) f 
0 

s(x)dx with s E RV0 

(-li.a< 0) continuous, decreasing and ts(t) + 00 ( t+00) • 

Application of lemma 2.23 gives 

00 
e-tJ.(u) du} f(s(t)) fc(s(t)) + log{s(t) f 

-t 

t 00 
e -/:;( t+u) du} i _$_ fc(s(t)) + log s(t) {J l.du + f 

-t 0 

C C C a 1 -1 
~ f (s(t)/c) - (f (s(t)/c) - f (s(t))) + log{2ts(t) + (1-2 ) }. 

◊ 



- 78 -

Now we have for any c > 1 

s( t) 

fc(s(t)/c) - fc(s(t)) J s+(x)dx ~ (1-c- 1)ts(t), 
s( t)/ C 

hence 

Now let t+m, Then s( t) + 0 and ts( t) + .., by assumption. The last inequality 

~ C then gives f(s) ~ f (s/c) for sufficiently smalls, 

~ * C Combination with lemma 2.22 now gives f(s) ~ f (s), s + o+, 

In view of theorem 2,3 this finishes the proof. 

Before giving a proof of the Tauberian part of theorem 2.19 we discuss its 

main line, We have seen that under the main assumptions (2.38) and (2.39) the 

* complementary transform and the ~-transform have the same behaviour up to~ 

equivalence, 

If f satisfies (2.40), by the analogue of theorem 2.6 for the transform fc its 

inverse complementary function (f) satisfies 
C 

h(t) := (f) 
C 

* (t) ~ 
t 

J s(x) dx (t+m). 
0 

* It is then sufficient to prove h ~ f. The proof is by contradiction, We show 

* ~ * ~ that if the relation f ~his not true, then f ~ h cannot be true. 

h d h~(u) *~ ..,J s+(x)dx ( ) 3 Since on the other an u + o+ by theorem 2. and 
u 

f(u): j s~(x) dx (u + o+) by assumption, 
u 

this gives the required contradiction. In order to evaluate h we separate the 

domain of integration (O,m) into two parts: an interval I and its complement 

le. 

Lemma 2,24 below shows that the contribution of le is small, i.e. 

log s(t) J eh(t) - ts(t)dt ~ h(cs(t)) 
le 

fort sufficiently large. 
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t 
Lemma 2.24 

Suppose f(t) f s(x) dx (t > O) withs continuous, decreasing ands E RV00 

0 a 

with -1 _$_a< O. Suppose moreover ts(t) + oo (t + oo). Then for every O < B < 1 

there exist constants c > 1 and t 0 such that for t .?.. t 0 

log s(t) f ef(u)-us(t)du < f (cs(t)), 
Ic 

where I= (t - Bt, t + St). 

Proof 

(2.50) 

Fix t > t 0 and define the function /:J. as in (2.48). Application of lemma 2.23 

gives /:J.(Bt) = 1:J.(½t +ft)~ (1 - za') fts(ft) ~ y1Bts(t) for some y 1 > 0 not 

depending on B and t .?.. t 1• 

Similarly 1:J.(-Bt).?.. Yz Bts(t) for t.?.. t 2• Since /:J. is convex and /:J.(O) O, 

s(t) f ef(u)-us(t)du = ef(t) - ts(t)s(t) f e-1:J.(u)du S 
t+Bt Bt 

ef(t)-ts(t)s(t) f e-/:J.(Bt)-1:J.(u-Bt)du 

Bt 

~ ef(t)-ts(t)s(t)e-y1Bts(t) f e-1:J.(u)du e-y 1Bts(t)s(t) f ef(u) - us( 

0 t 

This together with the corresponding inequality for the integral over (O,t-Bt) 

gives 

log s(t) f ef(u)-us(t)du ~ f(s(t)) - yts(t), 
IC 

where y:= 8 min (y 1, Yz)• 

Application of theorem 2.19 (Abelian part) gives 

* 00 

f(u) ~ f s+(x)dx, u + o+. 
u 

Hence for any E > 0 there exists u0 such that for u _$_ u0 

f(u) < f s \x)dx < 
(l-g)u 

f s+(x)dx + 3 Eu s+((l-g)u) i. 
( l+Zg)u 

(2.51) 

( 2. 5 2) 

(2.53) 
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+ + 0 
since s is decreasing, Since s E RV_l/a (see proposition 1.7,9) we have 

s+((l-e:)u) ~ c0 s+(u) for u sufficiently small, where c0 = c0 (e:) > (l-e:)-1/a 

is a constant. Substitution in (2.53) gives for u i_ u0 

The proof is completed by application of the inequality (2.51) if we take 

c = 1 + e: > 1 so that 3 e: c0 < y and u = s(t). ◊ 

Proof of theorem 2,19 (Tauberian part) 

Define the function h by h(t): = (f) (t). From f ~ fc (lemma 2.22) it follows 
C 

that 

( 2. 54) 

The latter inequality follows since (fc)c is the concave upper hull off. 

* 00 

From f(u) ~ f s+(x) dx (u + o+) it follows by theorem 2.3 that 
u 

* t 
h(t) ~ f 

0 

s(x)dx, t + oo withs E RV00 (-1 ~ a ( O). 
a 

* 

( 2. 55) 

It remains to prove that f(t) ~ h(t) (t + oo), The proof is by contradiction, 

* If f(t) ~ h(t) is not true, then since f and h satisfy (2.54), there exists a 

sequence 'n + oo (n+oo) and a constant c > 1 such that h(,n/c) 2._ f(,nc). This 

implies since hand fare non-decreasing, that h(t/c) 2._ f(t) for 'n < t < c,n 

or (with t =, le B = 1 - c-½) 
n n • 

h(t/c) 2._ f(t) 

Together with (2.54) this gives for s > 0 

Note that 

f(s) logs f ef(u)-usdu ~ log (sf 

+ s J 
I C 

n 

0 I 

h(u)-usd) e u • 

h(u/c)-usd 
e u 

n 

t 
(2.55) implies by lemma 1.23 that h(t) = f s 1(x) dx where 

0 

( 2. 56) 

(2.57) 

s 1 non-

increasing and s 1 ( t) ~ s( t) ( t+oo). So if we take f = h and t = tn in lemma 
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2.24 we can estimate the second integral at the right-hand side in (2.57). As 

a consequence there exists c' > 1 such that (with sn: = s 1 (tn)) 

h( cs ) h( C's ) 
f(sn) .s_ log(e n + e n) ~ h(c"sn) + 1, (2.58) 

c" min (c,c') > 1. 

Now application of the direct statement of theorem 2.19 shows that ( 2. 55) 
* 00 

implies h(u) ~ f s+(x)dx, u + o+. Since also xs+(x) + co (x + o+), we have 

u 
h(s /c") - h(s c") + co (n+co). 

n n 

This takes (2.58) into the form f(s ) < h (s ✓ c") for sufficiently large n, 
n - n 

hence f and h are not inversely asymptotic. 

* 00 

On the other hand by assumption f(u) ~ f s+(x)dx and we already found 

~ * h(u) ~ f 
u 

s+(x)dx, u + o+, hence a contradiction is obtained. ◊ 

u 

Now that the proof of theorem 2 .19 has been completed, let us pause to 

consider its place with respect to the previous results. In theorem 2.11 we 

considered functions f € RV00 (O <a< co). Theorem 2.19 concerns functions f 
a 

such that log f € RV00
, (0 < a' < 1) or log f € II ( the case a' = 0). We argue 

a 

that the case a' = 0 of theorem 2.19 can also be considered as the borderline 

case a = co of theorem 2.11. To this purpose note that f € RV00 is equivalent 
a 

( a > 0) to 

= X (2.59) 

for all x > 0 provided that lim a(t) =a.Now (2.59) with lim a(t) = co is 
t+co t+co 

equivalent to log f € II(a) which is the condition for theorem 2 .19 with 

a' = o. 

Incidentally, also the condition for theorem 2,14 (the refinement of theorem 

2 .11 for a = 0, which is f € IT, is of the form ( 2. 59) namely with the 

condition lim a(t) = 0: 
t+co 

1 1 ·(f(tx))l/a(t) 
og x ~ og f(t) { f(tx)} {f(tx) } 

log f(t:) /a(t) ~ f(t) - 1 /a(t) 
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We mention that an alternative result for the case a' = 0 of theorem 2.19 has 

been proved by Parameswaran (1961). Without proof we mention the result here 

for completeness. 

Theorem 2,25 

Suppose f: R+ + R is such that f(s) is finite for s > 0. 

Then f(t) ~ {L(t)}-l (t+00), L ERV~ and t is non-decreasing imply 
~ * f(u) ~ L (1/u) (u + o+). 

Conversely if f is non-decreasing, f(u) ~ 1* (1/u) (u + o+) with L E RV~, then 

f(t) ~ {L(t)}-l (t+00), ◊ 

In the above theorem the funtion L* is the conjugate slowly varying function 

as defined in chapter 1 (see the remark following theorem 1.8). 

The final theorem of this chapter gives a result for functions growing even 

faster than the functions from theorem 2.19. This result can be considered as 

the borderline case a 1 of theorem 2.19. Note that a > 1 is impossible, 

since then the Laplace transform does not exist any more. 

Theorem 2.26 

Suppose f: R+ + R is such that f(s) is finite for s > 0. Let (see definition 

2. S) 

s: R+ + R+ be decreasing,continuous, s( 00) 

and s E !C(a). 

Then 

t 
f( t) ~ f s(x)dx, t+00 

0 

implies 

00 

f(u) f s+(x)dx, u + o+. 
u 

1 

O, f s(x)dx < 00 
0 

( 2. 60) 

(2.61) 

(2.62) 

Conversely suppose f is non-decreasing, f(t)/t is non-increasing and s 

satisfies (2.60). Then (2.62) implies (2.61). ◊ 
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Remark 

Theorem 2.26 does not hold without the condition f(t)/t non-increasing. For a 

counterexample the reader is referred to Geluk, de Haan, Stadtmiiller [ 1986]. 

It is also possible to relax the assumptions on sin the theorem. 

Corollary 2. 27 

Suppose f : IR+ + IR is such that f(s) is finite for s > 0. 

If f(t)/t E JC (see definition 2.5) and lim f(t)/t = 0, then f E r(O) (def. 

2.5). t+oo 

Conversely, if f(t) is non-decreasing, f(t)/t non-increasing, 

lim f(t)/t 0 and f E r(O), then f(t)/t E IT-. 
t+oo 

Moreover (2.61) withs as in (2.60) is equivalent to 

f(t) ts(t/e) + o(ta(t)), t+oo. 

Proof of cor. 2.27 

(2.63) 

◊ 

For the first part (the implications f(t)/t E IT - f E r(O)) we use theorem 

2.26 and lemma 2.7. In order to prove (2.63) notice that - s E IT(a) and 

f( t) * 1 t - -- ~ - - J s(x) dx (t+oo), 
t t O 

hence by proposition 1.22 and theorem 1.17 

t 
f(t) = l J s(x)dx + o(a(t)) 

t t O 

t 

s(t) + {-s(t) + t-l J s(x) dx} + o(a(t)) 
0 

s(t) + a(t) + o(a(t)) s(t/e) + o(a(t)) (t+oo). 

The last equality follows directly from the definition of IT- (a). 

We prove the two statements of theorem 2.26 separately. 

For the proof of the Abelian part we need two lemmas. 

◊ 
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Ifs satisfies (2.60) and f(t) 

Proof 
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t 

f s(x)dx, then (2.62) holds. 
0 

Since s c;: lf"(a) we have s(t) - s(2t) 2_ ½a(t) log 2 for t > t 0 • Fix t > t 0 and 

define the function t,. as in (2.48), Recall that t,.(u) is convex and non­

negative for u > -t. Moreover ti.' (t) = s (t) - s(2t) L ½ a(t) log 2, whence for 

u > 0 

t,.(u+2t) L t,.(t) + (u+t)t,.'(t) 2_ ut,.'(t) L ½u a(t) log 2. 

We have (lemma 2.22 and 2.23) 

00 

fc(s(t)) _s f(s(t)) = fc(s(t)) + log s(t) f e-t,.(u)du. 
-t 

The integral on the right-hand side can be estimated using (2.63): 

i_ 3ts(t) + 2s(t)/(a(t) log 2). 

( 2. 64) 

(2.65) 

(2.66) 

Consider this expression for t+00 • Nows c;: IT-, a c;: RV; and hence ta(t) + 00, log 

s(t) = o (log t), t+00 (prop. 1.7.1). So 

log s(t) j e-t,.(u)du ~ log t (t+oo). 
-t 

00 

By theorem 2.8 fc(u) ~ f s+(x)dx, u + o+. 
u 

In view of (2.65) and (2.66) the proof is finished if we show that 

log t __ __;;l;;..;;o_..g_t~-- + 0 as t+oo. 
t 

f s(x)dx - ts(t) 
0 

t 

An application of theorem 1.17 shows that f s(x)dx - ts(t) is in Rv7. 
0 

(2.67) 

( 2. 68) 

It follows that the left-hand side of (2.68) is in Rv:1, hence (2.62) follows. 
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Lemma 2.29 

If the assumptions of lemma 2.28 are satisfied, for any a> 1 

(2.69) 

( 2. 70) 

By (af)~ we mean g with g(t) : = af(t) for a> O. 

Proof 

Fix a > 1. Since fc ~ f (lemma 2.22) and f(u) ~ fc(u) (thm. 2.3 and lemma 

2.27) 

This proves ( 2. 69) since f ( u) + 00 as u + o+. In order to prove ( 2. 70) note 

that 

Proof of theorem 2.26 (Abelian part) 
t 

Define the function f 0 by f (t) = f s(x)dx, 
0 0 

◊ 

Fix a> 1 and define the function f 1 by f 1(t) = min{f 0 (t)/a, f(t/a)}. 

Since f ~ f 0 it follows that f 1(t) = f 0 (t)/o fort> t 0 • Hence 

t 
0 

u f 
0 

o(l), u + o+. 

(2.71) 

Now (2.69), (2. 71) 

sufficiently small. 

small by introducing 

~ ~ ~ 2 
and f 1(t) ~ f(t/o) imply f(ou) ~ f 1(u) > f 0 (au)/o for u 

2~ ~ 
Similarly we find a f ( u/ a) > f( u/ a) for u sufficiently 

0 -

the function f 2(t) = max(of0 (t), f(to)). 

This proves f(u) ~ f (u),u + o+, and the latter is asymptotic 
0 

00 

to J s+(x)dx by lemma 2.28, 
u 

◊ 
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In order to prove the Tauberian part of theorem 2. 26 we need an analogue of 

lemma 2.24. 

Lemma 2.30 

Suppose f( t) 

s(a,) = O. 

t 
f s(x)dx withs€ Il-(a), s non-increasing, continuous and 
0 

For every O < B < 1 there exist c > 1 and t 0 > 0 such that for t 2 t 0 

log s(t) f ef(u)-us(t)du i f(s(t))/c, 

IC 

where I= (t-Bt, t+Bt). 

Proof 

(2.72) 

Fort> 0 fixed and u > -t define A(u): = us(t) - f(t+u) + f(t) as in (2.49). 

Then as before 

A'(u) 2 s(t) - s(t+u) 

and, using s € rr-(a), for t l_ t 0 , u l_ Bt/2 

A'(u) 2 ½ a(t) log (1 + j> = : 2 c0 a(t). 

This implies 

Bt 
A(Bt) = MBt/2) + f A'(u) du 2 c0 Bt a(t) 

Bt/2 

and since A is convex and A( O) = O, for t l_ t 0 

s(t) j ef(u)-us(t) du= ef(t) - ts(t)s(t) j e-A(u)du 

t+Bt it 

... 
.5.. ef(t)-ts(t) s(t) f 

Bt 

.5_ ef(t) - ts(t) - c 0 Bta(t)s(t) j e-A(u)du., 

0 

-coBta(t) ..,f f(u)-us(t)d 
e s(t) e u. 

t 
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Similarly for some c 1 > 0 and t sufficiently large 

Combination of the two inequalities gives for some c2 > 0 and t sufficiently 

large 

J f(t) - us(t) ~ 
log s(t) c e du~ f (s(t)) - c 2Sta(t), 

I 

It is now sufficient to prove that ta(t) ~ f(s(t)) (t+00), 

This follows from the direct statement of theorem 2.26: 

f(s(t)) ~ J 
s(t) 

t 

s+(u)du = t {t-l J s(u)du - s(t)} ~ ta(t) (t+oo), 
0 

the last asymptotic equality being a consequence of s E JC(a) and theorem 

1. 17, ◊ 

Proof of theorem 2.26 (Tauberian part) 

Suppose (2.62) .holds. The function h defined by h(t) := (f) (t) is concave by 
C 

the definition of the inverse complementary function (definition 2.1). 

Moreover his eventually positive. Hence h(t)/t is eventually non-increasing. 

By lemma 2.22 we have h(t) ~ (fc)c(t). Also (fc)c is (by definition) the 

convex upper hull off, hence (fc)c ~ f. 

As a consequence, for c > 1 we have for sufficiently large t 

From (2.62) it follows by the analogue of theorem 2.8 for the inverse 

complementary function that 

t 
h(t) ~ J s(x)dx (t+oo), 

0 

(2. 73) 

It remains to prove that f( t) :., h( t). The proof is by contradiction. Suppose 

that f(t) ~ h(t) is not true, then, since f(t) < h(t), there exists a 

sequence 'n + 00 and a constant c > 1 such that 

f(T ) h(CT ) __ n_ < __ n __ 

T CT 
n n 



- 88 -

Now f(t)/t and h(t)/t are non-increasing, so for T < t < T le. we have 
n n 

f(t)/t < f(T )/T < h(T c)/T c < h(tlc)/tlc. Hence for tn = Tn c1/ 4 and 
- n n n n -

B = 1 - c-1/ 4 we get 

(2.74) 

We want to apply lemma 2. 30 with f = h. In order to do so, we have to show 
t 

that there exists a non-increasing function s 1 such that h(t) = J s 1(x)dx and 

s 1 € n-. Since h is concave, there exists a non-increasing funJltion s 1 such 
t 

that h(t) = J s 1(x)dx. Since s € If"(a) we have, by lemma 2. 7 (i), in view of 
0 

(2. 73) h(t)/t € n-(a). This, together with proposition 1.19.2, shows that 

Now we can apply lemma 2. 30 with f = h. For n sufficiently large with sn = 

s 1 (tn) by (2. 74) 

f(s) < log{s J exp(h(tc)/c - tsn)dt + s J exp(h(t) - snt)dt} 
n - n I n 

n Ic 
n 

< log{exp(h/c)~(s /c) + exp(h(s )/c)}. 
- n n 

Since (h/c)~(sn/c) ~ (h/c)c (sic) = hc(sn)/c ~ h(sn)/c (n+oo) by the Abelian 

parts of the theorems 2.8 and 2.26, we find for all e > 0 and sufficiently 

large n 

and hence f(sn) i h(sn)//c f~r n 1_ n0 , which meanstthat f(s) ~ h(s) (s + o+) 

cannot be true. But on the other hand since h(t) ~ J s(x)dx (t+oo) implies that 
00 0 

h(s) ~ J s+(x)dx ~ f(s) (s + o+) by the Abelian parts of the theorems 2.8 and 
s 

2.26 and we have obtained a contradiction. 

We give some examples, showing the scope of applicability of the above 

results. 

Example 1 

Suppose 



a > 0, fl € IR. 

By theorem 2.14 
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(u + o+). 

Conversely, if f is non-decreasing, (2.76) implies (2.75), 

Example 2 

Suppose 

f(t) ~ ta(log t)fl (t + 00), a> O, fl€ IR. 

By theorem 2.11 

A -a fl 
f(t) ~ r(l+a) u jlog ul (u + o+). 

Conversely if f is non-decreasing (2.78) implies (2.77), 

Example 3 

(2.76) 

( 2. 77) 

(2.78) 

Suppose f( t) ~ ta( log t) fl, t+oo, fl € IR, 0 < a < 1. In order to derive the 

asymptotic behaviour off we can apply theorem 2.19 : relation (2.39) is 
t 

equivalent to f(t) ~ f s(x)dx (t+00) (see proposition 1.22). 
0 

The functions satisfies s(t) ~ a ta-l log8 t, t+oo. 
a 1-a -fl 

We define the function~ by ~(t):= s(t) ~ t log t, t+00 , 

As in the remark following theorem 1.8 we find 

t+oo. 

As a consequence the inverse function of s satisfies 
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Application of theorem 2.19 then gives 
00 

~ + 1 - a + 
f(u) ~ f s (x)dx and the last expression is asymptotic to - 0- us (u) 

u 

by theorem 1.4. Hence we find 

o/(1-o) -o/(1-o)( 1 )S/(1-o) o+ 
a u - og u , u + 

and a converse statement holds under the assumption that f is non-decreasing. 

Example 4 

Consider the function 

f(t) = t/(log t)S + o(t/(log t)s-+l, t+00 , S > 0, 

We want to derive the asymptotic behaviour of the transform f defined by 

f(s) =logs f exp{f(u) - su} du 
0 

ass+ o+ (see definition 2.18). 

(2.79) 

Note that the function f(t)/t is in rr-(a) with a(t) ~ S(log t)-(S+l), t+oo (see 

definition 2.5), So we may apply theorem 2.26 and we have to find a functon 

s E Il-(a) satisfying (2,60) and such that 

t 
f(t) ~ f s(x)dx, t+oo, 

0 
(2.80) 

d S -S -S-1 S 
Our first try is dx (x/(log x) ) = (log x) - S(log x) = ((log(ex))- + 

o((log x)-S-l) (x+oo), 
t 

Now (log ex))-S is positive 

+ o(t(log t)-S-l), t+oo, 

and decreasing for x > 1 and f(t) = f (log ex)-Sdx 
1 

We define s(x):= (log ex)-S for x > 1 and decreasing and integrable on (0, 1). 

Note that -s E Il(a), 

Since f(t)/t 
t 

t-1 J 

1 t 
hence - - f s(x)dx E Il(a), 

t 0 

s(x)dx + 0(a(t)), we have (see proposition 1.22) 

* l t 0 
- f(t)/t ~ - t- f s(x)dx (t+00), hence (2,80). Application of theorem 2.26 

then gives 
0 

00 

f(u) ~ f s+(x)dx (u + o+), 
u 
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It remains to evaluate the right-hand side. Now s+(x) 

hence 

1 1+1/a -1/a 
(u) ~au exp(-1 + u ), (u + o+-) (2.81) 

by de l'Hopital's rule. Note that by theorem 2.8 the complementary function fc 

has the same asymptotic behaviour. 

Conversely if f satisfies (2.81), f is non-decreasing and f(t)/t non­

increasing, then f satisfies (2.79). 

Example 5 

If f(t) t/(log t)S + S(l + S)t (log log t)/(log t)l+S + S (1 - log S) 

t/(log t)l+S + o(t/(log t)l+S), t+oo (2,82) 

~ -1/S 
for some f3 > 0, then f(s) ~ exp(s ), s + o+- and the converse statement 

holds under the assumptions f non-decreasing and f(t)/t non-increasing. 

Proof 

Suppose 1 satisfies 1(s) ~ exp(s-l/S), s + o+-, f is non-decreasing and f(t)/t 

is non-increasing. We derive the asymptotic behaviour off using theorem 2,26. 

Note that f E r(O). 

~ 1 00 -1-1/S -1/S 
Since r(u) ~ 8 f x exp(x )dx (u + 0+) 

u 
we have s+(x) ~ S-lx-l-l/Sexp(x-l/S) (x + o+-) 

and s+((log y)-S) ~ s- 1y(log y)l+S (y+oo). 

As in the remark following theorem 1.8 we find by inversion 

s(x) = {log Sx - (l+S) log log Sx + o(l)}-S. 

Hence by lemma 2.7, theorem 2.26 and corollary 2.27 we find 

f( t) 
t dx -1 St dx :., f ----------:., s f ---------
0 {log Sx - (l+S) log log Sx}S 0 {log x - (l+S) log log x}S 

and 

f(te/S) tels + o(t/(log t)l+s). 

{log t - (l+S) log log t}S 
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we find 
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{ log t }S _ 
log t - (l+S) log log t -

= l + S(l+S) log log t + S(l+S)2(1 + o(l))(log log t)2 
log t log t 

f(te/S) = te/S + e(l+S) t log log t + o( t ) 
S l+S l+S ' (log t) (log t) (log t) 

which is (2.82). 

II.3. General kernel transfoms 

Two important subjects in the preceding section of this chapter were Abelian 

and Tauberian theorems for the Laplace transform of functions belonging to the 

classes RV and rr. In this section we replace the Laplace transfom by a more 

general kernel and derive Tauberian results. We restrict our attention to 

positive kernels and use the following notation. 

Definition 2. 31 

Suppose k, f : it + IR are measurable. In this section the transfom f is 

defined fort> 0 by 

.. 
f(t) = f k(s) f(ts)ds 

0 

and is supposed to be finite fort> o. 

(2.83) 

In ch. 1 it was observed (thm. 1.8) that if f € RV00 and t 0 k(t) max (t-e, t+e) 
a 

is integrable on (O, 00) for some e > O, then 

f(t)/f(t) + j s 0 k(s) ds (t+ao). 
0 

As a consequence, if the last integral is positive, the function f €RV. 
a 
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We prove a converse statement, thereby using Wiener's Tauberian theorem. 

Definition 2.32 

The function g: R+ + R is slowly decreasing if 

lim lim inf {g(tu) - g(t)} ~ O. 
µ+l+ t+oo U€[1,µ] 

Without proof we quote the following result (see e.g. Hardy (1948)). 

Lemma 2.33 (Wiener-Pitt) 

Suppose the kernel k0 € 1 1 (O, oo) satisfies the condition 

00 -ix f k (s) s ds F O for all x € R 
0 0 

and the function g: R+ + R is bounded and slowly decreasing. 

Then 

...!. j k (~) g(s) ds + c j k (s) ds (t+oo) 
t O O t O 0 

implies 

g(t) + C (t+oo). 

(2.84) 

(2.85) 

(2.86) 

(2.87) 

◊ 

Two Tauberian theorems are proved, the first one for functions in RV, the 

second one for functions in II. The corresponding Abelian statements were 

derived in theorems 1.8 and 1.20 respectively. ◊ 

Theorem 2. 34 

Suppose f: R+ + R+ satisfies: t8 f(t) is non-decreasing for some 8 ~ 0 and 

f € RV00 with a> O. If the kernel k is non-negative, t 0 k(t) max (tE, t-E) is 
a -

integrable on (O,oo) and 

then 

00 

f k(s) sa-ixds f O for all x € R, 
0 
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00 

a -1 A 

f(t) ~ (f s k(s)ds) • f(t) (t + 00), hence f E RV00
• 

Q Cl 

Proof 

Without loss of generality we may assume f k(s) ds/s 8 > 0 (if not reformulate 
1 

the theorem for k1(t):= k(ct) for a suitable constant c > 0). Fort> 0 we 

have the inequality 

00 00 

f(t) = f k(s) f(ts) ds ~ f(t) f k(s) ds/s 8 > O, 
0 1 

hence the function 0 defined by 

A 

0(t) f(t)/f(t) is bounded fort> 0 and positive. 

Note that for 1 < u ~ µ, t > 0 

A A 

e(tu) - e(t) > :<t) { f(t) 
- f(t) u8f(tu) 

-1 } ~ :<t) { B f(t)A - 1}. 
f(t) µ sup f(tu) 

uE[l,µ] 

Since f E RVa' by the uniform convergence theorem (theorem 1.3,3), we have 

{ } f(t) -a-B 
lim inf e(tu) - e(t) ~ lim -A- -(1-µ ) -(1-µ-a-B) lim e(t), 
t+oo UE[l,µ] t+oo f(t) t+oo 

which implies that 0 is slowly decreasing. 

We proceed as in the proof of theorem 1.8, applying Lebesgue's theorem while 

using the inequalities from prop. 1. 7.5 and the fact that 0 is bounded. It 

follows that 

Since 

this 

00 
A 

f k(s) 0(ts) (!(ts)_ sa} ds + 0 (t+00) • 

0 f(t) 

00 

e(ts) :<ts) ds 
00 

k( s) f( ts)ds 
f k( s) f A 
0 f(t) 0 f(t) 

implies 

00 

f k(s) e(ts) SCI ds + 1 (t+oo). 
0 

1 ' 



- 95 -

Application of the Wiener-Pitt theorem (lemma 2.33) above with k0 (t) 

and f(t) = 0(t) shows that 

k(t)t0 

0(t) 
00 

f(t)/f(t) + (f k(s) s 0 ds)-l (t+00). 
0 

◊ 

Note that the Tauberian part of theorem 2.11 (Karamata's theorem) is a special 

case of theorem 2.34. 

Remark 

Under certain additional assumptions it is possible to prove that 

f(t)/f(t) + a (t+00) implies f ERV (Jordan 1974). 

Theorem 2.35 
+ + A 

Suppose f : IR + IR is non-decreasing and f E JI(a). Suppose the kernel k is 

non-negative, k(t) max (t£, t-£) is integrable on (O, 00) and k satisfies the 

Wiener condition 

00 • 

f k(s)s-ixdx f O for all x E IR. 

0 

Then f E JI(a0 ) with 

Proof 

00 

a 0 (t) ~ (f k(s) dsf1 a(t) (t+00) and 
0 

f(t) - f(t) f k(s) ds 
0 

----a~(t....,.) ____ + f k(s) log s ds (t+00). 
0 

As in the proof of theorem 1.17 we define the function w by 

t 

w(t) = f(t) - t-l f f(s) ds , t > O. 
0 

Now observe that w(t) f( t) -
-1 t A 

t f f(s) ds. Application of theorem 
0 

(a+ c) gives, since f E JI(a), w(t) ~ a(t) (t+00) and WE RV~. 

1. 17 

Since f is non-decreasing, the function t w(t) is non-decreasing and we can 

00 -1 
apply theorem 2.34 to obtain WE RVO and w(t) ~ a(t) (f k(s) ds) (t+00), 

0 
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A second application of theorem 1.17 (c + a) now gives f E rr(a0 ) 

.. f -1 
with a (t) ~ ( k(s) ds) a(t). 

0 0 

The last limit relation is a consequence of theorem 1.20 (the Abelian 

counterpart of the present theorem). ◊ 

Note that the Tauberian part of theorem 2. 14 is a special case of theorem 

2.35. 

II.4. Discussion 

The connection between an RV function and its complementary function has been 

noted first by Matuszewska (1962). See also Bingham and Teugels (1975), The 

present exposition, both for RV and rr/r (th. 2.3 and th, 2.8) has been adapted 

from Balkema, Geluk and de Haan (1979). 

The main theorem for the Laplace transform, theorem 2.11 (for RV functions) is 

of course due to Karamata (1931). No exposition is given here of the Mercerian 

implication: f(l(t) ~ r(l+a) f(t) (t+co) implies f E RV. This has been proved 

by Drasin (1968). 

Theorem 2.14 (class IT) has been adapted from de Haan (1976). Theo-results of 

theorems 2.13 and 2.16 stem from Geluk and de Haan (1981). Theorem 2.19 

( concerning functions like e.g. exp{ ( log x) J3 x0 }, 0 < a < 1, J3 > 0) is a 

combination of results from Kohlbecker ( 1958) and Balkema, ~ Geluk and de Haan 

(1979) for the cases 0 <a< 1 and a= 0 respectively. 

Finally theorem 2.25 (concerning functions like e.g. exp{x/log x}) has been 

adapted from Geluk, de Haan and Stadtmilller (1986). Wagner (1968) contains a 

somewhat similar result. 

General kernel results like th, 2,34 and 2,35 can be found in Bingham and 

Teugels (1979) and Bingham and Teugels (1980) respectively. 
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III. 0-Regular variation and 0-versions of the class rr. 

In this chapter we investigate what can be said if we only assume 

lim f(tx) <°'for x > O, (3.1) 
t+o, f(t) 

instead of the existence of the limit (i.e. f ERV) as in chapter 1. We also 

consider a similar extension of the class IT. 

For this wider class of functions it is possible to derive results which are 

analogous to those of chapter 1. In fact straightforward generalizations of 

many of the characterizations from that chapter are possible. Part of the 

material of this chapter has been treated in greater generality in two 

articles by Bingham and Goldie (1982). 

III. 1. O-regular variation 

The following notation is useful in this section: 

Definition 3. 1 

The functions f and g are of the same order at infinity, notation f(x)X g(x) 

(x+"') if f and g are both positive and if there exist O < c 1 < c 2 <°'and xO 

such that c 1 .$_ f(x)/g(x) .$_ c 2 for x l_ xO• ◊ 

Theorem 3.2 below offers results analogous to the results of theorems 1.4, 1.5 

and prop. 1. 7 for regularly varying functions. Recall from theorem 1.2 that 

if lim f(tx)/f(t) exists for all x > O, then the limit has the form xa 
t+o, 

for some index a E ~. Theorem 3.2 also offers an analogue of this result (part 

iij) for functions satisfying (3,1). 

Theorem 3,2 

Suppose f: R+ + R is measurable and eventually positive. The following 

statements are equivalent: 

(i) lim f(tx) < °' for all x > O. 
t f(t) +o, 

( 3. 2) 

(ij) There exist a, BE~. t O and c > 1 such that 

-1 B < f ( tx) < a f 11 > 1 > 
C X _ ~ _ C X or a X _ , t _ to• ( 3. 3) 
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and 
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log lim f(tx)/f(t) 

A:= lim __ t_+_"' _____ exists and A< +co 
log x 

x+co 

log lim f(tx)/f(t) 

B:= lim __ t_+_"' _____ exists and B > -00 • 

log x 
x+co 

(iv) There exist t 0 ~ 0 and cr E IR such that 

t 
f s+cr-lf(s)ds;:::: tcrf(t) (t+co), 

to 

(v) There exists, E IR such that 

"' ,-1 '--' ' f s f(s)ds ~ t f(t) (t+co), 
t 

(vi) There exist t 1 ~ 0 and measurable functions a and c with c(t) 

bounded such that fort> t 1 

t 

f(t) = c(t) exp {J a(s)ds/s}, 

tl 

(vii) There exist a, BE IR, t 2 > 0, x1 > 1 such that 

Proof 

(i) + (ij) 

xB < f(tx) < xa for t _> t 2 , x _> x 1 • 
- f(t) -

(3.4) 

(3.5) 

( 3.6) 

(3. 7) 

1 and a 

(3.8) 

Define the function F by F(t) := ln f(et), First we prove that if I c IR is an 

arbitrary finite interval, then 

lim sup {F(t+u) - F(t)} < "'• 
t+co UEI 

Suppose the contrary holds. Then there exist sequences tn +"',~€I 

(n = 1, 2, ••• ) such that 

(3. 9) 
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For an arbitrary finite interval Jc R we consider the sets 

y {y E J; F(t + y) - F(t ) > .!!.z} and 
l,n n n 

Yz = {y E J; F(t + X ) - F(tn + y) > .!!.z}· 
,n n n 

The above sets are measurable for each n and Yl,n u Yz,n = J, hence either 

>.(Y 1,n) 2_ ½>-(J) or >.(Yz,n) 2. ½>-(J) (or both) where ). denotes the Lebesgue 

measure. 

Now define 

z = {z;F(t + x) - F(t + xn - z) > .!!.2, 
n n n n 

X - Z E J} 
n 

{z; X -
n 

Z E Yz } • 
,n 

Then >.(Zn)= >.(Yz n) and thus we have either 

' 

for infinitely many n EN (or both), where all the Yi,n's and Zn's are subsets 

of a fixed finite interval. 

Hence we have ).(lim sup Y1 n) = lim ).( u Y1 n) ~ ½>.(J) or a similar expression 
n+oo ' k+oo n=k ' 

for the Zn's ( or both), This implies the existence of a real number x0 

contained in infinitely many Yl,n or in infinitely many Zn• This contradicts 

the assumption lim F(t + x0 ) - F(t) < 00 • Hence (3.9) is proved. 
t+oo 

Next we apply (3.9) with I = [O,l]. There exists a constant c0 such that 

F( t+u) - F( t) -5._ c 0 for all O -5._ u -5._ 1 and t 2_ t 0 • Then for t 2_ t 0 and y ) 0 

[y]-1 
F(t+y) - F(t) = F(t+y) - F(t+[y]) + E {F(t+k+l) - F(t+k)} 

k=O 

This finishes the proof of the right-hand inequality in (3.3). The proof of 

the left-hand inequality can be given if we replace f by 1/ f in the above 

proof, 

(ij) + (iij) Trivial. 
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(iij) + (i) 

From (iij) it follows that for some a, 6 ER, x0 > 1 we have 

for all x 2._ Xo > 1 with 

and 

- f(tx) 
~(x):= lim f(t) 

t+oo 

f(tx) 
~( x) := lim I[i:")• 

t+co 

This gives (3.2) for x2._x0• For x E (1, x0) we have the inequality 

- f(tx) -.- f(txxo) . f(txxo) (xxo)a 
~(x) = lim f(i:') ~ lim f(t) / lim f(tx) ~ --6- < 00 , 

t+co t+oo t+oo XO 

(3.10) 

(3.11) 

Similarly one proves ~(x) > 0 for all x > 1. These two inequalities imply 

~(x) < co for all x > O. 

(ij) + (iv) and (ij) + (v) 

The function 

t 1 
y(t):= J sa-l f(s)ds/t 0 f(t) = f sa-l f(S t )ds 

to to/t f(t) 
(3.12) 

is bounded away from zero and infinity by (3,3) if we choose t 0 as in (3.3) 

and a> -6, The proof of (ij) + (v) is similar. 

(iv)+ (vi) and (v) + (vi) 

Withy defined as in (3.12) we have 

t d t 1 
f ~() = log f sa-- f(s)ds + c0 s y s t 
to o 

fort> t 0 and some c0 ER (since both sides have the same derivatives a.e,). 

The last relation implies 
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scr-l f(s)ds tcr f(t) y(t) X tcr f(t). 

Hence f has the required representation with a(s): 

The proof of (v) + (vi) is similar. 

(vi)+ (i) and (ii)+ (vij) + (iij) 

Trivial. 

This finishes the proof of the theorem. 

Definition 3. 3 

A function f is 0-regularly varying (at infinity) if f satisfies the 

conditions of theorem 3.2. 

Notation: f ERO. 

The limits at the left-hand sides of (3.4) and (3.5) are called the upper and 

lower index off respectively. 

Notation: index f and index f, 

Remark 

Note that if f € RO, g measurable and f(t) x g(t) (t+"'), then g € RO. 

It is obvious that if k = 1/f, then index k = - index f and index k 

- index f. 

Examples 

1. f(x) = exp[ln x], Then index f = index f 

2. Let f(x) 0 X ( e 

exp{a log x + B(log x) (sin log log x)}, x > e. 

Then for every sequence {tk} with tk +"'we have 

lira f(tkx)/f(tk) ~(x) 
k+oo 

if and only if 

lim{g(sk + y) - g(sk)} 
k+oo 
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with g(x):= log f(ex), y = log x and sk = log tk. 

Because sk{sin(log sk + log (1 + y/sk) - sin log sk} - y cos log sk + 0 as 

k+co we have 

lim{g(sk+ y) - g(sk)} = a y + a y lira (sin log(sk + y) + cos log sk). 
k+co k+co 

The limit points of f(tx)/f(t) are thus given by 

~(x) = Xe with C € [a - !al ✓ 2, a+ 1a1 ✓ 2]. 

Hence index f a+ 1a1 ✓ -2 and index f = a - !al ✓ -2. 

Note that, if a= 1 and 1 <a< /2, lira f(O) 
t+co 

co but index f < O. 

3. In example 2 the limit functions ~(x):= lira f(tkx)/f(tk) have the form 
k+co 

~(x) = xc. It is not necessarily true that the limit function is of this 

form however. 

Example: if f(t) = ta(2 + sin(log t)), t > O, a c JR, then f c RO and 

( ) _ a 2 + sin( a + log x) 
~ x - x • 2 + sin a ' a c JR. 

An example of a monotone RO function of this type is 
t 

f(t) = exp (f {2 + sin(log s)}ds/s). 
1 

In that case we have ~(x) = x2 exp(- cos(a + log x) + cos a). 

In the above theorem the two-sided bounds can not be replaced by one-sided 

bounds. For example: the right-hand inequality in (3.3) is not equivalent to 

(3.4). The following is a counterexample: take F(x) = ln f(ex) and let F be 

continuous, piecewise linear with F(3n) = F(3n + 2) = -(n-1) 2 and F(3n + 1) = 

-n2• Then (3.4) is satisfied, but not the right-hand inequality in (3.3). 

Corollary 3.4 

(i) The constants a, a and c in (ij) and (vij) are not uniquely determined. 

If f c RO we can take any a < index f and a > index f. The constant 

c > 1 in (3.3) however cannot be taken arbitrarily small for given fas 

the following example shows: 

f(t) = 2n x n n+l (t), n c N, where xis the indicator-function. 
[ 2 , 2 ) 

(ij) Note that (3.6) holds for any r; > - index f and (3.7) holds for a.ny 

T < - index f. 
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(iij) If f E RO, there exists f 0 (t) X f(t) with f 0 continuous. It is even 

possible to obtain f 0 E en by a construction similar to the one in 

remark 2 following theorem 1.5. ◊ 

Remark 

If f is non-decreasing, we can omit the lower inequalities in theorem 3.2. 

Also, instead of lim f( tx)/ f( t) < 00 for all x > 1, it then is sufficient to 

require 

Proof 

t+oo 

lim f(tx 0 )/f(t) < 00 for some x0 ) 1. 
t+oo 

(3, 13) 

Suppose {3.13). Then f(tx0 )/f(t) < c for t ) t 0 and some x0 ) 1. With 

p = ln c/ln x0 we find 

f(t) 

f( tx n-l) 
0 

f(tx) __ o_< 
f(t) -

np 
X • 

0 

Hence if x > 1 is arbitrary, there exists n EN such that x n-l < x < x n and 
0 - 0 

This shows that the right-hand inequality in (3.3) is satisfied for all x > 1. 

The left-hand inequality follows immediately from the monotonicity off, ◊ 

In view of the use of this class of functions for Tauberian theorems, we are 

especially interested in monotone RO-functions. We do not restrict ourselves 

to the class of functions described in the previous remark however, but 

consider next a class of RO functions for which there is a positive lower 

bound on the growth of the function: 

Note that if f ERO and index f > e > O, then f is at least of the same order 

of magnitude as a monotone function that increases as a power function: 

t -1-e f f(s)s ds, 

to 

t + 00 ((3.6), cf, cor, 3.4), 
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The next theorem characterizes this class of functions. 

Theorem 3.5 

Suppose f: R+ + it" is measurable. The following statements are equivalent 

(i) - f(tx) 
t(x) = lim f(t) < m for all x ~ 1 

t+m 

and there exists x0 > 1 such that 

!il.& ,(x) = lim f(t) > 1 for all x .?_ x0 • 

t+m 

(ij) There exist a, B > O, t 0 L O and c > 1 such that 

(iij) 

and 

-1 B !<.!!2.. a 
c x .,S. f(t) ~ ex for all x ~ 1, t ~ t 0 • 

lim 
x+m 

lim 
x+m 

ln lim f(tx)/f(t) 
__ t.;;.+_m ______ < m 

ln x 

ln lim f(tx)/f(t) 
_____ t+_m _____ > 0 • 

ln x 

(iv) There exist t 0 .?.. 0 and a L O such that 

t 
J s-a-lf(s) ds><t-af(t) (t+m) • 
t 

0 

(v) There exists T .L O such that 

mf -T-1 -T 
s · f(s) ds>< t f(t) (t+m) • 

t 

(vi) There exist t 0 L O and measurable functions a and c with 

c(t)X 1 and a(t)X 1 (t+m) such that 

t 
f(t) = c(t)exp {J a(s) ds/s}. 

t 
0 

- f(tx) 
(vij) lim f(t) < m for all x > 0 and there exists x1 > 1 such that 

t+m 

(3.14) 

(3.15) 

(3.16) 

( 3.17) 
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(viij) There exist O < e < a ( 00 , t 0 ) 0, x1 ) 1 such that 

x 13 < f(tx) < xa for t _> t 0 , x _> x1• 
- f(t) -

Proof 

(i) + (vij) 

We have to prove that J (x) < 00 for all x > O, where the function J is defined 

by J(x):= lim f(tx)/f(t). 
t+oo 

Since ,p(x) > 1 for x 2_ x0 we have J (x) < 1 for x < 
By assumption J (y) < oo for y > 1. 

Now the inequality J (xy) ~ J (x) J (y) and the last two statements show that 

J(x) < 00 for x E (x0-l, 1), which finishes the proof. 

(vij) + (i) 

Since f E RO, by (3.3) we have 4>(-r) 2_ c-1-rB > c0 for -r E [ 1, x1], where 

c0 := min (c- 1, c-l x1B) > o. 

Define n0 = min { n; c0 <j>(x 1 )n > l}. Then for x 2_ x1 no there exists m 2_ n0 such 

that x1m ~ x < x1m+l and <j>(x) 2_ <j>(x/x1m). <j>(x1m) 2_ c 0 <j>(x 1)m) 1. 

(i), (vij) + (ij) 

Since f ERO the second inequality in (3.16) follows and we only have to prove 

that the second inequality holds for sufficiently large x. Take x1 > x~, 

define Xi = log xi' i = O, 1 and define the function F as in the proof of 

theorem 3.2. We shall prove that for an arbitrary finite interval I c [X1, oo) 

lim inf {F(t+u) - F(t)} > 0, 
t+oo UEI 

First we shall prove this for I= [X1, 2X1]. 

Suppose the contrary holds, Then there exist sequences tn + 00 , xn EI 

(n = 1,2, ••• ) such that F(tn+xn) - F(tn) < 1/n. Define 

and 

J = [X0 , X1/2], 

Yl,n = {y; F(tn + y) - F(tn) ( l/2n, y E J}, 

Y2,n {y; F(tn + xn) - F(tn+y) < l/2n, y E J}. 

{z; F(tn+xn) - F(tn+xn-z) < l/2n, xn - z E J} 

{z; xn - z E Y2,n} c [½X1, 2X1 - Xol-

(3.18) 
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Proceeding exactly as in the proof of theorem 3.2 one obtains (3.18) for 

I= [X1, 2X1J, i.e. there exist constants c0 > 0 and t 0 such that 

F(t + u) - F(t) ..?_ c 0 for all t..?.. t 0 and u E [X1, 2X1J. Then for t ..?_ t 0 and 

Y > x1 we have 

F(t + y) - F(t) 

[y/X1 J-2 

+ E 
k=O 

This proves (3.18) and the second inequality in (3.16). We omit the rest of 

the proof, which is similar to the proof of theorem 3.2. 

Definition 3.6. 

Suppose f:lll + IR is measurable and eventually positive. The function f is of 

bounded increase (f € BI) if f satisfies (3.14). 

The function f is of positive increase (f € PI) if f satisfies (3.15). As a 

consequence, if f satisfies the assumptions of theorem 3.5 above, then 

f € BI n PI. 

Corollary 3. 7 

a. If f € BI n PI and g: IR+ + IR is measurable, g(t) X f(t) (t+oo), then 

g € BI n PI. 

b. BI n PI c RO. 

c. If f E RO, then there exists f3..?.. 0 such that tf3 f(t) E BI n PI. 

d. f € BI n PI if and only if f € RO and index f > O. 

e. If f € BI n PI, then there exists a strictly increasing function f 0 such 

that f(t)X f 0 (t), t+00 • It follows that if f € BI n PI is locally bounded, 

then sup f(x)X inf f(x) X f( t), t+oo. 

O<x<t x>t 
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t 
f. If f 0 (t) = exp {f a(s)ds/s} with a(s);:::::: 1 (s+00), then the inverse function 

t 

f+ is in BI n PI. 0 (Proof: similar to the proof of proposition 1.7.8). 
0 

g. If f e: BI n PI is bounded on finite intervals of IR+, the generalized 

inverse function f+ is as in definition 1.6 and f 0 is as in e above, then 

f+(t);:::::: f+ (t) (t+co), hence f+ e: BI n PI. 
0 

(Proof: by theorem 3.5 there exist c > 1 and t 0 t 0 (c) such that 

c- 1 f 0 (t) i_ f(t) i_ c f 0 (t) for t > t 0 • 

Hence f+ (t/c) < f+(t) < f+ (ct). 
0 - - 0 

Also f+ (ct) ;:::::: f+ (t) ;:::::: f+ (t/c) by property e above.) ◊ 
0 0 0 

t 

h. If f e: BI n PI and f(t) = f(t 0) + f ~(s)ds fort 2 t 0 with~ monotone, 
t 

then t ~(t);:::::: f(t) (t+00). (Proof: s~milar to the proof of prop. 1.7.11). 

In the sequel we need the following lemma, which can be obtained from cor. 3.7 

in a way similar to the proof of proposition 1,7,6 and 1.7.7. 

Lemma 3,8 

a. Suppose f e: BI n PI is bounded on finite intervals of IR+. 

For arbitrary ~ > O, there exist c > 0 and t 0 such that f(tx)/f(t) i_ c for 

t 2_ t 0 and O < xi_ ~-

b, Suppose f e: RO is bounded on finite intervals of IR+. For arbitrary ~ > 0 

and a < index f, there exist c > 0 and t 0 such that f(tx)/f(t) < cxa for 

The reader is invited to prove the equivalence of the following statements for 

non-decreasing f e: PI. 

Exercise 

Suppose f: IR++ IR+ is non-decreasing, 

Then the following statements are equivalent: 

a, lim f(tx) > 1 for some x > 1. 
t+co f(t) 
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b. There exist 8, t 0 and c > 0 such that 

f(tx) 8 
~ ~ ex for all x 2_ 1, t 2_ to· 

f ds 
c. 1/ sf(s) € PI. 

t 
t 

f f(s) ds 

d. lim O tf(t) < 1. 
t+oo 

t 
e. There exists e > 0 such that t-l-e f f(s)ds is increasing. 

0 

III. 2. 0-versions of the class Il: asymptotically balanced functions 

Definition 3.9 

◊ 

Suppose f:IR+ + IR is measurable, The function f is asymptotically balanced if 

there exists a function a: IR++ IR+ such that 

(i) '¥( x) : _ - f{tx2 - f(t) < oo for all x > 1. - lim a(t) 
t+oo 

(3.19) 

(ii) ij,(x): lim f{tx) - f(t) > -oo for all x > 0, 
t+oo a(t) 

( 3. 20) 

(iii) There exists XQ ) 1 such that 

(3.21) 

Notation: f € AB or f € AB(a). ◊ 

Examples 

f(t) = log t + 0(1) (t+00) is in AB(l). 

f(t) = c - t-a, c € IR, a> 0 is in AB(t- 0 ). 

The function exp (f(t)) € BI n PI if and only if f € AB(l). 

Lemma 3.10 

If f € AB(a), then lim a(tx)/a(t) < oo for all x > O. Moreover we may take a 
t+oo 

measurable in definition 3,9 and hence in RO. 
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Proof 

Fix x > 0 and define y = 1+ max (x0 , x-1) with Xo as in (3.21). 

Since 

a(tx) {f(txy) - f(t) _ f(tx) - f(t)}/f(txy) - f(tx) 
a(t) = a(t) a(t) a(tx) • 

-we have 

lim a(tx) < 'l'(xy) - p(x) < 000 

t+oo a(t) - ~(y) 
(3.22) 

This finishes the first part of the proof, since x > 0 is arbitrary. The proof 

is finished by observing that we may take a(t):= f(tx0) - f(t) where x0 is as 

in (3.21). 

We are going to prove a characterization theorem for functions in the class 

AB. To this end we need two lemmas. 

Lemma 3.11 

Suppose f: R+ + R is measurable and a€ RO. 

( i) Suppose there exists x0 1. 1 such that 

'l'(x) = lim f(tx) - f(t) < 00 for all x > x0• 
t+oo a(t) 

Then for any x1 > x02 there exist t 0 and a€ R such that 

f(tx) - f(t) < xa for x _> xl, t _> to• 
a(t) -

In (3.23) we may take any a> ·index a. 

(ij) Suppose there exists x0 1. 1 such that 

lim f(tx) - f(t) > 0 for all x > x0 • 
- a(t) t+oo 

Then for any x1 >x02 there exist t 0 and c > 0 such that 

( 3. 23) 

(3.24) 
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In (3.24) we may replace c by x' for any,< index a, 

Proof 

(i) Similar to the proof of theorem 3.2 (i) + (ij). 

We pass to additive arguments and write F(x) : = f(ex), A(x) : = a (ex) and 

Xi:= log xi for i = 0,1. First we shall prove that for an arbitrary finite 

interval I c [X1 , oo) 

lim sup {F(t+u) - F(t)} / A(t) < oo. 

t+oo UEI 

(3.25) 

We first prove this for I= [X1 , 2X1]. Suppose the contrary holds, then there 

exist sequences tn + 00 , xn EI (n = 1,2, ••• ) such that 

Define J:= [x0 , x1/2] and 

Yl,n = {y; (F(tn + y) - F(tn))/A(tn) > n/2, y E J}, 

Y2 ,n {y; (F(tn + xn) - F(tn + y))/A(tn) > n/2, y E J}, 

z1 ,n {z; (F(tn + xn) - F(tn + xn - z))/A(tn) > n/2, xn - z E J}. 

Since a E RO we have c > O, n0 such that A(tn) L c A(tn + xn - z) for n L n0 

and z E z1,n by theorem 3.2. As a consequence z1 ,n c z2 ,n for n L n0 , where 

z2 ,n is defined by 

z2,n = {z; (F(tn + xn) - F(tn + xn - z))/A(tn + xn - z) > cn/2, xn - z E J} c 

rx0, 2x1 - x0J. 

As before we find ).(lim sup z2 n) L ).(lim sup z1 ,n) 2 ½ A (J) or 
n+a, , n+oo 

).( lim sup Y 1 n) L ½ ).( J), which contradicts our assumption, , 
n+oo 

As a consequence we find that for some c 1 , t 1 

{f(tx) - f(t) }/a(t) ~ c 1 for x1 ~xi. x/, t L t 1• We shall choose c 1 > O. 

Finally choose x L x 1, then x 1m i. x < x 1m+l for some m L 1. 

Since a E RO, there exist a, c 2 > 0 such that a(tx)/a(t) i. c 2 x0 for x > 1 and 

t 2 t2· 

Hence fort> max (t 1 , t 2) 



f(tx) - f(t) 
a(t) 

m 

.5_ E 

k=l 

m-1 
E 

k=l 

-lll-

k k-1 
f(x 1 t) - f(x1 t) 

k-1 
a(x1 t) 

m-1 
a(x1 t) 

a( t) 5. 

k-1 
a(x1 t) 

a(t) + 

(ij) We omit the proof of the second part, which is similar. 

Lemma 3.12 

◊ 

Let f : ri;t + IR be measurable and a E RO. If 1), and 'I' are defined as in lemma 

3.11 and - oo < 1), (x) _i, 'I' (x) < oo for all x > 1, then there exist constants t 0 

and cr, c > 0 such that 

I {f(tx) - f(t) }/a(t) I .i, c x 0 for x.?.. 1, t.?.. t 0• (3.26) 

Moreover for any cr > index a there exist c > 0 and t 0 such that (3.26) holds. 

Proof 

By lemma 3. ll we have {f(ty) - f(t) }/a(t) ..5._ y 0 for t .?_ t 0 and y .?_ x 1, where cr 

is a positive constant. 

Then for x E [1,2] and t.?.. t 0 • 

f(tx)-f(t) f(2x 1t) - f(t) f(2x 1 t) - f(xt) a(tx) 

a(t) a(t) a(xt) a(t) 

f(2x 1t) - f(t) 
cr 

f(2x 1t) - f(t) (2x 1) a(tx) 
(l 

> a(t) a(t) ~ a(t) - cox 

for some a E IR and c0 > 0 since a ERO, Hence 

f(tx) - f(t) a 
lim inf a(t) .?.. 1), (2x1) - c0 max (1,2) > -oo, 

t+oo x€[ 1, 2] 
(3.27) 

Replacing f by -f we find a similar upper inequality. 
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An iteration procedure as in the proof of lemma 3.11 then gives (3.26). 

We now proceed to give a characterization for functions of the class AB. First 

we derive a representation for monotone functions of the class AB. We then 

show that any function of the class is close to a monotone function in a 

certain sense. 

Theorem 3.13 

Suppose f R+ + R is non-decreasing. Then f E'. AB(a) if and only if there 

exists r > 0 such that the function g defined by 

t 
g(t) : = f sr df(s) 

0 

is in BI n PI. In that case we have g(t)X tr a(t) (t+m). 

!!22!.. 
Assume that f e: AB(a). 

( 3. 28) 

Since we may take a e: RO by lemma 3.10, we have tr a(t) e: BI n PI (see cor. 

3. 7) for arbitrary r>-index a. It is thus sufficient to prove tr a(t) x g(t) 

(t+m). 

Application of Fatou's lemma gives 

lim .s.{!2__ = lim 
~ tra(t) t+m 

1 
r f f(t) - f(tv) vr-ldv _> 

0 a(t) 

1 
~ r f lim f(t) - f(tv) a(tv) vr-ldv > 0 

0 ~ a(tv) a(t) 

since f E'. AB(a) and a E'. RO. Next we prove lim g(t)/tra(t) < m. By lemma 3.11 
t+m 

(i) and theorem 3.2, there exist c, a, a, t 0, x 1 > 1 such that 

f( t) - f( tv) a( tv) < -a cva 
a(tv) a(t) - v • 

for tv 2_ t 0 and v-1 > x1• Write 

t 0/t l/x1 

--8ilL- = r{ f + f + 
tra(t) 0 to/t 

By (3.29) we have 

(3.29) 
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lim r 
t+oo 

f(t) - f(tv) 
a(t) 

r-1 l/xl o+ 1 
V dv ~ r C f Vex- r- dv 

0 

and the last integral is finite if we taker> cr - a. 

Moreover we have 

tolt ,.,, .. , I t r 
lim Ir f f(t) - f(tv) vr-ldvl < lim ~ (_Q) + 
t+oo O a(t) - t+oo a(t) t 

r -- -r 
f(t0)t0 lim t /a(t). 

t+oo 

The last expression is finite if we chooser sufficiently large, since 

lf(t) I ~ tao and a(t) ~ tao for t 2_ to and some ao, ao E IR by lemma 3. 12 and 

theorem 3.2 respectively. 

Finally, since f is non-decreasing and f E AB(a), we have 

1 f( t) 
f(t) - f(tv) r-1 

- f(t/x 1) 
lim r f ~ lim 

-r 
a(t) 

v dv 
a(t) (1 - xl ) < "'• 

1/x1 t+o:1 t+oo 

Combination of the above results gives g (t)X tr a(t). 

Conversely, assume that g E BI n PI. Using (3.28) we obtain 

and hence 

t 
f(t) f(O)+ J s-r d g(s) 

0 

f(tx) - f(t) 

t-rg(t) 

X -r 
f g(tu) -r-ld + (xt) g(tx) _ l, 

r 1 g(t) u u 
t-rg(t) 

Since g is monotone, for x > 1 

(3.30) 

(3.31) 

lim f(tx) - f(t) ~ (1 - x-r) lim g((~x)) + x-r lim g((~x)) - 1 <"' • 
t+o:1 t-rg(t) t+oo g t+o:1 g 

Also, with the function h defined by h(x): = lim g(tx)/g(t), by (3.31), 
t+o:1 

k (x), 

Since h(t) 2_ 1 for t > 1, but h(t) 'I 1 on (l,o:1), we find that for x 

sufficiently large 
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X 

k(x) > r f u-r-l du+ x-r -1 O. 

1 

Hence f € AB(a) with a(t) X t-r g(t), t+oo. 

Remark 

It follows from the proof that in the above result we may take any 

r > - index a. 

Corollary 3.14 

◊ 

Suppose f is non-decreasing. Then f € AB if and only if there exists a non­

decreasing function g € BI n PI and constants r > 0 and c such that 
t 

f(t) = c + g(t) t-r + r f s-r-l g(s) ds. 
0 

Proof 

This is (3.30). 

In the sequel we will need the following variant of this result. 

Lemma 3, 15 

Suppose g: ~++~+is measurable and the function f defined by 

f(t): 
t 

f g(s)ds/s 2 is finite for all t) O. 
0 

◊ 

Then g € BI n PI implies f € AB(a) with index a> -1. The converse statement 

is true if g is non-decreasing. 

Proof 

Suppose g € BI n PI. Since 

f(tx) - f(t) = j ~ ds 

t-1g(t) 1 g(t) s 2 ' 

f € AB(a) with a(t) = g(t)/t and index a> -1. 

Conversely if f € AB(a) with index a > -1 we obtain for x > 1 (use the 

monotonicity of g) 



f(tx) - f(t) 
a(t) 

and for O < x < 1 
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f(t) - f(tx) < ~ c.!. -
a(t) - ta(t) x l), 

hence g(t)X ta(t). Then g E BI n PI follows. 

For regularly varying functions and functions in the class II, the notion of 

inversely asymptotic functions (see definition 1.21) proved useful. Lemma 

1. 23 a shows that for any function f E II or f E RV it is possible to find a 

smooth function fo which is inversely asymptotic to f, i.e. for all a > 1 

there exists t 0(a) such that f 0(t/a) ~ f (t) i. f 0(at) for t 2_ t 0 (this is 

* relation~, see definition 1.21). We show that for any function f E AB, there 

exists a smooth (namely non-decreasing) function fo such that the above 

inequalities hold for some a > 1 and all t sufficiently large. 

We start with a formal definition. 

Definition 3.16, 

The functions f, fo : IR+ + IR are 0-inversely asymptotic if there exist 

constants a> 1 and t 0 = t 0(a) such that 

f(t) i_ f 0(at) t 2_ t 0 

and (3.32) 

f 0(t) i. f(at) t 2_ t 0• 

Notation 
0 

: f ~ fo or f(t) 
0 
~ f 0(t), t+oo. ◊ 

* The reader should compare this with definition 1.21 (relation ~). It is easy 
0 

to see that if f and fo are increasing and unbounded, then f ~ fo if and only 

if the inverse functions satisfy f+ = O(f0+) and f 0+ = O(f+), in other words, 

if f+::::: f 0+. 

The relevancy of this definition for functions fin BI n PI follows from the 

following lemmas. 

Lemma 3.17 

Suppose f, fo E BI n PI, 
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0 
Then f(t) ~ fo(t) (t+00 ) if and only if f(t) X f 0(t), t+00 • 

Proof 
o 1 + index f 0 

Suppose f ~ f 0 • We then have f(t) ~ f 0(at) ~ ca fo(t) by (3.32) 

and theorem 3,5. A lower inequality is obtained similarly, 

Conversely, suppose f(t) ~ b f 0(t) for t 2. t 0 and b > O, 

By theorem 3.5 we have 

1 ½ index fo 
f 0(at) 2. c- a -- f 0(t) for t 2. ti, a 2. 1 and some c > 1. 

Hence f(t) ~ f 0(at) for t 2. max(t0 , t 1) if we choose a > 1 such that c-l 

½index fo 
a --- 2_ b. 

The proof of a converse inequality is similar. 

Lemma 3.18 

Suppose fo E BI n PI, f IR+ + IR measurable and f Q. f 0 , 

Then f E BI n PI. 

Proof 

Directly from lemma 3.17 and cor. 3,7a. 

◊ 

◊ 

For asymptotically balanced functions a statement analogous to that of lemma 

3.18 is correct, although the proof is somewhat different, since the analogue 

of lemma 3,17 is no longer true. 

Lemma 3, 19 

Suppose f 0 E AB(a), f: IR++ IR is measurable and f Q. f 0• Then f E AB(a) and 

f(t) - f 0(t) O(a(t)), t+oo, ( 3. 33) 

Proof 

Fix x) 1, 

Fort sufficiently large, by definition 3.16, there exists c > 1 such that 

f 0(tcx) - f 0(t/c) f(tx) - f(t) 

a(t) ~ a(t) 

fo(tx/c) - fo(tc) 

~ a(t) 
(3.34) 
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For x sufficiently large, the right-hand side in (3.34) has a positive limes 

inferior as t+m, since fo E AB(a). 

The rest of the proof is easy. ◊ 

Remark 

* There is a statement like that of lemma 3 .19 for the class II: if f fo and 

f 0 E II(a), then f(t) - f 0(t) = o(a(t)). See proposition 1.22 (ij), The latter 

* relation has a converse : if fo E II, f(t) - f 0(t) = o(a(t)), then f ~ fo and 

hence f E II (see theorem 1.13 and prop. 1.22 (ij)). The corresponding converse 

of relation (3.33) is not correct as the following example shows. Note that 

this remark reduces the value of corollary 3.21 below. 

Example 

Take f 0(t) = t, f(t) = t + (-l)[log tlt. 

Then fo E AB(a) with a(t) = t and f(t) - f 0(t) = O(a(t)), t+m, but for 

x = e2n+l and e2m _5_ t < e2m+l (m,n E IN) we have {f(tx) - f(t)}/t = -2, hence 

lim {f(tx) - f(t)}/t < 0 for x = e3, e5 , e7 , ••• , i.e. f is not in AB(a). 
t+m 

Note that the relation O is an equivalence relation for functions of the class 

AB. The next theorem shows that every equivalence class contains a smooth 

function, namely a non-decreasing function and for such functions a 

representation is available. 

Theorem 3.20 

Suppose f: ~++~is measurable. Then the following statements are equivalent 

(i) f E AB(a). 

(ij) There exists a non-decreasing function fo E AB(a) such that f(t) O f 0(t) 

( t+m). 

Proof 

(i) + (ij) 

Suppose f E AB. Then, by lemma 3.11 (ij) there exist t 0 and x1 such that 

f(tx) 2_ f(t) for t 2_ t 0 , x 2_ xl' Now define the function fo by 
n n 

f 0(t0x1) = f(t0x1) for n = 0, 1, 2, ••• and linear in between. Note that fo is 

non-decreasing. Further for s > 2 we have 
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2 2 2 
Hence we obtain f 0(t/x1) ~ f(t) < f 0(tx 1) for t > t 0x 1• Note that f 0 E AB(a) 

by lemma 3 • 19. 

(ij) + (i) 

This is an immediate consequence of lemma 3.19. 

Corollary 3. 21 

If f E AB(a), then there exists a non-decreasing f 0 E AB(a) such that f(t) 

f 0(t) + O(a(t)), t+oo. 

Proof 

Use lemma 3.19 and theorem 3.20. 

We use the above corollary to derive a more specific result. 

Theorem 3.22 

Suppose f: ~++~is measurable. 

Then the following statements are equivalent. 

(i) f E AB(a) 

◊ 

(ij) There exists a non-decreasing function g E BI n PI and constants r > 0 

and c such that g(t) X tr a(t) and 

Proof 

t 
f(t) O c + r f s-r-l g{s)ds. 

0 

(3.35) 

Suppose f E AB(a). Application of theorem 3.20 and corollary 3.14 shows that 

we have 

t 
f(t) Q f 0 (t):= c + g{t)t-r + r f s-r-l g(s)ds, 

0 

where g E BI n PI is non-decreasing, r > 0 and g(t) tra(t). 
0 

We prove that f 0(t) ~ f 1(t) (t+oo), where f 1(t) denotes the right-hand side in 

(3.35). 

By theorem 3.5 (viij) and the monotonicity of g for some x1 > 1, t 0 > O, 

0 < f3 < r we have for t l_ to and x > y > xl 



f 1(tx) - f O(t) 

t-rg(t) 
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r { =~~)) s-r-lds - 1 > r { s-r-lds + 

r B-r 
- --x • 

r-a 

(3.36) 

We take y =Yo> x1 such that 6:= r:a yg - 1 > O. Thep the right-hand side in 

-s+r r Yo 
(3.36) is positive for all x satisfying x > (r-a) 6• Hence f 1(tx) 2_ f 0(t) 

for some x > 1 and t > t 0• 

The reverse inequality follows since f 1(t) ..$_ f 0(t) ..$_ f 0(tx). Hence we find 
0 

f 0(t) ~ f 1(t) (t+co), which implies (3.35). 

Conversely, if f satisfies (ij), we have by Fatou's lemma 

f (tx) - f (t) X 

lim 1 1 > r f lim g(~s) s-r-lds > 0 
t'".;;' t-rg(t) - 1 ~ g( ) 

for x sufficiently large, since g € BI n PI is non-decreasing. 

Corollary 3.23 

If f € AB(a), then there exists a non-decreasing function g € BI n PI and 

constants r > o·and c such that g(t) ;:::::tra(t) and 

f(t) = C + r 

Remark 

t -r-1 -r J s g(s)ds + O(t g(t)), 
0 

t+co. ( 3. 37) 

◊ 

Suppose f: R+ + R is measurable and satisfies (3.37) with r > 0 and r < index 

g ..$_ index g < 00 • 

Then f € AB(a) with a(t);::::: t-r g(t). This is a partial converse of corollary 

3.21. 

III.3. Discussion 

A reference for 0-regularly varying functions is Aljanci~ and Arandelovi~ 

( 1977). 

A reference for the classes BI, PI and AB is de Haan and Resnick (1984). 

There are many other possible generalizations of the classes RV and IT; see the 

two papers by Bingham and Goldie (1982). We have chosen the present ones since 

they seem to be useful and since the results and proofs for those classes 

follow quite closely the theory of RV and rr. The results presented after def. 

3.16 are new and partly due to Balkema. 
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IV. Tauberian theorems for O-varying functions. 

In this chapter Tauberian theorems are proved for the classes of functions RO 

and AB (0-regularly varying functions and asymptotically balanced functions). 

Note that the results are straightforward generalizations of the corresponding 

statements for the classes of functions RV and n respectively (Karamata' s 

theorem - theorem 2.11 - and theorem 2.14). 

IV. 1. The Laplace transform 

Theorem 4.1 
A 

Suppose f: 1t + R is measurable and has a finite Laplace transform f(t) for 

t > o. 

If 

f € RO with index f > -1 (4.1) 

(see definition 3.2), then 

A A 

f(l/t) € RO with index f(l/t) > -1 (4.2) 

and 
A 

f(t) ;:::::f(l/t). (4.3) 

Conversely if taf(t) is non-decreasing for some a € (0,1), then (4.2) ~ (4.3) 

implies (4.1). 

Proof 

First suppose (4.1) holds. 

Since tf(t) € BI n PI we may apply theorem 3.5. 

By (3.16) there exist c > 1, a, B > 0 such that 

Now write 

-x f(tx) d + 00J -x f(tx) d 
e f(t) x e f(t) x 

1 
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Then O < lim Ii .5.. lim Ii< 00 for i = 2, 3. Next we consider I 1• 
t+oo t+oo 

Since index f > -1 we have tf(t) + 00 (t+00). Hence 

to to 
jI11 SJ e-x/tlf(x)ldx/tf(t) Sf jf(x) ldx/tf(t) + 0 (t+00), 

0 0 

This proves f(t-1) f(t) (t+oo) • Since f ERO, it follows that f(t -l) E RO. 

Hence (4.1) implies (4.2) and (4.3). 

Conversely suppose t 0 f(t) is non-decreasing and (4.2) holds. Then 

00 00 

f(s) = f e-t f(t/s) dt l_ a 0 f(a/s) f C 0 e-t dt = : c(a)f(a/s) (4.4) 
0 a 

for alls, a> O. 

Hence for B > 1 and sufficiently smalls 

A 01) -t (X a - a -t -1 00 t A 

f(s) = J e f(t/s) dt ~ B f(B/s) J t e dt + c(l) J e- f(s/t)dt 
0 O B 

for some c > O, y E ~, the last inequality being a consequence of theorem 3.2 
A 

(applied to the function f (1/x)). 00 

Now choose B = B0 > 1 in such a way that c(l)-l f e-tctydt ~ ½, 
Then we find Bo 

Combination of (4.4) and (4.5) gives 

A 

lira f(tx) < c2c(l)-l lira :(1/tx) < oo 

t+oo f(t) - t+oo f(B0/t) 

for x > 1. Note that index f l_ - a > -1 since t 0 f(t) is non-decreasing. Hence 

f ERO. 

Finally suppose t 0 f(t) is non-decreasing (for some a E [O,l)) and (4.3) 

holds. 

We use the inequality (4.4) again and find for x > 0 fixed 

A 

- f(tx) -1 - ff 1/t' 
lira f(t) ~ c(x) lira~< 00 0 

t+oo t+oo 

Hence f E RO. ◊ 
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Theorem 4.2 

Suppose f: R+ +~is measurable and has a finite Laplace transform 

f(t) for t > O. 

If 

then 
A 

f(l/t) E AB (aA) with index aA > - 1 

and 
f -- f 

f(t) Q f(l/t) (t + oo). 

( see def. 3 • 16) • 

Conversely if f is non-decreasing, then (4.7) implies (4.6). 

Proof 

( 4.6) 

(4.7) 

( 4.8) 

Since we may replace f(t) by f(t) + c without affecting f or f E AB, we may 

suppose without loss of generality f(o+) = O. 

a. We first prove the equivalence of (4.6) and (4.7) under the assumption that 

f is non-decreasing. Suppose (4,6) holds. Since index af > -1, we may apply 

theorem 3.13 with r = 1. Hence the function g, defined by 

t 

g(t) tf(t) - f f(s)ds 
0 

is monotone, in BI n PI and g(t) x ta(t) (t + 00). Theorem 4.1 then gives 
A 

g(l/t) E BI n PI. 

Now observe that 

dds f (1/s) - .!.. f (.!..) +-;} j e-t/s t f(t)dt g (1/s)/s2 
s s s O 

A 

and hence (note that f( 00) = f(o+) 0) 

A 

f(l/ s) 

s A 

f g (1/t) dt/t 2• 
0 

A 

Application of lemma 3.15 then gives f(l/s) E AB (aA) and 
A f 

aA(t)x g(l/t)/t, hence index aA > -1. It is clear that this reasoning can 
f -- f 

be followed in reversed order. Hence we have proved the equivalence of 

(4.6) and (4,7) in case f is non-decreasing. 
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b, Next we prove (4,6) + (4,7) without the assumption of monotonicity for f, 

For arbitrary f e: AB, by theorem 3, 20, there exists a non-decreasing 

function f 0 and constants t 0 , x0 > 1 such that for t 2_ t 0 

Define the function f 1 by 

Then f 1(t) = f 0 (tx0 )) for t 2_ t 0 , 

A A 

f 1(1/t) - f (1/tx) 
0 0 

t /t 
0 

J 
0 

(4.9) 

hence 

e-s{f 1(ts) - f (tx s)}ds < 
0 0 -

t 
~ t-l J0 e-s/tjf 1(s) - f (x s)jds < c/t (4.10) 

0 0 0 -

t 

for all t sufficiently large, where c: = J0 jf1(s) - f (x s)jds, 
A A O O 0 

Since f(t) .5_ f 1(t), we have f(l/t) 5_ f 1(1/t), Combination with (4.10) gives 

A A 

f(l/t) ~ f 0 (l/tx0 ) + c/t ~ f 0 (1/tx 1) 

A 

for some Xl ) XO and all t sufficiently large, since f (1/t) e: AB(aA ) with 
0 

f 
~aA > -1 by part a of the proof. 0 

f 
Introduc£ng the function f 2(t) = min {f(t), f 0 (t/x0 )} one finds similarly 

A A 

f(l/t) ~ f 0 (x2/t) for some x2 > x0 and t sufficiently large, 

Hence f(l/t) 2 f (1/t), t + m, 
0 

By part a we 

finishes the 

A 

have f (1/t) e: AB(aA ), 
0 f 

proof of (4,7), 0 

Application of lemma 3.19 then 

c. Finally we prove the implication (4.6) + (4.8), 

By theorem 3. 22 

0 tJ -r-1 
f(t) ~ c + r s g(s)ds =: f 2(t) 

0 

where r > 0 and care constants and g e: BI n PI is non-decreasing, 

(4.11) 
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0 
Since we have proved in part b that if f ~ f 0 and f 0 non-decreasing then 

f(l/t) Q f 0 (1/t), it is sufficient to prove £2(1/t) Q f 2(t) (t+00). 

Since f E AB(a) with index a > -1, we may take r=l in (4.11). (see the 

remark following theorem 3,13.) 

Now it follows that 

<X> -s 
f e -ili_tl 

- 2- lim (t) ds 
X S t+oo g 

( 4. 12) 

by Fatou's lemma, theorem 3,2 and the dominated convergence theorem. 

Since the first integral is positive and the second integral is finite, the 

right-hand side in (4.12) is positive for x sufficiently large. This proves 
A 

f 2(tx0) 2. f 2(1/t) for t 2._ t 0 and some x0 > 1. The proof of the converse 
0 A 

inequality needed for (4.8) is similar. Hence f 2(t) ~ f 2(1/t) (t+00). ◊ 

Corollary 4.3 
A 

Under the assumptions of theorem 4.3 we have f(t) - f(l/t) O(a(t)), t+oo, 

Examples: 

1. Suppose f(t) = (log t)a + O((log t)a--1) (a > 0) and f(u) < °' for u > 0, 
A 

Since f E AB (a) with a(t) = (log t)a-l, we have f(l/t) = (log t)a + 

O((log t)a-l) and the converse implication is true if f is non-decreasing. 

2. A condition like index a > -1 is necessary for the theorem. This is shown 

by the following example: 

Let f(t) = 0 on [O, 1] and f(t) = 1 -t-a for t > 1, where a > 1 is a 

constant. 

Then f(tx) - f(t) X t-a as t + °'• whereas 

A 
t - lln t if a = 1 

f(l/tx) - f(l/t)X { 
1/t if a> 1. 

Remark 

Without proof we mention the following variant of theorem 4. 2 and corollary 

4.3. See de Haan, StadtmUller (1985). 
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Suppose a E RO with index a > -1, f : IR+ + IR+ is non-decreasing, f(o+) 0 

and f(t) < oo fort> O. Then the statements 

(i) lim f(tx~) f(t) < oo for all x > 1 
t+oo a t 

A A 

(ii) lim f(l/tx) - f(l/t) < oo for all x > 1, 
t+oo a( t) 

are equivalent and they imply 

A 

f(t) - f(l/t) 0 (a(t)), t+oo, 

IV.2. General kernel transforms 

(4.13) 

(4.14) 

(4.15) 

◊ 

Next we prove a generalization of theorem 4.1 for more general kernels. We 

restrict our attention to positive kernels as we did in the corresponding 

theorem on RV functions. Moreover the monotonicity assumption for f is 

weakened (see condition (4.17) below). 

From now on we use the notation 

f(t) 

Theorem 4,4 

f k(s) f(ts) ds (see definition 2,31). 
0 

(4.16) 

a, Let f E RO with index f > -1 and suppose f is (Lebesgue) integrable on 

finite intervals of IR+. If the function k:IR+ + IR+ is bounded on (0,1) and 

1 
0 < f s°k(s)ds < 00 

and 
0 
00 

0 < f s 13k(s)ds < 00 

1 

for some a< index f and 13 > index f, then 

f( t) f( t) ( t+oo), hence f E RO. 

b. Suppose f IR+ + IR+ is measurable, lim f(t) oo and there exist ). > 1, 

c > 0 such that 
t+oo 

inf {f(t') - f(t)} > - c for all t > O. (4.17) 
t(t'<H 
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A 

Suppose f(t) is finite fort> 0 and f € RO. 

Suppose the kernel k € L1 (O, oo) is non-negative and satisfies the 

assumptions 

1 00 00 

f k(s) ds > O, f k(s) ds > o, f s 8k(s) ds < oo 
0 1 1 

for some 8 > index f, 

; jA-jk(A-js) and 

j=O 

00 

I: jAjk(Ajs) 
j=O 

are bounded on finite intervals of~+. 

Then f € RO. 

Proof 

( 4 .18) 

a. Since there exist c > 1 such that f(tx)/f(t) .5._ cxa for tx 2_ t 0 , 0 < x ~ 1 

by theorem 3.2 and cor. 3.4, we have 

fl f(ts) l a 
lim k(s) f(t) ds <cf k(s) s ds < 00 • 

t+oo to/t 0 

Similarly we find 

fl f(ts) 
lim k( s) f(t) ds > O. 
t+oo to/t 

Since k is bounded on (0, 1) and index f > -1 we have 

t 0/t t 0 

I f k(s) f(ts) dsl ~ (tf(t))-l f k(s/t)lf(s)ids o(l) (t+00). 

0 f(t) 0 

Similarly we find that j k(s) ~~~)) ds is bounded away from zero and infinity. 

This completes the proof of part a. 

b. We write 

A 
y 00 

f(t) f k(s) f(ts) ds + f k(s) f(ts) ds, (4.19) 
0 y 

where y > 0 is to be determined later and start by estimating the first term 
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at the right-hand side. There exists t 0 E [ t, At] such that 

inf {f(At) - f(t') 
t_$t',$At 

~ f(At) - f(t) - 1 > 
0 -

~ inf {f(t') - f(t) } - 1 ~ - c - 1 by (4.17). 
t <t'(At o 
o- - 0 

Since k is non-negative this implies 

y .. YA-j 

f k(s) f (ts) ds < I: { j 1 sup j f (~t)} f -j-lk(s)ds .$ 
0 j=O YA- - _$~_$YA- YA 

00 YA-j 

_$ I: {f(yA-jt) + c + 1} f_J.-l k(s)ds. 
j=O YA 

Repeated application of (4.17) gives f(y A-jt) i_ f(yt) + jc. 

Hence 

f k(s) f (ts) ds .$ c1 f(yt) + c 2, 
0 

y .. 

where c1 = f k(s)ds > 0 and c2 = c I: (j+l) 
0 j=O 

by assumption (4.18). 

We are now going to estimate the integral over (y, co) in (4.19). 
00 

Write c3 = f k(s) ds. Then by (4.17) and (4.18) fort> 0 
1 

A 1 00 

( 4. 20) 

f(t) = c3 f(t) + f k(s) f(ts)ds + I: k(s) {f(ts) - f(t) }<ls 

> 

Hence 

00 

f 
y 

C3 f(t) 

0 j=O 

oo Aj+l 

I: f 
j=O Aj 

k(s) {f(ts) - f(tAj) - cj}ds 

00 A 00 

- C f k(s)ds - C f I: j Aj k( Ajs)ds =: 
1 1 j=O 

00 
A 

k( s) f( ts)ds .$ f k( s) {c4 + f(ts)/c3}ds. 
y 

(4.21) 

c/f(t) - c4). 
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By theorem 3.2, since f € RO, there exist t 0 , c5 > QA such that 

f(ts) 5 c5f(t) s 8 fort> t 0 , s > 1 where 8 > index f. 

Hence 

j k(s) f(ts)ds $ cs f(t) j s 8k(s) ds + c4 j k(s)ds. 
y c3 y y 

Now choose y such that c6 
cs co 

s 8k(s) 1/2 • : =-J ds 5 
C3 y 

Combination of (4.20) and (4.22) then gives 

A A 
co 

f(t) 5 t f(t) + cl f(yt) + c2 + c4 J k(s)ds, 
y 

hence 

A 
co 

f(t) 5 2 c1 f(yt) + 2 {c2 + c4 J k(s) ds}. 
y 

The last inequality, together with (4.21), lim f(t) = co and f € RO imply 
t+co 

A 

f(t) f(t) (t+co) 0 

Hence f € RO. 

IV.3. Discussion 

(4.22) 

The results of theorems 4. 1 and 4. 2 ( Tauberian theorems for RO and AB) have 

been adapted from de Haan and StadtmUller (1985). Theorem 4.4 ( a general 

kernel Tauberian theorem) has been adapted from Geluk (1985). 
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