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1. Introduction. Suppose X is a set, if a collection of sets (usually subsets of

X), and TV is a cardinal number. Following the terminology of Rado [1], we say

if is TV-regular in X if, for any partition of X into TV parts, some part has as

a subset a member of if. If Sf is «-regular in X for each integer n, we say if is

regular in X.

For example, let X — {1,2, —,mn — n + 1} and S? be all m element subsets

of X (hereafter designated .Y(m)). Then ¿f is n-regular in X, but not (n + 1)-

regular. Another example is the famous theorem of Ramsey which states that

given integers k, m, n, there exists an integer p such that, if A = {1,2, —,p}, then

{Bw : B e A(m)} is n-regular in A(k). The concept of regularity is useful in

analyzing certain types of games, as we shall see in §3. In §2, we shall give some

general results and discuss related problems.

2. Regularity. One of the first problems in this area was proposed at Göttingen

in 1927. The problem was as follows: If the positive integers are split into two

parts, does one part contain arithmetic progressions of arbitrary length? B. L.

van der Waerden solved this and a more general problem. He proved that, given

integers m and n, there exists an integer p such that the set of all arithmetic

progressions of length m is n-regular in {1,2, —,p} [2]. This will be a consequence

of Theorem 1. First we shall give some preliminaries.

Definition. If if and !F are collections of sets, let if ® IF be the collection

of all sets Ax B, where A is in if and B is in &~.

Lemma 1. Let M and TV be cardinal numbers. Let if be N-regular in X,

a set of cardinality M, and let ¡F be NM-regular in Y. Then if ®F~ is N-regular

in X x Y.

Proof. Let P be a set of cardinality TV. Then a partition of X x Y into TV

parts can be represented by a function / from X x Y into P. For each y e Y,

f defines a function fy from X into P given by

fyix) = f(x,y).

Since there are NM such functions the mapping y -*fy induces a partition of

Y into NM parts. One of these parts contains as a subset a member T of ¡F.

That is, for ally, y'eT
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Jy — Jy'f

f(x,y)=f(x,y') (xeX).

Choose y0e T. Then fyo partitions X into JV parts and hence 3SeSf, peP such

that

/*,(*) = P (xeS).

But then

fix) = p (xeS, yeT).

That is,

f(x,y) = p (xeS, yeT)

which was to be shown.

Definition. Let X and Y be sets, Sf and F collections of sets. Then a mapping

/ : X -* Y is called provincial with respect to Sf and 9~ in case when A e Sf,

AçX there exists a set Be F, B ç y such that B çf(A).

Lemma 2. Let f: X^Y be provincial with respect to S" and 3~. Then if

Sf is N-regular in X, ¿?~ is N-regular in Y.

Proof. Let P be a set of cardinality JV and g : Y-*P. Then g(f) :X-+P and

there exist peP and AeSf such that AçX and g(f(A)) = {p}. But there is a

BeSr, BçY such that B £/(,!). So j(J8) = {p}.

Lemma 3. Lei X be a semigroup, ¡fç 2X. Suppose for each positive integer

fc, Sf is k-regular in a finite subset of X. Then for each n,

Sfn={AyA2-An:A,eSfs

is regular in X.

Proof. We induct on n. Suppose Sfn_y is regular in X and fc 2: 1. Then there

is an integer m and BeX(m) such that Sf is fc-regular in B. Since Sfn_y is ir-

regular in X, Sf ®Sfn_y is fc-regular in B x X ç X x X. But the mapping

(x,y)->x.y of IxX into X is clearly provincial with respect to Sf®Sfn_x

and Sfn, and thus 5"„ is fc-regular in X.

Let W be a fixed set and t $ W. Let X be the free semigroup on the set W.

A functional / is a mapping of Winto X which can be described as follows. For

some positive integer n there is an n-tuple a = (a1( a2, • • -, a„) of elements of W U {r}

in which t appears at least once, such that, for weW, f(w) is the result of replac-

ing the í by a w and multiplying (in X) the n components of the new n-tuple.

For example, if W = {1,2,3,4} and a = (1, t, 3, t, t, 2, 1, i) then the corre-

sponding functional / would satisfy

/(4) =  14344214.
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Suppose that/j,/2, •■-,/„ are functionals. Let çb : W ^fxiW)f2iW) —fniW) be

defined by
<f>iwyw2 ••• w„) = fiiwy)f2iw2)--fniw„).

We see that if g is a functional of "length" n then there is a functional A

such that
çbigiw)) = A(w) iweW).

Loosely, we have  çbigit)) = A(i).

If A £ W, R £ W " and R is a member of {fiA) :f is a functional} then #(R)

is also a member of this collection. Thus, relative to this collection, çb is a pro-

vincial map of A" onto fyiA)f2iA)---f„iA).

Theorem 1. If A is a finite subset of W the collection {fiA): f is a func-

tional} is regular in X.

Proof. Let ilmj) be the statement: If B e Wim> there exists an integer psuch

that {fiB) :f is a functional} is /'-regular in Bp.

We will prove these statements by induction and thus prove the theorem. It

is clear that (/m>1) and (/1>;) are true. Assume further that for n > 1 and fe 2* 1,

(/„,*) and (/„-!,,) are true for all j.

Let A e W(n). Pick a e A and let B = A — {a}. By assumption, there is an integer

r such that {fiA):f is a functional} is /c-regular in Ar. By (/B_iry), the fact that Bs

is finite for each s, and Lemma 3, we see that {/0(ß)/i(ß) ■•■f£B)'-fi is a functional}

is (/c + l)-regular in the subsemigroup of X generated by B, namely, B1 U B2 U • ■ •

UßsU-. The Bs are disjoint, and if/0,/i,•••,/, are functionals, then the set

foiB)fyiB) ■■■friB), all of whose elements have the same "length," meets at most

one of the Bs. In such a situation, (/c + l)-regularity in the union implies (fc + 1)-

regularity in one of the parts. Thus there is an integer q such that

{fo(B)fyiB)-fXB)}

is (k + l)-regular in Bq. We will use the integer q to verify (/„,&+1).

Let Aq = P0 U Pj U • • • U Pk. This defines a partition of B4 and so there are

functionals g0,gi,---,gr such that g0iB)gyiB)--- griB) is contained in one of the

parts, say P0, and also in B9. Thus each "entry" in a g¡ is an element of B U {i}.

Since B £ A, we can conclude that ^(.¿^(.A)."^/^) £ A9. Now the mapping

0 : Ar -► 0o(a)0i(4) • • • gr(A) defined by <piwyW2 ■■ ■ wr) = goia)gyiwy) ■ ■ ■ g,iwr) is pro-

vincial with respect to {fiA):f is a functional}. Thus, by (J„it)> {fiA)} is k-

regular in ^(cO^C^O"-^^).
If g0id)gyiA) ••■griA) is disjoint from P0 we are done. If not, there are elements

ax,a2, •■-,aT of A suchthat

x = 0o(«)0i(«i) • • • 0r(ör) e P0.

Suppose x = VyV2--vqeAq. Define a = (a1,a2.->a,) by
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lv¡    if v¡eB,
a' "    [t     if v, = a.

Note that í appears in /0, so a appears in f0(a), and hence í appears in a.

Then a represents a functional g for which

g(a) = x

and   g(B)çg0(B)gi(B)-gr(B)^P0.   Since   #(,4) = #(B) U {g(a)},   we   have

#04) S P0, and the theorem is proved.

Corollary. Let S be a finite subset of a commutative semigroup 77. Then

the collection of all sets

{a + nx :xeS},

where aeH and n is a positive integer, is regular in 77.

Proof.   Let X be the free semigroup on S. Then the mapping

axa2 ■■• an->ai + a2 + — + a„

is provincial.

Corollary (van der Waerden). For any partition of the positive integers

into a finite number of parts, one of the parts contains arithmetic progressions

of arbitrary length.

The stronger statement proved by van der Waerden and mentioned above is

clear from the proof of Theorem 1. This suggests a general result which we have

given as a corollary to Theorem 2. Theorem 2 is proved in Rado [3]. The proof

is essentially an application of Tychonoff's Theorem, as shown by Gottschalk [4].

Theorem 2. Let X and T be sets, and for every finite subset A of X let

fA be a function from A into V. Suppose that for each xeX, Tx = {fA(x) : A is

a finite subset of X containing x} is finite. Then there exists a function F from

X into T with the property that, given any finite subset A of X, there exists a

finite subset B of X such that F and fB agree on A.

Corollary. Let X be a set and if a collection of finite sets. Then if if is n-

regular in X for some positive integer n, if is n-regular in a finite subset of X.

Proof. Let P be a set with n elements. Suppose if is not n-regular on any

finite subset of X. Then for each finite subset A of X, there is a function fA from

A into P that is not constant on any member of if. By Theorem 2 there is a func-

tion F from X into P that is not constant on any member of Sf, a contradiction.

The above corollary suggests a general problem. Let M and TV be cardinals.

Does there exist a cardinal P having the following property? If AT is a set and

if is a collection of sets each of cardinality less than M, and if is TV-regular in
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X, then Sf is JV-regular in a subset of X of cardinality less than P. A simple

example shows that if M > 1 and JV > 1 are integers, P = K0 is best possible.

The corollary says that if M = K0, and JV > 1 is finite, then P = K0 is suf-

ficient. No further results in this area are known.

Another problem is the "rectangle" problem. Let M, JV, and P be cardinals.

For what pairs (R, S) of cardinals (if any) is the following true? If X has car-

dinality R and Yhas cardinality S, then X<M)® Y(n)is P-regular in X x Y. That

is, if an R x S rectangle is partitioned into P parts, one part contains an M x JV

rectangle. From Lemma 1, such pairs always exist. For example, if M=2, P=2,

JV = 5, P = 2, then R=3 and S = 40 is sufficient. The ' 'minimal' ' pairs (R, S) for given

M, JV, and P are not known in general. A particularly interesting case occurs

when M = JV = K0 and P = 2. It is easily seen that (K0, K0) does not work

and (K0,22V) does. The sufficiency of (K0,2So) or, for that matter, (2"°, 2"°)

is an open question.

3. Positional games. By a positional game we shall mean a game played

by n players on a "board" (finite set) X with which is associated a collection S"

of subsets of X. The rules are that each player, in turn, claims as his own a pre-

viously unclaimed "square" (element) of X. The game proceeds either until

one player has claimed every element of some S eS?, in which case he wins, or

until every element has been claimed, but no one has yet won, in which case

the game is a tie. The most familiar example of such a game is "Tick-Tack-

Toe." Another is the Oriental game "Go Moku."

It is known from game theory that, in a finite two-player perfect information

game, either one player has a forced win or each player can force a tie [5].

Lemma 4. In a positional game involving 2 players, where S* is 2-regular

in X, the first player has a forced win.

Proof. Since no tie can occur, one player has a forced win. Assume the second

player has a forced win. But then the first player can force a win by (1) making

his first move at random, and (2) thereafter following the optimum strategy for

the second player, ignoring the last random move, and playing again at random

if this is impossible. Since having made an extra move cannot possibly hurt,

this will give the first player a win, a contradiction. Therefore, the first player

has a forced win.

The following result in combinatorial analysis is due to Philip Hall [6].

Lemma 5. Let Sy,S2,---,S„ be an indexed collection of finite sets. Then

(A) and (B) are equivalent.

(A) There exist Sy,s2,---,s„ such that each s eS, and s,^Sj if ii=j.

(B) For each F ç {l,—,n}, the set U¡eF $i nas at least as many elements

as F.
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If condition (A) is satisfied, we say S¡, —,S„ have distinct representatives. We

will use this lemma to exhibit a tying strategy for the second player in certain

positional games.

Lemma 6. Let X be the board of a 2-player positional game with winning

sets¿f = {Sy,:.,S„}. For k = 1,2,-,n let T2k.y = T2k = Sk. Then if Ty,-,T2n

have distinct representatives, the the second player can force a tie.

Proof. Let the representatives be ty,t2,---,t2n. Consider the sets {<i,t2},

{h>U}> •". {'2/1-1.f2n}. Observe that in order to win the first player must have

both elements of at least one of these sets. Since the second player can easily

prevent this, he can force a tie.

Lemma 7. Lei^£2x, where X is finite. Let n be the size of the smallest

member ofS?. Let m be the size of the largest set of the form {SeSf :xeS}

where xeX. If n ^ 2m, rAen in the corresponding 2-player positional game,

the second player can force a tie.

Proof. By a simple counting argument, Lemmas 5 and 6 can be applied to

obtain the desired result.

The rest of this paper will be concerned with a particular class of 2-player

positional games, namely generalizations of Tick-Tack-Toe. The traditional

Tick-Tack-Toe game is played on a 3 x 3 array of points in the plane. For positive

integers k and n, the "fc"-game" is played on a k x k x — x k in times) array

of points in n-space. If we choose as a board the set

X = {iay,a2,---,a„) : 1 ̂  a¡ ^ k for all ¿},

then S is in Sf, the collection of winning sets (paths), in case if consists of k

points in a straight line. An equivalent characterization of S e£f would be that

the elements of S, in some order, are a„ a2, —,afc where a¡ = (afl, ■••,ai„) and,

for each j, the sequence (a^-, a2j, •••,akj) is one of the following:

(1,       1, -, 1)

(2,       2, -, 2)

(./c, f, ■"> &)

(1, 2, -, k)

(fc, fc-1, -, 1).

In this case we say a.y,a2, —,<xt are in a natural order (there are two such orders).

In traditional Tick-Tack-Toe, the second player can achieve a tie. In the

33-game, however, the first player has a forced win (in fact, no tie position exists).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



228 A. W. HALES AND R. I. JEWETT [February

Thus, in the 3-dimensional games sold on the market, k is usually 4. Our previous

results enable us to draw some conclusions about the existence of winning and

tying strategies in the general case.

Theorem 4. (a) If k ^ 3"-l (k odd) or if k^ 2"+1-2 (k even), then the

second player can force a tie in the k"-game.

(b) For each k, there exists nk such that the first player can force a win in

the k"-game if n _ nk.

Proof, (a) If k is odd, there are at most (3"-l)/2 paths through any point

and this bound is achieved only at the center point. If k is even, the bound is

2"-l. The result follows readily from Lemma 7. This suggests that the center

point is the optimum move for the first player if k is odd.

(b) In Theorem 1, let W = {1,2,—,fc}. Note that if / is a functional then

f(W) is a path, but the converse is not true. Now (7* 2) and Lemma 4 yield the

result.

We conjecture that the bounds in Theorem 4(a) can be improved by a direct

application of Lemmas 5 and 6. It seems possible that k _ 2(21/" - 1)_1, i.e.,

that the total number of points be greater than the total number of paths, can

be shown to be sufficient in this way.

Even though, in some /c"-games, the second player cannot force a tie, a tie

position may still exist, i.e., if (the collection of paths) may not be 2-regular in

X (the board). The bounds of Theorem 4(a) apply, but much more can be said.

Theorem 5. If k ^ n + 1, then in the k"-game the collection of paths is not

2-regular in the board.

Let k be fixed. For each n let the /c"-game board Xn be the set of n-tuples on

{1, 2, —, k}. Designate the elements of GF(2) by {0,1}. Any partition of Xn into

two parts can be represented (in two ways) as a function from X„ into GF(2).

Let f:Xm-+GF(2) and g : Xn -► GF(2) represent partitions. Then we define

f®g: Xm+n->GF(2)by

(f®g) (ai,—,am+n) = f(<*i>—,aj + sK+i.'">^+»)

where addition on the right takes place in GF(2). Thus f®g represents a

partition of Xm+n into two parts. Note that "©" is an associative operation

on functions from the X, into GF(2).

Proof of Theorem 5. Let Vi,V2,---,Vm be fc-dimensional vectors over GF(2),

that is, functions from Xx into GF(2). Define

(ax,a2,—,ak)' = (ak,ak-u-,ax).

Suppose that for each choice of

Wte^V/},    rieGF(2) (¿=l,-,fc)
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the vector

ryWy + r2w2 + — + rmwm

is neither all zeros nor all ones. Then from the above discussion it can be seen

Vy © v2 © - © vm

represents a partition of Xm no part of which contains a path.

The theorem will be proved if for each fc, fc —1 such vectors can be found.

The desired constructions are obvious extensions of the following two examples

for odd and even fc.

For fc = 5:

For fc = 6:

(1, 0, 0, 0, 1)

(0, 1, 0, 1, 0)

(1, 0, 0, 0, 0)

(0, 1, 0, 0, 0)

(1, 0, 0, 0, 0, 1)

(0, 1, 0, 0, 1, 0)

(1, 0, 0, 0, 0, 0)

(0, 1, 0, 0, 0, 0)

(0, 0, 1, 0, 0, 0).
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