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Abstract

An isothermal model describing the separation of the components of a binary

metallic alloy is considered. A process of phase transition is also assumed to

occur in the solder; hence, the state of the material is described by two order

parameters, i.e., the concentration c of the first component and the phase field

ϕ. Existence of a solution to the related initial and boundary value problem has

been proved in a former paper, where, anyway, uniqueness was obtained only in a

very special case. Here some further regularity and uniqueness results are shown

in a more general setting by use of an a priori estimates – compactness argument.

A key point of the proofs is the analysis of the fine continuity properties of the

inverse map of the solution-dependent elliptic operator characterizing one of the

equations of the system.
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1 Introduction and mathematical preliminaries

In this paper, we aim to present some regularity and uniqueness results for the system

∂tϕ− ∆ϕ = F1(ϕ) + cF2(ϕ), (1.1)

∂tc− div(µ(ϕ, c)∇w) = 0, (1.2)

w ∈ −∆c+ β(c) + γ(c) + g(ϕ), (1.3)
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2 Phase Change in Binary Alloys

describing the diffusive separation of components in a binary metallic alloy possibly
undergoing a phase transition phenomenon. In the above relations, the unknown c

represents the relative concentration of either of the components, while ϕ is the phase
parameter, with ϕ = 0 denoting the solid, ϕ = 1 the liquid, and 0 < ϕ < 1 a mixture.
Moreover, F1, F2, γ, and g are smooth coupling terms whose meaning is outlined in
the paper [4]. Finally, µ is the mobility coefficient, possibly depending on both the
unknowns, but assumed to be nondegenerate, and β is a maximal monotone graph
guaranteeing the “physical” constraint 0 ≤ c ≤ 1.

Let us point out that the system above has to be complemented with the Cauchy
conditions for ϕ and c and with homogeneous Neumann boundary conditions for ϕ,
w, and c. Under such assumptions, eqns. (1.1–1.3) have been studied in the paper
[4], where existence and regularity results were proved for a variational formulation
of that system. However, the question of uniqueness was solved just in the very
particular case when µ is a constant. Hence, in this paper we deal with two more
general settings, where the mobility µ may depend either on the sole unknown ϕ or
on both the unknowns (ϕ, c), and we are able to show two distinct uniqueness and
continuous dependence results. Indeed, both situations seem to be significant on the
physical viewpoint [4, Introduction]. In order that the second result can be applied,
anyway, we have to assume very strong smoothness properties of the solutions. In
this concern, we actually prove a new regularity theorem for (1.1–1.3) that fits with
the uniqueness setting at least for suitably small final times. The main analytical
instrument on which we rely consists in a fine analysis of the continuity properties of
the solution-dependent elliptic operators resulting from the nonconstant mobility µ.
This follows the lines of the work [1], where similar arguments were used for the study
of the Cahn-Hilliard system with nonconstant mobility.

Let us now start by briefly presenting some mathematical notations and tools
that will be used throughout the rest of the paper. Let Ω be a smooth, bounded,
and connected domain in R

3 (the situation in space dimension 2 is analogous and in
dimension 1 is easier) and let T > 0 be a given final time. Set Γ := ∂Ω, Σ := Γ×(0, T ),
Qt := Ω × (0, t) for t ∈ (0, T ], and Q := QT . Set also H := L2(Ω) and V := H1(Ω)
and endow the latter space with its usual scalar product. Identify H and its dual, in
order that the compact inclusion H ⊂ V ′ holds and (V,H, V ′) form a Hilbert triplet.
Finally, denote by 〈·, ·〉 the duality pairing between V ′ and V , by | · | the norm of of
both H and H3, and by ‖ · ‖X the norm of the generic Banach space X. Given any
ζ ∈ V ′, let us now set

ζΩ :=
1

|Ω|
〈ζ, 1〉; V ′

0 := {ζ ∈ V ′ : ζΩ = 0}, V0 := V ∩ V ′

0 . (1.4)

Let also 0 < α ≤ µ0 be assigned constants and let

µ ∈ Lip loc(R
2), with α ≤ µ ≤ µ0 a.e. in R

2. (1.5)

If v, z : Ω → R are measurable functions, then we can define the operators

B(v,z) : V → V ′, 〈B(v,z)u, y〉 :=

∫

Ω

µ(v, z)∇u · ∇y dx for u, y ∈ V , (1.6)

B : V → V ′, 〈Bu, y〉 :=

∫

Ω

∇u · ∇y dx for u, y ∈ V . (1.7)
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Clearly, B,B(v,z) map V onto V ′

0 and their restrictions to V0 turn out to be
isomorphisms of V0 onto V ′

0 . Then, we can denote by N the inverse of B and by N(v,z)

the inverse of B(v,z). Just by applying the definition (1.6), one can readily check that
for any u ∈ V and ζ ∈ V ′

0 there holds

〈B(v,z)u,N(v,z)ζ〉 = 〈B(v,z)N(v,z)ζ, u〉 = 〈ζ, u〉. (1.8)

Let now p ∈ [1,∞], let v, z be measurable on Q, and let u, ζ be measurable
functions of time with values in V and V ′

0 , respectively. Then, for a.e. t ∈ (0, T ),
we can put (B(v,z)u)(t) := B(v(t),z(t))(u(t)) and (N(v,z)ζ)(t) := N(v(t),z(t))(ζ(t)). This
provides a natural extension of the above operators to a time-dependent setting.

From this point on, k will stand for a positive constant (possibly not always
the same) depending only on α, µ0,Ω. A positive constant depending on one, or more,
additional parameters (say, δ) will be noted as kδ, instead. We have (see [4, Sec. 2] or
[1, Sec. 2] for the proof, that is essentially based on the Poincarè-Wirtinger inequality):

Lemma 1.1. For all ζ ∈ V ′

0 and for all measurable v, z : Ω → R, we have that

‖N(v,z)ζ‖V ≤ k‖ζ‖V ′ , 〈ζ,N(v,z)ζ〉 ≥ k‖ζ‖2
V ′ . (1.9)

Moreover, if v, z are measurable functions of Q into R, p ∈ [1,∞], then

B(v,z) : Lp(0, T ;V ) → Lp(0, T ;V ′

0) and N(v,z) : Lp(0, T ;V ′

0) → Lp(0, T ;V0),

introduced as noted above, are well defined. In addition, the B(v,z) are (surjective)
isomorphisms of Lp(0, T ;V0) onto Lp(0, T ;V ′

0). Finally, we have that

‖B(v,z)‖L(Lp(0,T ;V ),Lp(0,T ;V ′

0
)) ≤ k, ‖N(v,z)‖L(Lp(0,T ;V ′

0
),Lp(0,T ;V0)) ≤ k, (1.10)

i.e., their norms do not depend on (v, z).

A consequence of (1.9) and of the compact embedding V ⊂⊂ H is that, if δ > 0,
ζ ∈ V0, ζ = B(v,z)u for a suitable u ∈ V , then

|ζ|2 ≤ δ|∇ζ|2 + kδ‖ζ‖
2
V ′ ≤ δ|∇ζ|2 + kδ|∇u|

2. (1.11)

Now, let us analyze some deeper continuity properties of the operator N(v,z). We report
the proofs, which follow the lines of [1, pp. 493–494], for the sake of completeness:

Lemma 1.2. Let v, z ∈ H2(Ω), ζ ∈ H ∩ V ′

0 , and u ∈ V be such that ζ := B(v,z)u. Let
also µ ∈ W 1,∞(R2). Then, there exists k > 0 such that

‖u‖H2(Ω) ≤ k
(

|ζ| + ‖(v, z)‖2
H2(Ω)2|∇u|

)

. (1.12)

Proof. Since ζ ∈ H, our hypotheses on v, z, µ guarantee that u is in H2(Ω)
and satisfies

− div(µ(v, z)∇u) = ζ in H.

We deduce that −µ(v, z)∆u = (∇µ(v, z)) · ∇u+ ζ in H and consequently
∫

Ω

| − ∆u|2 ≤ k|ζ|2 + k

∫

Ω

(

|∇v|2 + |∇z|2
)

|∇u|2.
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Now, using elementary interpolation, Sobolev’s embedding theorem, and Young’s in-
equality, we obtain

‖u‖2
H2(Ω) ≤ k

(

|u|2 + | − ∆u|2
)

≤ k|ζ|2 + k
(

‖v‖2
H2(Ω) + ‖z‖2

H2(Ω)

)

|∇u|‖u‖H2(Ω)

≤ k|ζ|2 + k
(

‖v‖4
H2(Ω) + ‖z‖4

H2(Ω)

)

|∇u|2 +
1

2
‖u‖2

H2(Ω).

Lemma 1.3. Let u, v, z, ζ be functions from Q into R, with ζ = B(v,z)u a.e. in (0, T ).
Then, the following formulas hold whenever they make sense:

〈

(B(v,z)u)t, u
〉

=
1

2

d

dt

〈

B(v,z)u, u
〉

+
1

2

∫

Ω

µ(v, z)t |∇u|
2, (1.13)

〈

B(v,z)u, ut

〉

=
1

2

d

dt

〈

B(v,z)u, u
〉

−
1

2

∫

Ω

µ(v, z)t |∇u|
2. (1.14)

Proof. Let us assume that all the functions are sufficiently regular to give
sense to the integrations by parts below. Then we have

〈

(B(v,z)u)t, u
〉

=
d

dt

〈

B(v,z)u, u
〉

−
〈

B(v,z)u, ∂tu
〉

=

∫

Ω

∂t

(

µ(v, z)|∇u|2
)

−
1

2

∫

Ω

µ(v, z)∂t|∇u|
2

=
1

2

∫

Ω

∂t

(

µ(v, z)|∇u|2
)

+
1

2

∫

Ω

µ(v, z)t |∇u|
2

so that (1.13) is proved in the regular case and in general we can conclude by a density
argument. The proof of (1.14) is analogous.

2 Main results

Let us give the main assumptions on the data of the problem. Let K > 0 and let

F1, F2, γ, g ∈ W 1,∞(R), (2.1)

|F1|, |F2|, |γ|, |g|, |F
′

1|, |F
′

2|, |γ
′|, |g′| ≤ K a.e. in R, (2.2)

ϕ0 ∈ H, c0 ∈ V, (2.3)

β ⊂ R × R maximal monotone graph s.t. 0 ∈ β(0), (2.4)

ψ(c0) ∈ L1(Ω), (2.5)

cΩ ∈ intD(β), where cΩ := (c0)Ω. (2.6)

Here, ψ : R → [0,+∞] is a convex and lower semicontinuous function such that
β = ∂ψ and ψ(0) = 0 and the domain of the graph β is required to fulfill

D(β) := {r ∈ R : β(r) 6= ∅} ⊂ [0, 1] (2.7)

Then, the following existence-regularity result [4, Thms. 3.1, 3.3, 3.4] holds:
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Theorem 2.1. Let assumptions (1.5), (2.1–2.7) hold. Then, there exists a quadruple
(ϕ, c, w, ξ) such that

ϕ ∈ H1(0, T ;V ′) ∩ L2(0, T ;V ), (2.8)

c ∈ H1(0, T ;V ′) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)), (2.9)

w ∈ L2(0, T ;V ), (2.10)

ξ ∈ L2(0, T ;H). (2.11)

The quadruple (ϕ, c, w, ξ) satisfies

∂tϕ+Bϕ = F1(ϕ) + cF2(ϕ) in V ′, a.e. in (0, T ), (2.12)

∂tc+B(ϕ,c)w = 0 in V ′, a.e. in (0, T ), (2.13)

w = Bc+ ξ + γ(c) + g(ϕ) in V ′, a.e. in (0, T ), (2.14)

ξ ∈ β(c) a.e. in Q, (2.15)

ϕ(·, 0) = ϕ0(·), c(·, 0) = c0(·) a.e. in Ω, (2.16)

c(t)Ω = cΩ for all t ∈ [0, T ]. (2.17)

If, in addition,
ϕ0 ∈ V, (2.18)

then ϕ satisfies

ϕ ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;H2(Ω)) (2.19)

and if
ϕ0 ∈ H2(Ω), ∂nϕ0 = 0 a.e. on Γ, (2.20)

then ϕ has the additional regularity

ϕ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)). (2.21)

Finally, just under the assumptions (1.5), (2.1–2.7), if µ(ϕ, c) is constant, then the
solution (ϕ, c, w, ξ) is unique.

Under more restrictive hypotheses on data, here we are able to prove additional
uniqueness and regularity properties of the solution(s). We will possibly assume

µ = µ(ϕ) depends only on ϕ, (2.22)

µ ∈ W 1,∞, ‖µ‖W 1,∞ ≤ K. (2.23)

Theorem 2.2. Let (1.5), (2.1–2.7), (2.18), and (2.22–2.23) hold for a couple of initial
data ϕ0,1, c0,1 and ϕ0,2, c0,2 and assume that

(c0,1)Ω = (c0,2)Ω. (2.24)

Moreover, suppose that

∂tϕ1, Bϕ1 ∈ L4(0, T ;H), (2.25)

‖ϕ1‖L4(0,T ;H) + ‖∂tϕ1‖L4(0,T ;H) + ‖Bϕ1‖L4(0,T ;H) + ‖w2‖L2(0,T ;V ) ≤ R, (2.26)
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for a given R > 0. Then, if (ϕ1, c1, w1, ξ1) and (ϕ2, c2, w2, ξ2) are a couple of solutions
to (2.12–2.17) related to the initial data ϕ0,1, c0,1 and ϕ0,2, c0,2, respectively, we have

‖ϕ1 − ϕ2‖L∞(0,T ;V )∩L2(0,T ;H2(Ω)) + ‖c1 − c2‖L∞(0,T ;V ′)∩L2(0,T ;V )

≤ kR

(

‖ϕ0,1 − ϕ0,2‖V + ‖c0,1 − c0,2‖V ′

)

. (2.27)

In particular, the solution (ϕ, c, w, ξ) provided by Theorem 2.1 is unique.

Remark 2.3. We note that (2.25) is surely satisfied if (2.20) holds.

Theorem 2.4. Let (1.5), (2.1–2.7), (2.20), and (2.23) hold. Let also assume that

c0 ∈ H3(Ω), ∂nc0 = 0 on Γ, ∃ ξ0 ∈ V such that ξ0 ∈ β(c0) a.e. in Ω. (2.28)

Then, there exists T0 ∈ (0, T ] such that the solution (ϕ, c, w, ξ) given by Theorem 2.1
fulfills the additional regularity

c ∈ H1(0, T0;V ) ∩ L∞(0, T0;H
2(Ω)), (2.29)

w ∈ L∞(0, T0;V ) ∩ L2(0, T0;H
2(Ω)). (2.30)

Moreover, if (2.22) holds, we can choose T0 = T .

Remark 2.5. Thanks to the first of (2.29), under suitable hypotheses on ϕ0 (e.g.,
ϕ0 ∈ H3(Ω) and ∂nϕ0 = 0 on Γ), further parabolic regularity could be deduced also
for ϕ by differentiating (2.12) and multiplying the result by ∂ttϕ, ∂tBϕ. We do not
enter into the details, since the procedure is standard.

Theorem 2.6. Let (1.5), (2.1–2.7), (2.18), and (2.23) hold for two pairs of initial
data ϕ0,1, c0,1 and ϕ0,2, c0,2 also satisfying (2.24). Let also T0 ∈ (0, T ] and suppose
(ϕ1, c1, w1, ξ1) and (ϕ2, c2, w2, ξ2) be a couple of solutions to (2.12–2.17) related to the
different initial data and fulfilling

∂tϕ1, Bϕ1, ∂tc1, Bc1 ∈ L4(0, T0;H), ∇w2 ∈ L2(0, T0;L
3(Ω)), (2.31)

‖ϕ1‖L4(0,T0;H) + ‖∂tϕ1‖L4(0,T0;H) + ‖Bϕ1‖L4(0,T0;H) + ‖c1‖L4(0,T0;H)

+ ‖∂tc1‖L4(0,T0;H) + ‖Bc1‖L4(0,T0;H) + ‖∇w2‖L2(0,T0;L3(Ω)) ≤ R (2.32)

for a given R > 0. Then, we have

‖ϕ1 − ϕ2‖L∞(0,T0;V )∩L2(0,T0;H2(Ω)) + ‖c1 − c2‖L∞(0,T0;V ′)∩L2(0,T0;V )

≤ kR

(

‖ϕ0,1 − ϕ0,2‖V + ‖c0,1 − c0,2‖V ′

)

. (2.33)

In particular, the solution (ϕ, c, w, ξ) given by Theorem 2.1 is unique on [0, T0].

Remark 2.7. As before, (2.31–2.32) are not satisfied in the given regularity setting.
However, if (2.20) and (2.28) are assumed, then (2.31–2.32) do hold at least up to a
suitably small final time T0.
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3 Proofs of the Theorems

Proof of Theorem 2.2. Set (ϕ, c, w, ξ) := (ϕ1, c1, w1, ξ1) − (ϕ2, c2, w2, ξ2). Then,
writing (2.12) for the two solutions and subtracting the results, we obtain

∂tϕ+Bϕ =
(

F1(ϕ1) − F1(ϕ2)
)

+ c1
(

F2(ϕ1) − F2(ϕ2)
)

+ cF2(ϕ2). (3.1)

Doing the same with (2.13–2.14), we have, respectively,

∂tc+Bϕ1
w +

(

Bϕ1
−Bϕ2

)

w2 = 0, (3.2)

w = Bc+ ξ +
(

γ(c1) − γ(c2)
)

+
(

g(ϕ1) − g(ϕ2)
)

. (3.3)

Then, we test (3.1) by ϕ+Bϕ and integrate over (0, t) for t ≤ T . By (2.1–2.2), (2.7),
and Young’s inequality, we easily infer

1

2
‖ϕ(t)‖2

V + ‖∇ϕ‖2
L2(Qt)

+
1

2
‖Bϕ‖2

L2(Qt)
≤

1

2
‖ϕ0,1 − ϕ0,2‖

2
V + k‖ϕ‖2

L2(Qt)
+ k‖c‖2

L2(Qt)
.

(3.4)
Indeed, (2.7) guarantees that ‖c1‖L∞(Q) ≤ 1.

Now, we test (3.3) by c (that is in V0 by (2.24) and (2.17)) and (3.2) by Nϕ1
c =:

u, subtract the results, and integrate over (0, t). Noting that two terms cancel and
using Young’s inequality and the monotonicity of β, we get

∫ t

0

〈

∂t(Bϕ1
u), u

〉

+

∫ t

0

∫

Ω

(

µ(ϕ1) − µ(ϕ2)
)

∇w2 · ∇u+ ‖∇c‖2
L2(Qt)

≤ k‖ϕ‖2
L2(Qt)

+ k‖c‖2
L2(Qt)

. (3.5)

Let us deal with the first two terms I1, I2 on the left hand side. As for the first one,
by (1.13), (1.9), and (2.23), we have

I1 =
1

2

∫

Ω

µ(ϕ1(t))|∇u(t)|
2 −

1

2

∫

Ω

µ(ϕ0,1)|∇u(0)|2 +
1

2

∫ t

0

∫

Ω

µ′(ϕ1)∂tϕ1|∇u|
2

≥
α

2
|∇u(t)|2 −

µ0

2
‖c0,1 − c0,2‖

2
V ′ −

K

2

∫ t

0

∫

Ω

|∂tϕ1||∇u|
2. (3.6)

Then, using (1.12) and a Gagliardo-Nirenberg inequality [5, p. 125], we infer

∫ t

0

∫

Ω

|∂tϕ1||∇u|
2 ≤ k

∫ t

0

|∂tϕ1|‖∇u‖
2
L4(Ω) ≤ k

∫ t

0

|∂tϕ1|
(

‖u‖3/2

H2(Ω)|∇u|
1/2 + |∇u|2

)

≤ k

∫ t

0

|∂tϕ1||∇u|
2 + k

∫ t

0

|∂tϕ1||∇u|
1/2

(

|c|3/2 + ‖ϕ1‖
3
H2(Ω)|∇u|

3/2
)

≤ k

∫ t

0

|∂tϕ1||∇u|
2 + k‖c‖2

L2(Qt)
+ k

∫ t

0

(

|∂tϕ1|
4 + |Bϕ1|

4 + |ϕ1|
4
)

|∇u|2. (3.7)

The second term in (3.5) thanks to the continuous embedding H2(Ω) ⊂ L∞(Ω) gives

|I2| ≤ k

∫ t

0

‖ϕ‖L∞(Ω)|∇w2||∇u| ≤
1

4

∫ t

0

(

|ϕ|2 + |Bϕ|2
)

+ k

∫ t

0

|∇w2|
2 |∇u|2. (3.8)
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Now, take the sum of (3.4) and (3.5) and note that (1.11) can be applied with c

in place of ζ, so that the L2 norms of c on the right hand sides of (3.4) and (3.5)
are controlled by taking an opportune δ. Taking advantage of (3.6–3.8) and recalling
assumptions (2.25–2.26), we conclude by applying the Gronwall lemma in the form of,
e.g., [3, Lemme A.4, p. 156], to the function t 7→ ‖ϕ(t)‖2

V + |∇u(t)|2.

Proof of Theorem 2.4. We derive new a priori bounds for the solutions of (2.12–
2.16). We point out that, at this level, some passages are formal. Anyway, they could
be made rigorous by performing the estimates at an approximating level (cf., e.g., the
Faedo-Galerkin argument of [4, Sec. 3]). Then, differentiate (2.14) in time. This gives

∂tw = ∂tBc+ ∂tξ + γ′(c)∂tc+ g′(ϕ)∂tϕ. (3.9)

Now, test (2.13) by ∂tw and (3.9) by ∂tc and integrate over (0, t), t ≤ T . Noting that
two terms cancel and using (1.14), (2.1–2.2), (2.23), and the monotonicity of β, we get

‖∂t∇c‖
2
L2(Qt)

+
α

2
|∇w(t)|2 ≤

µ0

2
|∇w(0)|2

+ k

∫ t

0

∫

Ω

(

|∂tϕ| + |∂tc|)|∇w|
2 + k‖∂tϕ‖

2
L2(Qt)

+ k‖∂tc‖
2
L2(Qt)

. (3.10)

Of course, the main trouble is given by the integral term J on the right hand side.
Using Sobolev’s embeddings, (1.12), and the Gagliardo-Nirenberg inequalities, we infer

J ≤ k

∫ t

0

(

‖∂tϕ‖V + ‖∂tc‖V

)

‖∇w‖2
L12/5(Ω)

≤ k

∫ t

0

(

‖∂tϕ‖V + ‖∂tc‖V

)(

|∇w|3/2‖w‖1/2

H2(Ω) + |∇w|2
)

≤ k

∫ t

0

(

‖∂tϕ‖V + ‖∂tc‖V

)

·

·
(

|∇w|3/2|∂tc|
1/2 + |∇w|2(1 + ‖ϕ‖H2(Ω) + ‖c‖H2(Ω))

)

=:
6

∑

j=1

Jj, (3.11)

where the integrals Jj are defined this way:

J1 := k

∫ t

0

‖∂tϕ‖V |∇w|
3/2|∂tc|

1/2, J2 := k

∫ t

0

‖∂tc‖V |∇w|
3/2|∂tc|

1/2,

J3 := k

∫ t

0

‖∂tϕ‖V |∇w|
2 (1 + ‖ϕ‖H2(Ω)), J4 := k

∫ t

0

‖∂tϕ‖V |∇w|
2‖c‖H2(Ω),

J5 := k

∫ t

0

‖∂tc‖V |∇w|
2 (1 + ‖ϕ‖H2(Ω)), J6 := k

∫ t

0

‖∂tc‖V |∇w|
2‖c‖H2(Ω).

Now, we estimate the Jj. The term J3 does not give troubles. Instead, J1, J2, J4, J5,
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owing to the third of (2.21), are bounded as follows:

J1 ≤ k

∫ t

0

|∇w|2‖∂tϕ‖
4/3
V + k

∫ t

0

|∂tc|
2, (3.12)

J2 ≤ δ

∫ t

0

‖∂tc‖
2
V + kδ

∫ t

0

|∇w|6, (3.13)

J4 ≤ k

∫ t

0

|∇w|2‖c‖4
H2(Ω) + k

∫ t

0

|∇w|2‖∂tϕ‖
4/3
V , (3.14)

J5 ≤ δ

∫ t

0

‖∂tc‖
2
V + kδ

∫ t

0

|∇w|4. (3.15)

The estimation of the latter term J6, instead, is more complicated and we proceed
similarly as in [1, p. 497]. More precisely, we collect in the next computation also the
first term resulting from J4 on the right hand side of (3.14). By elliptic regularity,

J6 + k

∫ t

0

|∇w|2‖c‖4
H2(Ω)

≤ δ

∫ t

0

‖∂tc‖
2
V + kδ

∫ t

0

(

|∇w|4(|c|2 + |Bc|2) + |∇w|2(|c|4 + |Bc|4)
)

(3.16)

Then, we multiply (2.14) by Bc. Owing to the monotonicity of β, to (2.1–2.2), and to
the second of (2.9), we easily infer, a.e. in (0, T ),

|Bc|2 ≤ k
(

1 + |∇w|2 + |∇c|2
)

≤ k
(

1 + |∇w|2
)

. (3.17)

Then,

J6 + k

∫ t

0

|∇w|2‖c‖4
H2(Ω) ≤ δ

∫ t

0

‖∂tc‖
2
V + kδ

∫ t

0

(

|∇w|2 + |∇w|6
)

. (3.18)

Finally, we have to bound the norm of w(0) in (3.10). Writing (2.14) for t = 0 (this
could be made rigorous by working on the discrete scheme) and recalling (2.28), we
see that

|∇w(0)|2 ≤ k
(

1 + ‖c0‖
2
H3(Ω) + ‖ξ0‖

2
V + ‖ϕ0‖

2
V

)

≤ k. (3.19)

Now, let us take (3.11–3.19) into account and go back to (3.10). If (2.22) holds, the
situation is simple since J2 = J4 = J5 = J6 = 0. Actually, we can apply (1.11) with

∂tc, w, ϕ in place of ζ, u, v and z, (3.20)

respectively. Thus, choosing δ suitably small and recalling (2.21), we see that Gron-
wall’s Lemma applies to the function t → |∇w(t)|2. This yields ∇w ∈ L∞(0, T ;H)
and also the first of (2.29) for T0 = T . The second of (2.29) is a consequence of (3.17).
Now, the first of (2.30) would easily follow once we show that w ∈ L∞(0, T0;H).
Due to the Neumann conditions, this is not obvious and has to be proved by suitably
adapting the argument of, e.g., [2, Subsec. 5.3]. At this point, also the second of (2.30)
is proved since, looking back at (2.13), we can exploit (1.12) with the choices (3.20)
and take advantage of the third of (2.21) and of the second of (2.29).
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Instead, if (2.22) does not hold, we deduce from (3.10–3.19) that

‖∂t∇c‖
2
L2(Qt)

+ |∇w(t)|2 ≤ k + k

∫ t

0

(

f |∇w|2 + |∇w|6), (3.21)

where f := (1 + ‖∂tϕ‖
4/3
V ) ∈ Lp(0, T ) for some p > 1. Then, using a generalized

Gronwall’s lemma (e.g., a slightly modified version of [6, Thm. 7.1] works for our case),
we obtain the same relations as before, holding now up to a final time T0 ∈ (0, T ].

Proof of Theorem 2.6. It is very similar to the proof of Theorem 2.2. Then, we
just give the highlights. Proceeding as in that proof (but choosing now t ∈ (0, T0]),
we see that the last term in (3.6) now depends also on ∂tc1. However, it can still be
estimated as in (3.7) by taking the contribution of ∂tc1 into account. Thus, the last
term in (3.7) will now depend on all the norms in (2.32) but the latter.

The bound (3.8) needs to be modified more carefully. Actually, we now have

|I2| =
∣

∣

∣

∫ t

0

∫

Ω

(

µ(ϕ1, c1) − µ(ϕ2, c2)
)

∇w2 · ∇u
∣

∣

∣

≤ k

∫ t

0

‖ϕ‖L∞(Ω)|∇w2||∇u| + k

∫ t

0

‖c‖L6(Ω)‖∇w2‖L3(Ω) |∇u|. (3.22)

Thus, the first term can be bounded as before, while the second one is

≤ δ‖c‖2
L2(0,T ;V ) + kδ

∫ t

0

‖∇w2‖
2
L3(Ω) |∇u|

2,

so that, on account of the last of (2.32), a further application of the Gronwall lemma
[3, Lemme A.4, p. 156] permits us to conclude.
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