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Abstract—This paper considers regularity analysis for patterned
texture material inspection. Patterned texture-like fabric is built on
a repetitive unit of a pattern. Regularity is one of the most impor-
tant features in many textures. In this paper, a new patterned tex-
ture inspection approach called the regular bands (RB) method is
described. First, the properties of textures and the meaning of reg-
ularity measurements are presented. Next, traditional regularity
analysis for patterned textures is introduced. Many traditional ap-
proaches such as co-occurrence matrices, autocorrelation, tradi-
tional image subtraction and hash function are based on the con-
cept of periodicity. These approaches have been applied for image
retrieval, image synthesis, and defect detection of patterned tex-
tures. In this paper, a new measure of periodicity for patterned
textures is described. The Regular Bands method is based on the
idea of periodicity. A detailed description of the RB method with
definitions, procedures, and explanations is given. There is also a
detailed evaluation using the Regular Bands of some patterned tex-
tures. Three kinds of patterned fabric samples are used in the eval-
uation and a high detection success rate is achieved. Finally, there
is a discussion of the method and some conclusions.

Note to Practitioners—This paper is motivated by the study of a
regularity feature for finding common properties in patterned tex-
tures. In general, regularity analysis of patterned textures involves
two issues: the spatial relationship between intensity values and the
repeat distance of a repetitive unit. These issues can also be defined
as the periodicity of a patterned texture. However, the traditional
periodicity is not effective for developing a patterned texture in-
spection algorithm. In this paper, a new measure for the regularity
of patterned textures is designed for defect detection. It is based on
the idea of applying the periodicity as a new principle for patterned
texture inspection. A break in periodicity is considered to be a de-
fect in patterned texture inspection. This concept has been applied
to the development of a new method called the RB method. The reg-
ular band is defined by a moving average and standard deviation
of the pixel intensity. It is specialized for defects which have dif-
ferential intensity changes compared with the pattern on a repeti-
tive unit of patterned texture. The RB method has been found very
effective for defect detection of patterned fabric. In a comprehen-
sive evaluation, the detection success rate of the RB approach has
reached 99.4% in a total of 166 defective and defect-free images
taken from three patterned fabrics. In this paper, the techniques
and detection results of the RB method as well as comparisons with
other methods are given. The computational time for processing an
image of size 256 256 is only 140 ms using the C programming
language. This new approach for automated patterned texture in-
spection is believed to be useful for quality control. It will also make
contributions not only to practitioners in the textile industry, but
also in other industries like wallpaper and ceramics.
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Fig. 1. (a), (b) Samples of simulated patterned textures. (c), (d) Samples of real
patterned fabrics.
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I. INTRODUCTION

T
EXTURE analysis has been studied by researchers for

decades. In brief, textures can be broadly classified

into patterned regular textures and irregular textures. This

paper is focused on regularity analysis for patterned texture

inspection. Textures can be interpreted in various ways in

[1]–[3]. One viewpoint is to consider patterned textures to

be constructed from a primitive (repetitive) pattern using a

displacement rule. Then, texture analysis involves four main

categories: texture segmentation, texture classification, texture

synthesis and shape studies. Texture segmentation could be

based on properties such as uniformity, density, coarseness,

roughness, linearity, directionality, direction frequency, phase

and regularity [4]. Among these properties, regularity analysis

of patterned textures [5]–[10] has received growing attention.

In general, regularity is an important feature because it is a

highly invariant [5] but perceptually motivated feature. Hence,

it is a good indicator of the randomness of a texture. A random

texture such as a nature scene is considered to have minimal

regularity. Otherwise, should there only be repetitive patterns

in the texture (Fig. 1), it can be considered to be a patterned

texture.

Regularity measurement usually involves the measurement of

two features: the spatial relationship of intensity values and the

repeat distance of repetitive units. For patterned texture anal-

ysis, previous regularity approaches like the methods of co-oc-

currence matrices [7], [8], autocorrelation [5], [6], directionality

[5], [6], traditional image subtraction [11], [12] and the hash

function [11], [13], [14], have been used in applications such as

image retrieval, texture synthesis and defect detection.
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Fig. 2. Defective samples of (a), (f) broken end; (b), (g) hole; (c), (h) netting
multiple; (d), (i) thick bar; and (e), (j) thin bar, in black star-patterned and blue
box-patterned fabric.

Patterned texture defect detection is a key problem in quality

control for many industrial fields like wallpaper scanning,

ceramic flaw detection and fabric inspection. Among them, the

textile industry is one of the biggest traditional industries that

requires the development of an automated inspection system.

Many techniques have been developed throughout the years

using neural networks [15], [16], Fourier transform [17], [18],

Gabor filters [19]–[21] and wavelet transform [22]–[24]. A

good automated system means lower labor cost [25] and shorter

production time [26]. However, most of the methods mentioned

above are mainly designed for unpatterned fabric inspection.

Patterned fabric inspection presents a difficult problem since

the fabric has repetitive units on its design. For example, the

defects may be relatively minor in comparison to those signifi-

cant repetitive units, e.g., a broken yarn lying along the edge of

a repetitive unit [Fig. 2(a)], or a think bar on several repetitive

units [Fig. 2(i)].

There are several reasons that explain why researchers en-

counter difficulties in patterned fabric inspection. First, the tex-

ture complexity on the design of patterned fabric is much more

sophisticated than for unpatterned fabric. This is because a pat-

terned fabric image normally provides more underlying infor-

mation on the spatial relationship among pixels than an unpat-

terned fabric image at the same level of resolution. Second, the

categories of patterned texture are numerous. Two typical ex-

amples are shown in Fig. 1(c) and (d). Third, the similarity in

shape between defects and background texture would be another

obstacle for patterned fabric inspection. Fig. 2(a), (h), and (i),

respectively, show defect samples of broken end of the star, net-

ting multiple and thick bar of the box patterned fabrics, which

are very similar to the repetitive units of the fabric.

In this paper, a star-patterned and box-patterned fabric data-

base is used for defect detection. Every input patterned fabric

sample is processed by histogram equalization in order to have

a better contrast for defect detection. All images used in the eval-

uations are 256 256 pixels in grey level scale and the compu-

tation is carried out using MATLAB (version 7). In the first part

of our evaluations, 106 images including 50 defect-free images

and 56 defective images of two patterned fabrics are used. Fig. 2

shows five common types of defects (broken ends, holes, netting

multiples, thick bars, thin bars) in fabric inspection.

The focus of this paper is on regularity approaches for pat-

terned texture inspection. The main contributions of this paper

are as follows.

1) A new approach based on the classical statistical method

of moving average and standard deviation, which has been

applied for patterned texture inspection.

2) Regular bands method is very effective for identifying de-

fects with differential pixel intensity changes like thick bar

and broken end.

3) Regular bands method is robust in design and needs only

one parameter, the period length, for optimizing for the best

result. Also, it can outline the defective region in the final

images, which are clean and clear.

4) Defect detection result for three different fabric samples

with 85 defect-free and 81 defective images is 99.4%,

which outperforms other previous methods.

The paper is organized as follows. First, a review of pre-

vious work is given in Section II. A new principle of period-

icity for regularity analysis and the regular bands Method for

patterned texture inspection are introduced in Section III. An

evaluation using the regular bands method based on patterned

fabrics is given in Section IV, including the detection results

for box-patterned and star-patterned fabrics. Then, two recently

developed methods, and the method of regular bands (RB) pre-

sented are compared for defect detection on a dot-patterned

Jacquard fabric with 60 images. A comparison of the inspec-

tion results of these three methods are presented. More discus-

sions are given in Section V. Finally, conclusions are delivered

in Section VI.

II. REVIEW OF PREVIOUS WORK

Definition of Regularity of Texture

In previous research, the regularity of a patterned texture has
two meanings: the spatial relationship between pixel intensi-
ties and the repeat distance of repetitive units. The spatial re-
lationship between pixel intensities implies that one pixel in an
image should have dependencies and steady changes with its
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surrounding neighborhoods on a patterned texture. The repeat
distance of a repetitive unit is a measurement that can monitor
whether the pattern distorts and overlaps within its placement
rule for the construction of a whole image. This kind of regu-
larity is related to the concept of periodicity.

A. Previous Approaches for Patterned Texture Analysis

1) Co-Occurrence Matrices: Co-occurrence matrices were
designed by Haralick and Shapiro [27] to evaluate various
properties of textures. They interpreted the spatial relationship
between pixel intensities as fourteen different properties of
co-occurrence matrices like entropy, energy, contrast, inertia,
correlation, local homogeneity, dissimilarity and so on. The
co-occurrence matrices approach has been applied to image
retrieval [7] and defect detection [8] of patterned texture
analysis since it is translational and rotational invariant [7].
However, high sensitivity to noise and heavy computational
demand are two disadvantages of the co-occurrence matrices
method. Furthermore, at least two pixel values in the designated
spatial relationship are needed for calculation in every type of
co-occurrence matrix.

2) Autocorrelation: Autocorrelation is a correlation between
an image and its translated image. As a periodicity approach, it
gives us information on the repeat distance of a repetitive unit in
a patterned texture. Chetverikov et al. [5], [6] defined a contrast
function between a polar representation of autocorrelation for an
input image and the application of defect segmentation in unpat-
terned and patterned textures. Then, with the contrast function,
a subcategory of periodicity, called directional regularity, was
defined in [5] and [6]. This directional regularity was combined
with two other regularity features, intensity regularity and posi-
tion regularity. An outlier detection was then applied for defect
detection. This regularity approach is very effective for linear
and blob-like defects. Autocorrelation is an affine transformed
invariant but it is also computationally expensive. This approach
was tested in a few patterned texture examples of Brodatz and
TILDA databases [6] but the results were not impressive.

3) Traditional Image Subtraction: The earliest approach for
patterned fabric inspection was the traditional image subtrac-
tion (TIS) method. Chin and Harlow [25] tried to use an ex-
clusive-OR (XOR) operation as the image subtraction method
for the traditional defect inspection of printed circuit boards
(PCBs). This involves the subtraction of an entire image of the
test circuit board from a perfect master image of the same type of
circuit board. Obviously, the TIS method was using the informa-
tion of repeat distance of a repetitive unit as well as the period-
icity in patterned textures. Later, Tao et al. [28] and Sandy et al.

[12] suggested using the same technique as [25] on lace, which
is one kind of patterned fabric with fine and complex thread pat-
terns. The subtractions on lace are based on a prototype version
and a test version of the same pattern. The procedures of the TIS
method are as follows: partitioning the input test image, con-
verting the grey level image to a binary image, XOR operation
between the reference image (also called the golden image) and
the test image, and smooth filtering. The TIS method is sensi-
tive to noise because an input image is easily distorted and it is
hard to do a point-to-point comparison. Dot-patterned Jacquard
fabric inspection using the TIS method was also found to be un-
successful in [11].

4) Hash Function: Another method which can be applied to

patterned texture inspection is based on the hash function. The

hash function originated from cryptographic studies for data en-

cryption and decryption, and it is sensitive to any small changes

during data transmission. Baykal et al. [13], [14] transferred

this property and interpreted it for defect detection of patterned

textures. There are four basic families of hash functions [13]:

checksum, plain, XOR, and multiplication. The choice of hash

function type depends on the complexity of the texture. There

exist offset effects for calculating the hash functions among reg-

ular (defect-free) patterns. It uses the spatial relationship be-

tween two neighboring pixels. For more complex patterned tex-

tures, high order hash functions such as XOR and multiplica-

tion are chosen. On the other hand, the checksum hash function

is just defined as the sum of all pixel values on each horizontal

line, but it does not give much information on small defects of

large complex patterned fabrics. The advantage of this method

is that it is time-saving due to its one-dimensional approach. The

disadvantage is its sensitivity to noise and its inability to outline

the shape of the defect after detection. A preliminary study to

apply the hash function method on dot-patterned Jacquard fabric

was conducted in [11] but the results were poor.

5) Near-Infrared (NIR) Imaging Method: The NIR method

[29] is a hardware approach to utilize near-infrared (NIR) illu-

mination instead of the traditional visible (VIS) light source for

patterned fabric defect detection. The defects are usually undis-

tinguishable in the usual VIS image. Millan and Escofet [29] de-

fines the basic patterned fabric structure as low energy structure

signal where squares, circles and design pattern as high energy

signal. The high energy signal usually constitutes noises which

lead to the failure of detection. However, the NIR illumination

transforms the input image into a new NIR image that severely

reduce the high energy signal. Then, by thresholding, the de-

fects like holes and broken ends can be detected.

B. Brief Review of Previous Approaches to Periodicity With

a New Principle

Three new methods for patterned fabric inspection, the

wavelet preprocessed golden image subtraction (WGIS)

method [30] the method of direct thresholding (DT) for de-

tailed subimages [11], and the Bollinger bands (BB) method

[31] have recently been developed. These three methods are

based on the new principle of measuring the periodicity of the

input images. The key concepts are introduced as follows.

1) Golden Image Subtraction Method: The basic golden

image subtraction (GIS) method [30] is designed for detecting

defects of patterned fabrics and the WGIS is an improved

version of it. The GIS method is different from that of Chin and

Harlow [25] since a golden image can contain several repetitive

units taken from a defect-free image. In addition, the golden

image used in GIS, performing like a convolution filter, slides

on the test image, and it is not a static comparison between

the golden template and the test image. The GIS method can

highlight the defective region after thresholding on the image of

energies of GIS [Fig. 3(e) and (g)] for every input image. The

GIS method is shift-invariant and the main formula is shown

below.
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Fig. 3. (a), (b) Perspective plots; (c), (d) radial cross sections of the energies
of GIS and fourth level vertical subimage of Haar wavelet decomposition on a
defect-free image. (e), (f) Perspective plots, (g), (h) radial cross sections of the
energies of GIS and the fourth level vertical subimage of Haar wavelet decom-
position on a defective image, thin bar in Fig. 12(f).

Let a golden image be with a size of pixels
and a subtracted image with a size of pixels.
The size of every input image is . Then, the energy of GIS
is defined as

(1)

where ,
and ( ,

).
2) Direct Thresholding Method: In the method of direct

thresholding for detailed subimages [11], the multiresolution
theory of wavelets is applied. Every input image at
level size of would undergo the Haar wavelet
transform for extracting detailed subimages at the fourth level.
Suppose to be a scaling function and to be the corre-
sponding wavelet function for a two-dimensional view. Let
and , respectively, be the one-dimensional wavelet and scaling
functions. Also, let the and subscripts, respectively, denote
the low-pass and high-pass functions.

The key formulas are shown

(2)

(3)

(4)

(5)

By the equations above, an input image is decomposed
into four subimages where , , ,

and denote the coarse approximation, horizontal de-
tailed, vertical detailed and diagonal detailed subimages of the
image for a one level decomposition at a resolution

.
In the direct thresholding method, the Haar wavelet coeffi-

cients are employed and the length of the decomposition filter is
two. It is sufficient to obtain good detailed subimages to enhance
the defective regions in a defective image [Fig. 3(f) and (h)]. De-
fects usually appear as high frequency elements in the defective
image. A wavelet transform of the DT method is used to en-
hance the defective information in the horizontal and vertical
directions.

3) Bollinger Bands (BB) Method: The Bollinger bands, con-
stitutes of three bands, are originally applied on the stock market
as an one-dimensional indicator for oversold and overbought
trends. Bollinger bands are calculated based on two statistical
tools, moving average and standard deviation. Ngan and Pang
[31] extended BB from a one-dimensional approach into a two-
dimensional approach for patterned Jacquard fabric defect de-
tection. The formulas of the BB method are as follows.

For a particular row in an image of size

(6)

(7)

(8)

where indicating the Upper band and indicating the Lower
band. denotes the number of standard deviation and denotes
the row dimension of the repetitive unit. is the pixel value at
row , column of the image , the summation is from pixel
to pixel with , , ,

and .
The upper and lower Bollinger bands can accentuate the

defective information after calculation and attenuate the back-
ground information of patterned texture. The BB method
requires tuning of two parameters, and , in order to achieve
for the best detection result.

III. NEW MEASUREMENT OF REGULARITY FOR

PATTERNED TEXTURES

A. New Principle of Measurement for Regularity

A repetitive unit is the fundamental component of a patterned

texture, which can be broadly viewed as either one-dimensional
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Fig. 4. (a) Defective box-patterned fabric sample (c) the plots of the 88th row, (e) the moving average of the 88th row, (g) the standard deviation of the 88th row,
(i) the moving average of the shifted 88th row, and (k) LRB on the 88th row. (b) Defective circle-patterned fabric sample, (d) the plots of the 65th row, (f) the
moving average of the 65th row, (h) the standard deviation of the 65th row, (j) the moving average of the shifted 65th row, and (l) DRB on the 65th row, respectively
� � ��� � � ��. (Lines are marking the threshold value of the upper bound of the range of one standard deviation WITH shifting in preprocessing step.)

Fig. 5. Stages of regular bands method.

(e.g., periodic signal) or two-dimensional (e.g., patterned

image). For example, in an one-dimensional view, applying an

appropriate transformation to the normal parts (defect-free) of

a periodic signal can result in its explicit expression as an in-

tuitive periodicity, which is defined as a new kind of regularity

of the patterned texture. This transformation is constructed by

using the structural characteristics of the repetitive unit of any

patterned texture. In other words, the structural characteristic

is obtained by using the repetitive unit as a convolution filter

sliding on the test signal. The numerical values of an abnormal

part (defective region) would exceed the normal range of the

signal. Therefore, by designing a suitable transformation, any

numerical values of the abnormal part is significant enough

to be segmented out using thresholding and the shape of any

defective region can be outlined.

B. Regular Bands (RB) Method

The RB consists of two subbands, the light regular band

(LRB) and the dark regular band (DRB). The method of RB

mainly consists of two stages: a training stage and a testing

stage. The definitions, descriptions and physical meanings of

LRB and DRB are delivered as follows.

1) Preprocessing Step for Every Input Image: First, a collec-

tion of defect-free images of size is obtained,

where , and . Second, a

mean value, , of every defect-free sample is

calculated, and a mean of all . { i.e., } is ob-

tained. Lastly, let be every input image of an image

database with images, where , and

. A down-shifting of all pixel values by is made
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Fig. 6. (a), (b) Perspective plots and (c), (d) radial cross sections after calculating LRB on rows for (e) a defect-free sample, (f) a defective broken end sample on
box-patterned fabric, respectively.

Fig. 7. (a) Defect-free sample of star-patterned fabric without histogram equal-
ization, (b) the histogram of (a), (c) defect-free sample of Star-patterned fabric
with histogram equalization, (d) the histogram of (c).

to obtain a renewed database { i.e., },

where and .

Definition of Regular Bands: For a particular row in a pre-

processed image from the renewed database, , of size

.

The light regular band (LRB) is defined as

(9)

The dark regular band (DRB) is defined as

(10)

where the moving average is defined as

(11)

where is an integer value denoting the row dimension of the

repetitive unit and is the pixel value at row , column of

the image , the summation is from pixel to pixel with

, , , ,

and .
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Fig. 8. Detection results of two defective samples, hole and thick bar, with and without preprocessed histogram equalization.

Fig. 9. Broken-end sample of dot-patterned fabric and the detection results of different numbers of period, (a) � � ��, (b) � � ��, (c) � � ��, (d) � � ��, and
(e) � � ��.

The standard deviation is defined as

(12)

The nominal value for is twenty-five, which is the row di-

mension of a repetitive unit of black star-patterned and blue

box-patterned fabrics under evaluation in this paper. The value

of is affected by the resolution of the input image.

2) Meanings of RB: Regular Bands are used to detect defects

using a regularity approach. The key idea of the regularity ap-

proach is to study or represent signal generation for each vertical

and horizontal line of the defect-free region. Any defect in a de-

fective region would correspond to an irregularity in the signal.

In this method, the moving average and standard deviation are

a pair of tools to achieve the desired performance.

Standard deviation is a very good measure for indicating any

irregularity of a signal. The maximum and minimum values of

the standard deviation of a signal form a range which is a good

tolerance for normal variations of the regular signal. A defective

part is believed to exceed the range of the regular signal, which

is set as one standard deviation.

In fabric inspection, the boundaries between defective and de-

fect-free regions are normally considered high frequency irreg-

ular changes, especially for defects such as broken end, hole,

and thick bar. Broken end [Fig. 2(f)] and thick bar [Fig. 2(d)]

are typical types of defects that are lighter and darker in color,

respectively, compared with the background patterns that also

provide useful defective information for defect detection.

Need of Down-Shifting of Image: Before introducing the reg-

ular bands, there is a need to explain the mathematical formulas

embedded in them. In the regular bands method, a preprocessing

step of downshifting the pixel intensities of each input image

is taken. The aim of this shifting pixel intensity is to make a

sequence of pixel intensities , where , which

range from negative to positive on the real plane, in order to ful-

fill the mathematical design of regular bands. The original pixel

intensities are in the range from 0 to 1. The LRB and DRB are

motivated by this treatment and discussed as below.

Motivation of LRB and DRB: The following describes the

reasoning behind the use of the light regular band and dark

regular band. Fig. 4 depicts how the LRB and DRB tackle the

problem using classical statistical tools.

To Deal With Light Defects: Light Regular Band: For ex-

ample, suppose that the goal is to detect the defect on the 88th

row [Fig. 4(c)] somewhere between the 170th and 200th pixels.

The original moving average ( ) is shown in Fig. 4(e) and the

standard deviation ( ) is shown in Fig. 4(g). Notice that at

the defective region, the values of do not exceed the normal

range of one standard deviation (threshold), and hence fail to

indicate the light defect. Denoting the moving average of the

shifted 88th row in Fig. 4(i), should be around zero at the

nondefective region. However, at the defective region is
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Fig. 10. Samples of detection results of five types of defects, (a), (f) broken end, (b), (g) hole, (c), (h) netting multiple, (d), (i) thick bar and (e), (j) thin bar, in
star-patterned fabric and box-patterned fabric, respectively.

higher than zero and is lower than normal. Therefore, a mea-

sure ( ) for the severity of the defect should be

where is a constant to be determined. That is

At the nondefective region, we want . With

around zero and nonzero, we should choose equal to ,

so that the measure is equal to .

At the defect region, and is small

If , , and this value should exceed

a normal value of the standard deviation, thus indicating the

defect [Fig. 4(k)]. If , , and this measure

would use one standard deviation as the measure for defects.

To Deal With Dark Defects: Dark Regular Band: Similarly,

we wish to detect the defect in Fig. 4(b), which is on the 65th

row between the 130th and 225th pixels. Fig. 4(f) presents the

original moving average ( ) and Fig. 4(h) displays the stan-

dard deviation ( ). Upon closer inspection, the values of

at the defective region do not exceed the normal range of stan-

dard deviation. Therefore, the dark defect there is not detected.

In Fig. 4(j), should be around zero at the nondefective re-

gion. However, is less than zero and is smaller than

normal in the defective region. For a severity of the defect, a

measure ( ) should be where is a constant

to be determined. That is, .

At the nondefective region, we want , similar to

the design of the LRB. We should choose to be equal to

under the condition that is sufficiently close to zero and

is nonzero. Hence, the value of is equal to .

At the defective region, and is small

As a result, if then . To identify

the defect, this value should exceed a normal value of the stan-
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Fig. 11. Final results of methods of WGIS, DT and RB on different defective images: (a) broken end, (b) holes, (c) knots, (d) netting multiple, (e) thick bar, and
(f) thin bar.

dard deviation [Fig. 4(l)]. If , , and this uses

the value of one standard deviation as a measure for the severity

of the defect.

3) Procedures of Regular Bands Method: The procedures of

the RB method are as follows and the stages of the RB method

is given in Fig. 5.
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Fig. 12. Number line explains the proof of Lemma 1.

Training Stage:

Step 1. Histogram equalization of the input images.

Histogram equalization helps in reducing the noise on the

images and makes the later threshold determination process

more reliable.

Step 2. Down shifting of the images by the mean value of

pixel intensities.

The process of downshifting on rows of both the LRB and

DRB in the RB method are demonstrated in two defective

samples in Fig. 4. Besides, how the LRB and DRB work

on the defective rows of two defective images are shown in

Fig. 4(k) and (l), respectively.

Step 3. Calculation of the Regular bands.

For every image, calculate the LRB and DRB on rows, then

calculate both regular bands on columns. Fig. 6 graphically

shows how the light regular band works on defect-free and

defective samples of box-patterned fabric.

Step 4. Obtain the threshold values.

1. Calculate the light regular band and dark regular band on

all rows and columns, respectively, for every training

defect-free image.

2. Obtain the upper bound and lower bound of the light regular

band, and then obtain those of the dark regular

band, after the calculations of the regular bands

on row . Average the upper bounds of the LRB on all rows

, where is the th training sample. Then,

for training samples, find the average of all upper bounds of

the LRB, . Repeat the same process on the

lower bounds of the light regular band and the lower and upper

bounds of the dark regular band.

3. Four threshold values in two sets, ,

are obtained for the rows of the LRB and the DRB, respectively.

4. Repeat the same procedure described in 1–3 on columns and

obtain another four threshold values.

Testing Stage:

Step 1. Histogram equalization of the input images.

Step 2. Shifting by the mean value of the defect-free images,

.

Step 3. Calculate the Light and Dark Regular Bands on

rows and columns of every image.

Step 4. Threshold the Regular Bands matrices with the

corresponding threshold values determined during the

training stage.

Step 5. Perform zero padding on the thresholded matrices.

Step 6. Combine the thresholded results of the LRB, ,

and of the DRB, , from the row of one image with an

or-operation, . Then, repeat the same

step on the column side.

Step 7. Combine the results of rows and columns as a whole

with an or-operation, .

In the evaluation, every kind of fabrics used three defect-free

image in the training stage and different numbers of images in

the testing stage, 60, 50, and 56 images for the dot-patterned,

star-patterned, and box-patterned fabrics, respectively.

4) Explanations of Steps in the RB Method:

Histogram Equalization: Defects on fabric are usually char-

acterized by high frequency changes in pixel intensity within

an image. Gaussian noise is usually found in the captured im-

ages and can cause a mix up with the real defects existing on

the fabric. Also, the grey-scale range of pixel intensities is usu-

ally skewed to one side in the fabric image (Fig. 7). For this

reason histogram equalization is used to obtain an even inten-

sity distribution and a better contrast on the input images. It also

helps to reduce the Gaussian noise from image acquisition, thus

enabling the detection using regular bands to work more effec-

tively. Fig. 8 shows a comparison of two defective samples with

and without histogram equalization as a preprocessing step. The

resultant images show better results with histogram equalized

preprocessing than those without.

Two Lemmas of Regular Bands: With the step of

down-shifting by the mean in one image, two lemmas apply.

Lemma 1: For the light regular band (LRB) on an image, the

LRB is always greater than or equal to zero. That is

for , and .

Proof: See the Appendix.

Lemma 2: For the dark regular band (DRB) on an image, the

DRB is always greater than or equal to zero. That is

for , and .

Proof: See the Appendix.

Effect Due to the Variation in the Period Length: There is

a need to study the period length, , which is the only variable

parameter in the RB method. In the black star-patterned and

blue box-patterned fabrics tested in our research, they are found

to have repetitive units of size 25 25. Therefore, the period

length of rows and columns are set to 25 as well. Table I shows

the detailed detection results with period lengths of 24, 25, and

26 for regular bands on rows and columns, respectively, for the

dot-patterned fabric database. Table II outlines the variations of

, with , for

the detection results of the same database. Fig. 9 depicts the

detection results of , , , , and

. In Table I, all the white-pixel numbers in the final

thresholded images of defect-free samples cannot exceed 21 for

, and . In Table II, the detection results
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TABLE I
STATISTICAL DETECTION RESULTS OF 30 DEFECT-FREE AND 30 DEFECTIVE IMAGES OF DOT-PATTERNED FABRIC

WITH � � ��� �� ��� ��, RESPECTIVELY, FOR REGULAR BANDS ON ROWS AND COLUMNS

TABLE II
MEAN NUMBER OF WHITE PIXELS IN FINAL THRESHOLD IMAGES (2 D.P.) OF 30 DEFECT-FREE AND 30 DEFECTIVE IMAGES OF

DOT-PATTERNED FABRIC IN THE RB METHOD FOR DIFFERENT VALUES OF �

perform similarly from to . Also, from Tables I

and II, the detection boundaries of the amount of white pixels in

the final thresholded results between defect-free and defective

images are still very clear. In Fig. 9, the detection result of

is subjectively outstanding while the results of and

are still acceptable. Therefore, it can be concluded that

the period length, , of the regular bands is not sensitive to a

slight variation.

IV. EVALUATION USING THE REGULAR BANDS METHOD ON

PATTERNED FABRICS

A. Detection Results of the RB Method

In this section, two sets of patterned fabrics (star-patterned

and box-patterned) are inspected using the method of regular

bands. There are totally 106 including 50 defect-free and 56 de-

fective samples with five types of defects. Every image is of size

256 256 in grey-scale. The computer used for the inspection

is a Pentium 4 3.2 GHz, 1 GB DDR RAM. The algorithm is im-

plemented in MATLab (version 7).

The regular bands method is novel since it only requires the

determination of one parameter, the length of period of the

repetitive unit in the patterned texture. The star-patterned and

box-patterned fabric evaluated in this paper has the same period

length ( ) of 25 for both rows and columns. A resultant image

from the RB process will be slightly smaller than the original

size due to the row and column dimensions of the repetitive

unit that is used in the calculation of the RB. Zero padding has

modified the detection result so that a visual comparison of

final results can be more easily judged.

TABLE III
STATISTICAL DETECTION RESULTS OF DEFECT-FREE IMAGES

IN TWO DIFFERENT PATTERNED FABRICS

The thresholded image is of size 232 232 (53 824 pixels).

A defective image is defined as an image with a considerable

number of pixels exceeding the normal range defined by the

regular bands. They appear as white pixels after thresholding

in the RB method. So, a final thresholded image is determined

to be defective if it exceeds a certain amount of white pixels

out of 53 824 pixels. Three statistical tables of detection results

are given in Tables III–V. In the testing stage, the maximum

number of white pixels in the final threshold images for the de-

fect-free star-patterned and box-patterned samples are 14 and

111, respectively. The average number of white pixels among

the training samples is 3.3 and 43.3 for star-patterned fabric and

box-patterned fabrics, respectively. From a set of defect-free

samples used in the training stage, the threshold values are then

set as 30 (0.056%) and 120 (0.23%) white pixels out of 53 834

for star-patterned fabric and box-patterned fabric, respectively.

For star-patterned fabric, the detection success rate is 100% for

25 defect-free images and 25 defective images. For box-pat-

terned fabric, the detection success rate is 100% for 30 defect-

free images and 96.15% for 26 defective images (1 defective
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TABLE IV
STATISTICAL DETECTION RESULTS OF 25 IMAGES OF

BLACK STAR-PATTERNED FABRIC

TABLE V
STATISTICAL DETECTION RESULTS OF 26 IMAGES OF

BLUE BOX-PATTERNED FABRIC

sample failed to be detected). Thus, the overall detection success

rate of this fabric is 98.21% (55/56). Finally, the overall detec-

tion success rate of these two fabrics is 99.1% (110/111). The

detection results of each class of defective samples are shown

in Fig. 10.

B. A Comparison of the Inspection Results for the WGIS, DT

and RB Methods

In [11], there is a 60-image database of a dot-patterned

Jacquard fabric with defective and defect-free samples. For

the 60-image database, the WGIS method showed a high

overall detection success rate, i.e., 96.7% [11]. All defective

images were correctly detected and only two defect-free images

were misclassified. Each final image (the left-most column of

Fig. 11) including the six types of defects could be outlined by

the WGIS method. However, the general perception for each

final image in the WGIS method is that the white areas (the

defective regions) would show an enlarged version of the actual

defective parts in the original defective images. For example,

for thick bar (Tk1) and thin bar (Tn1), the final images of the

WGIS method are rounded in shape, magnified in size and

shifted a little bit in position compared with that of the RB

method. This is mainly due to the effect of golden image sub-

traction in the WGIS method since the golden image is larger

than one repetitive-unit size, thus acting like a convolution filter

on the input image. It results in the borders of the subtracted

image having a padding effect (similar to effect of an actual

convolution on an image) with extended defective areas on the

final image.

Compared with the WGIS and RB methods, the method of DT

depicted coarser results. The final images of six types of defects

(third column in Fig. 11) delivered rectangular shape results due

to low resolution of detailed subimages (16 16 in fourth-level

Haar wavelet decomposition) through the multiresolution prop-

erty of a wavelet transform. Excessive noise in final images was

commonly found, such as the final images of broken end (B1)

and holes (H1). The coarser results and excessive noise would

actually be quite confusing to some extent if the classification of

defects had been implemented as a whole. The overall detection

success rate was 88.3% [11] for a 60-image set.

Using the statistical techniques of moving average and stan-

dard deviation, the method of RB has generated much better

results than the two previous methods. Not only are the final

images of the six typical types of defects clean and crystal

clear, especially for thick bar (Tk1) and thin bar (Tn1), but

the overall detection success rate of 100% was the highest

among the three methods, achieved on the same image database

above. The detection results are shown in the fourth column of

Fig. 11. This result was robust and satisfactory for dot-patterned

Jacquard fabric defect detection. A general comparison of the

three methods is given in Table VI.

V. DISCUSSIONS

The overall defect detection success rate of the RB method

is 99.4% for three patterned fabrics with 166 images. A new

principle for the measurement of regularity is evaluated in this

paper. The intensities of any one row or column, which can

be called a row signal (or a column signal), would in general

be characterized by a periodic waveform regardless of its pat-

tern texture. Through particular transforms (GIS, DT, or RB)

on these periodic intensities in rows or columns, the resultant

signal will also have a periodic waveform. The aim of the trans-

formation from one periodic signal to a new one is to enhance

the irregularity, or defective information, on the new signal. For

examples, the WGIS method uses subtractions to enhance the

defective regions. The DT method applies wavelet transforms to

generate horizontal and vertical details for localizing the defec-

tive information. The RB method enhances the defective regions

through the calculations of moving averages and standard devi-

ations. The enhancement of defective regions would appear to

be subtle changes when compared with the normal transformed

signal, but after a transformation of signals thresholding on the

new signal can segment out the defects. The extension from

a one-dimensional signal into two-dimensional signals (as an

image) enables the consistent detection of defects.

VI. CONCLUSION

After a review of the various approaches to regularity analysis

for patterned textures, it becomes apparent that the RB method

is a new and effective approach for patterned texture inspection.

The RB method can detect various kinds of defects and outline

their shapes. This information will be useful for defect recogni-

tion for pattern classification in further research. In comparison,

not all of the traditional approaches to periodicity can be used to

segment the defects and outline their shapes. A minor problem

of the RB method is its inability to detect the defects on the bor-

ders of image due to the definition of RB, with a period length

of data as reference. The strengths of RB are as follows.

The Regular Bands are shift-invariant and statistically sensi-

tive to abnormal parts. The method is effective for segmenting
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TABLE VI
COMPARISON OF METHODS OF WGIS, DT AND RB

Fig. 13. Number line explains the proof of Lemma 2.

out and outlining the shape of the defective regions. It is sen-

sitive to small defects provided there is sufficient change in in-

tensity, and the final thresholded image is clean. The method is

easy to use and implement. It only requires knowledge of the

period length of a repetitive pattern, and the method is also not

overly sensitive to this parameter. Image alignment or distor-

tion problems due to the camera not being perfectly perpendic-

ular or parallel to the fabric do not seem to weaken the method.

The time needed for detection of an image of size 256 256 is

15.663 s when implemented using MATLAB. However, when

implemented using the C programming language, the computa-

tional time is only 140 ms. Hence, the RB method is fast enough

for real-time on-loom defect detection.

APPENDIX

PROOFS OF LEMMA 1 AND LEMMA 2

Proof of Lemma 1: Case (1). For and , in

, and , so that .

Case (2). For and ,

. Therefore,

for , and .

Fig. 12 illustrates the concept of the Case (2) of proof of

Lemma 1.

Proof of Lemma 2: Case (1). For and

in , , so that

. Case (2). For and ,

, which is equivalent to

. Therefore, for ,

and .

Fig. 13 illustrates the concept of the Case (2) of proof of

Lemma 2.
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