REGULARITY ‘AND SINGULARITY ESTIMATES
ON HYPERSURFACES MINIMIZING PARAMETRIC ELLIPTIC
VARIATIONAL INTEGRALS

BY

Part I. R. SCHOEN 'and L. SIMON
Stanford University, Stanford, USA(Y)

Part II. F.J. ALMGREN, Jr(?)

Princeton University, Princeton, USA

Introduction

In this paper we study the structure of » dimensional rectifiable currents in R**!
which minimize the integrals of parametric elliptic integrands. The existence of such
minimizing surfaces is well known [7, 5.1.6] as is their regularity almost everywhere [7,
5.3.19]. In Part I of the present paper we give a new geometric construction from which
regularity estimates can be obtained for minimizing hypersurfaces. In this construction
we replace the parametric problem for » dimensional surfaces in R™*! by a nonparametric
problem for which the minimizing hypersurface is a graph in R"*? with horizontal slices
closely approximating in a certain sense the hypersurface(s) minimizing the original
problem. Analysis of the associated Euler-Lagrange partial differential equation carried
out in §2 of Part I yields an upper bound for the integral of the square of the second
fundamental form over the approximating graphs, hence over the regular parts of the
original surface. Since a neighbourhood of & singular point must contribute substantially
to this integral (see Theorem 1.3 and the remark following it), we can thus conclude by
an argument similar to that given by Miranda [13] that the Hausdorff (» —2)-dimensional
measure of the interior singular set is locally finite (Theorem 3.1).

In Part II of this work we show that the singular sets in question must have Hausdorff
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{n—~2)-dimensional measure zero (actually the (n—2)-dimensional upper Minkowski
content must locally vanish). We also show that for constant coefficient integrands the
maximum Hausdorff dimension of interior singular sets of minimizing surfaces is upper
semicontinuous as a function of integrands in the class 2 topology. We conclude, in
particular, that for.integrands close-to the n dimensional area integrand the maximum
Hausdorff dimension of singular sets.can be not much more than n—7.

It is perhaps worth mentioning exphcxtly that the results described above imply in
particular that there are no interior singularities for 2- dimensional hypersurfaces minimizing
parametric elliptic integrals.

This paper repregents & composite of results discovered independently by the various
authors. The combined results are stronger than those obtained independently and their

joint presentation permits the elimination of substantial duphcatlon

PART I
I.1. Preliminaries

Except in explicitly indicated instances, we will use the standard notation of Federer
[71. UMz, ), B(xy, 0) denote respectlvely the open and closed balls in B" with radius
o and centre x,. L£" denotes Lebesgue measure in R”

We will be concerned mainly with locally rectifiable n-dimensional currents in R*
that is, with currents T' €R‘°°(R"“), n>1. Given such a current T | Tll denotes the asso-
ciated -variation measure and T(x)el\ (R"“) denotes the umt ta,ngent direction” of

T ([7), 4.1.7); thus for each smooth n-form w with compact support in R we have
2@ [, T, @y diTie. )

v =@, ..., v5, 1) €8 (87 =8B"+1(0, 1)) will denote the unit normal of 7', defined by

V(@) = % T(z), (2)
where
Evap An(Rn+l)”’Rn+l
is the linear isometry characterized by

%y Ao NeaNegg N o Ny =(— 1) e, 021, ., n+1,

Here ¢y, ..., ,,, i8 the usyal orthonormal basis for R
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Note that if @ is expressed in the form

n+l

w= > (—1)"" o du, A... ANdxi_y Adzig Ao Adogyy,
f=1

where w, are smooth functions with compact support in R**!, then

n+1

(T(@), (@)= 3 vi(@)wyfa),

and hence (1) can be written
n+1

T(oo)=21 Rnﬂvf(x)w,(x)d”T”.
Of special importance will be the case when T can be represented in the form
T=@E"' V)4,
where A4, V are Lebesgue measurable subsets of R"*! and

E*tl= " Ae, A ... Aegyq.

It will be convenient to use the abbreviation I[V]] for E"*1|_V; hence (4) becomes

T=9[V]_A.

219

©)

(4)

Also, if M is an oriented m-dimensional C2? submanifold of R**! and B is a Borel subset

of M, then we let [ B],, denote the current defined by

[ B]u(w) =Lw,

(5)

The expression on the right denoting integration of the m-form w over B< M in the usual

sense of differential geometry. (To be strictly precise we should write fi*w on the right

of (5), where ¢ denotes the inclusion map of M into R"*'.) When no confusion is likely to

arise, we will write [ B] instead of [ B],,.

Now suppose we have a mapping

FZ Rn+1 % Rn+1—>R

such that F has locally Lipschitz second order partial derivatives on R™*! x R"*'~ {0}.

F will denote the corresponding functional, defined for 7'€ R,(R"+1) by
— T
K- [ P @iz,

It will always be assumed that F is a parametric functional in the sense that

F(z, up) = pF(z, p), 4 >0, xR, peR™,
15 —772905 Acta Mathematica 139. Imprimé le 30 Décembre 1977
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and F is assumed to be both positive and elliptic in the sense that

F(z, p) = |p|, x€R**1, peR""! (7N

nt ~1] g2 g _(_2)_1{ n+l n+l
LZlew/(x’p)Etéj)lpl |6|,§ E 5 ,pl Ip!,x,é’ER ,pER {0} (8)

Note that, up to a scalar factor, (8) is the strongest convexity condition possible in view of
(6).

It can be shown that (6), (7), (8) are precisely the conditions for ®(z, a) = F(z, % a),
z€R™!, a€ A\, (R**?) (5 as in (2)) to be a positive elliptic parametric integrand in the sense
[7, 5.1.1, 5.1.2.

We will let F(4, g,) denote the class of F satisfying (6)-(8) together with the following
bounds:

n+1 n+1 n+1

Fx,v) + |Fp(xa 1’)l + Z lFmp;(x’ ”)I + 2 lem/pk(x’ v)‘ +0, > lejp;pk(x’ V)'
t1=1 14 k=1 L1 =1

n+1

+ ng ’Zk 1]1«’,,,”,,,(35, v)|<A, z€R™, veSm. (9)

n+l

21 Fy oz v)

Jm

+Q°:

Here A1 and g, are constants; much of the subsequent work in this paper will be carried
out in the ball U"*1(0, g,), and the presence of the factors g, o in the left side of (9) is then
appropriate if one wishes to obtain estimates and conclusions which can be stated in-

dependent of g,.
We note the important special case F(p)=|p|; for this case we have

F(T) =M(T),
where M(T) denotes the mass of 7', defined by
M(T)= || Tf|®R"") =":‘lllgl T(w). (10)
Here ||lw|| denotes the comass of w, w an arbitrary smooth n-form with compact support

in RrH—l

For later reference we note that (6) implies

p- Fy(x, p) = F(x, p) (11)

n+l

;lpfl"m,(w,p)=0, i=1,..,n+1, (12)
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for all (z, p) ER"*! xR~ {0} and all F€F(4, g,). One consequence of (12) is that

Fpgpj(x’ p) §i=Fpm/(x, P) E;, §,=§_ (S'l-%'l) ﬁ, (13)

so that, in particular, we can deduce from (9) that

n+1

. Zl pr;(x, p) & 5}<)~|§'|2 "

for all z, £ER™?, peR"" 1~ {0}.
Also, by using the extended mean value theorem

h(1) = h(0) + '(0) + fl (1—t) h"(t) dt
0

with k(t)=F(x, v+ —v)), where 7, €S, we obtain the identity

n+1

1
F(z,n)=F(x,v)+(—v) Fy(x,v)+ ‘ ;Z=1 (7 =) (7= 7)) fo (L=8) Fppp(, v+t —»)) dt,

and by (11) and (8) we then have

1 2
Flo. > Fa )+ [ (-0 Galv+tr=»la
0

E"]IFP(V)+(1_1]'V)7 n, vES™,

Thus, since 1 —7+»=3}|n—»|2, we obtain
F(x,n) > n-Fy(z,v) +}|n—»|% n, vES", z€R™, (15)

We now wish to use (15) to obtain an inequality (inequality (20) below) which will
play a key role in the non-parametric approximation arguments to be given later. We let
Q be a bounded % domain in R*, let € C3(Q), let G denote the graph of %, and let » denote
the upward unit normal function defined on Q x R by

v(x) =v(@') = (— Du(z’), 1)/(1 + | Du(x')|)'2, @ = (x4, ..., Tny1) EQ xR,
' = (25, ..., Tp)- (16)

We suppose that FE€F(A, o,) satisfies F
and that

z, p) =0 (i.e. F(z, p) is independent of z,,,)

zn+l(

div F(z,7)=0 on QxR. (17)
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Note that by (16) and (6) we can write F,(x, v)=F,(x, — Du(z’), 1) and hence equation

(17) is equivalent to the requirement that u satisfy
2 d
Z d— (&, u(x’), — Du(x’), 1)= (18)

for 2’ €Q. By virtue of the fact that F

equation for the non-parametric functional

(#, p) =0, this is precisely the Euler-Lagrange

In+l

d(u)= f F(x, u(x), — Du(x), 1) dL"(x) (= J F(x, v(x))d?«l"(x)) .
0 G

Now define an n-form w on Q xR by

n+l

w@)= 2 (= )" (x, v(@)dey A ... Adx_g Adxg AL Adag. (19)
i=1

Then one easily checks that

do = div Fy(x, v)dz, A ... Adw,;, =0 on QxR
by (17).
Next take any current 7' € R, (R"*') with

aT =[2G},

and spt 7<Q x R. Since H,(Q xR) =~ H,(Q) =0 (H, denoting the »** homology group with
integer coefficients: [7], 4.4.1, 4.4.5) we then have R€R, (R"*!) with spt R QxRand
oR=T-[G].
Then
T(w)-[¢](w) = 2R(w) = R(dw) =
that is

=[]

This is easily seen to imply, by (3), that

f T Fy(x, v)d”T”—f v Fy(x,v)dH*=0,
Rntl ¢
and hence, using (11) and (15), we obtain

1
5fnn+1'v—le2d”T”<F(T)‘F([[G]])- (20)
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TeR(R™) is said to be (absolutely) F minimizing in 4 (4 any subset of R**!

and F€F(4, gp)) if
F(T|_K) <F(8) (21)

for each compact K< A and each S€R,(R*+) with 68=8(T|_K) and spt S< 4. Notice
that if 7€ R,(R**!) and spt T< 4, then T is F minimizing in 4 if and only if

F(T) <F(S) (22)

for each S€R,(R"*?) with 8 =08T and spt Sc 4.
Henceforth for F€JF(2, g,)
mr, o)

will denote the collection of 7€ R,(R"*!) which are F-minimizing in B(0, g,) and which
can be expressed in the form
T =4[ V]LU(O0, go) (23)

for some Lebesgue measurable subset V of U(0, gy). Also, given TE€M(F, g,) we will let
Vr denote a Lebesgue measurable subset of U(0, g,) such that (23) holds with V="V,.

We can always assume that V, is open and
oV, N U0, gg) =spt T N U0, g,). (24)

(In (24) @V denotes the ordinary topological boundary of V;.) We can arrange this by
first taking any Lebesgue measurable subset ¥ of U"+1(0, g,) such that (23) holds, and then
defining ¥V, to be the union of those components W of U"*Y(0, g,) ~spt T' such that
LYW ~V)=0. This procedure works because L"*'(spt 7'NU"*'(0,go))=0. In fact
Hr(spt T NU*(0, py)) < o=; this follows directly from [7, 4.1.28(4)] together with 1.1(28),
(33) below.

The notation

m(l, 90) = U m(F’ QO)

FeF(A, 00)

will also be used subsequently.
1f FE€F(A, go) and if T is F-minimizing in 4, where A< R"*! is such that there is a

Lipschitz retraction % of an open set U= 4 onto 4, with

dist (4, 2U)=0> 0, sup|Dh|< B,
v

then we have the isoperimetric inequality

M(TLK)" "< e M@(T LK), (25)
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where K is a compact subset of R"*! such that &(T|_K)€R,_,(R**?) and where ¢, is a
constant depending only on », 4, 6 and 8.

To prove this we first notice that by [7), 4.4.2(2), p. 466, we can find S€R,(R"+)
with 08 =8(T'( _K), spt S< 4 and

(M(8)" """ < e, M(@8),

where ¢, depends only on n, 6 and B. Hence (1.25), with ¢, =A™"V/" ¢,, follows from this
because (9) implies M(7'|__K) <AM(S).
We remark also that we have, for any 7 as in (25), the Sobolev-type inequality

(n—-1)in
([ rainf ™" <o [ prwiarzy o

where ¢, is as in (25) and % is any C! function on R**? such that spt % is compact and
spt hNspt o7 =0. In (26) 67 is the tangential gradient operator relative to 7', defined
[|7']| —almost everywhere by

6"h = Dh—(»"- Dh)y". (27)

Inequality (26) follows directly from (25) by the argument of {5], Lemma 1.
(25) can also be used (as in [7] 5.1.6 pp. 522-3) to prove the lower bound

M(TL—Un+l(x0’ Q)) > 029"¢ (28)

where x,€spt T and g is such that U""(z,, o) N spt (87") = @, and where ¢, is a positive
constant depending only on #, 4, 6 and £.

If TEM(F, p,), we can get an upper bound for M(7'{_U""Y(z,, 0)) as follows. First
note that for almost every p €(0, g, — |x,|) we have

ALV n U™z, 0)] = TL_U™ (e, ) + (0[ U™ (ze 0) ) LV (29)
This holds whenever }"(spt 7' 0 oU""}(x,, 0)) =0. For such ¢
—(TL_U™"(zy, 0)) = A@[U" (20, )] L V), (30)
and hence, since TEM(F, g,),
F(TL_U" Yz, @) SF(— (@[ U™z, )N L V). (31)
Similarly, since T'= —8[ ~ V] L_U"**(x,, 0), we have, again for almost all g €(0, g, — | %] ),

F(TLU™ (x4, 0)) SF(@[U" (g, )P L(~ V7)) (32)
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Using (8), (9), we then deduce from (31), (32) that
M(T'_U™(zy, 0)) < $AHNOU™ (2, 0)) = $(n+1)a(n+1)A0", (33)

a(n+1) =volume of unit ball in R***, for all g €(0, g, — | ] ).
We can also show that there is a lower bound for £*"(V, N U""(x,, 0)) in terms of
o as follows. First, by the isoperimetric inequality for currents in I,,,(R"*"!) and by (29),

(31), we have for almost all g €(0, g, — | ,|)

{L¥ (V7 N U™z, @)}V < Bn) M@ V7 N U™ (2, 0)])
<B() {M(T|_U"" (2, 0)) + H,(0U" (%, 0) N V)

d
< (1+2) Bn) HH@U™ (x5, 0) 0 V) = (1+2) B(n) a0 LU Yz, 0) N V). (34)

Here B(n)={(n-+1)(a(n+1))"**P}-1 is the isoperimetric constant. Integration with

respect to g in (3.4) now gives

n+1 n+ 1+ @ B
(et D{C Ve N U o N} 2 g

that is
LYV N U Yz, 0)) = (1 +4)" " Pa(n+1)" . (35)

The following theorem contains some basic compactness and semi-continuity results,

THEOREM 1.1. Let f be a non-negative Lipschitz function with compact support in
R*!, and let py=sup f, 4,={: f(x) >0}, 0€[0, go). Further, let S,=0[U,]|_A,€ R (R"**"),

r=1,2, ..., be such that
lim sup M(S,|_ 4,) < oo.
-0

Then there is a subsequence {S;} of {8,} and a current S=20[ U]|_A,€ R(B"*") such that
i) YU, AU)N Ay)—>0 as k— oo,

(i) M(S|_4,) <lim inf M(S,[_4,), @€(0, g).
k-»00
Furthermore, if R is defined by
R = 3[[140]] L (Ue~0) —8[Ag]] LA(U~Uy),
then for almost all ¢ €[0, go) we have R{P € R, (R"*") and

(iii) (Sx—8) L4, = ([ Ux]-[UD L 4g} + RP,
(iv) M(R®)~>0 as k- oo.
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If FTeF (4, 0,) and F'— F uniformly on Ayx 8", then
(v) F(S|_A4,) <liminf F¥(S,| 4,)
k=>0

for all p €(0, g,). If it 18 also true that each S, is ¥ -minimizing in A, then
(vi) 8 is F-minimizing in 4,
and
(vil) F(S|_4,) > lim sup F¥(S,[_4,)
k>0

for almost all g €{0, g,).

Proof.

(i) is a well-known result (see [7], 4.2.17 for a more general result).
(ii) follows from the definition (10) of M(7T) together with the fact that, for fixed
o, Sy(w)-> S(w) by (i).
(iii) and (iv) follow from the theory of {7], 4.2.1, 4.3.6, together with (i).

Because of (iii) and (iv), (v) follows from a slight modification of [7], 5.1.5. {[7] treats
the case F"'=F,r=1,2,....)

To prove (vi) and (vii) we first take g such that (iii) and (iv) hold, and let R€ R, (R"+)
be such that spt (R)<= 4, and 0R =8(S|_4,). Then by (iii)

AR+ RP) = a(S*L_4,),
and hence since S, is absolutely F,-minimizing in 4,, we have
F¥(SiL_4,) < YR+ R®) <F¥R) +F<R)

< FYR)+IM(RB®).
Hence
lim sup F¥(S,_ A4,) <F(R) (36)
k00

by (iv). Combining (v) and (36) we then have
F(SL_4,) SF(R);

that is, S| A, is absolutely F-minimizing in 4,. (vi) now clearly follows.

Finally, to prove (vii) we replace R in (36) by S__4,.

The following regularity theorem will be of basic importance in what follows. In
stating this theorem we let sing 7 denote the singular set of a current T' of the form (4);
i.e,

sing T = spt T~ {z: spt T'N Uz, p) is a C* hypersurface for some o >0}.
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Note that by definition sing 7' is closed. X €spt T will be called a singular point if
z€sing T. We will say « is a regular point of spt T' if x€reg T, where

reg T =spt T'~sing 7.

A theorem like the regularity theorem below was first proved by De Giorgi [6] in
the case F(x,p)=|p| (i.e. in the area case) and by Almgren [1] in the case of arbitrary
FeF(4,0,). Almgren’s results also apply to appropriate F-minimizing currents and
varifolds in the case of codimension >1, and the condition that the current be absolutely
F-minimizing can be relaxed. Allard has obtained a regularity theorem for stationary
varifolds in [4].

THEOREM 1.2, There are constants ¢>0, B€(0, 1), depending only on n and A, such
that if TEMUA, g,), if 2, € spt 7', if 0 €(0, py — | %, | ) and if

spt 7' N Uz, 0) < {x: dist (z, H) <ep} 37)

for some hyperplane H containing x,, then spt T N U™ Y (zy, Bo) 1s a connected C? hypersurface
M with M ~ M < aU™ (%, Bo) and with unit normal v=v" satisfying

lv<x)—v<f>|<c'”g“', z, GEM. (38)

Here ¢ is a constant depending only on n and A.

A new proof of this theorem, based on an approximation by solutions of the non-

parametric Euler-Lagrange equation, is given in [18].

Remarks. 1. There is a constant 5 >0, depending only on & = and 4, such that if
20€(0, 0o |%,|), if H is a hyperplane intersecting U™*'(zy, g), if H, is a halfspace with
oH,=H, and if

CH(H AV ) N U™y, 20)) <n™"", (39)

then (37) holds. This assertion is easily checked by using the volume estimate (35).

Since T €R,(R"*'), it follows from this (see [7], 4.3.17) that for H"-almost all
xo € spt T N U0, g,), there is a 9€(0, g, — [2,]) such that (37) holds. That is, we deduce
that

Hr(sing T N U0, g,)) =0,

because in a neighbourhood of a point z, where an inequality of the form (37) holds, we
can apply standard regularity theory for elliptic equations (see Lemma 2.3 below) to
deduce that spt T is a C? hypersurface near x,.
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2. We also remark that there is an 5 >0, again depending only on &, # and A, such
that if 20€(0, 0 — | %,|) and if

T 0P|\ T <7 40
| )

for some »*€ 8", then (37) holds if we take H to be the hyperplane normal to », and con-
taining x,. This assertion is established for example in [18].
3. If 8,=50[V,JLU"(0,0,), r=1, 2, ... and S=2[ V]L_U"*Y(0, g,) are in M(F, g,), if

CH(V,AVYD U0, gg) 0

as r~> oo, and if x,€ reg S, then by taking r, sufficiently large and letting H be the tangent
hyperplane to reg § at x,, we clearly have that there exists o >0 such that (39) holds with
V, in place of V,, r>7, If we assume for convenience that v5(zg) =€,y =(0, ..., 0, 1)
and that z,=0, then by remark 1 it follows from the theorem that there are open subsets
W,, W<R" and a p >0 such that

U0, e2)=(N W)N W

r>rq

and such that spt 8,n U0, g), r>r,, and spt SN U""(0, p) can be represented in the

non-parametric form

Ty = ur(xl’ R} xn); (xp sy x’n)e Wn r> Yo

Xy = WEy, ooy By)s (g, ooy X,)EW,

where u,,  are C? solutions of (18) with | Du,| <1 and u,—u (uniformly) on U™0, o/2).
Furthermore from (38) we deduce a uniform Lipschitz estimate for Du,, r >r,, and hence

{by the Schauder estimates for linear elliptic equations) we have
Du,~Du, D%u,— D%,

where the convergence is uniform on U0, g), 0 <p/2.
4. Finally we remark that (38) implies that the unit normal +” of 7T satisties

sup |02 <clo?, (M =spt T N U (z,, 0/2), v =77), (41)

M
where ¢ depends only on = and A. In (41), and in what follows, d =67 denotes the tangential
gradient operator associated with 7' as described in (27); if A is a C* function on reg 7', then

Sk = Dh— (7 Dh)vT
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onreg T, where % is any C! extension of 4 to a neighbourhood of reg 7', and D= (D, .., D, ;)
is the usual gradient operator in R"*!. (Of course, d so defined, is independent of the parti-
cular C! extension of 4 that one chooses to use.)

The quantity |év|? appearing in (41) is geometrically just the sum of squares of
principal curvatures of the hypersurface M =reg T'. That is, if %, ..., %, are the principal

curvatures of M at z,, then

n n+l
Zl K?=¢ 121 (8,%,(20))" = [ O(o) [* (42)

i= JJ=
The following theorem asserts that a sufficiently small L, bound on the principal
curvatures of a minimizing current is enough to guarantee the hypothesis (37) of the

regularity theorem.

THEOREM 1.3. For each &>0, there is an 1 >0, depending only on &, n and A, such
that if TEM(A, g,), of z,€Espt T, if 0€(0, 0o~ | ,]) and if

f |67 | dH" < o™, (43)
Ut 1z, g)nreg T

then there is a hyperplane H containing x, such that
spt T N U Y(z,, Op) < {x: dist (x, H) < efp}.
Here 0€(0, 1) depends only on n and A.

Remarks. 1. A consequence of the theorem is that if TE€M(4,0,), and if
o € sing T N U™ (0, g, —p), then

| 1577 > g™, )
U™+ 1z, o)nreg T
where 7 is a positive constant depending only on =, A.

2. We will first prove the lemma subject to the assumption that sing 7= @. Actually
for the purposes of Part I we only need the above lemma in this case. Thus to treat the
case sing 7'+¢), we can (and will) use the conclusions of the main theorem in 1.3 in order

to appropriately modify the argument given below for the case sing 7'=.

Proof. By introducing the transformation of x variables given by £=p Yz —x,) +,,
one easily checks that F€JF(4, g,) is transformed to F €F(4, 1). Hence it suffices to prove

the theorem in the case p =g, =1 and z,=0.
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Then if the theorem is false, we have A and £>0, and a sequence {T’} with T"=
o[U,] LU0, 1) eEM(F", 1), FTeF(A, 1), r=1, 2, ..., such that

fUn+l(o.1)larvrld“Tr”—’O as 7= oo, (45)

and such that for each hyperplane H containing 0
spt (27) N U0, 1/r) & {a: dist (z, H) <egfr}. (46)

Here ", v denote respectively the gradient and unit normal associated with 7. Using
Theorem 1.1 we then have FE€JF(A, 1) and

T =8 U] LU0, 1)EM(F, 1) (47)

such that CY((U,AU)NU'(0,1))—~0 as r—>oco, Also, by (46) and remark 3 following
Theorem 1.2, we have

O€sing 7, (48)

and (by (45)) each component of reg T' is contained in a hyperplane. If we let A"=
(S 8v})v" be the mean curvature vector of 77, then the first variation formula for 77
({7, 5.1.8]) gives

f (Fg—gk’)d||T7|| =0, p€CHU™ 0, 1)). (49)
U"+1(0,1)

But by virtue of (45) and remark 3 following Theorem 1.2, this implies that T is stationary;
that is,

f 8pd||T|| =0, p€CHU™(0, 1)). (50)
U"+1<o.1)

We now want to use the dimension reducing argument of Federer {8, p. 769]. The
relevant part of [8] deals with absolutely area minimizing currents; however the argument
on p. 769 of [8], and the necessary preliminaries in [8] and [7], apply if the absolutely area
minimizing hypothesis is replaced by (47) and (50). It follows that

Hr-Y(sing T n U0, 1)) = 0. (51)

{Otherwise the dimension reducing argument of [8] implies that there exists a 1-dimensional
oriented cone in R*’(R?%) which has a singularity at the origin and which minimizes a
parametric elliptic integrand in R?, and this is clearly impossible.)

Combining (51) with the fact that each component of reg T is contained in a hyper-
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plane as noted above, we can then deduce that 7'=>{ ,[H,]|_U"*'(0, 1), where H,, ..., H,
are hyperplanes with H, N H,NU""'(0, 1)=@, i<j. But this contradicts (48).

Thus the proof of the theorem for the class of currents T'€ JN(4, 1) with sing T=0
is complete.

We now turn to the general situation when sing T'3=@; we still work with gy=p=1
and x,=0 as above. As explained in the remark prior to the beginning of the proof, we
can use the results of the main theorem in 1.3 (Theorem 3.1). In particular we can use the
fact that H"'(sing 7N U™1(0, 1)) =0. Thus for each y >0 and each p€(0, 1) we can find
balls U™ (x®, g,), ..., U (@, gy) covering sing T NU"Y(0, 9) and such that g,<y,
1=1, ..., N, and

IVE

oF t<y. (52)

1

Thus if we let £, be a non-negative smooth function with £,€[0,1] on R*"!, £,=0 on
U (2®,g,), &=1 on R*'~U"(a®, 20,) and supgn+1|DéE,| <3/p,, then we have, by
virtue of 1.1 (33) and (52), that

N
f ( 5 166, |) AU <oy, (53)
spt TnUR+10,1) \1-1

where ¢ depends only on » and A. Thus using ([[{~,£,) @ in place of ¢ in (49), and then
letting y—0 and using (53), we can deduce that (50) in once again valid. The above argument
is then concluded as before.

The following technical lemma will also be needed subsequently.

Lemma 1.1. Suppose M 1is a connected C? oriented hypersurface contained in
Um0, g,), suppose that
H (M~ M) 0 U0, o) =0 (54)

and suppose there is a constant ¢ such that
HYM N Uy, 0) < co” (55)

whenever xy€ M and g €(0, go— |,|).
Then
o[ M] LU0, go) =0, (58)

and U0, o) ~ M has exactly two components V,, V, with

8V, N U0, gg) =8V, N U™(0, go) = M N U™H(0, g). (87)
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If C denotes any non-empty collection of connected oriented C® hypersurfaces M which
satisfy (54) and (55), and if C is such that M N M' =@ for each distinct pair M, M’ €C, then
for each M,€C we have

W U M)yn My)=0. (58)

MeC~{Mg}

Proof. We can suppose without loss of generality that g,=1. Let ¢ €(0, 1) be arbitrary,
and let z,, g;, &, be as in the previous proof.
Then, if w is any smooth (= —1)-form with support in U**1(0, p), we have by Stokes’

theorem that
o-on (i)
pi((fe) ) - Some) o)

By virtue of (55) we still have an inequality of the form (53), hence letting —~0, we obtain
[M](dw)=0. In view of the arbitraryness of g, this gives (56) as required.

Next, by (56), [7, 4.5.17] and the connectedness of M, one can quite easily prove that
there is a connected open set V with @V nU™(0, 1)= M n U0, 1). Then, setting
V.=V and V,=U""}(0, 1)~ 7, (51) holds as required.

It remains to prove (58). Let U+, U~ be the two components of U"**(0, )~ M. It
is quite easy to check that for any M €C ~ {M}, precisely one of the components, say V(H),
of U**1(0, 1) ~ M has the properties that

MnM,=V(M)n M, andeither V(M)cU* or V(M)cU-. (59)

Notice that the first assertion here follows from the latter pair of alternatives. That at
least one of the alternatives in (69) holds is clear; indeed otherwise we would have a com-
ponent V of U*1(0, 1)~ M such that ¥ N M,+D (and hence V N My==D), and one can
then show by the connectedness of M, and the Poincaré inequality [7, 4.5.3] that
WM 0 My)>0. But this implies M N M,+D, contrary to hypothesis. By a similar

argument we can show that for any pair M, M’
either V(M)c V(M') or V(M) V(M) or V(M')NV(M)=0C. (60)

We now introduce an equivalence relation ~on C~{M,} by writing M ~ M’ if either
VIMYc V(M) or V(M')< V(M). There is at most a countable collection C,, C,, ... of

equivalence classes (since otherwise we deduce by (60) that there is an uncountable collection
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of pairwise disjoint open subsets of U"*'(0, 1)). Further, within each equivalence class
C; we can find M}, M}, ... such that U yec, V(M) = U%, V(M}). Thus by (59) we have
Y U MnMy)=HY U V(M)nMo)

MeC~{M,} MecC~{M

(U V(Mk)nM) (0 Waan) -0
J k=1 k=1
as required.

L2. Seme non-parametric results
In this section we wish to look at solutions of the non-parametric Kuler-Lagrange
equation corresponding to functionals F, where F€3J(4, g,); that is, we study equations

of the form

En: di (x, u(z), — Du(x), )=F, _ (x,u(x), — Du(x), 1), x€LQ, (1)

where Q is a domain in R* and F€F(4, g,).

The results obtained here for solutions of equations of the form (1) will be applied in
Theorems 2.1, 2.2 and in 1.3 to give the central result of Part I; viz. that if TE€M(F, g,),
then the cylinder 7' x R can be approximated in a certain sense by C3(U"*}(0, g,)) solutions

of the equation

n+1 d
> iz, F,(x, — Du(z),1)=0. (2)

i=1

Here the notation is as follows: F€3(4, p,) and F is defined on R"*! x R**2 by

Fp)= f o PO (FH P4 P @(Pata| B 9) + PR Pdy, p = (8, Pasa) ER™~ {01,

where y€CPU"(0,1)) with >0 and [w(y)dy=1, and where p€C3R) with @(t) =
for |¢t| >} and 0 <g(t) <1 for |¢t| < }.

Thus F(x, p) = (F*(x, p') + p3.2)"* for |p'| = }|pr+2l, and F(z, p) is obtained by apply-
ing a smoothing operator for |p’| < }|pn.2|, F is a C21 function on R*! x R*"*~ {0}, and
ll@llcs small enough (which we always assume subsequently) a positive multiple of F
satisfies conditions like 1.1 (6), (7), (8), (9). (The checking of I.1 (8) is partly facilitated by
the uniform convexity in ¢ of (F¥(z, q)+1)"% 0<|g|<1.)

The associated functional F' is defined by

- f T ATl ), TR (R ®)

s0 that X
F(S x[(a, b)]) = (b —a)F(S), SER,(R™), (a,b)<R. 4)
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Notice that the equation (2) has the same general form as (1), except that there is
no explicit w dependence in (2). For this reason we will be especially interested in equations
of the form (1), where as in 1.1 (17)--(20)

E%F(x, t,p)=0,zER" tER, pER" 2~ {0}. (5)
For F asin (5) we will often write F(z, p) (x € R") instead of F(x, t, p). Using this convention,
the equation (1) becomes
> 4 Fo(x, —Du,1)=0, =z€Q. (6)
1=1 4%
{(Notice that the form of (6) is the same as (2) with » in place of n+1.)
For equations of the form (6) there is a particularly nice existence and regularity theory,
some of which we will develop here. Some of the results given below are new, others involve

slight modifications of known results.
We begin with two lemmas concerning solutions of the equation (6). In the statement

of these lemmas we let G be the graph of a solution  of (6); that is
G = {(z, u(x)): x€Q}, (N

where u satisfies (6). [G] will be the n-dimensional current associated with G; it will always

be supposed that »[¢] is the upward unit normal of G.

Lemma 2.1. [G] is absolutely F-minimizing in Q x R.

Proof. Let K be an arbitrary compact subset of Q xR and let T' be any current in
R.(R*"") with spt T<Q xR and 6T =2([G]_K). Analogously to 1.1 (19)~(20), we can
then find R with 9R=T—[G]|L_K, spt R=Q xR, such that 1.1 (20) holds with [G]|_K
in place of [G].

LemMa 2.2. If Q is a bounded Lipschitz domain, if p is a given real-valued function on
Q2 such that A={(x,t): x€0Q, t<y(x)} is a Borel set, if K,<yp<K, (K,, K, constants)

and if
o[a}= B,

where B=0[A)*) € R,_,(R™*"), then

supu< K,+¢, infuzK,—c,
o) 0

(1) Here, and subsequently, I[A]] is such that »{4} ig the inward unit normal to Q.
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where ¢ depends only on n, A and Q. In case Q=U™0, g,), ¢ has the form c,g, where ¢, depends
only on n and A.

Remark. The constant ¢ above does not depend on g,; this is because (as will be clear

from the proof) no bounds for the derivatives F, ., ., F,,, ., need be assumed.

Proof. By Lemma 2.1 we know that [ @] is minimizing in Q x R; since Q is Lipschitz
it easily follows that [@] is minimizing in Q x R. Also, since Q is a bounded Lipschitz
domain we can find a Lipschitz retraction of QU {z: dist (v, 2Q) <68} onto Q for some
6>0. Thus there is a Lipschitz retraction of (Q xR)U {z: dist (x, Q x R} onto Q xR,
and we can apply 1.1 (28) with T'=[G] to give

HYG N U™z, 0)) > e10" (8)

whenever (G~ G) N U"*(z,, ) =D, where ¢, is a constant depending only on #, 1 and Q.
We now let
s=sup (u— K,).
Q

If s>0 we can choose z,=(y, u(y)) €G such that u(y) > K, +s/2. Taking ¢ =3/2 in (8) then
gives
sup (u — Ky) < cp(H™(G.)'", 9
0

where ¢; depends on 7, A and 2, and where
G, ={(z,t)€EG: t > K,}.

But now since [¢] is F-minimizing in {Q x R we have

FIG]LTU.) <F(S.), (10)
where
U,={(=t)€Q xR: K, +e <t <u(z)}, S, =o[U.]-[G]LT..

Since spt ([ U.]-[@]L_U.)=Q x {K,+¢}, it follows that
F(S,) <1LMQ). (11)

By combining (9), (10), (11) (after letting ¢->0*) we then have supqu<K,+cy; cq
depending only on 7, 4 and Q. In case Q=U"*1(0, g,), an examination of the proof shows
that ¢3 =c,0, with ¢, depending only on » and 4.

The proof that infqu > K, —c is similar.

16 — 772905 Acta Mathematica 139. Imprimé le 30 Décembre 1977
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The next lemma is a well-known regularity result from the general theory of quasi.
linear elliptic equations.

LemMA 2.3. Suppose u is & Lipschitz weak solution of (1) on €; that is, u is Lipschitz
on Q and

f f F,(x, u, — Du, I)C,idx=f F, . (z,u, —Du,1)lde 12)
i=1J0 0

for every smooth { with compact support in ().
Then w has locally Holder continuous second partial derivatives on 2. In fact for each
v €(0, 1) and for each ball Ut(z, p) =2 with p <g,, we have a bound of the form

n
1+
e y‘ ,Zl lDa D;“I(y). Uny, oy S 6

where ¢ depends only on n, A,y and supq | Du|. Here | D Du|,, denotes the Halder coefficient
corresponding to exponent y.

If FeC*!, r=2, on R™' xR"'~ {0}, then u is C"*” on Q for every y€(0,1). If F
i8 analytic on R**! x R™* ~ {0}, then u is analytic on Q.

For a discussion of such regularity results the reader should see for example [12].
The next lemma is a consequence of the De Giorgi-Nash-Moser theory for linear
elliptic equations.

LrMma 2.4. Suppose u, and u, are solutions of (12) on a ball U*(z, p), suppose Du, = Du,
at each point of the set
C = {x €Uz, p): uy(x) = ug(a)}

and suppose C==D. Then u, =u, on U(x,, p).

Proof. We note that max (u,, 4,) and min (u,, u,) are C*-1 functions which satisfy the
strong form of (12) almost everywhere on U"(z,, ¢). Hence max (u,, u,) and min (u,, u,) are
both weak solutions of (12). However, it is well known (and easily checked) that if we take
the difference v=v, —v, of any two solutions v;, v, of (12), then v satisfies a linear elliptic

equation of the form
n

2 b
MZ_I 5;‘ (Guvz,) = 5;‘ (bv)

where the a,,, b, are bounded functions (determined by F, v,, v,) and (a,;) is positive definite.
Hence by the De Giorgi-Nash-Moser theory we have that if »>0 on U™z, ¢) and if »=0
at some point of U(x,, g), then v=0. This follows, for example, from the Harnack in-



HYPERSURFACES MINIMIZING PARAMETRIC ELLIPTIC VARIATIONAL INTEGRALS 237

equality. Applying this to the solution v =v, — v, with v, =max (u;, %;) and v,=min (%, u,),
we then have the required result.

The remaining results in this section concern solutions of (6). G (as in (7)) denotes the
graph of a solution u of (6).

Preparatory to the first 3 results here, we wish to derive an important identity involv-
ing second derivatives of u. The derivation is essentially based on an idea of Bernstein,
and the final identity ((17) below) is of a type that plays a key role in [5], [11] and [16].

We begin by writing (6) in the weak form

2 | Fplx, —Du,1){,dx=0 (6)’
-1Ja

for each smooth { with compact support in Q. Replacing { by {:, and integrating by parts

we then have

Z J. i, — {F, (=, — Du,1)}{,du=0.
If we use the chain rule and the homogeneity condition 1.1 (8), this is easily seen to give

Z ‘IF w;(xr 7) uz‘;zl 6!1 Fp;z;(xr ‘V)} czg dz= O:

1,3=1
where v is as in 1.1 (16) and v=V1+|Du|2.
Replacing { by {u,,, summing over /, and using the identity

n
Zlu,‘un% =vv, §=1,..,m,
1=

we then have

z {v pip§ x: "’) Uz 2y uz;zt C + Fmp;(x: v) 7),, zg} dx= 2 f szx(x v) (Cuq)z‘

1.)=1

n n+1
= 2 fﬂ {Fm:)(x "')} Cuz; dr= — 2 a {’Zl Ug, Fpm;n(x’ v) Vizy + Ug, szm(x: ‘l’)} Cd.’l:.

ii=1 =1

From now on we interpret all functions ¢ =¢(x), defined for €}, as functions which
are defined on {2 xR but which happen to be independent of the (n+1)™ variable; that
is, we will henceforth not distinguish notationally between ¢ and the function ¢* defined
on Q xR by ¢*(z, t) =¢(z), z€Q.

Then we have the identity

n+l n+1l

n
S v7%F, 1s(s V) Ugy 2y Ug oy = Z Fopp, v)é,v,é,v;—i-ule,w,(x, v) 6, wé, w, (13)

4,4,1=1
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where § denotes the tangential gradient operator on G (that is, d =D —»(v+ D)) and where
w=log v. (13) is easily checked by computing the quantities on the right and then using
I.1 (12).

We also have the identities

n n+l
1 le v-lpmpi(x, V)9, 8, = ‘ 121 Fop (2, v) 8w, C (14)
and
n n+1
121 mell(x’ V) Vjry = 21 mezz(‘”’ v) 8y v;, (15)

which easily follow from I.1 (12).
By using (14)—(16) in (13), and noting that vdz is the volume form for G, we then have

n+1 n+1
> {gl Foppy(z, ) 0,v,0,9, L+ F,,, (2, ) 8, wd,wl + F,,, (x, v) 6, w0, C} aur

t.4=1J@
n n+l n+1
= z 1’;{ z Fp{pjzz(x’ 'V) 61 "}+ Z FD{I{I[(xl 7)} Cdun (17)
i=1Je lj=1 =1
We remark that if we replace { by »,,,{ in (17), then, using the fact that v, , =v"1,
we obtain
n+l n+l
. ,2_1 G{"’nﬂ El Fp,p,(x, v) 6w, 6/”1 &— Fpgp,(x’ v) aﬂ’nu o C} dH"
n+1 n+l n+l
= lzl G"'M-l L4} {‘ Izl FD(D]I[(x’ 1’) 6! vj+ ‘21 an:z(z’ v)} Cd',un (18)

Writing {(x) =¢?, u(x)) in (17), where @ has compact support in Q2 =R, and using the
inequalities I.1 (8), (9), and (14), cf. analogous arguments in [11] and [16], we then deduce

f (|5v|2+\5W|’)¢2d?l“<ch‘ (6|2 + 052 @) d U7, (19)
G G

where ¢, depends only on » and A.
Choosing ¢ such that spt p<= U™ '(xy, 0), p=1 on U""(z,, /2) and sup | Dep| <3/p,
we obtain the bound for |é»|2 in the following lemma. This bound will be of central im-

portance in what follows,

LemMma 2.5. Suppose u satisfies (6) on Q. If z,€G and U™+ (x4, 0) N (G~ G) =D, where
@ <@y, then

f |8y [PaH" < co™ 2, (20)
GnUR+1(0,0/2)

where ¢ i8 a constant depending only on n and A.
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Next we have an interior gradient bound for solutions of (6). Note that such a result
is false in general for solutions of (1). Gradient bounds of the type obtained here were
first obtained for arbitrary dimension n in [5]; the result was extended to equations of
the general type (6) in [11] and [16].

LEMMA 2.6. Suppose u satisfies (6) on Q, suppose g €(0, go), and suppose U(xq o)< Q.

Then
| Du(xo)| <c, exp {com, [0} 21)

| Du(zy)| <c, exp {cam, [0}, (22)

where

mg = Sup (u—ul(%y)), my = sup (u(x,)—u),

Uz, ) U™z0, @)

and where ¢,, ¢, are constants depending only on n and A.

The next lemma shows that if the principal curvatures are pointwise bounded, then
¥, satisfies a Harnack inequality on G. In the minimal surface case a similar result has

been proved in [17].
LeMMa 2.7. Suppose u satisfies (8), suppose g <go, UMy, 0) < Q and

sup |M[P< K/o® (23)

GnU 1o, @)

where y,= (x4, u(2,)) and K is a constant. Then

sup Y1 SC inf Vnits
GnU™ Lo, 0/2) GnUB+ (e, p/2)

where ¢ depends only on n, K and A.

Proof. We first note that there is §€(0, 1), depending only on K, n and A, such that
GNU™(y,, Op) is connected and

[(@) —(yo)| <cb, x€Q NV (y,, Op). (24)

This is fairly easy to prove by elementary means, but it is convenient here to simply note

that by (23) and 1.1 (33)

f |5,,|d:un<c_@09i<cl/7(0(09)"‘1,
EnUn+ 1o, 6g) e

where ¢ depends only on n and A; hence we can use Theorems 1.2 and 1.3 to yield (24)

and the required connectedness.
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We can now introduce new orthogonal coordinates in the tangent hyperplane of
G at yy; with respect to such coordinates the equation (18) gives a uniformly elliptic equation
for yn41 (see [17] for a detailed argument in the minimal surface case). Hence by

Harnack’s inequality for uniformly elliptic equations we deduce for small enough 0

BUp  PpaC inf v,
Unt1, 6/2) Un+1(yo, 00/2)
which is the required inequality with o in place of o. Since we can vary y,, the lemma
now follows.
The following lemma contains the information concerning the Dirichlet problem which

will be needed later.

Lemma 2.8. Suppose £ is a bounded C® domain such that the distance function d, defined
by d(x)=dist (x, 0Q) for x€Q and d(zx)= —dist (x, 1) for xER"*~Q, satisfies
n d n d
> — {F, (x, Dd(x), 0)} <0 and 3 — {Fm(z‘, — Dd(zx), 0)} <0 (25)
i1 dz, t T1dz,
at each point x€0Q, and suppose y is an arbitrary bounded real-valued function on 0Q.
Then there is a C*(Q) solution u of (6) satisfying the condition
Hm u(x) = p(x,) (26)

)
zeQ

at each point x, €052 where y is continuous. Furthermore, if

W ={(z,1)€0Q x R: t <y(x)}
8 such that
B=0[W]€R,,(R"*)

and if the set of discontinuities of y are contained in a closed set of W~ -measure zero, then
the boundary values p are attained globally in the sense that

a8[G] = B. 27)

In this case, [G] is absolutely F-minimizing in QxR; if TER,(R)""', 0T =B,
spt T<Q xR, then
1

éf v —»"Pd|| T|| <F(T) - F[G). (28)
ax<B
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Remarks. 1. Note that (28) guarantees uniqueness of the u satisfying (6) and (27).
2. In the special case when Q=T"(0, g,), we have d(x) =g, — ||; hence (25) requires

*d x tood x
il -2 0)< - =, 0)<0.
21 iz F, (x, Bk 0) 0 and 21 az, F, (x, Bk O) 0

But, using 1.1 (8), one easily checks that

1 & — z o .
_—Zme x, -{—m,o iléqu x, +l—;i,0 < — 00 =}»1

i d =z
ZiJ’F( +|_x|’°)‘ ER

{=1
for z€9U™0, gy), where A, =sup,ynq, .| Zin1 Fyy(@, +(/]z]), 0)] <A.

Hence (25) holds in this case for any g,<A-! (and strict inequality holds in (25) if
0o <A71).

In the constant coefficient case, i.e. Fy(z, p)=0, 1=1, ..., n, p€S", we have 4,=0,
and hence (25) holds for every g, >0.

Proof. The condition (25) is sufficient for the existence of boundary barriers for equa-
tions of the form (6) (see the discussion in [16], §5). Then in view of the a-priori bounds of
Lemmas 2.2, 2.6 it is a standard matter ([14], alternatively see [16], Theorem 4) to
deduce that (6) has a C? solution satisfying (26).

To prove (27) it suffices to show that

e[a-1=[a]-[W]. (29)
where
G- = {(z, t) €EQ x R: t <u(x)}.

((27) follows from this by applying 0 and using 62 =0.) Since the set of discontinuities of
y is contained in a closed set of #"~1.measure zero, (29) follows from (26) and the faot that
HY (@) < oo. (28) holds by I.1 (20). Thus the proof is complete.

We now replace n by »+1 and apply the above results to solutions of the equation (2).
In particular, if we apply the last theorem above, then we can prove that if g, <Ay(%),
if 4 is an open subset of 9U"*1(0, go) such that

B=2[4]€R, (B (30)
H-1(spt B) < oo, (31)
then for each r=1, 2, ... we have a C*(U"*(0, g,)) solution u of (2) with

w,=r ond, u,=0 on dU™Y0,g,)~Ad (32)

(*) Here 4, is as in the remark 2 following Lemma 2.8.
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and with graph &, such that
o[G,]1=Bx[(0,n]+[4 x{r}]-[4 x {0}] (33)

We now fix A, B as in (30), (31) and introduce the following further notation for
FeF A, 0,):

MA(F, go) = {T =2[ VIL U0, 00) EM(F, go): 2[ V] L aU™ N0, o) =[4]}-
(Note that than any T =8 V]| _U"+Y(0, o) € M,(F, o) must satisfy

T-[4]=2[V], (34)
and, in particular, 07 = B.)

We always take g, <A1, 4, as in remark 2 following Lemma 2.8.

M(F, 0;) will denote the collection of T=o[ V]L_U"**(0, g,) € M4(F, g,) such that
there is a subsequence {u,} of {u,} (u, as in (32), (33)) and a sequence {d,} of reals such that
for each ¢ >0

CHY(ULAD) D (U0, 00) % (—, @))>0 88 koo, (36)

where
U=V xR

and
U, = {z€T(0, go} x R: @,y < wply, ..., 2,) ~dp}.

We note that the sequence d, must satisfy
dk_’ oo, k -—dk—> oo as k—>oo,

otherwise U =V xR would be impossible by (33).
We note also that M(F, g,) is closed in the sense that if

T,=o[ V,]JLU"X0, ) EMu(F, g0) sndif T =a[VJL U (0, go),
then
LY V,AV)>0 as r—>co implies T € Mu(F, g,)- (36)
The following lemma concerning MM(F, g,) is of central importance, and is a con-
sequence of Lemma 2.5. In [13] Miranda considered arbitrary convergent sequences of
solutions of the minimal surface equation (converging in the same current sense as here)

and proved a result like (i); we here use a similar argument to prove (i).

TueorEM 2.1. If T€ M(F, o), then

i) H*sing T 0 U0, p)) < o0, Vo <g,,
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and

(ii) [0V PdH < co™®, Ve <g,,

fU"H(O.g)nrez T

where ¢ depends only on n, A and g/g,.
Furthermore, each component M of reg T satisfies

(iii) e[ M]L_U™(0, g,) =0,
and if M is appropriately oriented(*)
(iv) {M]eM(F, o).

Proof. By Lemma 2.5 we have for ¢ <g,

f |6rvr|2dyn——l SCQn_l, (37)
GNUn+2(0,0)

where
6" =191, o7 = la]

and where ¢ depends only on », 4 and g/g,.
We now let 7€8[ V]__U"*X(0, o) € Mu(F, g,) and let £ >0.
Defining
S=Tx[R], U=VxR

we have that (35) holds for some sequence {d,} of reals. We now let p <p, and define
(sing 8), = sing S N B"+%(0, g).

Then (sing 8), is compact, and hence for sufficiently small 6€(0, 4(g, —¢)), we can find

points 2, ..., ™ € (sing 8), such that

N
(sing 8), = U U" (2, 20) (38)
=1
Ur+2(e®, ) 0 Un2(@®, 8) =D, k7, (39)
and
H -1(sing S),) < 2" 1Ne(n-1)6"1+¢. (40)

{Note that here we have used the definition of Hausdorff measure.)

(1) Given a component M of reg T, T € m'A(F, 0,), we always take l[M ]l such that y[#1=,T
on M.
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Now let z%%€spt Sy(S,=[G,]) be such that |z?—a*»|=dist {*, spt §,}. Since

9P > a8 k— oo, we have
U2, 8/2) < U2, 8), k > ky, j=1,..., N. (41)

We now claim that there is a constant # >0, depending only on » and 4, such that for
=1, ..., N and for k=k, >k,

J‘ |6Skvsk|2d7‘n+l 2"76"_1. (42)
spt SpnUn+2th B, §/2)

This must hold because otherwise, for sufficiently small >0 and some subsequence
{k'}={k}, we would have by Theorem 1.3 that the hypothesis 1.1 (37) holds with » +1,
66, %> and 8, in place of n, p, x, and T respectively. Thus we would have that for
k' >ky, spt S, N U™ %%, 66/2) is a connected O? hypersurface with

|5 (x) — v (y)| <clx—y], =, yEU2(2", 65/2) N spt Sy,

where ¢ depends only on n and A. Since z*” >z this would clearly imply that «” €reg S,
and this contradicts the choice of z.
Summing over j=1, ..., N in (42) and using (39)—(41) we have that for sufficiently

large k
nH"*((sing 8),) —ne < f |65k p5k 2 g+,

spt SN UR+2(0, (9o +¢)/2)

and by (37) this gives (since £ >0 was arbitrary)
H~((sing 8),) <",

where ¢ depends only on #, 1 and p/g,. Then since S =7 x [ R], this clearly implies (i).
To prove (ii) we notice that if
(reg S), = reg 8~ {z: dist (z, sing S) <o},
then for g <g,

f Ias,ﬁlzd;‘nn — lim I(Sskvsklz d:unﬂ
(reg S)onU+2(0, ¢) k-»00 o (8Dt Sk~ {2: dist(z, sing $)<eHNUN+2(0, @)
< im lésk,vsk|2dun+l < cenAl (43)

k=>0 J spt SENTURT2(0,p)

by (20). (43) holds because of the convergence described in remark 3 following Theorem

1.2. Since ¢ was arbitrary, (ii) easily follows from (43).
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The remaining conclusions of the lemma are a direct consequence of Lemma 1.1.

In view of the definition of M,(F, g,) it is natural to ask whether or not, for every
choice of constants d, satisfying d,— oo :and r—d,—~oo as r—> oo, there is a subsequence
{u, —d,} of {u,~d,} such that (35) holds for some U =V x R. The following theorem answers
this question. In this theorem, and in what follows, we continue to assume g,<A;’, 4,
as in remark 2 following Lemma 2.8. Here and subsequently we take sup ¢ (¢ as in the
definition of ') small enough to ensure that 7' x [R] minimizes F if and only if 7' minimizes
F,T€L (R**?). That this can be done follows from (4) together with the fact that, by
[7, 3.2.22, 4.1.28], for small enough sup ¢ we have i‘(R) > (aF(R,)dt, REL, (R"*?), where
R, denotes the slice by z,.1 =1 ([7, 4.3]).

TueorEM 2.2. Let {d,} be any sequence of reals with
1) r—d,—~,d,~>> as r—>oo,
and let
U, = {(z, ) €U0, g,) x R: t < u,(z)~d,}.
Then there is a Lebesgue measurable U< U"1(0, g,) x R and a subsequence {k} ={r,}.1.2....
of {r} such that for each ¢ >0
C**2[(U,AU) 0 T"H0, go) x (—0, 0))]>0

as k—co. U 18 such that either

(i) [U]=[V xR]
for some subset V<=U™0, g,) with

(i) T =2[V]LU"1(0, 0)) € Ma(F, go),
or

(i1)’ [U]=[V xR]+[G],

where V is as in (ii), (1) and where G~ has the form
(iii)’ G ={(z,8): x€W, t<u(x)},
with W an open subset of U"*1(0, o,) and u a C*(W) solution of (2).

Remark. It can happen that the case (ii)’ occurs: consider for example the case
n=1, g,=1, F(z,p)=|p| and 4={x=(x,, 2,)ES: —l/l/§<x1<1/l/§}. One can check
that in this case the choice d,=7/2 yields W ={(x,, z,): —1/V§<xl<l/l/§, —1/V2
<my< 1/|/§}, V={(z, z5): — 1/V§<x1< 1/V2 and either Ty < 1/V2 or Zg < -—1/1/5},
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G- = {(2,, 25, Tg): T3 <u(%, x,)}, where the graph x; =wu(z,, ;) is Scherk’s surface; that is

V2, cos(nz/V2)

u(wy, 2,) = 7 %8 on (nmy] Vo)

Note also that the choice d,=§r yields (iii) with
V ={(2,, z,) €U0, 1): — 1/V2<x,<1/V2 and either 2, <1/V2 or z,< — 1/V§}.
The choice d,=r/4 yields (iii) with V = {(x,, 2,) €U%(0, 1): —1/V2 <=, <1/V/2}.

Proof. By Lemma 2.1 and Theorem 1.1, we know that there is a subsequence
{U,}={U,} and a Y<U"**(0, o) x R such that for each ¢ >0

(YAT,) 0 (U0, go) x (g, 0))=0 as k—oo
and such that
§=2[ ¥]L_(U"}(0, g) x R)

is I‘-‘-minimizing in U0, g,) x R. Also, since we have the strict inequality g, <27’ we
can prove, using a more or less standard barrier argument, that for each compact
K< AU (@U™(0, gg) ~ A)

dist {G,, K x(—d,+1,r—d,—1)} 2¢ >0, (44)

where ¢ is independent of r. Hence it follows, by using this last fact together with (31)
and (32), that

[ Y] (aU™(0, go) xR) =[ 4 x R]. (45)

We can assume that Y is open and 8Y =spt SU (4 xR). Taking z,€reg § we see
from Lemma 2.7 and the remarks 2, 3 and 4 following the regularity theorem (Theorem 1.2)
that for some ¢ >0, the set S, =spt S N U"**(x,, o) satisfies

S,creg 8 andeither v3,=0 on S, or 15.52¢>0 on &, (46)
g

where ¢ is a constant.
If we let  denote the projection of R**? onto R™*!, defined by m(xy, ..., %y 1, Tnis) =
(%1 «+e> Tpyq), it is then not difficult to check that

Y ~ (n(sing Sy xR) =G~ U U, (47)
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where G is of the form (iii)’ (possibly with W =@@), and where U is such that
(#(UyxR)nspt 8§ =0.
It then easily follows that U is open and

U=VxR, (49)
where
V =a(U).

Then combining (49) and (47), and noting that L""*(n(sing 8)xR)=0 (because
H+(sing S~ A x R} < oo by the regularity theorem (Theorem 1.2)), we deduce

[Y]=[e"]+[V xR} (50)

We now consider the two cases @ = and G~ 0.
If G =@, then 8[V x R]_U"*'(0, g,) x R is F-minimizing in U™**(0, g,) x R; hence
3l V]L_U™Y(0, g,) is F-minimizing, and we then deduce that 8[ ¥']1_U""'(0, go) € Mi(F, g,).
If G =0, we define, for r=1, 2, ...,
Y,={x—rey,q €Y}
G ={x—-re, , x€G},

where e,,,=(0, ..., 0, 1)€R""2. Then clearly by (50)
[r, =[G ]+[V xR]
However G,,,<G; and N2, G =@, hence
C3G; 0 (0™(0, 09) X (—p,0)))>0 as r—oo
for each g >0. Thus it follows that

C*(Y,AV xR) 0 (U0, go) X (—@,0))) >0 as r—oco,

and hence, by Theorem 1.1,V x R]_(U"Y(0, g,) % R) is F-minimizing in U"*1(0, g,) xR.
Then, as in the case G~ =@, we deduce 2[ V]| _U""'(0, g,) € M4(F, go). This completes
the proof of Theorem 2.2.

The next lemma shows that for any 7', € M,(F, g,), we have spt T, < Uspt T, where
the union is taken over all 7'€ M4{F, p,). In the main theorem of 1.3 (Theorem 3.1) a
much stronger result will be proved; viz. that 7T'; can be expressed as a locally finite sum
Z[M,], where each M, is a component of reg 7 for some T'€ My(F, g,).
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TaeorEM 2.3. If T,=08[V,]L_U""0, go) € M4(F, 0o) and if z,E€spt T, NV"*Y(0, g,),
then the choice d,=u,(z,) fulfills condition (i) of Theorem 2.2 and yields T € My(F, o)
such that x,€spt T'.

Proof. We define
H,= =[Vyx{r}]+[V, x{0}],

where the orientations are such that
o[a,]=o(Ty x[(0, n))+H,). (51)
Then by 1.1 (20), writing S,=T, x[(0, )]+ H,, we have

H f (oA =y 2d)| 8, || <F(S,) - F([&,]). (52)
2 U"+1(0'Qo) xR

But T, x[(0, r)] is F-minimizing, and by (51)

a(Tl X II(O) 1‘)]]) = 3(|[G,]] _Hr):
hence . 3 3 3
F(8,) = F(T, x[(0, )]+ H,) <F(T; x[(0, n]) +F(H,)

<F([@,]-H,)+F®H,) < F([6,])+FH,)+F(-H,).
Hence (52) gives

fU +1¢0, go) Rl”[G’]_”s'Pd”Sr'”gc’
n  00) X

where ¢ is independent of r. On the other hand
f I,,IGr] —v[*d}| S, || = rf (vEﬁ'zl)zd#", (62))
Un+10,00) xR spt Th

because ||S,|=|T,x[(0, »]|| +||H,| and vfi;[(o")]=0. Thus, since vE,‘i'«}=(l + | Du,|?)~'?
we have that

f (1+|Du, [ty dH >0 85 r>oo. (54)
spt Ty

If we now take any o €g,— |%,|, then we must have

sup  (u, —ulzo)) > oo, sup (u,(%)—u)-> 0. (55)
Un+lzo. 0) o Unt iz, 0)
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Otherwise, we could deduce from Lemma 2.6 that for some ¢’ € (0, ¢) there is a subsequence
{k} of {r} with
sup |Du|<e,
Un+1ze. o)

where c is a fixed constant, and this clearly contradicts (54).

In particular, by Lemma 2.2, (55) implies that u,(xg)—> o and r—u,(xy)—>°; hence
we can use Theorem 2.2 with 4, =u,(z,), r=i, 2, ... Then by using {565) and 1.1 (28) it is
clear that the subset U obtained in Theorem 2.2 has the property that

a~Yw,) < spt 2[ U]

It then easily follows that x,€ spt 7' as required, regardless of which of the alternatives
(iii), (iii)’ of Theorem 2.2 holds.

1.3. Main results

Here we intend to use the results of the previous section; 4, B=2[A4] are as inI.1
(30), (31). ML(F, 0), MA(F, 0,) are also as introduced in the previous section.

Our aim here is to show that each element T'€ M (F, g,) can be decomposed into a
locally finite sum Z[M,], where each M, is a component of reg S for some S € M(F, g,).
In this way, regularity results for 7'€ M ,(F, g,) are inferred from the known regularity
results for currents S€ M (F, g,). The main results appear in Theorem 3.1.

In the special case of 2-dimensional F-minimal currents we can prove that the singular
set is empty. F. J. Almgren has informed us that he has another proof of this; his method is
based partly on the methods of Part II of the present paper and is independent of the
results of this section,

The present section will conclude with a uniqueness result (Theorem 3.2).

We will need the following lemma concerning currents in M ,(F, g,).
LeMMa 3.1. Suppose S, TE€M4(F, @), FEFA, 0o), and define
M=regSnregT.
If M0, then M is a C? hypersurface with
M — Mcsing S Using T (1)

and with unit normal v satisfying
v=9" =T
at each point of M.
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Proof. We will eventually show that if z,€ M, then there is a o >0 such that

U™ Yz, ) Nreg 8 =V Yz, 0) Nreg T. (2)

This clearly suffices to prove the first assertion of the theorem; the assertion that » =»5=+7

(i.e., ¥*< —»T on M) will emerge as a consequence of one step in the argument leading to (2).
We beging by letting ¥, ¥, denote open subsets of U"*1(0, 0¢) such that (cf. 1.1 (24))

T= 3([ VT] LU Y0, g) S= 6[[ Vs] L. U™Yo, ©o)-

U0, go) N 8V p =U"1(0, g5) Nspt T', U™0, g) N Vs =TU""1(0, o) N spt S.
Next we note that
Vsl + Vel =[Vs U Vo ]+ [Vsn V], (3)
and hence
S+T=8+1T, 4)
where
S =0[VsU Vo JLU 0,00, T =08[Vsn Vo] LU0, gy).

One easily checks that

ofvsu |23 Lau™o, Qo) = EA}]
and

ofVsn V] L 30U (0, go) = [4];
and hence

eS8 =oT = B. (5)
Also, since
[vsv VT]]+I[ Vs V] =B f,

where =2 on VNV, f=1 on (VU V)~ (VN Vy),and f=00n R**'~ (VU V,). Hence
by [7], 4.5.9, {13), we have
18" +27ff = sy +H il
and hence
F(S' +T') = F(S") + F(T"). (6)
We also have

FS+T)=FS+FT)-FS_L)-¥T|_L), (7

where
L = {x€reg 8 N reg T:v’(x) = —¥"(2)}.

(We note that L is closed relative to both reg S8 and reg 7', and hence is Borel-measurable.)
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By combining (4), (6}, and (7) we now see that
FSY+FTY+FSL_L+FTI_L) <FS)+FT).

However, using the fact that 8, T' are F-minimizing together with the fact that 08" =27" =
98 =0T, we then deduce that
HYL)=0 (8)

and that §8’, 7" are both F-minimizing in B"*}(0, g,).

We can now show that L=. Suppose on the contrary that we have z,EL. Since
vi(x,) = —v"(x,) and since xz,€Ereg SNreg T, we can suppose without loss of generality
that the coordinate axes have origin at z, and are such that, for suitable ¢>0,

reg 8 N U™}(x,, 0) and reg T N U"*(x,, o) can be represented in the non-parametric form

Tppy = Ug(Lys ooy Tn)y  Tpgy = Us(y, ..., Ty), 9)
with
Duy(0) = Duy(0) = 0 (10)
and with
Vs N UMz, 0) < {&: 2pyy > Uy (T, ooy Tp), (24, ..., T,) Edomain u,} (11)
and
Ve 0 UMYz, 0) © {22 g < Uy, ...y @), (%, ..., ¥,) EdOmain uy}. (12)

Then by (10), (11), (12) we see that
LU Nz, 0')~ (Vs U V) <e(o’) (o)™, (13)

where £(c’)—>0 as o'~0. However, we showed above that S’ =2[VsU V,]|_U"*(0, g,)
is F-minimizing, hence we have that 2[U*"(0, go)~(VsU V)] L_U"*(0, g,) is F’-mini-
mizing, where F'(z, p)= F(x, —~p). Then (13) contradicts the volume bound of I.1 (35).
(Notice that xz,€spt 8[U™*'(0, gg)~(VsU V)] because H*L)=0.) Thus we deduce L=
as required.

Next we consider the possibility that »(xy)<v"(%,) for some x,€ M. Since we have
already proved v5(z,) < —97(%,), we can then suppose that the coordinate axes are such that
x,=0 and such that for sufficiently small o reg 8 N U"*'(x,, 0) and reg T' N U"*'(z,, 0) can be
represented in the form (9) where now

Vs N U™ Y wy, 0) = {x: %y py > Uy (Xy, ..y Tp), (2, ..., T,) € dOmain u,} (14)
and

Ve N UMYz, 0) = {2 2,0 > Us(Ty, ..., Zp), (Ty, ..., T,) € dOmain u,}. (15)
17 — 772905 Acta Mathematica 139. Imprimé le 30 Décembre 1977
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But, again using the fact that 8'=8[ VU V]I U0, g,) is F-minimizing, we then see
that the Lipschitz function

ut =max {u,, Uy}

(defined on the intersection of the domains of «, and u,) must be a weak solution of the
Euler-Lagrange equation 1.2 (1). However, u* is not ', and this contradicts Lemma 2.3.

The final possibility is that »5(x) =»"(x) at each point of M. However, non-parametric
representations of the form (9), (14), (15), together with Lemma 2.4, then imply that for
each z,€ M, (2) must hold for sufficiently small o. This completes the proof.

CoROLLARY 3.1. If 8, TE M (F, p,) satisfy
H 1((sing 8 U sing T') N U0, g,)) =0,
and if M, M’ are components of reg S, reg T, respectively, such that

MnM+0,
then
M=M and [M]EM(F,g,).
Also
sing § N U™(0, gg) = (U (M — M)) 1 U**(0, gy), (16)

where the union is taken over all components M of reg 8.

Proof. M 0 M’ is open in M’ by the lemma. Then, by the connectedness of M’, either
M<cM or M'N(M~M)+=Q. In the latter case we choose z,€ M' N (M ~M) and ¢>0
such that M’ N U™} (x,, o) is diffeomorphic to U™(0, 1). Then by the Poincaré inequality
((7], 4.58) we deduce H' Y(M'N(M~M))>0, thus contradicting the hypothesis
H ' (sing S N U0, go)) =0. Thus we must have M’ < M. Similarly, one can prove M < M’.

Next we note that [M]=02[V]L_U""}(0, g,), for some Lebesgue-measurable V, by
Lemma 1.1. Hence to prove [M]€ M(F, g,) it remains to prove that [ M] is F-minimizing
in U0, g,). To prove this, let K be an arbitrary compact subset of U"*}(0, g,), and let
ReR,(R™") besuch that SR =8([ M ]| K), spt R<U"*(0, g,). Then, using the F-minimality
of S, we deduce

F(R)+FS|_K—-[M]LK)>FNR~-[M]LK+S|_K)
>FSLK)=F[M]LK)+FS_K-[M]_K). (17)

Note that the last step follows from the fact that

spt (S—[{M]) nspt [M] < sing S,
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which implies H*(spt (S—[M]) nspt [M]=0. (17) now gives F([M]|_K)<F(R) as
required.

To prove (16) it suffices to prove sing 8N U0, go)< (U (M —M)) n U0, g,) since
the reverse inclusion is obvious. Then let z,€sing SN U"(0, g,); then there exists a
sequence {M,} of components of reg 8 with dist {xy, M,}>0 as r—co. However, since
we have shown that [ M,]€ M(F, g,), it follows from I.1 (28), (33) that there are at most
a finite number of distinct terms in the sequence {M,}. Hence 2,€J for some component
M of reg S; we then have 2 €M ~ M. (x,¢ M because M <reg S.)

The following is a consequence of Lemma 1.1 and Theorem 2.3.

LeEMMmaA 3.2. Suppose TE€MF, ;) and N is a component of reg T. Then there is
SEMUF, 0,) and a component M of reg S such that N< M. Furthermore, if N==M, then

HYYN-N)nM)>0 (19)

Proof. Take z,€N and let ¢>0 be small enough to ensure that N N U"+(0, o) is a
connected C2? hypersurface with (N —N)N U (z,, 0)=3. Let C denote the collection
of all M NU"(x,, 6), where each M is a component of one of the hypersurfaces in the
collection {reg 8: SE M(F, 0,)}. Suppose M NN NU*"(xy, 0)=D for each M EC. Then
by using Lemma 1.1 with U"*'(z,, o) in place of U**(0, g,) and with C U {N N U(x,, o)}

in place of C we deduce

¥ H((UM) NN 0 Uy, 0)) =0, (20)
where the union is taken over all M € C. However, by Theorems 2.1, 2.3 and by (16) we
have

NcUMnN. (21)
MecC

(20) and (21) are contradictory. Hence we deduce that there is a component M of reg S
for some S€ M(F, g,) with M N N+@. But then by Lemma 3.1 M NN is open in N.
Then by the connectedness of N together with the fact that }" (M — M) n U***(0, 0)) =0,
we can deduce that N< M. (Cf. the first part of the proof of Corollary 3.1.)

To prove (19) take a point x,€ (N —N) N M and choose ¢ small enough to ensure that
MNU™(z,, 0) is diffeomorphic to U***(0, 1). Then by the Poincaré inequality [7], 4.5.3,

we deduce
H-((N—-N)n M 0 U (z,, 0)) > 0;

that is, (19) is proved.

Lemma 3.3. If TEML(F, o,) and if x,€sing T ~spt B, then there exists S€ Mu(F, g,)
such that xy€ sing S ~spt B.



254 R. SCHOEN AND L. SIMON

Proof. By Theorem 2.3 we know z,€spt S, for some S,€ My(F, g,). If z,€sing S,
we have nothing to prove. We therefore suppose x, € reg S, and we define »® =+5(x,).
Since w,€sing T ~spt B, we know from remark 2 following Theorem 1.2 that there

is an £>0 and a sequence {z,} <reg T such that x,—~x, as r— oo and
[ (z,) —°| > &. (22)

For each r we let N, be a component of reg T such that x, € N,; by Lemma 3.2 we have
8,=0[V,]L_U"Y(0, g,) € M(F, g,) such that N,cregS, and such that »=+" on N,
By 1.1 (33) and Theorem 1.1 we have a subsequence {S,}< {S,} and V< U"*(0, g,) such

that
cHY(V,AV)—-0

and such that S=38[V] U™ 0, go) € Mu(F, o). (We know SE€ M,(F, g,) by the remarks
preceding 1.2 (36).) By 1.1 (28) and Theorem 1.1 (vii) we can see that x,€ spt S. If z,€ sing §
there is nothing further to prove. The only other alternative, in view of Lemma 3.1, is
that S|_U""(z,, 0) =8, _U"*}(z,, ) for some ¢>0. However, by remark 3 following
Theorem 1.2, we then have v*(x,)—>1° as k— co, thus contradicting (22).

We can now prove the main theorem.

THEOREM 3.1. Suppose T € M4(F, g,). Then T can be represented in the form
T= ZI[MJ]

where for each o €(0, g,) we have [ M,]|_U""'(0, o) =0 for all but a finite number N (depending
on n, A, and p/o,) of i, and where each M, is a component of reg 8 for some S€ My(F, g,).

In particular,
H—3(sing T' N U™1(0, g)) < o0 (23)
for each g <g,, and

f |6 PdHr < oo™ 2, (24)
reg TnU 10, o)

for each g €(0, g,), where ¢ depends only on n, A, and pjp,.

Proof. Our aim is to show that each component of reg T' is also a component of reg §
for some S€M(F,p,). Then Theorem 2.1 together with the area bound I.1 (33) will
imply the required results.

Then let N be any component of reg 7. By Lemma 3.2 we have N< N, for some
component N, of reg S, S€My(F, g,). If N==N,, we then have by Lemma 3.2 that

W (K —N) n N,) >0. (25)
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Now let C be the collection of M such that M is a component of reg S for some
S€MAF, g,) and such that M n (N —N)NN,+@. By Theorem 2.1 and Corollary 3.1
we know "-{U™Y(0, g,) N (M —M)) =0 for each M E€C, and M N M' =@ for each distinct
pair M, M'€C. Hence we can apply Lemma 1.1. Taking M,=N,, this gives

W U M)niNy=o. (26)
MeC~(N}
However, Uyecc~onM >N ~N)NN, by Lemma 3.3. Hence we see that (25) and (26)
are contradictory.

Note that the above theorem asserts in the case n=2 that H%(sing 7' n U0, g)) < oo
for each p <g,; that is, there are at most a finite collection of singular points of 7' in U%0, ).
We can easily show in this case that there are no singular points, because by (24) we have,
for each x,€ spt T' 0 U3(0, g,),

f |67 2dHE>0 as o—0.
res TNUzq, @)

But then by Theorem 1.3 (with »=2) and the regularity theorem (Theorem 1.2) we
deduce z, is a regular point of 7. That is, we have the following corollary of Theorem 3.1.

COROLLARY 3.2. If TEM,(F, 0,) and n=2, then
sing T'N U0, go) = D.

Notice that in Part IT it will be proved that, for any n, #* *(sing 7'n U"**(0, g,)) =0,
and the above corollary could be interpreted as a special case of this general result.

Remark. The above results are all stated for currents 7€ M (F, p,); however, the
results apply directly to any F minimizing 7' €1,(R**') with spt 0T < 8U"*'(0, g,) by virtue
of the fact that any such 7' can be decomposed into a locally finite sum T'=27T,, where
each T,€ M4y (F, g,) for suitable 4,= U™ (0, g,).

We conclude Part I with a proof of the following uniqueness theorem.

THEOREM 3.2. If TEM(F, 0,), if K is a compact subset of U*1(0, o), if S is F-mini-
mizing n K, if spt SC K, and if 08 =0T |_K, then S=T|_K.

Remark. A similar theorem can be proved if one takes any integral current 7' which
is F-minimizing in an open set U. (Then it is assumed that K is a compact subset of U.)

Proof of Theorem 3.2. We define T" =T | _(U"*(0, g,) ~ K) + 8. It is easily checked that
then 27" =38T and F(T")=F¥(T). Then 7" is F-minimizing in U"**(0, g,) and it follows that
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T'€Mu(F, 0,). This is quite easily checked with the aid of [7], 4.5.17, which one can
apply to the current R=[A]—T". The required uniqueness follows easily from Theorem
3.1 and Corollary 3.1.

PART 11
IL1. Terminology

Except where otherwise noted we follow the terminology of part I, {1], or [2]. Throughout
part II we assume »>2.

i) Q=L ,B*"")n{{A4] AcU"(0,2) is L' measurable} (recall [A]=E""!|_4
as in I.1) with the M metric topology, i.e. M(@, R)=M(Q — R) for @, R€Q. In particular,
if A, BcU™(0, 2) are £"** measurable with [4], [ B]€Q, then 4 is £"*' almost equal to
RN {z: " Y(||4]|, z)=1} and M([4], [B])=C""'[(4d ~ B) U (B~ 4)].

(ii) $*=R.(B*)n {&QL_U"}(0, 2): Q€Q}. One notes that corresponding to each
S€S* there exists a unique QEQ for which §=2Q|_U""(0, 2). We give $* the induced
metric m, i.e. m(8, T)=M(Q, R) whenever @, R€Q, S=8Q_U"* 0, 2), T=8R|_U""(0, 2).

(iii) Whenever F, G:R*"!xR"'->R+ are parametric functionals such that F,
G|R™! x (R**'~ {0}) are of class 2 we define

distance(F, G)
=sup {| F(z, p) — G(=, p)| + | D[F(x, -)}(p) — DICG(=, )](p)|
+ | D[ F(z, -))(p)— DUG(x, -))(p)|: xER™!, pES™.

We denote by F* a fixed subset of the space of all parametric functionals (integrands)
F:R™! xR**!>R+ for which F|R"*! x (R**1~ {0}) is of class 3. We further suppose

(a) the n dimensional area integrand M =| - | is contained in F*,

(b) sup {| D3F(x, p)|: F€ J* xER™?, p€S™} < oo,

(¢) There exists a positive number ¢ such that for each F€ J*, ¢F is positive and
elliptic [L.1, (8), (9)],

{(d) F* is compact in the distance topology.

We further denote by J the set of all (constant coefficient) integrands of the form
F(x, -) corresponding to each x€B"*'(0, 4) and each F€ J*. Clearly 7 is compact in the
distance topology.

{(iv) Corresponding to each F€J* we denote by Sy the set of all surfaces S€§*
such that
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(a) O€spt S,

(b) F(S)<F(T) for each T€ R, (R"*!) with 88 =aT.
We further set §= U {§y: F€ J*}.

(v) We define the Hausdorff dimension functions

H: §—~R+, H: J->R+

by setting H(S) equal to the Hausdorff dimension of sing N U"**(0, 2) for each S€S
and H(F)=sup H| §, for each F€¥.

(vi) For each S€§ we define

K:reg S—R+
K(z) = |6%(x)|? for each xz€Ereg S.

(as noted in 1.1, K(x) is the sum of the squares of the principle curvatures of reg § at z).

Also we define
K:S—-R"*

K(S)=J‘ Kd||8|| for each SES,
reg SNU2+1(0, 1)

and set K, =sup K < oo [I, Theorem 3.1] and
3K, =inf K|{S: 0€sing 8} in case §N{S:0€sing S}=+D
=0 in case $N{S:0€sing S} =0.

I1.2. Some properties of S, 7, 7*

(i) $x Jand § x J* are compact in the m x distance topology (7, 4.2.27], [I, Theorem
1.1].

(ii) For each F€J* and each §>0 there exists a neighborhood G of F in F* such
that G€G and T € §; implies m(S, T') <4 for some T € §; [7, 5.1.5), [I, Theorem 1.1].

(iii) For each &>0 there exists >0 such that S€§ with spt S R" x [—4, d] implies
the existence of a function f: U*(0, 2 —¢)—R such that

spt 8 N U™0, 2 —¢) xR = {(x, y): x€U™0,2—¢), y=f(x)}

and
sup {|f(z)| + | Df(x)| + | D*(x}|: x€U™0, 2—¢)} <e

[I, Theorem 1.2, Lemma 2.3].

(iv) For each £>0 there exists § >0 such that S, T € § with m(S, 7') <4 implies
spt S N B**1(0, 1) < {z: dist (z, spt T') <&}
[2, IL.3(11)], [1.1(28)].
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(v) Corresponding to each S€§ and each ¢>0 there exists § >0 such that T € § with
m(S, T) <é implies

sing T n B"*1(0, 1) < {x: dist (x, sing § N B**1(0, 1)) <e&}.

(vi) In case s€[0, n+1] and S€S with H[sing SN B"*}0, 1)]=0, then there exist

a positive integer N, points p;, p,, ..., py€ sing S N B"*1(0, 1), and radii 1/4 > ry, 7y, ..., 7y >0
such that

sing S N B**(0, 1) < {B"*Y(p, r,/2): 4 =1, ..., N}
and

Z{(@2r;):¢=1, .. N}< 1/2.

Furthermore there exists § >0 such that T'€ § with m(8, T') <J implies

sing T n B**}(0, 1)< U {B""(p,,r):4=1, ..., N}.

(vii) In case s€[0, n+1] and F€ J such that S€§; implies ¥*(sing 8 N B"*}(0, 1))=0
then there exist positive integers M and N, surfaces S, S,, ..., Sy €Sr, points p(s, j) €
sing S;NB"**1(0, 1), and radii 1/4>7(s,§)>0 for each ¢=1,.., M and j=1,.., N, and
d>0 such that

(a) sing 8;NB"*1(0, 1)< U {B**Y(p(¢, j), r(¢, )/2): j=1, ..., N} for each i=1, ..., N:
(by Z{(2r(¢, §))*: =1, ..., N} <1/2 for each i =1, ..., M;
(c) if T€S with m(8, T') <4 for some S€ §y, then there exists 1€{1, ..., M} such that

sing T N B*(0, 1) U {B""'(p(, §), (3, §)): j =1, ..., N}.

(d) If T€S with m(S, T') <4 for some S € §y, then there exist 1€{1, ..., M} and points

q(1), ¢(2), ..., g(N)EB"1(0, 1) such that for each j=1, ..., N
either

sing T N B**1(0, 1) N B™*(p(s, §), r(3, j)) = D
or

g(j)€sing T n B"**(0, 1) n B**}(p(¢, §), 7(¢, 1)) and hence

sing T N B0, 1) = {B"*!(q(y), 2r(3,9)):j =1, ... N}.
(viii) K is lower semicontinuous with 0 <3K, <K, <co_In case §N {S: 0€sing S} =+

then K,>0 [I, Theorem 1.2, Theorem 1.3, Lemma 2.3]. Also for each S€ § with O€sing 8
there exist £>0, § >0 such that

Kd||8||>2K,,

J;‘eg SNUR+10, 1)n{z: dist(z, sing $)>2¢}
and T €§ with 0€sing T and m(8, 7') <¢ implies
Kd||T||> K,.

freg TAUR+1(0, 1)n{z: dist (z, sing T)>e}
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(ix) For each F€J there exist a positive integer M, surfaces §,, ..., S,€S, with
0€sing 8, for each i, >0, and 1/2 > ¢ >0 such that T € §; with 0 €sing 7" implies m(7', S;) <6
for some :=1, ..., M and

Kd||T||> K,.

freg TAUR+10, 1N {z: dist (z, sing T)>€}

I1.3
THEOREM. For each S€VU{Sz: FE€F}, M*~2sing SNTU"*(0,1/2))=0 and
H7—2(sing 8) =0; kere M*"~2 denotes n—2 dimensional upper Minkowsks content [7, 3.2.37].

Proof. Let F€F and SE€S, with 0€sing S. We will show that the assumption
Mm*2(sing § N B**(0, 1/2)) >0 implies

| K ds] =
reg SN +10,1)

which is false by [I, Theorem 3.1] as noted in II.1 (6), II.2 (8). The first assertion of the
theorem follows, and the second assertion will be clear from the coverings constructed in
proving the first.

Let 1/2>¢>0 be chosen as in 11.2 (9).

Suppose then MM*"-2(sing SN B"*(0, 1))>0. In that case we can choose K;>0 and

1/4>r,>ery>ry>ery>rg>erg>...>0
such that for each 1=1,2,3, ...,
[o(3) 7311 L™ {a: dist (z, sing § N B"*1(0, 1/2)) <r,} > K,
Corresponding to each :=1, 2, 3, ... we now choose

(i, 1), p(¢, 2), ..., p(s, M,)Esing 8 N B"+(0, 1)
such that
sing S N B**}0, 1)< U {B™*Y(p(¢, j), 2r): i =1, ..., M}
and
B™*(p(s, §), r) N B*(p(3, k), r) =@

whenever j+k. For each 7, j we further set

A(i, j) =reg 8 N U™*(p(s, §), ;) N {x: dist (x, sing S) > er,}.
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It follows by construction that

A(ig, 7y) N A2y, ) =@  whenever (3, §;) == (23, a)-
It follows also from IL.2 (8) that

Kd||S||> Uy
AL
so that

f Ka||S||> M, K, 2.
AGDUAG,2).. . VAU My

We note that for each :=1, 2, 3, ...
R™!' n {a: dist (z, sing S N B**(0, 1/2)) <r,} = U{B"*(p(s, ), 3r): =1, ..., M}

80 that
Kg <[a8)r?] 1L {x: dist (2, sing S N B**1(0, 1/2)) <r,}

<[a(3)rf] M au(n +1)(3r)"* = [3" et(n+1)/e(3)] M 7} "2

Combining this last estimate with the previous integral estimate we obtain

f Kd||S||>ZU Ka||Si=1,2,3,...j-12, ..., M,}x o
reg SNU+1(0,1) Ad.D

.4

Remark. The proof of I1.3 above uses the estimate sup K < oo which know to hold by
{1, Theorem 3.1]. Actually an estimate of the form

sup (K|{F: S€S§; implies H"-2(sing 8) = 0}) < oo

is sufficient since it is then possible to show the subset of J consisting of those ¥ for which
H*-2(sing S) =0 for each S€§; is both open and closed in J (recall that the space of all
elliptic integrands is itself convex). This later estimate is implied for a substantial neighbor-
hood of the n dimensional area integrand by a straightforward second variation estimate.

115

THEOREM. (1) Suppose s€[0, n+1) and FE€F such that SES; implies W(sing SN
B™Y(0, 1)) =0. Then there is a neighborhood G of F in J* such that GE€G and T € S; implies
He(sing T nB*1(0, 1)) =0.

(2) H is upper semicontinuous.
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Proof. Clearly conclusion (1) implies conclusion (2). We will verify conclusion (1).
Let s€[0,n+1] and F€F such that H(sing SNB"*1(0,1))=0 for each SE€S;. Now, in
accordance with II.2(7), choose and fix positive integers M and N, 8, ..., Sy€Sy,
0<r(¢,7)<1/4 for each ¢, =1, ..., N, and >0 such that 7€ § with m(Z’, 8) <J for some
S€§; implies the existence of 1€{1, ..., M} and g(1), ..., g(N) €sing 7 n B**1(0, 1) such that

sing T 0 B™1(0, 1)< U {B"*}(g(j), 2r(3,5)): j =1, ..., N}
and
Z{2r(s, NI § =1, .., N} <(1/2).
We now set
G=3n{G:TeS, implies m(7T,S) < forsome SES;}.

As was noted in 11.2(2), (G is a neighborhood of F in F*.
We now fix GE€G and T €S, and will verify that H(sing 7nB"**(0, 1))=0. To do
this we will suppose m is a given (fixed) positive integer and will construct

Q1 «-r Jm)Esing T N B**1(0,1) and 0 < R(jy, ..., jm) < 1/4
corresponding to each (jy, ..., j,) €{1, ..., N}" such that
sing T N B0, 1)< U {B**Q(j1, -» jm)s R(G1s +or m)): (s s Grn) €{L, ooy N}™}

and
Z{R (g cver Jm)% (Jyr oo Tm) €{L, ooy N} < (1/2)™.

As noted above we can choose i(1)€{l, ..., M}, ¢(1), .., q(N)€Esing T nB"*'(0, 1)
such that
sing TN B0, 1)< U {B"(q(j,), 2r(i(1), 31)): 1 = 1, ... N}
and
B{(2r(i(1), 3] 4y = 1, o0y N} <1/2.

In case m=1 we set @(j,)=q(j,) and R(j;) = 2r(i(1), j,) for each j,=1, ..., N and we are
done.

In case m>1 we now define

T(j,) = [((2r(i(1), j)1 ™ s0g(i)s THI LU0, 2) € S¢

for each §;=1, .., N and, in the same manner as above, choose i(1,j;)€{1, ..., M} and
g(j1, 1), .-, 94, N) €sing T(5;) N B**}(0, 1) such that

sing 7(j;) N B*(0, 1)< U {B""(¢(jy, o), 2(i(L, f2), 7)): f2 = 1, -.or N}
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and
Z{[2r(i(1, 1), j2)]*: f2 =1, ..., N} <1/2.
In case m =2 we set
Qi1 72) =%(—9(1))op(2r(i(1), 1)) 4(j1, 72)
R(j1, jo) = [2r(iQ1), j)1[2r(I(1, j1), 72)]

for each (j, j5) €{1, ..., N}?, observe that, by construction,

sing 7' N B*0,1)<= U {BMI(Q(.'fv jo)» Bt 52)): G 7'2)6{1, ey N}z}
and estimate

Z{R(j1, )" (1, ) €{L, ..., N}%}
= Z{[2r(i(1), jOI12r(i(L, f1), j2)I*: (s ) €{L, ..., N}%}
= Z{[2r(i(L), })TE{[2r (i1, fa), J)I: J2 =1, ., N} Gy =1, ..., N}
<Z{[2r(i1), j0I(A/2): jy =1, ..., N} <(1/2)?

which is the required estimate.
In case m>2 we continue in the same manner to choose in accordance with I1.2(7),
for each 2<l<m,

T(s Jor s 1) € Se
i(1, §1, o -oor fug) €L, .o, M},
q(js Ja» s §1) Esing T'(Gy, ..., 3:1) N B0, 1),
0 < r(i(L, g1, Jay s J1ca)s J1) <1/4

corresponding to each (j,, ..., j,,) €{L, ..., N}' ' and j,=1, ..., N such that
T(ay s Gooa) = B2, Gy ors Frce)s 51-)] D 0G0, ooy 1)) T, s 5121 LU0, 2)
for each (jy, ..., j,_1) €{1, ..., N}1,

sing T'(jy, ..., f1-1) N B0, 1) < U {B™Yq(fy, ..., 70), 7((L, Jys ooes Joa)s I 5:=1, ..., N}
for each (jy, ..., 7,.,) €{1, ..., N}}*"!, and

Z{2r(i(L, 7y, ooy Fra), GO 5 =1, ., N} <1/2

for (jy, ..., ji) €41, ..., N}-L.
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We finally define for each (jy, ..., i) €{1, ..., N}™,

Q1 - Im) =%(—g(j1))op(2r(i(1), 51))ov( —q(f1, j2))opr(2r(i(1, 51), 52))oT( —q(j1s Jor F5))
°(J.(27'(i(1, 7.1: jz)a 7.3))0 . 01( —q(jl’ (2] jm—l))

Op.(27’(i(1, j1> A jm—z)’ jm—l)) q(j]! R 7m)
and

B(jy, oos fim) = [20(i(1), j1)][2r((L, §)s G2))[2r(i(L, 1, o), o) ]---[2r (i1, 1 -y fima)s )]

We have by construction

sing T N B™(0, 1)< U {B**YQ(y, s jm)s BlGts vos im)): (s e Gn) €1, oory N}

and one readily checks

Z{R(ys wr Jm)’s (1o oes Jm) €{L, ooy NJ™} < (1/2)™.

IL.6

CoROLLARY. For each t>0 there exists a neighborhood G, of the n dimensional area
integrand M in § such that sup H| G, <n—7+¢.

Proof. [8].
IL7

THEOREM. Let F:R"! xR >R+ be a positive elliptic parametric n dimensional
integrand in R such that F|R™!x (R"*1~ {0}) is of class 3 and suppose S€ R, (R**?)
such that F(S) <F(S+T) for each TER,(R**) with 8T =0. Then there exists an open set
U in B**? such that " *([spt S~spt 8]~ U)=0 and spt SN U is an n dimensional sub-
manifold of R**! of class 2.

Proof. In view of [I, Theorem 3.1] or the maximum principle of {9, p. 151-152] (more
generally [15]) and [7, 4.5.17, 5.3.19] it is sufficient to establish the theorem under the
assumption that S€§*. Also clearly one can assume Q€spt S and dist (0, spt 88) is
large and show the asserted estimate on sing § near 0. We may furthermore assume that
whenever z, y€ER"**' with |2| and |y| large then F(z,-)=F(y, -). A suitable choice of
F* is thus

F* = {x(x)* F: z€B"*}(0, 1)}.

The theorem then follows from a straightforward adaptation of I1.3 and IL.5.
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I1.8

THEOREM. Suppose t>0 and F° is a collection of positive elliptic parametric constant
coefficient n dimensional integrands F:R"** >R+ in R"*" such that F € J° impliesF |R™*' ~ {0}
i8 of class 3, {F|S™ F€ J°} is compact in the class 3 topology, and the n dimensional area
integrand M is contained in JO. Then there exists ¢>0 and corresponding neighborhood
G=Fn{F: distance (F, M)<e} [IL.1 (3)] of M in J° with the following property. Suppose
GR" ' xR"' >R+ is a positive elliptic parametric integrand in R such that G|R"*" x
(R™'~{0}) is of class 3 and G(x,-)€EQG for each xER™*. Suppose also S€R,(R"*') such
that G(S+T) = GK(S) for each T € R, (R™) with 8T =0. Then there exists an open set U in
R such that W~ ""Y([spt S ~spt 8S]~ U) =0 and spt S 0 U is an n dimensional submanifold
of R™*! of class 2.

Proof. The theorem follows from II.6 and a straightforward adaptation of the arguments
of I1.5 and I1.7.

IL9

Remark. The existence of F minimal surfaces S as in I1.7 and I1.8 is, of course, well
known [7, 5.1.6]. Additionally theorems IL.7 and II.8 extend immediately from R**!
to n+1 dimensional riemannian manifolds of class 4. Theorems I1.7 and I1.8 also extend
immediately from »n dimensional currents to » dimensional flat chains modulo 2 [7, 4.2.26,
5.3.21] (see [2, I.1 (6,11)]) in R"*! or in manifolds as above. Finally partial boundary
regularity estimates for F minimal surfaces have been obtained in [10] while the existence
of lower bounds on the topological complexity of certain F minimal 2 dimensional surfaces

in R? is shown in [3].
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