Regularities in Data from Factorial
Experiments

XIANG LI, NANDAN SUDARSANAM,” AND DANIEL D. FREY'-?
Massachusetts Institute of Technology, ' Department of Mechanical Engineering; and *Engineering Systems
Division, Cambridge, Massachusetts 02139

This paper was submitted as an invited paper resulting from the “Understanding Complex Systems”
conference held at the University of Illinois—-Urbana Champaign, May 2005

Received May 3, 2005; revised March 4, 2006; accepted March 6, 2006

This article documents a meta-analysis of 113 data sets from published factorial experiments. The study
quantifies regularities observed among factor effects and multifactor interactions. Such regularities are known
to be critical to efficient planning and analysis of experiments and to robust design of engineering systems. Three
previously observed properties are analyzed: effect sparsity, hierarchy, and heredity. A new regularity is
introduced and shown to be statistically significant. It is shown that a preponderance of active two-factor
interaction effects are synergistic, meaning that when main effects are used to increase the system response, the
interaction provides an additional increase and that when main effects are used to decrease the response, the
interactions generally counteract the main effects. © 2006 Wiley Periodicals, Inc. Complexity 11: 32—45, 2006
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1. INTRODUCTION
esearchers in the sciences of complexity seek to dis-
cover regularities arising in natural, artificial, and so-
cial systems and to identify their underlying mecha-
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nisms. The authors have carried out meta-analysis of 113
data sets from published experiments from a wide range of
science and engineering disciplines. The goal was to identify
and quantify regularities in the experimental data regarding
the size of factor effects and interactions among factors.
These regularities appear to arise from the interplay of the
physical behavior of the systems and the knowledge of the
experimenters. Therefore our results should be interesting
to a broad range of investigators in complex systems includ-
ing engineers, statisticians, physicists, cognitive scientists,
and social scientists.
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This article is organized as follows: Section 2 presents the
motivation for the study and provides some necessary back-
ground in the Design of Experiments; Section 3 describes
the research methodology; Section 4 gives an example of the
analysis using one of our data sets; Section 5 presents the
results of the meta-analysis; Section 6 presents an investi-
gation of nonlinear transformation of the responses and its
influence on the regularities; and Section 7 presents con-
clusions and suggestions for future research.

2. MOTIVATION

2.1. What is Design of Experiments and Why Is It
Important?

Experimentation is an important activity in design of sys-
tems. Most every existing engineering system was shaped by
a process of experimentation including preliminary investi-
gation of phenomena, subsystem prototyping, and system
verification tests. Major, complex systems typically require
thousands of experiments [1]. Consequently, experimenta-
tion is a significant driver of development cost and time to
market. There is pressure to drive down the resource re-
quirements of experimentation, especially in commercially
competitive industries.

The mathematical and scientific discipline of Design of
Experiments (DOE) seeks to provide a theoretical basis for
experimentation across many domains of inquiry. Com-
monly articulated goals of DOE include: making scientific
investigation more effective and reliable [2]; efficient pro-
cess and product optimization [3]; and improvement of
system robustness to variable or uncertain ambient condi-
tions, internal degradation, manufacturing, or customer use
profiles [4-6]. The use of DOE in engineering appears to be
rising as it is frequently disseminated through industry “Six
Sigma” programs, corporate training courses, and university
engineering curricula.

This article relies on several concepts and terms from
DOE. To make the discussion clear to a broad audience of
investigators in complex systems, the following definitions
are provided:

® Response: An output of the system to be measured in an
experiment.

® Factor: A variable that is controlled by the experimenter
to determine its effect on the response.

® Active factor: A factor that experiments reveal to have a
significant effect on the system response.

® Level: The discrete values a factor may take in an exper-
iment.

e Full factorial experiment: An experiment in which every
possible combination of factor levels is tested. In a system
with k factors, each having two levels, the full factorial
experiment is denoted as the 2% design.

® Main effect: The individual effects of each factor in an

experiment [7]. In the 2¥ design, the main effect of a factor
is computed by averaging of all the responses at each
level of that factor and taking the difference.

® Interaction: The failure of a factor to produce the same
effect at different levels of another factor [7]. An interac-
tion that can be modeled as arising from the joint effect of
two factors is called a two-factor interaction. Similarly,
three-factor interactions and higher order interactions
may be defined.

2.2. Why Are Regularities in Experimental Data
Important?

Based on experience in planning and analyzing many ex-
periments, practitioners and researchers in DOE have iden-
tified regularities in the interrelationships among factor ef-
fects and interactions. Such regularities are frequently used
to justify experimental design and analysis strategies [8].
This section reviews three regularities noted in the DOE
literature describing their nature, origins, and influence on
theory and practice. These regularities are effect sparsity,
hierarchical ordering, and effect heredity.

Effect sparsity refers to the observation that number of
relatively important effects in a factorial experiment is gen-
erally small [9]. This is sometimes called the Pareto Principle
in Experimental Design, based on analogy with the obser-
vations of the 19th century economist Vilfredo Pareto, who
argued that, in all countries and times, the distribution of
income and wealth follows a logarithmic pattern resulting
in the concentration of resources in the hands of a small
number of wealthy individuals.

Effect sparsity appears to be a phenomenon character-
izing the knowledge of the experimenters more so than the
physical or logical behavior of the system under investiga-
tion. Investigating an effect through experimentation re-
quires an allocation of resources—to resolve more effects
typically requires more experiments. Therefore, effect spar-
sity is in some sense an indication of wasted resources. If
the important factor effects could be identified during plan-
ning, then those effects might be investigated exclusively,
resources might be saved, and only significant effects would
be revealed in the analysis. But experimenters are not nor-
mally able to do this. Effect sparsity is therefore usually
evident, but only after the experiment is complete and the
data have been analyzed.

Researchers in DOE have devised means by which the
sparsity of effects principle can be exploited to seek efficien-
cies. Many experiments are designed to have projective
properties so that when dimensions of the experimental
space are collapsed, the resulting experiment will have de-
sired properties. For example, the fractional factorial 23!
design may be used to estimate the main effects of three
factors A, B, and C. As Figure 1 illustrates, if any of the three
dimensions associated with the factors is collapsed, the
resulting design becomes a full factorial 2? experiment in

© 2006 Wiley Periodicals, Inc.
DOI 10.1002/cplx

COMPLEXITY

33



The projective property of the fractional factorial 23, " design of an
experiment.

the two remaining factors. Projection, in effect, removes a
factor from the experimental design once it is known to
have an insignificant effect on the response. Projective
properties of fractional factorial experiments can enable an
investigator to carry out a full factorial experiment in the
few critical factors in a long list of factors without knowing
a priori which of the many factors are the critical few.
Similarly, Latin Hypercube Sampling enables an experi-
menter to sample an n-dimensional space so that, when n —
1 dimensions collapse, the resulting sampling is uniform in

the remaining dimension [10]. Latin Hypercube Sampling
has become popular for sampling computer simulations of
engineering systems, suggesting that its projective proper-
ties provide substantial practical advantages for engineering
design. Although effect sparsity is widely accepted as a
useful regularity, better quantification seems to be needed.
Reliance on effect sparsity has led to strong claims about
single array methods of robust design, but field investiga-
tion have shown that crossed arrays give better results [11].
Degrees of reliance on effect sparsity may be the root cause
of some disagreements about methodology in robust de-
sign.

Hierarchical ordering (sometimes referred to as simply
“hierarchy”) is a term denoting the observation that main
effects tend to be larger on average than two-factor inter-
actions, two-factor interactions tend to be larger on average
than three-factor interactions, and so on [12]. Effect hierar-
chy is illustrated in Figure 2 for a system with four factors A,
B, C and D. Figure 2 illustrates a case in which hierarchy is
not strict—for example, that some interactions (such as the
two-factor interaction AC) are larger than some main effects
(such as the main effect of B).

The phenomenon of hierarchical ordering is partly due
to the range over which experimenters typically explore
factors. In the limit that experimenters explore small
changes in factors and to the degree that systems exhibit
continuity of responses and their derivatives, linear effects
of factors tend to dominate. Therefore, to the extent that
hierarchical ordering is common in experimentation, it is
due to the fact that many experiments are conducted for the
purpose of minor refinement rather than broad-scale explo-
ration.

The phenomenon of hierarchical ordering is also partly
determined by the ability of experimenters to transform the
inputs and outputs of the system to obtain a parsimonious
description of system behavior [13]. For example, it is well
known to aeronautical engineers that the lift and drag of
wings is more simply described as a function of wing area
and aspect ratio than by wing span and chord. Therefore,
when conducting experiments to guide wing design, engi-
neers are likely to use the product of span and chord (wing
area) and the ratio of span and chord (the aspect ratio) as
the independent variables. Therefore, one might say that
the experimenters have performed a nonlinear transforma-
tion of input variables (span and chord) before conducting
the experiments. In addition, after conducting the experi-
ments, further transformations might be conducted on the
response variable. In aeronautics, lift and drag are often
transformed into a nondimensional lift and drag coeffi-
cients by dividing the measured force by dynamic pressure
and wing area. It is also common in statistical analysis of
data to apply transformations such as a logarithm as part of
exploration of the data. A key aspect of hierarchical ordering
is its dependence on the perspective and knowledge of the
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The hierarchy and heredity among main effects and interactions in a system with four factors A, B, C, and D.

experimenter as well as conventions in reporting data. It is
important in assessing regularities in published experimen-
tal data that we do not alter the data as it was presented in
any ways that affect its hierarchical structure. Section 4 will
provide some exploration of this issue.

Effect hierarchy has a substantial effect on the resource
requirements for experimentation. A full factorial 2* exper-
iment allows one to estimate every possible interaction in a
system with k two-level factors, but the resource require-
ments grow exponentially as the number of factors rises. A
saturated, resolution III fractional factorial design allows
one to estimate main effects in a system with k two-level
factors with only k + 1 experiments, but the analysis may be
seriously compromised if there are large interaction effects
in the system. Better quantification of effect hierarchy
seems to be needed to guide choice between these alterna-
tives and the many other options for experimental planning.
For example, the degree to which systems exhibit hierarchy
has been shown to strongly determine the effectiveness of
robust design methodologies [14]. If such decisions among
robust design methods can be based on empirical studies,
further efficiencies may be possible.

Effect heredity (sometimes referred to as “inheritance”)
implies that, in order for an interaction to be significant, at
least one of its parent factors should be significant [8]. This
regularity can strongly influence sequential, iterative ap-
proaches to experimentation. For example, in response sur-

face methodology, high-resolution experiments (e.g., cen-
tral composite designs) are frequently used with a small
number of factors only after screening and gradient-based
search bring the response into the neighborhood where
interactions among the active factors are likely. Effect he-
redity can also provide advantages in analyzing data from
experiments with complex aliasing patterns, enabling ex-
perimenters to identify likely interactions without resorting
to high-resolution designs [15].

The effect structures listed above have been identified
through long experience by the DOE research community
and by practitioners who plan, conduct, and analyze exper-
iments. The effect structures figure prominently in discus-
sion of DOE methods, including their theoretical underpin-
nings and practical advice on their use. However, effect
structures have not been quantified by formal empirical
methods. Further, there has been little effort to search for
other regularities that may exist in experimental data across
many domains. These gaps in the literature motivated the
investigation described in the next sections.

3. RESEARCH METHODOLOGY

The present study was performed using a set of 46 pub-
lished engineering experiments that includes 113 responses
in all. A General Linear Model was used to estimate factor
effects in each data set and the Lenth method was used to
identify active effects. Then, across the set of 113 responses,
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the model parameters and the relevant conditional proba-
bilities were analyzed. Details of the approach are given in
the following seven subsections.

3.1. The Set of Experimental Data

We assembled a set of 46 full factorial 2* experiments pub-
lished in academic journals or textbooks [16-60]. The ex-
periments come from a variety of fields including biology,
chemistry, materials, mechanical engineering, and manu-
facturing. The reason we used full factorial designs is that
we did not want to assume the existence of any given effect
structure in this investigation, we want to fest it and quan-
tify it. Full factorial experiments allow all the interactions in
a system to be estimated. The reason that we used two-level
experiments is that they are much more common in the
literature than other full factorial experiments and we
wanted a large sample size.

Many of the 46 experiments contain several different
responses since a single set of treatments may affect many
different observable variables. Our set of 46 experiments
includes 113 responses in all. Table 1 provides a complete
list of these responses. Table 2 summarizes some relevant
facts about the overall set. For example, Table 2 reveals that
the vast majority of the experiments had either 3 or 4 fac-
tors. The number of main effects and interactions are also
listed, but this is not based on analysis of the data, but only
on the number of effects resolvable by the experimental
design. It is notable that the data set includes 569 two-factor
interactions and only 383 three-factor interactions because
the 54 responses from 2° designs each contribute only one
potential three-factor interaction. Note that the one re-
sponse from a 27 experiment contributes 35 potential three-
factor interactions that represent about 9% of the potential
three-factor interactions in the entire set.

All the experimental data in this research were recorded
in our database in the form they were originally reported in
the literature. No nonlinear transformations were per-
formed before entry into the database nor were nonlinear
transformations conducted during the meta-analysis pre-
sented in Section 5; therefore the regularities we report in
that section are regularities in data as they are presented by
experimenters. As it is widely known in the statistics com-
munity, nonlinear transformation of the response can
sometimes lead to more parsimonious models and reduce
active interactions. Therefore, to explore how nonlinear
transformations affect regularities, we conducted a fol-
low-up study using the same methods, but performing the
analysis of the data after a log transform was applied (these
results are in Section 6). This issue of transformation of data
is also briefly explored via an example in Section 4.

3.2. The General Linear Model
The General Linear Model (GLM) is frequently used in sta-
tistics. The GLM represents the response of a system as a

linear combination of functions of the experimental factors.
In DOE, the GLM often takes a form of a polynomial. If the
experiment uses only two levels of each factor, then an
appropriate model should include only selected polynomial
terms resulting in the following equation:

n

» xn) = BO + 2 Bixi+ E 2 Bifxixj

i=1 i=1 j>i

V(X1 X ..

+ Z E E BijkXixjx, + - - - +e. (1)

i=1 j>i k>j

The term B, is a constant that represents the mean of the
response. The terms B; quantify the main effects of the
factors x; on the system response. The terms g,; determine
the two-factor interactions involving factors x; and x;. Sim-
ilarly, terms B;; quantify the three-factor interactions. In
two-level designs, the input variables are frequently normal-
ized into coded levels of —1 and +1. Given this normaliza-
tion, the sizes of the coefficients 8 can be compared directly
to assess the relative influence of the factor effects.

3.3. The Lenth Method for Effect Analysis

An effect in an experiment is the observed influence of a
factor or combination of factors on a response. An effect is
sometimes said to be “active” if it is judged to be a signifi-
cant effect by one of various proposed statistical tests.
Among the commonly used test for “active” effects are the
Normal Plot (or Half-Normal Plot) method [61], Box-Meyer
method [9], and the Lenth method [62]. In this investigation,
the Lenth method was selected because it is applicable to
unreplicated factorial experiments, because it is computa-
tionally simple, and because it can be automated without
applying many arbitrary assumptions. In the Lenth method,
a plot is made of the numerical values of all effects and a
threshold for separating active and inactive effects is calcu-
lated based on the standard error of effects. In the first step,
a parameter s, is formed:

So = 1.5 X median|B|, (2)

where g includes all estimated effects including main effects
and interactions B4, By, - - -, B2 - -
dard error (PSE) and margin of error of the effects are

.. Then the pseudo stan-

defined to be, respectively,

PSE = 1.5 X median|g| (3)
[Bl<2.550
Margin of Error = fy 454 X PSE, (4)
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List of the Responses Subjected to Meta-analysis

Engineering System [Ref.] K Response Engineering System [Ref.] K Response
Remediating aqueous heavy metals [16] 24 Lead Finish turning [38] 2° Roughness

24 pH Epitaxial layer growth [8] 24 Thickness

24 Lead Limestone effects [39] 28 Surface area

24 pH (alt. method) 28 Water demand
Processing of incandescent lamps [17] 24 Lumens fluct. 28 Init. setting time

24 Power val. 28 Final setting time

24 Lumens val. Cr toxicity and L. nimor [40] 23 RGR

24 Life time 2% DFR

24 Power fluct. 2% Cr in fronds

24 Life fluct. Wood sanding oper. [41] 24 Cherry removal rate
Glass fiber composites [18] 28 Stiffness tans. 24 Maple removal rate

28 Stiffness 20 0Oak removal rate

28 Strength 24 Pine removal rate

23 Strength trans. 24 Cherry surface rough
Solvent extraction of cocaine [19] 28 % weight 24 Maple surface rough
Plasma spraying of Zr02 [20] 24 Velocity 24 Oak surface rough

24 Temp. 24 Pine surface rough

24 Size Grinding of silicon wafers [42] 24 Displacement
Post-exp. bake in x-ray mask fab. [21] 24 Line width Concrete mix hot clim. [43] 20 Compressive strength
EDM of carbide composites [22] 2% Roughness Color-improved lamps [44] 24 Voltage

23 Tool wear 24 ccT

2% MRR 24 CRI
Polymerization of microspheres [23] 28 M, 24 Luminous flux

22 Surf. density Machinability study [45] 24 Tool wear

23 Diameter 24 Surface finish

23 M, Diffusion welding [46] 24 Failure load

28 M, Electrocoagulation [47] 24 Decolorization

28 Surface density Fine grinding [48] 28 Max grinding force

28 % pepi 28 Max motor current
Ball burnishing of an ANSI 1045 [24] 24 Roughness 28 Grinding cycle time
Abrasive wear of Zi-Al alloy [25] 23 Zinc 23 Surface roughness

28 Composite Leaching of manganese [49) 24 Mn
Surface morphology of films [26] 2° Roughness 24 Fe

2% Stress 24 Al
MIG process [27] 24 Penetration Aqueous SO2 leaching [50] 24 Extraction Mn

24 Reinforce 24 Extraction Fe

24 Width Ident. of radionuclide [51] 28 U8 extracted

24 Reinforce Crystal growth [52] 24 Experimental scores
Pilot plant filtration rate [28] 24 Rate Yeast b-G [53] 28 Observed b-G
Friction measurement machine [29] 28 Frict coeff val. Chl and tetracycline [54] 2% CTC

28 Frict coeff fluct. 2% TC
Detonation spray process [30] 24 Hardness 2% pH

24 Roughness Erosion durability [55] 2% Nozzle pressure

24 Porosity Antifungal antibiotic [56] 2% Antifungal antibio. act.
Production of surfactin [31] 24 Yield Xylitol production [57] 24 CR
Steam-exp. laser-printed paper [32] 2° Brightness 24 LDPR

2° Opacity 24 Yp/s

2% Light abs. 24 Qp

2° Light scatter Thermal fatigue of PWBs [58] 28 Cycles
Hydrosilylation of polypropylene [33] 23 Silane Wire EDM process [59] 23 Roughness (w)

28 Double 28 Waviness ()
Solid polymer electrolyte cells [34] 28 Potential 28 Cut spd (uw)
Simulation of earth moving sys. [35] 26 Match factor 28 Roughness (o)

26 Production 28 Cut spd (o)
Fractionation of rapeseed lecithin [36] 24 Enrichment 28 Waviness (o)

24 Yield Wet clutch pack [60] 27 Drag torque
Deter. of reinforced concrete [37] 2% Corros. rate

*This experiment was not a full factorial design, but contained a full factorial design as a subset. Only the full factorial settings were used in the

meta-analysis.
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A Summary of the Set of 113 Responses and the Potential Effects Therein
Potential Potential

Potential Two-Factor Three-Factor
Factors Experiments Responses Main Effects Interactions Interactions
3 20 (43%) 54 (48%) 162 (40%) 162 (28%) 54 (14%)
4 22 (49%) 51 (45%) 204 (49%) 306 (54%) 204 (54%)
5 2 (4%) 5 (4%) 25 (6%) 50 (9%) 50 (13%)
6 1 (2%) 2 (2%) 12 (3%) 30 (5%) 40 (10%)
7 1 (2%) 1 (1%) 7 (2%) 21 (4%) 35 (9%)
Total 46 (100%) 113 (100%) 410 (100%) 569 (100%) 383 (100%)

where £ o254 Is the 0.975th quantile of the rdistribution
and df is the statistical degrees of freedom. Lenth [62] sug-
gests that the degrees of freedom should be one third of the
total number of effects.

The margin of error for effects is defined to provide
approximately 95% confidence. A more conservative mea-
sure, the simultaneous margin of error (SME) is also defined
as follows:

SME = t, X PSE (5)
where
(1 +0.95Ym)
Y= (6)

where m is the total number of effects. In the Lenth method,
it is common to construct a bar graph showing all effects
with reference lines at both the margin of error and at the
simultaneous margin of error. In this article, we needed to
select one consistent criterion of demarcation between ac-
tive and inactive effects. We judged it was more appropriate
to use the margin of error as the criterion in study of full
factorial experiments and that the alternative simultaneous
margin of error criterion is more appropriate for screening
experiments.

3.4. Method for Quantifying Effect Sparsity
To quantify effect sparsity in the set of data, we used the
following procedure:

1. For each experiment, estimate all the main effects and
interactions as described in Section 3.2.

2. Apply the Lenth method and label each effect as either
active or inactive as described in Section 3.3.

3. Categorize the effects into main effects, two-factor inter-
actions, and three-factor interactions, etc. Calculate the
percentage of active effects within each category.

4. Calculate the confidence intervals (@ = 0.05) for the
percentages of potential effects that are active. As some
of the active numbers of interactions are very small, we
construct exact two-sided confidence intervals based on
the binomial distribution.

3.5. Method for Quantifying Hierarchy

To test and quantify effect hierarchy, we compared the size
of main effects with that of two-factor interactions, and the
size of two-factor interactions with that of three-factor in-
teractions. As the responses in different data sets are in
different units, we need to normalize them in order to make
comparisons. We choose to make an affine transformation
so that the minimum response and maximum response in
each experiment were each, respectively, 0 and 100. This
normalization was only required in our assessment of hier-
archy and did not influence our assessment of other regu-
larities discussed in this article. The following steps sum-
marize the procedure we used to assess hierarchy:

1. Normalize the responses of each experiment by means of
an affine transformation so that they all range over the
same interval [0, 100].

2. For each experiment, estimate all the main effects and
interactions as described in Section 3.2.

3. Use conventional statistical tools such as box-plots to
analyze the absolute values of the main effects, two-
factor interactions, and three-factor interactions.

4. Calculate the ratio between main effects and two-factor
interactions, two-factor interactions and three-factor in-
teractions.

3.6. Method for Quantifying Heredity

To quantify heredity in the set of data, we analyzed proba-
bilities and conditional probabilities of effects being active.
Following the definitions and terminology of Chipman et al.
[15], we define p as the probability that a main effect is
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active and define a set of conditional probabilities for two
factor interactions:

Poo = Pr(AB is active|neither A nor Bis active) (7)
Po1 = Pr(AB s activeleither A or Bis active)  (8)
P11 = Pr(ABis active|both A and B are active). (9)

Extending the terminology of Chipman et al. [15], we
defined conditional probabilities for three-factor interac-
tions as follows:

Pooo = Pr(ABC s active|none of A, B, Care active) (10)
Poor = Pr(ABCis active|one of A, B, Cis active) (11)
Pon1 = Pr(ABCis active|two of A, B, Care active) (12)
P11 = Pr(ABCis active|all of A, B, Care active). (13)

On the basis of these definitions, we estimate the con-
ditional probabilities as the frequencies observed in our set
of 113 responses and associated factor effects.

3.7. Method for Quantifying Asymmetric Synergistic
Interaction Structure
We use the term “asymmetric synergistic interaction struc-
ture” (ASIS) to describe the degree to which the signs of
main effects provide information about the likely signs of
interaction effects. Given the GLM described in Section 2.2,
a synergistic two-factor interaction will satisfy the inequality
B:8,;8; > 0 and an antisynergistic two-factor interaction will
satisfy the inequality g,8,8; < 0. To evaluate the null hy-
pothesis that synergistic two-factor interactions and anti-
synergistic two-factor interactions are equally likely, we fol-
lowed these steps:

Step 1: For each response

1. Estimate the main effects and interactions for each re-
sponse as described in Section 3.2.

2. Label each two-factor interaction as either synergistic or
antisynergistic according to our definition.

Step 2: Carry out statistics on the set of 113 responses.

1. Calculate the percentage of all two-factor interactions
that are synergistic and antisynergistic.

2. Use the Lenth method to discriminate between active
effects and inactive effects.

3. Calculate the percentage of active two-factor interactions
that are synergistic and antisynergistic.
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A wet clutch pack (adapted from Lloyd [60]).

4. Calculate the percentage of inactive two-factor interac-
tions that are synergistic and antisynergistic.

5. Calculate 95% confidence intervals for the synergistic
and antisynergistic percentages using the binomial dis-
tribution.

4. AN ILLUSTRATIVE EXAMPLE FOR A SINGLE DATA

SET

Before presenting the meta-analysis of the complete data-
base of 113 responses, it is helpful to observe how the
method discussed in Section 3 reveals the effect structures
evident in a single data set. Lloyd [60] published a full
factorial (27) experiment regarding drag torque in disen-
gaged wet clutches. A wet clutch, such as the one depicted
in Figure 3, is a device designed to transmit torque from an
input shaft that is normally connected to a motor or engine
to an output (which in Figure 3 is connected to the outer
case). When a wet clutch pack is disengaged, it should
transmit no torque and thereby create no load on the motor.
In practice, wet clutch packs result in a nonzero drag torque
resulting in power losses.

The study in [60] was conducted at Raybestos Manhattan
Inc., a designer and manufacturer of clutches and clutch
materials. The experiment was designed to assess the influ-
ence of various factors on power loss and was likely a part of
a long-term effort to make improvements in the design of
clutches. The factors in the study were oil flow (A), pack
clearance (B), spacer plate flatness (C), friction material
grooving (D), oil viscosity (E), friction material (F), and
rotation speed (G). Most of these factors are normally under
the control of the designer; however, some of these variables
such as oil viscosity might vary substantially during opera-
tion and therefore were probably included in the study to
assess there influence as noise factors. However, for the
purpose of the experiment, it must have been the case that

© 2006 Wiley Periodicals, Inc.
DOI 10.1002/cplx

COMPLEXITY

39



TABLE 3

The Main Effects from the Clutch Case Study

Effect Drag Torque (ft Ibs) Active?
A 1.33 Yes
B —1.55 Yes
c —-1.81 Yes
D 0.067 No
E 2.81 Yes
F —0.092 No
G 3.01 Yes

TABLE 5

The Main Effects from the Clutch Case Study Using a log Transform

Effect log(Drag Torque) Active?
A 0.269 Yes
B —0.350 Yes
c —0.369 Yes
D 0.040 No

E 0.613 Yes
F —0.015 No

G 0.529 Yes

all these factors were brought under the control of the
experimenter to a substantial degree. Each factor was varied
between two levels and the drag torque was measured as
the response. The complete results of the full factorial ex-
periment are too lengthy to present here, but the main
effects and active two-factor interactions as determined by
the Lenth method are presented in Tables 3 and 4. This is
slightly different from Lloyd’s analysis in the original article
because there he simply assumed effects of order 4 or higher
were all insignificant.

Every major effect structure under investigation in this
study can be observed in this data set:

® Effect sparsity is strongly indicated in the sense that there
are 127 effects estimable within this experiment, but only
21 were active, 5 main effects, 9 two-factor interactions,
and 7 higher order interactions. Effect sparsity is only
weakly indicated by the main effects since 5 out of 7 were
active in the study, but is strongly indicated among inter-
actions since only 14 of 122 possible interactions were
active.

e Effect hierarchy is strongly indicated because the propor-
tion of potential effects that actually prove to be active is

TABLE 4

The Active Two-Factor Interactions from the Clutch Case Study
Effect Drag Torque (ft Ibs) Synergistic?
AD 0.530 Yes
AG 0.964 Yes
BD —0.520 Yes
BG —0.830 Yes
cD 0.683 No
cG —0.695 Yes
DE 0.642 Yes
DG —0.914 No
EG 1.31 Yes

strongly a function of the number of factors involved.
Among main effects, 5 of 7 are active. Among two-factor
interactions, 9 of 21 are active. Among three-factor inter-
actions, only 7 of 35 are active.

e Effect inheritance is strongly indicated. The four largest
two-factor interactions involved two factors both with
active main effects. Of the remaining five two-factor in-
teractions, all involved at least one active main effect.

e The hypothesized regularity, ASIS, was strongly evident.
Seven of nine active two-factor interactions meet the
criterion because the sign of the interaction effect equals
the sign of the product of the participating main effects.
This example raises an important point about ASIS. Many
find the regularity to be surprising because, in their ex-
perience, a response becomes increasingly difficult to
further improve as successive improvements are made.
ASIS is not necessarily inconsistent with this general
trend. In this example, to reduce drag torque, the main
effects suggest that both oil flow (A) and grooving (D)
should be set to coded levels of —1. However, the signif-
icant AD interaction would lead to far less reduction of
drag torque than one would expect from the linear model.
In fact, the interactions will most likely determine the
preferred level of D rather than the main effect.

Nonlinear transformations of responses can strongly af-
fect regularities in data. To illustrate this, we applied a log
transformation to the drag torque of the wet clutch pack
and repeated our analysis of the data. The main effects and
active two-factor interactions as determined by the Lenth
method are presented in Tables 5 and 6. For this particular
data set, the log transform failed to improve the hierarchical
ordering of the data. The number of active two-factor inter-
actions actually increased from 9 to 12. It is also important
to note that in the original data, the synergistic interactions
were more numerous, and in the transformed data the
synergistic and antisynergistic interactions are equally rep-
resented. This motivated an effort to assess the influence of
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TABLE 6

The Active Two-Factor Interactions from the Clutch Case Study Using
a log Transform

Effect log(Drag Torque) Synergistic?
AD 0.094 Yes
AG 0.159 Yes

BC —0.072 No

BD —0.096 Yes

BE 0.108 No

BG —0.143 Yes

ch 0.182 No

CE 0.071 No

CF —0.063 No

DE 0.103 Yes
DG —0.228 No

EG 0.167 Yes

transformations on ASIS through a second meta-analysis
reported in Section 6.

9. RESULTS OF META-ANALYSIS OF 133 DATA SETS
The methods described in Section 3 were applied to the set
of 113 responses from published experiments (Table 1).
Some of the main results of this meta-analysis are summa-
rized in Table 7. The main effects were not very sparse, with
more than one third of main effects classified as active.
However, only about 7.4% of all possible two-factor inter-
actions were active. The percentage drops steadily as the
number of factors participating in the interactions rise.
Thus, Table 7 tends to validate both the effect sparsity
principle (especially as applied to interactions) and also
tends to validate the hierarchical ordering principle. How-
ever, this study also supports a caution in applying effect
sparsity and hierarchy. For example, if about 2.2% of three-
factor interactions are active (as Table 7 indicates), then
most experiments with seven factors will contain one or
more active three-factor interactions.

Figure 4 depicts a box plot of the absolute values of factor
effects for each of three categories: main effects, two-factor
interactions, and three-factor interactions. The median of
main effect strength is about four times larger than the median
strength of two-factor interactions. The median strength of
two-factor interactions is more than two times larger than the
median strength of three-factor interactions. However, Figure
4 also reveals that many two- and three-factor interactions
were observed that were larger than the median main effect.
Again, the trends in this study support the principle of hierar-
chy, but suggest caution in its application.

Table 8 presents the conditional probabilities of observ-
ing active effects. This data strongly support the effect he-
redity principle. Whether the factors participating in an
interaction have active main effects strongly determines the
likelihood of an active interaction effect. It is noteworthy
that, under some conditions, a two-factor interaction is
about as likely to be active as a main effect. In addition, it is
observed that, under the right conditions, a three-factor
interaction can be fairly likely to be active, but still only half
as likely as a main effect.

Table 9 presents the results of our investigation into
ASIS. First, it is noteworthy that about two-thirds of all
two-factor interaction are synergistic. The confidence inter-
vals for that percentage do not include 50%, so we can reject
the null hypothesis that the two percentages might be equal.
Further, it is of practical significance that the percentage of
synergistic effects is much higher among active two-factor
interactions than among all two-factor interactions.

6. ADDITIONAL INVESTIGATION OF THE LOG
TRANSFORMATION

The analysis in Section 5 is based on the data from experi-
ments as originally published without any nonlinear trans-
formations. However, response transformations are com-
mon in analysis of experimental data. For background on
good practice, see Wu and Hamada [8] who describe eight
commonly used transformations. One motivation for trans-
forming data is variance stabilization. Another is generation
of a more parsimonious model with fewer higher order

TABLE 7

Percentage of Potential Effects in 113 Experiments That Were Active as Determined by the Lenth Method

of effects that were active (%)

Main Two-Factor Three-Factor Four-Factor
Effects Interactions Interactions Interactions
No. of effects 410 569 383 14
No. of active effects 170 63 26 4
Percentage of effects that were active (%) 4 11 6.8 2.8
Confidence intervals (o« = 0.05) on the percentage 37-46 9-14 45-9.8 0.8-7.1
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Boxplot of Effect Strength

Effect Strength (absolute value)

Box plot of absolute values for main effects, two-factor interactions, and three-factor interactions.

terms. To provide a rough sense of how such transforma-
tions affect the regularities reported here, we focused on
just one commonly employed transformation, the loga-
rithm. Of the 107 data sets that could be subject to this
transformation (those containing only positive response
values), it was found that log transformation resulted in
more parsimonious models for 13 responses (meaning that
the number of active effects were reduced), whereas the
untransformed data produced more parsimonious models
in 28 cases. In the other 66 responses, the number of sig-
nificant effects was unaffected by the use of this transfor-
mation. In addition, we observed that in both the full set of
107 transformed responses and in the smaller set of 13 more
parsimonious transformed responses, the proportion of
synergistic and antisynergistic responses was not signifi-

TABLE 8

The Conditional Probabilities of Observing Active Effects Based Meta-
analysis of 113 Experiments

p P11 Por Poo P11 Po11 Poor Pooo

41% 33% 45% 048% 15% 6.7% 35% 1.2%

cantly different from 50%. An analysis of two-factor inter-
action synergies on the log transformed data can be found
in Table 10. Therefore, we conclude that the newly reported
regularity of ASIS is a property of data as they are reported
by their experimenters (usually in physical dimensions) and
is not generally persistent under nonlinear transformations
of the reported data. ASIS is a function of the physical

TABLE 9

Synergistic and Antisynergistic Two-Factor Interactions in 113 Exper-
iments

Synergistic  Antisynergistic  Total
All two-factor interactions
Number 362 207 569
Percentage (%) 64 36 100
Confidence interval 60-68 40-32
(a = 0.05) (%)
Active two-factor interactions
Number 52 1 63
Percentage (%) 83 17 100
Confidence interval 71-91 29-9

(v = 0.05) (%)
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TABLE 10

Synergistic and Antisynergistic Interactions in 107 Experiments Whose
Responses Were Transformed Using a Logarithm
Synergistic ~ Antisynergistic ~ Total
Total 107 log-
transformed data sets
All two-factor
interactions
Number 271 268 539
Percentage (%) 50 50 100
C.l. (a = 0.05) (%) 46-55 54-45
Active two-factor
interactions
Number 31 23 54
Percentage (%) 57 43 100
C.l. (a = 0.05) (%) 43-71 57-29
13 data sets that
became more
parsimonious using
the log-transform
All two-factor
interactions
Number 37 41 78
Percentage (%) 47 53 100
C.l. (a = 0.05) (%) 36-59 64-41
Active two-factor
interactions
Number 2 3 5
Percentage (%) 40 60 100
C.l (@ = 0.05) (%) 5-85 95-15

systems and whatever transformations experimenters actu-
ally use before reporting the data, but may be altered by
further transformation.

7. CONCLUSIONS AND FUTURE WORK

The results presented here must be interpreted carefully. It is
important to acknowledge the many influences on the data
that we subjected to meta-analysis. This investigation was
entirely based on two-level full factorial experiments pub-
lished in journals and textbooks. Full factorial experiments are
most likely to be conducted for systems that have already been
investigated using less resource intensive means. For example,
it is common practice to use a screening experiment before
using a higher resolution design. A specific consequence is
that all the estimates of percentages of active effects in Table 2
may be inflated. If the screening stage has filtered out several
inactive factors, then the experiments with the remaining fac-
tors are more likely to exhibit active effects of all kinds. In order
to characterize the structure of a larger population of systems
on which experiments have been conducted, responses could
be selected at random from many engineering domains, and
then full factorial experiments might be carried out specifically

for the purpose of an extended study of system regularities and
analyzed using the methods described here. Such an effort
would be resource intensive, but it would guard against po-
tential biases introduced by studying only those systems on
which full factorial experiments have already been conducted.
One major outcome of this work is validation and quan-
tification of previously known regularities. All three regular-
ities commonly discussed in the DOE literature (effect spar-
sity, hierarchy, and heredity) were confirmed as statistically
significant. However, many investigators will find that, ac-
cording to this study, these regularities are not as strong as
they previously supposed. Although effect sparsity and hi-
erarchy are statistically significant trends, exceptions to
these trends are not unlikely, especially given the large
number of opportunities for such exceptions in complex
systems. The data presented here suggest that a system with
four factors is more likely than not to contain a significant
interaction given that 7.4%(3) + 2.2%(3) > 50%. The data
also suggest that a system with a dozen factors is likely to
contain around 10 active interactions with roughly equal
numbers of two-factor interactions and three-factor inter-
actions since 7.4%(}%) ~ 2.2%(3%) ~ 5. These observations
may be important in robust parameter design. It is known
that robust design relies on the existence of some two-factor
interactions for its effectiveness. However, some three-fac-
tor interactions may interfere with robust design, depend-
ing on which method is used. For example, field compari-
sons of single array methods and crossed array methods
have revealed that crossed arrays are more effective. This
has led to the conjecture that single arrays rely too strongly
on effect sparsity [11]. The meta-analysis in this article
suggests that the problem may be more closely related to
effect hierarchy. Depending on the number of factors,
three-factor interactions may be more numerous than two-
factor interactions. Any robust design method that relies on
strong assumptions of effect hierarchy is likely to give dis-
appointing results unless some effective steps are taken to
reduce the likelihood of these interactions through system
design, response definition, or factor transformations.
Another benefit may arise from this study because it
quantifies effect heredity. Bayesian methods have been pro-
posed for analyzing data from experiments with complex
aliasing patterns [13]. These methods require prior proba-
bilities for the parameters given in Table 8 (p,;, py;, and so
on). A hypothesis for future investigation is that using the
results in Table 8 in concert with Bayesian methods will
provide more accurate system models than the same meth-
ods using previously published parameter estimates.
Another major outcome of this study is identification
and quantification of ASIS—a strong regularity not previ-
ously identified in the literature. It was shown that about
80% of active two-factor interactions are synergistic, mean-
ing that 8,88, > 0. The consequences of ASIS for engineer-
ing design require further discussion. In cases wherein
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larger responses are preferred, procedures that exploit main
effects are likely to enjoy additional increases due to active
two-factor interactions even if those interactions have not
been located or estimated. By contrast, in cases wherein
smaller responses are preferred, procedures that exploit
main effects to reduce the response are likely to be penal-
ized by increases due to active two-factor interactions. The
discussion of ASIS and its relationship to improvement ef-
forts raises the question of why ASIS was defined as it was in
this article. This definition was chosen because it revealed
the new, statistically significant regularity in the data set.
Other relationships among main effects and interactions
were explored and found to be insignificant. However, any
regularities associated with improvements rather than in-
creases raise practical and conceptual difficulties. This
study was based on meta-analysis of published data sets. If
the authors of published data sets do not clearly state
whether larger or smaller responses are preferred, how can
one define “improvement” for that data set? Further, even if
the authors express a preference, might not a different ap-
plication of the same physical phenomenon reverse that
preference? By contrast, regularities associated with the
published values reflect regularities in physical phenom-
ena as observed and interpreted by the experimenters. To
the extent that such regularities exist and can be con-
firmed as stable and reliable, they can be helpful in in-
terpreting data.

Some experienced practitioners will find ASIS surprising.
It is common for experimenters to report that, if they use
experimentation to attain some increases in a response,
then any further increase will be harder to attain. We agree
that this is the general trend in engineering quality improve-
ments, but how our proposed synergy concept relates to
this issue is not so simple. When engineers seek to improve
a system, they move toward regions of improvement until
locating local maxima or constraints. These maxima and
constraints make additional improvements difficult to
achieve. Our results are based on meta-analysis of 2¥ exper-
iments. It is an interesting question whether such experi-
ments are typically conducted at local maxima or away from
them. If 2* experiments are typically conducted away from
local maxima, there are at least two explanations: 1) the
maximum has not yet been located, or 2) constraints on the
design space are limiting the optimization of that engineer-
ing system. Determining the underlying reasons for ASIS is
an interesting subject for future research. It is odd that such
a strong regularity has not been discussed in either theoret-
ical or practical discourse regarding DOE. The previously
known regularities of effect sparsity, hierarchy, and heredity
are intellectual cornerstones of DOE and many popular
methods provide benefit by exploiting them. Perhaps future
research will give rise to new DOE methods that exploit ASIS
and thereby reduce resource demands and/or increase ef-
fectiveness of engineering experimentation.
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