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Abstract

We show that every high-entropy distribution is indistinguishable from an efficiently sam-
plable distribution of the same entropy. Specifically, we prove that if D is a distribution over
{0, 1}n of min-entropy at least n− k, then for every S and ǫ there is a circuit C of size at most
S · poly(ǫ−1, 2k) that samples a distribution of entropy at least n− k that is ǫ-indistinguishable
from D by circuits of size S.

Stated in a more abstract form (where we refer to indistinguishability by arbitrary families
of distinguishers rather than bounded-size circuits), our result implies (a) the Weak Szemerédi
Regularity Lemma of Frieze and Kannan (b) a constructive version of the Dense Model Theorem
of Green, Tao and Ziegler with better quantitative parameters (polynomial rather than expo-
nential in the distinguishing probability ǫ), and (c) the Impagliazzo Hardcore Set Lemma. It
appears to be the general result underlying the known connections between “regularity” results
in graph theory, “decomposition” results in additive combinatorics, and the Hardcore Lemma
in complexity theory.

We present two proofs of our result, one in the spirit of Nisan’s proof of the Hardcore Lemma
via duality of linear programming, and one similar to Impagliazzo’s “boosting” proof. A third
proof by iterative partitioning, which gives the complexity of the sampler to be exponential in
1/ǫ and 2k, is also implicit in the Green-Tao-Ziegler proofs of the Dense Model Theorem.
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1 Introduction

We show that every set of noticeable density is computationally indistinguishable (by adversaries
of fixed polynomial complexity) from an efficiently samplable distribution of the same density.

Suppose that D is a subset of {0, 1}n of arbitrary complexity containing at least δ2n elements (or,
more generally, suppose D is an arbitrary distribution of min-entropy at least log δ2n), and choose
an arbitrary size parameter S and an approximation parameter ǫ > 0. Then we show that there
is a distribution M over {0, 1}n of min-entropy at least log δ2n (that is, a convex combination of
distributions that are uniform over sets of size δ2n) such that D and M are ǫ-indistinguishable
by circuits of size ≤ S, and such that M is samplable and computable by circuits of size S ·
poly(ǫ−1, δ−1)).1

Such a result is implicit in the “Constructive Dense Model Theorem” of Green, Tao, and Ziegler
[GT, TZ] (c.f. Theorem 7.1 in [TZ]), but with the weaker consequence that M is samplable and
computable in size S · 2poly(ǫ−1,δ−1).

Our main theorem can be stated in a more abstract form (see Theorem 1.1 below), in which we
refer to arbitrary families of distinguishers rather than just bounded-size circuits. In such a form,
our main theorem gives the following three results as corollaries:

1. The Weak Szemerédi Regularity Lemma of Frieze and Kannan [FK], a result in graph
theory, establishing that every graph is “approximated” by an object of “complexity” that
depends only on the quality of the approximation and not on the size of the original graph.

This can be proved via a variation of the proof of the original Szemerédi Regularity Lemma
(which provided a stronger notion of approximation), which proceeds by iteratively parti-
tioning the set of vertices. The iterative partitioning proof establishes the existence of an
approximator of complexity exponential in ǫ−1, where ǫ is the approximation parameter. The
Frieze-Kannan proof gives, in addition, an approximating obejct of complexity polynomial in
ǫ−1.

Our main theorem also provides an approximating object of complexity polynomial in ǫ−1.

2. The Dense Model Theorem of Green, Tao and Ziegler [GT, TZ], a result in additive
combinatorics stating that if R is a (possibly very sparse) pseudorandom subset of a set X,
and D ⊆ R, |D| ≥ δ|R| is a subset containing a large fraction of the elements of R, then there
is a large model set2 M ⊆ X |M | ≥ δ|X| that contains a large fraction of all the elements of
X and that is “indistinguishable” from D.3

The original proof used an iterative partition approach similar to known proofs of “regularity”
results in graph theory. The model set M is explicitly defined in the proof, and it has complex-
ity exponential in the approximation parameter 1/ǫ. The strength of the pseudorandomness
condition required on R is also exponential in 1/ǫ.

1It would of course be preferable if the complexity of M were smaller than S, e.g. giving a sampler of fixed
polynomial complexity that that generates a distribution that is indistinguishable from D by adversaries of arbitrary
polynomial size. However, this is impossible to achieve in general; see Remark 1.6 below.

2Technically, both D and M are distributions rather than sets, and the statement of the Theorem refers to their
min-entropy rather than theirs size. One could recover a statement about sets by “rounding” the distribution M to
the uniform distribution over a large set.

3In the additive combinatorics literature, this result is referred to as a “transference” result, because it allow to
transfer results that are known for dense sets of integers to dense subsets of pseudorandom sets of integers.
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Independently, Gowers [Gow] and Reingold et al. [RTTV] provided another proof based on
duality of linear programming. The proof is non-constructive in its definition of the model
set M , but the strength of the pseudorandomness condition on R (as discussed in [RTTV])
only needs to be polynomial in 1/ǫ. Impagliazzo [Imp2] proved that such a non-constructive
version of the Dense Model Theorem with polynomial parameters can be derived from a strong
version of the Hardcore Lemma (see below), such as the one proved by Holenstein [Hol].

As a corollary of our main theorem, we prove a constructive version in which M is explicitly
defined and has complexity polynomial in 1/ǫ, and the strength of the pseudorandomness
requirement on R is also polynomial in 1/ǫ. Such a Constructive Dense Model Theorem with
polynomial parameters is new.

3. The Impagliazzo Hardcore Lemma [Imp1], a result in complexity theory stating that if
a problem is hard-on-average in a weak sense on uniformly distributed inputs, then there is a
“hardcore” subset of inputs of noticeable density4 such that the problem is hard-on-average
in a must stronger sense on inputs randomly drawn from such set.

There are two main approaches to proving the Hardcore Lemma: a proof due to Nisan, which
uses duality of linear programming, and it was the inspiration for the [RTTV] proof the
Dense Model Thereom, and a proof due to Impagliazzo, which proceeds in stages and uses a
smoothed threshold function. Both proofs are reported in [Imp1]. Klivans and Servedio [KS]
relate the problem of constructing hardcore sets to the problem of designing boosting algo-
rithms in learning theory; they show that Impagliazzo’s proof of the hardcore lemma can be
seen as a boosting algorithm, and that any known boosting algorithm can be used to give
a proof of the existence of hardcore sets. Holenstein [Hol] shows how both proofs in [Imp1]
can be optimized to give tighter guarantees and require less non-uniformity. Reingold et
al. [RTTV] give a proof of the hardcore lemma via iterative partitioning (with an exponential
loss in the distinguishing probability), inspired by the Green-Tao-Ziegler proof of the Dense
Model Theorem.

As the above discussion implies, connections were known between the above results: the iterative
partitioning technique could prove all of them, with exponential loss in some parameters, and the
linear programming duality and the boosting technique could prove the Hardcore lemma and the
non-constructive version of the Dense Model Theorem, with polynomial parameters.

In this paper we show that the linear programming duality and the boosting techniques can be
used to prove our main theorem, and hence all three results (including the constructive version of
the Dense Model Theorem), all with polynomial parameters.

We thus enrich the set of known connections between the Regularity Lemma, Dense Model Theorem
and Hardcore Lemma by showing that a common generalization of the three of them (our main
result) is provable via each of the proof techniques known for each of them.

1.1 Our Main Theorem

We now state our main result, in abstract form.

If F is a family of real-valued functions, we say that a function h has complexity at most C relative
to F if there are functions f1, . . . , fk ∈ F , k ≤ C such h can be defined by combining them using at

4As in the case of the Dense Model Theorem, the result is formally stated and proved in terms of distributions
and min-entropy rather than sets and set size, although a “rounding” argument could prove that a statement about
sets would also be true.
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most C of the following operations: (a) multiplication by a constant, (b) application of a boolean
threshold function, (c) sum, (d) product.

Theorem 1.1 (Main) Let X be a finite set, µ a probability distribution over X, F be a collection
of functions f : X → [0, 1], ǫ > 0 an approximation parameter, and g : X → [0, 1] an arbitrary
bounded function.

Then there is a function h : X → [0, 1] satisfying Eµ[h] = Eµ[g] that is

1. Efficient relative to F: h has complexity ǫ−O(1) relative to F ;

2. Indistinguishable from g: for every f ∈ F , we have

∣

∣

∣

∣

E
x∼µ

[g(x)f(x)] − E
x∼µ

[h(x)f(x)]

∣

∣

∣

∣

≤ ǫ

Remark 1.2 We stress that the theorem applies to arbitrary functions g, including random func-
tions and functions of very high average-case complexity. If F is defined to be the set of functions
computable by circuits of size S, then h is computable in size S · ǫ−O(1). Thus, the indistinguisha-
bility property does not imply that h is a good approximation of g in the sense of the two functions
agreeing on many inputs, which would be impossible if g has high average-case complexity. Rather,
the indistinguishability means that, roughly speaking, although h may make many mistakes in
computing g, inputs on which h is wrong are indistinguishable from inputs on which h is right.
(This will become apparent in our proof that the Main Theorem implies the Impagliazzo Hardcore
Lemma.)

Remark 1.3 We remark that, in almost all the applications of the above theorem, µ is the uniform
measure, and this should be assumed whenever µ is not specified.

Remark 1.4 In additive combinatorics, results like our Main Theorem are stated as decomposition
results (cf. Theorem 7.1 in [TZ], the “decomposition” statements in [Gow], or the examples given
in Tao’s FOCS 2007 tutorial [Tao]). In a “decomposition” statement of our main theorem, the
conclusion would be that there are two functions h1 : X → [0, 1], h2 : X → [−1, 1] such that:
(1) we can write g = h1 + h2, (2) h1 has low complexity, and (3) h2 is nearly orthogonal to
all the functions in F , that is, |〈h2, f〉| ≤ ǫ for every f ∈ F , where the inner product 〈·, ·〉 is
defined as 〈f, g〉 := Ex∼µ[f(x)g(x)]. The near-orthogonality condition of h2 can be made cleaner
by introducing the norm ||g||F = minf∈F |Ex∼µ[f(x)g(x)]|. Then the condition on h2 is simply
||h2||F ≤ ǫ. We could state our Main Theorem as a decomposition theorem by defining h1 := h
and h2 := g − h, but the form stated above is easier to use in our applications.

Remark 1.5 The choice of [0, 1] as a range for g, for h, and for the functions in F , is not essential,
and it would be equivalent to consider functions ranging in [−1, 1]; the reason is that one can move
from one setting to the other and back via the transformations f ← 1

2 + 1
2f and f ← 1− 2f which

preserve complexity and indistinguishability. We shall use the [−1, 1] setting in our proofs of the
main theorem.

Remark 1.6 If we take F to be the family of functions computable by circuits of size S, then
h has circuit complexity S · poly(ǫ−1), which is higher than the complexity S that we allow for

3



the distinguishers. It would be great if we could have a function h of fixed polynomial complexity
C(n) = poly(n) that is indistinguishable from g by functions f of any polynomial complexity,
or, in the non-asymptotic setting, say by functions of complexity (C(n))log n. This would imply
that every high-entropy distribution D can be simulated by a distribution M samplable in fixed
polynomial size and such that D and M are indistinguishable against adversaries of any polynomial
size. (We get, instead, the weaker implication that D and M are indistinguishable by adversaries
of size smaller than the size of the sampler for M .) Unfortunately, this stronger simulation is
provably impossible. This can be seen by noting that in [TV] it was proven that it is possible to
extract one (in fact, many) nearly unbiased bit from every high min-entropy distribution samplable
by a circuit of size at most C, provided C ≤ 2o(n); the extractor Ext : {0, 1}n → {0, 1} has
complexity poly(C). But there is a high min-entropy distribution D that makes the output of Ext
biased (the uniform distribution on either Ext−1(0) or Ext−1(1)), and so for every distribution
M samplable in size C, Ext acts as size-poly(C) distinguisher between D and M . One can get a
counterexample more directly by picking g : {0, 1}n → {−1, 1} from a family of O(S log S)-wise
independent hash functions; with positive probability, such a g is such that Ex[g(x)f(x)] ≤ .1 for
every function f : {0, 1}n → {−1, 1} computable by a circuit of size S.5 Furthermore, using an
efficient construction of hash functions we can let g have circuit complexity Õ(nS). Suppose now
that our theorem could be strengthened so that we could find, for every g, a function h of circuit
complexity S that is indistinguishable from g by all functions f of circuit complexity Õ(nS); then
by taking f = g we get a contradiction because Ex[g(x)g(x)] = 1 and Ex[h(x)g(x)] ≤ .1.

We give two proofs of our main theorem.

One proof (see Section 2) uses duality of linear programming and employs the following argument:
either there is a function h̄ that is a convex combination of functions of complexity Õ(ǫ−2) and
that is ǫ/2-indistinguishable from g by F , or there is a universal distinguisher f̄ that is a convex
combination of functions from F and that ǫ/2-distinguishes g from every function h of complexity
Õ(ǫ−2). The latter case can be shown to be impossible, and so the former must hold; one then
shows that h̄ can be approximated by a function h of complexity Õ(ǫ−4) that is ǫ-indistinguishable
from g by F .

The second proof (see Section 3) uses a boosting-like argument to directly construct a function h
as required of complexity O(ǫ−2).

In Section 4 we show how to abstract the argument of Frieze and Kannan [FK] to prove a weaker
version of our Main Theorem, in which the approximating function h is not required to be bounded.

1.2 Efficiently Simulating High-Entropy Distributions

As a first application of our main result, we discuss how to efficiently simulate any high-entropy
distribution. This is simply a matter of instantiating F to be the set of functions computed by
small circuits, and of seeing bounded functions as describing probability distributions.

If D is a distribution of min-entropy n− k that we wish to simulate, S is a circuit size, and δ is an
indistinguishability parameter, then we define g(x) := 2n−k ·D(x) (notice that we have 0 ≤ g(x) ≤ 1
because of the assumption on the min-entropy of D), and apply the main theorem with F being
the class of functions computable by circuits of size ≤ S and ǫ = δ2−k.

5One can use the Chernoff bound for random variables with boundend independence to deduce that for a fixed
function f there is a probability at most 2−O(S log S) that Ex[g(x)f(x)] > .1, and then one can take a union bound
over all 2O(S log S) functions computable by circuits of size S.
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If h() is the function that we get from the main theorem, then define M(x) := 2k−nh(x) and notice
that M is a probability distribution of min-entropy ≥ n−k, and that M(x), like h(x), is computable
by a circuit of size O(S · poly(ǫ−12k)). Also, M is samplable by a circuit of size O(S · poly(ǫ−12k))
via rejection sampling. To see that M is indistinguishable from D, observe that for every function
f computable by a circuit of size ≤ S we have

|Px∼D[f(x) = 1]− Px∼M [f(x) = 1]| =

∣

∣

∣

∣

∣

∑

x

D(x)f(x)−
∑

x

M(x)f(x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

E
x
[g(x)2kf(x)]− E

x
[h(x)2kf(x)]

∣

∣

∣

∣

≤ 2kǫ

1.3 Deriving the Weak Regularity Lemma, the Impagliazzo Hardcore Lemma,

and the Dense Model Theorem

The Weak Regularity Lemma, the Impagliazzo Hardcore Lemma and the Dense Model Theorem
all follow relatively easily from our Main Theorem. In each case, one has to find a proper way to
define the space X and the function g, to instantiate the family F , and to interpret the efficiency
and pseudorandomness properties of h.

1. Proving the Weak Regularity Lemma is mostly a matter of translating notation. Given a
graph G = (V,E), we define X to be the set of edges in a complete graph over V , so that we
may see G as defining a boolean function g : X → {0, 1}; we define F to contain, for every
two disjoint sets of vertices S, T , a function fS,T : X → {0, 1}, defined to be the characteristic
function of the set of edges having one endpoint in S and one in T .

Applying the main theorem, we find a function h : X → [0, 1] which we may see as being a
weighted graph H of “bounded complexity” that approximates G in the sense required by
the Weak Regularity Lemma. The description of h as a function of at most k = poly(1/ε)
functions fSi,Ti

induces a natural partition of the vertex set into at most 22k sets by taking
all possible intersections of the sets Si, Ti and their complements, such that h is constant on
the edges between each pair of parts.

2. In the Hardcore Lemma, we are given a boolean function g : {0, 1}n → {0, 1} that is
hard-on-average in a weak sense, meaning that every small circuit errs in computing g on at
least a δ fraction of inputs. We apply the main theorem with F being the set of all functions
computed by small circuits, and we obtain h.

Consider now the distribution in which element x has probability proportional to |g(x)−h(x)|.
On the one hand, since h is an efficient function,

∑

x |g(x) − h(x)| ≥ δ2n, and so the above
distribution is very dense, having min-entropy at least log δ2n. One the other hand, if f is any
efficient function, the indistinguishability condition can easily be used to conclude that f has
almost no correlation with g over the above distribution, which is thus a hardcore distribution
in Impagliazzo’s sense.

3. To prove the Dense Model Theorem, let R ⊆ X be a pseudorandom set and D ⊆ R
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a dense subset of R, |D| = δ|R|.6 Let g be the characteristic function of D, and let h be
the efficient approximation given by the Main Theorem, using UR as the measure µ. Now,
h : X → [0, 1] is defined over all of X, and because of the pseudorandomness of R we have

E
x∼X

[h(x)] ≈ E
x∼R

[h(x)] = E
x∼R

[g(x)] = δ

Suppose now, for simplicity, that h is the characteristic function of a set M : then M has size
≈ δ|X|, and the indistinguishability condition between g and h can be used to argue that M
is indistinguishable from D. In general, given h we can define a probability distribution M
such that M(x) = h(x)/

∑

x h(x) which has min-entropy ≈ log δ|X| and is indistinguishable
from D. Note that M is samplable and computable in low complexity.

We can also use our Main Theorem to give a new proof of the Yao XOR Lemma(see Section 5.3,
and, in general, it seems that the existence of our approximating functions is a useful tool to prove
results about pseudorandomness and average-case complexity.

2 The Proof via Duality of Linear Programming

Our first proof of Theorem 1.1 uses duality of linear programming (or, equivalently, the finite-
dimensional Hahn-Banach Theorem) in the form of the min-max theorem for two-player zero-sum
games.

In our proof we shall use twice the following result.

Lemma 2.1 Let X be a finite domain and let µ be a distribution on X. Let G be a set of bounded
functions g : X → [−1, 1], and let ḡ be a convex combination of functions from G. Then there are
functions g1, . . . , gk ∈ G, for k = O((1/ǫ2) · log(1/ǫ)) such that

E
x∼µ

[∣

∣

∣

∣

∣

ḡ(x)−

(

1

k

∑

i

gi(x)

)∣

∣

∣

∣

∣

]

≤ ǫ

Proof: The convex combination ḡ defines a distribution on the functions in G. Pick k random
functions picked from G according to this distribution and let g̃ denote their average. Then for
any fixed x ∈ X, Pg1,...,gk

[|ḡ(x)− g̃(x)| > ǫ/2] ≤ ǫ/2 for k = O((1/ǫ2) log(1/ǫ)). Thus, by linearity
of expectation Eg1,...,gk

[Px∼µ [|ḡ(x)− g̃(x)| > ǫ/2]] ≤ ǫ/2. In particular, there exist some g1, . . . , gk

such that Px∼µ [|ḡ(x)− g̃(x)| > ǫ/2] ≤ ǫ/2 and hence Ex∼µ [|ḡ(x)− g̃(x)|] ≤ ǫ.

Theorem 2.2 Let X be a finite domain, µ a probability distribution over X, g : X → [−1, 1] a
bounded function, F a family of bounded functions f : X → [−1, 1], and ǫ > 0. Then there is a
bounded function h : X → [−1, 1] such that E[h] = E[g] and

1. h has complexity at most (1/ǫ)O(1) with respect to F ;

2. For all f ∈ F ,
∣

∣

∣

∣

E
x∼µ

[f(x)g(x)] − E
x∼µ

[f(x)h(x)]

∣

∣

∣

∣

≤ ǫ

6This is a simplified setting; in general we shall be interested in the case in which D and R are allowed to be
measures rather than sets.
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Proof: Let F ′ be the closure of F under “negation,” that is, F ′ := {f,−f : f ∈ F}.

Let t = O((1/ǫ2) · log(1/ǫ)) be a parameter that we shall fix later, and let H be the set of all
bounded functions h : X → [−1, 1] that have complexity at most t with respect to F ′ and such
that E[h] = E[g]. Also, for a set S of functions, let CH (S) denote the set of convex combinations
of functions in S.

We next use the min-max theorem of two-player zero sum games, which follows from duality of
linear programming. Consider a two player zero-sum game, in which one player picks a function h
from H, the other picks f from F ′, and the payoff is Ex∼µ[f(x)g(x) − f(x)h(x)]. By the min-max
theorem, one of the two cases must hold:

∃h̄ ∈ CH (H). ∀f ∈ F ′. E
x∼µ

[f(x)g(x) − f(x)h̄(x)] ≤
ǫ

2
(1)

∃f̄ ∈ CH (F ′). ∀h ∈ H. E
x∼µ

[f̄(x)g(x) − f̄(x)h(x)] >
ǫ

2
(2)

We argue that, for a proper choice of t, Case (2) is impossible, and then we use the function h̄ from
Case (1) to construct the function h as required.

Suppose Case (2) holds. Then, by Lemma 2.1, we know that there are functions f1, . . . , fk, k =
O(ǫ−2 · log ǫ−1) such that if we define

f̃(x) :=
1

k

k
∑

i=1

fi(x)

we have
∣

∣

∣

∣

E
x∼µ

[f(x)h(x)] − E
x∼µ

[f̃(x)h(x)]

∣

∣

∣

∣

≤ E
x∼µ

[∣

∣

∣
f(x)− f̃(x)

∣

∣

∣

]

≤
ǫ

10

for every bounded function h. Then, by (2) and the triangle inequality, we have

∀h ∈ H. E
x∼µ

[

f̃(x)g(x) − f̃(x)h(x)
]

>
ǫ

2
−

2ǫ

10
=

3ǫ

10

Define now f̂ to be equal to f̃ rounded down to the next multiple of ǫ/10. Then for every x,
|f̃(x)− f̂(x)| ≤ ǫ/10 and so

∀h ∈ H. E
x∼µ

[

f̂(x)g(x) − f̂(x)h(x)
]

>
ǫ

10
(3)

and f̂ takes only the values 0, ǫ/10, 2ǫ/10, . . . , 1 − ǫ/10, 1. For 0 ≤ i ≤ 10/ǫ, let Si = {x : f̂(x) =
iǫ/10} be the ith level set of f̂ and let 1Si

be the indicator function for this set. We define

h(x) :=

10/ǫ
∑

i=0

ci · 1Si
(x) for ci =





1

|Si|

∑

z∈Si

g(z)





Notice that h has complexity at most max{10/ǫ, k} = O((1/ǫ2) log(1/ǫ)) with respect to F ′, and
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that E[h] = E[g], so that h ∈ H for a sufficiently large choice of t. Now we see that

E
x∼µ

[

f̂(x)h(x)
]

= E
x∼µ





10/ǫ
∑

i=0

f̂(x) · ci · 1Si
(x)





= E
x∼µ





10/ǫ
∑

i=0

f̂(x) · 1Si
(x) ·

1

|Si|

∑

z∈Si

g(z)





=
∑

i

P

[

f̂(x) = i
ǫ

10

]

· E
x∼µ

[

f̂(x)g(x)
∣

∣

∣f(x) = i
ǫ

10

]

= E
x∼µ

[

f̂(x)g(x)
]

This is in contradiction to (3), and so Case (2) above is impossible.

Thus we must be in case 1. That is, there must exist a function h̄, which is a convex combination
of functions of complexity at most t = O((1/ǫ2) log(1/ǫ)) and satisfies

∀f ∈ F ′. E
x∼µ

[

f(x)g(x) − f(x)h̄(x)
]

≤
ǫ

2

It follows from Lemma 2.1 that there are functions h1, . . . , hk, k = O((1/ǫ2) log(1/ǫ)) such that if we

define h̃(x) := 1
k

∑

i hi(x), then for all founded functions f we have
∣

∣

∣Ex∼µ

[

h̄(x)f(x)− h̃(x)f(x)
]∣

∣

∣ ≤

ǫ/10. (Note that we also have E[h̃] = E[g] because each hi has the same expectation as g.) So we
get

∀f ∈ F ′. E
x∼µ

[

f(x)g(x) − f(x)h̃(x)
]

≤
ǫ

2
+

ǫ

10
=

3ǫ

5

and the theorem follows by noting that h̃ has complexity at most O((1/ǫ4) · (log(1/ǫ))2).

3 The Proof via Boosting

In this section we give a proof of Theorem 1.1 simular to the proof via “boosting” of the Impagliazzo
Hardcore Lemma. We obtain a complexity bound of O(ǫ−2) for h. As explained in Remark
1.5, considering functions ranging over [−1, 1], as we shall do below, is equivalent to considering
functions ranging over [0, 1].

Theorem 3.1 Let X be a finite domain, µ a probability distribution over X, g : X → [−1, 1] a
bounded function, F a family of boolean functions f : X → {−1, 1}, and ǫ > 0. Then there is a
bounded function h : X → [−1, 1] such that:

1. h has complexity O(1/ǫ2) with respect to F .

2. For all f ∈ F ,
∣

∣

∣

∣

E
x∼µ

[f(x)g(x)] − E
x∼µ

[f(x)h(x)]

∣

∣

∣

∣

≤ ǫ

Remark 3.2 Note that the above version of the theorem only applies to boolean distinguishers.
However, this is not a severe limitation as distinguisher taking values in [−1, 1] can be converted
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to a distinguisher only taking values {−1, 1}, with equal distinguishing advantage and only a small
increase in complexity. Specifically, for a function f : X → [−1, 1] such that Ex∼µ[f(x)(g(x) −
h(x))] = δ, and some t ∈ [−1, 1] consider the function ft(x) which is 1 if f(x) ≤ t and −1
otherwise. Then

E
t∈[−1,1]

[

E
x∼µ

[ft(x)(g(x) − h(x))]

]

= E
x∼µ

[f(x)(g(x) − h(x))] = δ

and hence there is some value of t for which ft is the required boolean distinguisher. Also, ft has
complexity 1 with respect to the class containing f .

Remark 3.3 Theorem 1.1 requires E[h] = E[g], which is not guaranteed by the above statement.
By adding to F the function 1 which is identically equal to 1, the indistinguishability condition
gives us |E[g]−E[h]| ≤ ǫ; we can then construct a new function h′ : X → [−1, 1] whose complexity
is only an additive constant term larges than h and such that E[g] = E[h′] and that h and h′

(and thus g and h′) are O(ǫ)-indistinguishable. If |E[h]| > |E[g]|, then we can simply define
h′(x) = h(x) · (|E g|/|E h|). Otherwise, we can define h′(x) := γ +(1−γ)h(x) or h′(x) := γ · (−1)+
(1 − γ)h(x) (depending on the sign of E[g]) for an appropriate constant γ. In each case, we have

Ex |h(x)− h′(x)| = O(ǫ), and so h and h′ are indistinguishable by arbitrary bounded functions.

Proof: Let F ′ = {F}∪{−F} as before. We start with h = h0 ≡ 0 as the identically zero function
and iteratively modify the function h until it satisfies the second property. We will need to argue
that the complexity of the function constructed at the end is O(1/ǫ2).

Let ht−1 be the function obtained after t− 1 steps of the iteration. If it fails to satisfy the second
property, then there exists ft ∈ F

′ such that Ex∼µ [ft(x)(g(x) − ht−1(x))] > ǫ. We then define the
modified function ht (with some parameter 0 < γ < 1 to be chosen later) as

ht(x) =







γ · (
∑t

i=1 ft(x)) if γ · (
∑t

i=1 ft(x)) ∈ [−1, 1]

−1 if γ · (
∑t

i=1 ft(x)) < −1

1 if γ · (
∑t

i=1 ft(x)) > 1

Note that at different time steps, ht(x) only changes in steps of size γ and is bounded in [−1, 1].
Hence, ht(x) can be described as a linear combination of 2/γ functions, each of which checks if
∑

t ft is in some interval of size γ. Also, if the process stops at time T , then the function hT

satisfies the second condition by definition. It only remains to prove that T = O(1/ǫ2) (and choose
γ appropriately). The proof will follow from the following claim

Claim 3.4 For all x ∈ X and for all T ≥ 1

T
∑

t=1

ft(x)(g(x) − ht−1(x)) ≤
4

γ
+

γT

2

We first show how Claim 3.4 implies the theorem. The condition that at every time step the ft

distinguishes between g and ht−1 implies that Ex∼µ [ft(x)(g(x) − ht−1(x))] > ǫ. Using this and
Claim 3.4, we have

ǫT <
T
∑

t=1

E
x∼µ

[ft(x)(g(x) − ht−1(x))] = E
x∼µ

[

T
∑

t=1

ft(x)(g(x) − ht−1(x))

]

≤

(

4

γ
+

γT

2

)

Choosing γ = ǫ, this gives T < 8/ǫ2, which proves of the theorem.

We now prove the claim.
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Proof (of Claim 3.4): Let ∆t(x) denote (g(x)−ht(x)). We intend to show that
∑T

t=1 ft(x)∆t−1(x) ≤
4/γ + γT/2. We first note that ∆t(x) and ∆t+1(x) can differ only by γ, −γ or 0 (they differ by
0 in case ht(x) = ht+1(x) = ±1). We now break the time steps between 1 and T into “level sets”
based on the value of ∆t. For −1/γ < r ≤ 1/γ, we define

Ur = {t | ∆t−1 = g(x) + (r − 1)γ and ∆t = g(x) + rγ}

Lr = {t | ∆t−1 = g(x) + rγ and ∆t = g(x) + (r − 1)γ}

In other words, Ur is the set of times at which the value of ∆t(x) increases to g(x) + rγ and Lr is
the of times when it decreases from g(x) + rγ. Thus ranging over all r, the sets Ur and Lr contain
all times t except the ones for which ∆t(x) = ∆t+1(x).

Since the values of ∆t change only in steps of γ, for all ∀r. |Ur − Lr| ≤ 1. Also, if t1 ∈ Ur and
t2 ∈ Lr, then the signs of ft1(x) and ft2(x) must differ and hence ft1∆t1−1(x) + ft2∆t2−1(x) = γ.
Hence, we can pair up times in Ur with those in Lr and note that

∀r
∑

t∈Ur

ft(x)∆t−1(x) +
∑

t∈Lr

ft(x)∆t−1(x) ≤ γ ·
(|Ur|+ |Lr|)

2
+ 2

where the 2 is an upper bound on ft(x)∆t−1(x) for the at most one value of t that is left unpaired.
For L = ∪rL and U = ∪rU , we have

∑

t∈L∪U

ft(x)∆t−1(x) =
∑

r

∑

t∈Lr∪Ur

ft(x)∆t−1(x) ≤
4

γ
+ γ ·

|L ∪ U |

2

Finally, it remains to bound the contribution for time t /∈ L∪U . For such a t, ht−1(x) = ht(x) = ±1.
We give the argument for the case when the value is fixed at 1. The argument for the -1 case is
analogous.

Let ht(x) be fixed at 1 for t1 ≤ t ≤ t2. Then all times from t1 + 1 to t2 are not in L ∪ U . The
contribution due to this interval is

∑

t1<t≤t2

ft(x)∆t−1(x) =
∑

t1<t≤t2

ft(x)(g(x) − 1)

However, g(x) − 1 ≤ 0 and ft(x) = 1 for majority of the times t ∈ {t1 + 1, . . . , t2}, (since ht stays
at its upper limit in this interval). Hence,

∑

t1<t≤t2

ft(x)(g(x) − 1) ≤ 0

Similarly, the contribution of the intervals in which ht(x) is identically -1 is also non-positive. This
proves the claim since

T
∑

t=1

ft(x)∆t−1(x) ≤
4

γ
+ γ ·

|L ∪ U |

2
≤

4

γ
+ γ ·

T

2
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4 A Generalization of the Argument of Frieze and Kannan

In this section we show how to prove a weaker version of our result by adapting the argument of
Frieze and Kannan [FK]. The statement is weaker in that h is not guaranteed to be a bounded
function. The proof, however, is much simpler.

Theorem 4.1 Let X be a finite domain, µ a probability distribution over X, g : X → [−1, 1] a
bounded function, F a family of bounded functions f : X → [−1, 1], and ǫ > 0. Then there is a
function h : X → R such that

1. h has complexity O(ǫ−2) with respect to F ; indeed there are functions f1, . . . , fk ∈ F , k ≤ ǫ−2,
and coefficients c1, . . . , ck, such that

∑

i c
2
i ≤ 1 and

h(x) :=
k
∑

i=1

cifi(x)

2. For all f ∈ F ,
∣

∣

∣

∣

E
x∼µ

[f(x)g(x)] − E
x∼µ

[f(x)h(x)]

∣

∣

∣

∣

≤ ǫ

Proof: Let F ′ be the “closure of F under negation,” that is, F ′ := F ∪ {−f : f ∈ F}.

The approximating function h is the output of the following algorithm.7

1. h0 := 0; t := 0

2. while ∃ft+1 ∈ F
′. Ex∼µ[ft+1(x)g(x)] − Ex∼µ[ft+1(x)ht(x)] > ǫ

(a) ht+1 := ht + ǫft+1

(b) t := t + 1

If the algorithm terminates after k steps, then the output function h satisfies the required indistin-
guishability probability, and it can be written as h = ǫf1 + · · · + ǫfk, where fi ∈ F

′. Thus, it can
be written as h =

∑

i cifi with fi ∈ F , and
∑

i c
2
i = kǫ2.

It remains to prove that the algorithm must terminate within k ≤ ǫ−2 steps. We do so by a “energy
decrease” argument, by defining a non-negative energy function whose value is at most 1 at the
beginning, and which decreases by at least ǫ2 at each step.

For every time step, define the error function ∆t := g − ht, and consider the “energy” Et :=

Ex∼µ[∆2
t (x)].

At time 0, h = 0, and so dt = g, and the energy is E0 = E[g2] ≤ 1.

Going from step t to step t + 1, and recalling that ht+1 := ht + ǫft+1, we have

Et − Et+1 = E

[

(g − ht)
2 − (g − ht − ǫft+1)

2
]

= E [2 · (g − ht)ǫft+1]− E

[

ǫ2f2
t+1

]

≥ 2ǫ2 − ǫ2 = ǫ2.

7Notice the similarity with the algorithm in our boosting proof; the main difference is that in our boosting proof
we bound h at every step so that it is constrained to be between −1 and 1, a condition that breaks the Frieze–
Kannan-style analysis presented below.
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5 Applications

In this section, we shall use the following definition: a distribution A has density δ in a distribution
B (or A is δ-dense in B), if ∀x. PA[x] ≤ (1/δ) · PB[x].

5.1 Deriving the Dense Model Theorem

We prove the Dense Model Theorem in the following formulation:

Theorem 5.1 Let X be a finite universe, F a collection of bounded functions f : X → [−1, 1],
ǫ > 0 an accuracy parameter and δ > 0 a density parameter. Let R,D be distributions over X
such that D is δ-dense in R. Then there exists C = 1/ǫO(1) such that, if, for every function f ′ of
complexity at most C with respect to F , we have

∣

∣

∣

∣

E
x∼R

[

f ′(x)
]

− E
x∼X

[

f ′(x)
]

∣

∣

∣

∣

≤ ǫ ,

then D has a dense model in X. That is, there exists a distribution M , which has density at least
(δ − ǫ) in X such that for all f ∈ F ,

∣

∣

∣

∣

E
x∼D

[f(x)]− E
x∼M

[f(x)]

∣

∣

∣

∣

≤ O(ǫ/δ)

Proof: We start by defining the function g which we shall try to approximate.

g(x) =

{

1− 2 δ·PD[x]
PR[x] PR[x] > 0

1 otherwise

Note that if we had uniform distributions over some sets R and D, with |D| = δ|R| then g would
be −1 inside the set D and 1 outside. The requirement that PD(x) ≤ 1

δ · PR(x) ensures that g is
bounded between -1 and 1. We now apply theorem 1.1 to approximate the function g according to
the distribution R. This gives a function h such that ∀f ∈ F . |Ex∈R[(g(x) − h(x))f(x)]| ≤ ǫ. Also
h has complexity at most 1/ǫO(1) with respect to F .

It shall be more convenient to define the distribution M by defining a measure ρM (x) = (1−h(x))/2.
We will then take Px∼M [x] = ρM (x)/(

∑

z ρM (z)). Note that ρM (x) ∈ [0, 1] for every x since h is
bounded between -1 and 1. To show that the distribution M is dense in X, we will need to show
that

∑

x ρM (x) ≥ (δ − ǫ)|X|. This will follow from the facts that the expectation of h over X is
close to its expectation over R, which is in turn close to the expectation of g over R. We first note
that

E
x∼R

[

1− g(x)

2

]

= E
x∼R

[

δ · PD[x]

PR[x]

]

= δ

where in the last equality, we used the fact that the support of D is contained in the support of R.
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This gives
∣

∣

∣

∣

E
x∼X

[ρM (x)]− δ

∣

∣

∣

∣

=

∣

∣

∣

∣

E
x∼X

[

1− h(x)

2

]

− E
x∼R

[

1− g(x)

2

]∣

∣

∣

∣

≤

∣

∣

∣

∣

E
x∼X

[

1− h(x)

2

]

− E
x∼R

[

1− h(x)

2

]∣

∣

∣

∣

+

∣

∣

∣

∣

E
x∼R

[

1− h(x)

2

]

− E
x∼R

[

1− g(x)

2

]∣

∣

∣

∣

≤
ǫ

2
+

ǫ

2
= ǫ

Hence, we get that
∑

x ρM (x) ≥ (δ − ǫ)|X|. We also get that
∑

x ρM (x) ≤ (δ + ǫ)|X|, which we
shall need below. We next need to show that M and D are indistinguishable by any any f ∈ F .
The indistinguishability of the functions g and h by f gives

∣

∣

∣

∣

E
x∼R

[(g(x) − h(x)f(x)]

∣

∣

∣

∣

≤ ǫ =⇒

∣

∣

∣

∣

E
x∼R

[

(1− h(x))f(x)

2
−

(1− g(x))f(x)

2

]∣

∣

∣

∣

≤ ǫ/2

=⇒

∣

∣

∣

∣

E
x∼R

[

(1− h(x))f(x)

2

]

− E
x∼R

[(

δPD[x]

PR[x]

)

f(x)

]∣

∣

∣

∣

≤ ǫ/2

=⇒

∣

∣

∣

∣

E
x∼R

[

(1− h(x))f(x)

2

]

− δ · E
x∼D

[f(x)]

∣

∣

∣

∣

≤ ǫ/2

=⇒

∣

∣

∣

∣

E
x∼X

[

(1− h(x))f(x)

2

]

− δ · E
x∼D

[f(x)]

∣

∣

∣

∣

≤ 3ǫ/2

where the last implication used the fact that h(x) has low complexity and hence so does f(x)(1−
h(x))/2. Consequently, its expectations on the distributions R and X differ by at most ǫ.

Finally, we consider
∣

∣

∣

∣

E
x∼X

[

(1− h(x))f(x)

2

]

− δ · E
x∼M

[f(x)]

∣

∣

∣

∣

=

∣

∣

∣

∣

E
x∼X

[ρM (x)f(x)]− δ · E
x∼M

[f(x)]

∣

∣

∣

∣

=

∣

∣

∣

∣

(∑

z ρM (z)

|X|

)

E
x∼M

[f(x)]− δ · E
x∼M

[f(x)]

∣

∣

∣

∣

≤ ǫ

Combining the two bounds and using triangle inequality, we get
∣

∣

∣

∣

δ · E
x∼D

[f(x)]− δ · E
x∼M

[f(x)]

∣

∣

∣

∣

≤
5ǫ

2

which gives |Ex∼D [f(x)]− Ex∼M [f(x)]| ≤ 5ǫ
2δ as claimed.

5.2 Deriving the Impagliazzo Hard-Core Set Lemma

Theorem 5.2 Let F be a family of functions from a finite domain X to {0, 1} and ǫ, δ > 0. Then
there exists an s = poly(1/ǫ, 1/δ) such that if g : X → {0, 1} is a function, which for all functions
f0 : X → {0, 1} having complexity at most s w.r.t F , satisfies

Px∼X [f(x) = g(x)] ≤ 1− δ

Then there is a distribution µ which is δ-dense in UX such that

∀fF . Px∼µ[f(x) = g(x)] ≤
1

2
+ ǫ

13



Proof Idea: We apply the Theorem 1.1 to g and obtain an efficiently computable function h that
is “indistinguishable” from g. We then define the distribution µ so that µ(x) is proportional to
|g(x) − h(x)|. It follows from the weak average-case hardness of g that |g(x) − h(x)| is noticeably
large on average, and from this we derive that µ has the required density. The strong average-
case hardness of g on the distribution µ follows from the indistinguishability condition, a fact that
requires a slightly technical proof based on the following intuition: suppose h were the characteristic
function of a set B, and let A be the set {x : g(x) = 1}. Then A and B have the same size
since E[g] = E[h], and µ is uniform over the symmetric difference A∆B. The indistinguishability
condition requires every efficient function f to evaluate to 1 on approximately the same number of
elements in A and B, and hence approximately the same number of elements in A−B and B−A.
This means that f correctly computes g in A−B on approximately as many elements as elements
of B −A on which f incorrectly computer g, and so f computes g correctly on approximately half
the elements of A∆B.

The formal proof follows.

Proof: We apply Theorem 1.1 to g, with the approximation parameter γ := ǫδ. Theorem 1.1
gives us a function h : X → [0, 1] with complexity at most poly(1/γ) with respect to F such that

∀f ∈ F . E
x∼X

[f(x) · (g(x) − h(x))] ≤ γ

Let us consider now the “error function” |g(x) − h(x)|. The assumption that g is weakly hard on
average, and the fact that h has low complexity, imply that the error must be large on average. In
particular, we claim that by choosing s = poly(1/γ) we must have

E [|g(x) − h(x)|] ≥ δ (4)

Indeed, consider the process of picking a random t in [0, 1], and defining the function ht(x) so that
ht(x) = 1 if h(x) ≥ t and ht(x) = 0 otherwise. Then, for every choice of t, ht has complexity
poly(1/γ), and recalling that g takes values in {0, 1}, we have

P x∼X,t∼[0,1][ht(x) = g(x)] = E
x∼X

[|g(x)− h(x)|]

In particular there is a fixed t such that

Px∼X [ht(x) = g(x)] ≥ E
x∼X

[|g(x)− h(x)|]

and the claim follows. Let us define the distribution µ so that the probability of a point x is
proportional to |g(x) − h(x)|. That is

µ(x) :=
|g(x) − h(x)|

∑

y |g(y) − h(y)|

Note that µ(x) ≤ 1/(δ|X|) and hence µ has density at least δ. We now fix a function f ∈ F , and it
remains to estimate Px∼µ[f(x) = g(x)], which equals,

∑

x µ(x) · 1[f(x)=g(x)] where 1[f(x)=g(x)] is an
indicator function. We will bound this using the identity

|g(x) − h(x)| · 1[f(x)=g(x)] =

[(

f(x)−
1

2

)

· (g(x)− h(x)) +
1

2
|g(x) − h(x)|

]

To match this with the intuition given earlier, consider the special case that h(x) is boolean and
let A = {x | g(x) = 1}, B = {x | h(x) = 1}. Then |g(x) − h(x)| is the characteristic function for
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A∆B, with g(x)−h(x) being 1 on A\B and −1 on B \A. So, the above equation (summed over x)
says that the number on points in A∆B on which f(x) = g(x) (counted twice) equals the number
of points in A \ B where f(x) = 1 minus the number of points in B \ A where f(x) = 0, plus the
number of points in A∆B. (the general case can be verified by case analysis on f(x), g(x) ∈ {0, 1}).
This gives

E
x

[

|g(x) − h(x)| · 1[f(x)=g(x)]

]

≤ γ +
1

2
E
x

[|g(x) − h(x)|]

So, finally, recalling that
∑

x |g(x) − h(x)| ≥ δ|X|,

Px∼µ[f(x) = g(x)] =
Ex

[

|g(x) − h(x)| · 1[f(x)=g(x)]

]

Ex [|g(x) − h(x)|]
≤

1

2
+

γ

δ
≤

1

2
+ ǫ

5.3 Deriving the Yao XOR Lemma

It is also possible to derive the Yao XOR Lemma from our main result.

For every family F of functions f0 : X → [−1, 1], we define the family Fk of functions f : Xk →
[−1, 1] such that if we fix all but one input of f , then the resulting function defined on x is in F .

Theorem 5.3 Let F be a family of functions from X to [−1, 1], ǫ, δ > 0. Then there exists
s = poly(1/ǫ, 1/δ) such that if g : X → {−1, 1} satisfies for all f0 having complexity at most s with
respect to F

∣

∣

∣

∣

E
x∼X

[f0(x)g(x)]

∣

∣

∣

∣

≤ 1− 2δ

Then for g⊗k : Xk → {−1, 1} defined as g⊗k(x1, . . . , xk) =
∏k

i=1 g(xk), we have

∀f ∈ Fk.

∣

∣

∣

∣

E
z∼Xk

[

f(z)g⊗k(z)
]

∣

∣

∣

∣

≤ (1− δ)k + ǫ

Remark 5.4 Note that the above theorem implies the usual statement of the XOR lemma where
the domain X is {0, 1}n, functions have range {0, 1}, and the hypothesis is that for all f0 with
complexity at most s w.r.t F , Px∈{0,1}[f(x) = g(x)] ≤ 1 − δ. The required conclusion is that

for g⊕k : {0, 1}n → {0, 1}, defined as g⊕(x1, . . . , xk) = g(x1) ⊕ . . . ⊕ g(xk) and for all f ∈ Fk,
Px1,...,xk

[f(x1, . . . , xk) = g⊕k(x1, . . . , xk)] ≤ 1/2 + (1 − δ)k + ǫ. This follows from the theorem by

considering the functions (−1)f0(x), (−1)g(x), (−1)f(x1,...,xk) and (−1)g
⊕k(x1,...,xk).

Proof: We apply Theorem 1.1 with the family X and γ = ǫδ to obtain a function h which is
ǫδ-indistinguishable from g by functions of F . Then h has complexity poly(1/ǫ, 1/δ) with respect
to F .

Even though h is indistinguishable from g by functions in F , it is still a function of low-complexity
with respect to f . Hence, if s is larger than the complexity of h, it cannot be “too correlated”
with g. This intuition was also used in the proof of the hardcore lemma and we formalize it in the
following claim.

Claim 5.5

E
x∼µ

[∣

∣

∣

∣

g(x) + h(x)

2

∣

∣

∣

∣

]

≤ 1− δ
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Proof: Since g(x) ∈ {−1, 1}, we have ∀x. |g(x) + h(x)| + |g(x) − h(x)| = 2. Hence, it suffices
to show Ex∼µ [|g(x) − h(x)|] ≤ 2δ. For t ∈ [−1, 1], consider ht(x), which is 1 if h(x) ≥ t and −1
otherwise. Then,

∣

∣

∣

∣

∣

E
t∈[−1,1]

[

E
x∼µ

[ht(x)g(x)]

]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1− E
x∼µ

[|g(x)− h(x)|]

∣

∣

∣

∣

In particular, this value is achieved for some t. Also, the complexity of ht is just 1 more than the
complexity of h. Thus, if s is large enough,

∣

∣

∣

∣

1− E
x∼µ

[|g(x)− h(x)|]

∣

∣

∣

∣

≤ 1− 2δ =⇒ E
x∼µ

[|g(x) − h(x)|] ≥ 2δ

Note that we can split g(x) as g(x) = g1(x)+g2(x) for g1(x) = (g−h)(x)/2 and g2(x) = (g+h)(x)/2.
We can then rewrite

∏k
j=1 g(xj) as

k
∏

j=1

g(xj) = g1(x1)
k
∏

j=2

g(xj) + g2(x1)
k
∏

j=2

g(xj)

= g1(x1)
k
∏

j=2

g(xj) + g2(x1)g1(x2)
k
∏

j=3

g(xj) + g2(x1)g2(x2)
k
∏

j=3

g(xj)

=

k
∑

i=1





i−1
∏

j=1

g2(xj)



 · g1(xi) ·





k
∏

j′=i+1

g(xj′)



 +

k
∏

j=1

g2(xj)

Then, for the second term we can bound the correlation with f as

E
x1,...,xk



f(x1, . . . , xk)
k
∏

j=1

g2(xj)



 ≤ E
x1,...,xk





∣

∣

∣

∣

∣

∣

k
∏

j=1

g2(xj)

∣

∣

∣

∣

∣

∣



 =
k
∏

j=1

E
xj

[∣

∣

∣

∣

g(xj) + h(xj)

2

∣

∣

∣

∣

]

≤ (1− δ)k

where the last inequality used Claim 5.5. The correlation with the ith term in the summation,
which has i− 1 factors of the form g2(x) and one of the form g1(x), can be bounded as

E
x1,...,xk



f(x1, . . . , xk)





i−1
∏

j=1

g2(xj)



 g1(xi)





k
∏

j′=i+1

g(xj′)









≤ E
x1,...,xi−1
xi+1,...,xk





∣

∣

∣

∣

∣

∣





i−1
∏

j=1

g2(xj)





k
∏

j′=i+1

g(xj′)

∣

∣

∣

∣

∣

∣

·

∣

∣

∣

∣

E
xi

[

f(x1, . . . , xk)

(

g(xi)− h(xi)

2

)]∣

∣

∣

∣





≤ ǫδ ·

i−1
∏

j=1

E
xj

[|g2(xj)|] ≤ ǫδ(1 − δ)i−1

Here the penultimate inequality used the fact that the function obtained by all variables except xi

in f , belongs to the class F and hence does not correlate with (g − h)/2. Collecting terms, we can
then bound the correlation of f with g⊗k as

E
x1,...,xk

[

f(x1, . . . , xk)
k
∏

i=1

g(xi)

]

≤ (1− δ)k + ǫδ · [1 + (1− δ) + . . . + (1− δ)k−1]

≤ (1− δ)k + ǫδ ·
1

δ
= (1− δ)k + ǫ
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which proves the theorem.
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