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REGULARITY CONDITIONS VIA QUASI-RELATIVE INTERIOR IN
CONVEX PROGRAMMING∗
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Abstract. We give some new regularity conditions for Fenchel duality in separated locally
convex vector spaces, written in terms of the notion of quasi interior and quasi-relative interior,
respectively. We provide also an example of a convex optimization problem for which the classical
generalized interior-point conditions given so far in the literature cannot be applied, while the one
given by us is applicable. By using a technique developed by Magnanti, we derive some duality results
for the optimization problem with cone constraints and its Lagrange dual problem, and we show
that a duality result recently given in the literature for this pair of problems has self-contradictory
assumptions.
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1. Introduction. Usually there is a so-called duality gap between the optimal
objective values of a primal convex optimization problem and its dual problem. A
challenge in convex analysis is to give sufficient conditions which guarantee strong
duality, the situation when the optimal objective values of the two problems are equal
and the dual problem has an optimal solution. Several generalized interior-point
conditions were given in the past in order to eliminate the above-mentioned duality
gap. Along the classical interior, some generalized interior notions were used, such as
the core [14], the intrinsic core [9], or the strong quasi-relative interior [2], in order to
give regularity conditions which guarantee strong duality. For an overview of these
conditions we invite the reader to consult [8], [16] (see also [17] for more on this
subject).

Unfortunately, for infinite-dimensional convex optimization problems, also in prac-
tice, it can happen that the duality results given in the past cannot be applied because,
for instance, the interior of the set involved in the regularity condition is empty. This
is the case, for example, when we deal with the positive cones

lp+ = {x = (xn)n∈N ∈ lp : xn ≥ 0 ∀n ∈ N}

and

Lp+(T, µ) = {u ∈ Lp(T, µ) : u(t) ≥ 0, a.e.}

of the spaces lp and Lp(T, µ), respectively, where (T, µ) is a σ-finite measure space
and p ∈ [1,∞). Moreover, also the strong quasi-relative interior (which is the weakest
generalized interior notion from the one mentioned above) of these cones is empty.
For this reason, for a convex set, Borwein and Lewis introduced the notion of a quasi-
relative interior [3], which generalizes all of the above-mentioned interior notions.
They proved that the quasi-relative interiors of lp+ and Lp+(T, µ) are nonempty.
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In this paper, we start by considering the primal optimization problem with the
objective function being the sum of two proper convex functions defined on a separated
locally convex vector space, to which we attach its Fenchel dual problem, stated in
terms of the conjugates of the two functions. We give a new regularity condition
for Fenchel duality based on the notion of a quasi-relative interior of a convex set
using a separation theorem given by Cammaroto and Di Bella in [4]. Further, two
stronger regularity conditions are also given. We provide an appropriate example for
which our duality results are applicable, while the other generalized interior-point
conditions given in the past fail, justifying the theory developed in this paper. Then
we state duality results for the case when the objective function of the primal problem
is the sum of a proper convex function with the composition of another proper convex
function with a continuous linear operator. Let us notice that for this case Borwein
and Lewis in [3] also gave some conditions by means of the quasi-relative interior,
but they considered a more restrictive case, namely, that the codomain of the linear
operator is finite-dimensional. We consider the more general case, when both of the
spaces are infinite-dimensional.

In 1974 Magnanti proved that “Fenchel and Lagrange duality are equivalent” in
the sense that the classical Fenchel duality result can be deduced from the classical La-
grange duality result, and vice versa (see [13]). By using this technique we derive some
Lagrange duality results for the convex optimization problem with cone constraints,
written in terms of the quasi-relative interior. Let us notice that another condition for
Lagrange duality, stated also in terms of the quasi-relative interior, was given recently
by Cammaroto and Di Bella in [4]. We show that this result has self-contradictory
assumptions. Let us mention that also in [11] some regularity conditions, in terms of
the quasi-relative interior, have been introduced. However, most of these conditions
require the interior of a cone to be nonempty, and this fails for many optimization
problems as we pointed out above.

The paper is structured as follows. In the next section we give some definitions
and results which will be used later in the paper. Section 3 is devoted to the theory
of Fenchel duality. We give here the announced regularity conditions written in terms
of the quasi-relative interior. By using an idea due to Magnanti we derive in section
4 some duality results for the optimization problem with cone constraints and its
Lagrange dual problem.

2. Preliminary notions and results. Consider X, a separated locally convex
vector space, and X∗, its topological dual space. We denote by 〈x∗, x〉 the value of
the linear continuous functional x∗ ∈ X∗ at x ∈ X. Further, let idX : X → X,
idX(x) = x, for all x ∈ X, be the identity function of X. The indicator function of
C ⊆ X, denoted by δC , is defined as δC : X → R = R ∪ {±∞},

δC(x) =
{

0 if x ∈ C,
+∞ otherwise.

For a function f : X → R we denote by dom(f) = {x ∈ X : f(x) < +∞} its
domain and by epi(f) = {(x, r) ∈ X × R : f(x) ≤ r} its epigraph. We call f
proper if dom(f) �= ∅ and f(x) > −∞ for all x ∈ X. We also denote by êpi(f) =
{(x, r) ∈ X × R : (x,−r) ∈ epi(f)} the symmetric of epi(f) with respect to the x-
axis. For a given real number α, f − α : X → R is, as usual, the function defined
by (f − α)(x) = f(x) − α for all x ∈ X. Given two functions f : M1 → M2
and g : N1 → N2, where M1,M2, N1, N2 are nonempty sets, we define the function
f × g : M1 ×N1 →M2 ×N2 by f × g(m,n) = (f(m), g(n)) for all (m,n) ∈M1 ×N1.
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The Fenchel–Moreau conjugate of f is the function f∗ : X∗ → R defined by

f∗(x∗) = sup
x∈X
{〈x∗, x〉 − f(x)} ∀x∗ ∈ X∗.

For a subset C of X we denote by coC, aff C, clC, and intC its convex hull, affine
hull, closure, and interior, respectively. The set coneC :=

⋃
λ≥0 λC is the cone

generated by C. The following property, the proof of which we omit since it presents
no difficulty, will be used throughout the paper: If C is convex, then

(1) cone co(C ∪ {0}) = coneC.

The normal cone of C at x ∈ C is defined as NC(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤
0, ∀y ∈ C}.

Definition 2.1 (see [3]). Let C be a convex subset of X. The quasi-relative
interior of C is the set

qriC = {x ∈ C : cl cone(C − x) is a linear subspace of X}.

We give the following useful characterization of the quasi-relative interior of a
convex set.

Proposition 2.2 (see [3]). Let C be a convex subset of X and x ∈ C. Then
x ∈ qriC if and only if NC(x) is a linear subspace of X∗.

In the following we consider another interior notion for a convex set, which is
close to the one of a quasi-relative interior.

Definition 2.3. Let C be a convex subset of X. The quasi interior of C is the
set

qiC = {x ∈ C : cl cone(C − x) = X}.

The following characterization of the quasi interior of a convex set was given in
[6], where the space X was considered a reflexive Banach space. One can prove that
this property is true even in a separated locally convex vector space.

Proposition 2.4. Let C be a convex subset of X and x ∈ C. Then x ∈ qiC if
and only if NC(x) = {0}.

Proof. Assume first that x ∈ qiC, and take an arbitrary element x∗ ∈ NC(x).
One can easily see that 〈x∗, z〉 ≤ 0 for all z ∈ cl cone(C − x). Thus 〈x∗, z〉 ≤ 0 for all
z ∈ X, which is nothing else than x∗ = 0.

In order to prove the opposite implication we consider an arbitrary x̄ ∈ X and
prove that x̄ ∈ cl cone(C − x). By assuming the contrary, by a separation theorem
(see, for instance, Theorem 1.1.5 in [17]), one has that there exists x∗ ∈ X∗ \ {0} and
α ∈ R such that

〈x∗, z〉 < α < 〈x∗, x̄〉 ∀z ∈ cl cone(C − x).

Let y ∈ C be fixed. For all λ > 0 it holds that 〈x∗, y − x〉 < 1
λα, and this implies

that 〈x∗, y − x〉 ≤ 0. As this inequality is true for every arbitrary y ∈ C, we obtain
that x∗ ∈ NC(x). But this leads to a contradiction, and in this way the conclusion
follows.

It follows from the definitions above that qiC ⊆ qriC and qri{x} = {x} for all
x ∈ X. Moreover, if qiC �= ∅, then qiC = qriC. Although this property is given
in [12] in the case of a real normed space, it holds also in an arbitrary separated
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locally convex vector space, as follows by the properties given above. If X is a finite-
dimensional space, then qiC = intC (cf. [12]) and qriC = riC (cf. [3]), where riC is
the relative interior of C.

Useful properties of the quasi-relative interior are listed below. For the proof of
(i)–(viii) we refer to [1] and [3].

Proposition 2.5. Let us consider C and D two convex subsets of X, x ∈ X,
and α ∈ R. Then:

(i) qriC + qriD ⊆ qri(C +D);
(ii) qri(C ×D) = qriC × qriD;
(iii) qri(C − x) = qriC − x;
(iv) qri(αC) = α qriC;
(v) t qriC + (1− t)C ⊆ qriC, ∀t ∈ (0, 1], and hence qriC is a convex set;
(vi) if C is an affine set, then qriC = C;
(vii) qri(qriC) = qriC.

If qriC �= ∅, then:
(viii) cl qriC = clC;
(ix) cl cone qriC = cl coneC.
Proof. (ix) The inclusion cl cone qriC ⊆ cl coneC is obvious. We prove that

coneC ⊆ cl cone qriC. Consider x ∈ coneC arbitrary. There exist λ ≥ 0 and c ∈ C
such that x = λc. Take x0 ∈ qriC. By applying property (v) we get tx0 + (1− t)c ∈
qriC for all t ∈ (0, 1], so λtx0 + (1 − t)x = λ(tx0 + (1 − t)c) ∈ cone qriC for all
t ∈ (0, 1]. By passing to the limit as t↘ 0 we obtain x ∈ cl cone qriC, and hence the
desired conclusion follows.

The next lemma plays an important role in this paper.
Lemma 2.6. Let A and B be nonempty convex subsets of X such that qriA∩B �=

∅. If 0 ∈ qi(A−A), then 0 ∈ qi(A−B).
Proof. Take x ∈ qriA∩B, and let x∗ ∈ NA−B(0) be arbitrary. We get 〈x∗, a−b〉 ≤

0, for all a ∈ A, for all b ∈ B. This implies that

(2) 〈x∗, a− x〉 ≤ 0 ∀a ∈ A,

that is, x∗ ∈ NA(x). As x ∈ qriA, NA(x) is a linear subspace of X∗, and hence
−x∗ ∈ NA(x), which is nothing else than

(3) 〈x∗, x− a〉 ≤ 0 ∀a ∈ A.

The relations (2) and (3) give us 〈x∗, a′−a′′〉 ≤ 0, for all a′, a′′ ∈ A, so x∗ ∈ NA−A(0).
Since 0 ∈ qi(A−A) we have NA−A(0) = {0} (cf. Proposition 2.4), and we get x∗ = 0.
As x∗ was arbitrary chosen we obtainNA−B(0) = {0}, and, by using again Proposition
2.4, the conclusion follows.

Next we give useful separation theorems in terms of the notion of a quasi-relative
interior.

Theorem 2.7. Let C be a convex subset of X and x0 ∈ C. If x0 �∈ qriC, then
there exists x∗ ∈ X∗, x∗ �= 0, such that

〈x∗, x〉 ≤ 〈x∗, x0〉 ∀x ∈ C.

Vice versa, if there exists x∗ ∈ X∗, x∗ �= 0, such that

〈x∗, x〉 ≤ 〈x∗, x0〉 ∀x ∈ C

and

0 ∈ qi(C − C),

then x0 �∈ qriC.
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Proof. Suppose that x0 �∈ qriC. According to Proposition 2.2, NC(x0) is not a
linear subspace of X∗, and hence there exists x∗ ∈ NC(x0), x∗ �= 0. By using the
definition of the normal cone, we get that 〈x∗, x〉 ≤ 〈x∗, x0〉 for all x ∈ C.

Conversely, assume that there exists x∗ ∈ X∗, x∗ �= 0, such that 〈x∗, x〉 ≤ 〈x∗, x0〉
for all x ∈ C and 0 ∈ qi(C − C). We obtain

(4) 〈x∗, x− x0〉 ≤ 0 ∀x ∈ C,

that is, x∗ ∈ NC(x0). If we suppose that x0 ∈ qriC, then NC(x0) is a linear subspace
of X∗, and hence −x∗ ∈ NC(x0). By combining this with (4) we get 〈x∗, x− x0〉 = 0
for all x ∈ C. The last relation implies 〈x∗, x〉 = 0 for all x ∈ C − C, and from here
one has further that 〈x∗, x〉 = 0 for all x ∈ cl cone(C − C) = X. But this can be the
case just if x∗ = 0, which is a contradiction. In conclusion, x0 �∈ qriC.

Remark 2.8. In [5], [6] a similar separation theorem in the case when X is a real
normed space is given. For the second part of the above theorem the authors require
that the following condition must be fulfilled:

cl(TC(x0)− TC(x0)) = X,

where

TC(x0) =
{
y ∈ X : y = lim

n→∞
λn(xn − x0), λn > 0 ∀n ∈ N,

xn ∈ C ∀n ∈ N and lim
n→∞

xn = x0
}

is called the contingent cone to C at x0 ∈ C. In general, we have the following
inclusion: TC(x0) ⊆ cl cone(C−x0). If the set C is convex, then TC(x0) = cl cone(C−
x0) (cf. [10]). As cl(clE + clF ) = cl(E + F ), for arbitrary sets E,F in X and
coneA − coneA = cone(A − A), if A is a convex subset of X such that 0 ∈ A, the
condition cl(TC(x0)−TC(x0)) = X can be reformulated as follows: cl cone(C−C) = X
or, equivalently, 0 ∈ qi(C − C). Indeed, we have

cl[cl cone(C − x0)− cl cone(C − x0)] = X ⇔ cl[cone(C − x0)− cone(C − x0)] = X

⇔ cl cone(C − C) = X ⇔ 0 ∈ qi(C − C).

This means that Theorem 2.7 is a generalization to the case of separated locally
convex vector spaces of the separation theorem given in [5], [6] in the framework of
real normed spaces.

The condition x0 ∈ C in Theorem 2.7 is essential (see [6]). However, if x0 is
an arbitrary element of X, we can also give a separation theorem by using the fol-
lowing result due to Cammaroto and Di Bella (Theorem 2.1 in [4]). The mentioned
authors use this theorem in order to prove their strong duality result (Theorem 2.2
in [4]). Unfortunately, as we will show in section 4, this result has self-contradictory
assumptions.

Theorem 2.9 (see [4]). Let S and T be nonempty convex subsets of X with
qriS �= ∅, qriT �= ∅, and such that cl cone(qriS−qriT ) is not a linear subspace of X.
Then there exists x∗ ∈ X∗, x∗ �= 0, such that 〈x∗, s〉 ≤ 〈x∗, t〉 for all s ∈ S, t ∈ T .

The following result is a direct consequence of Theorem 2.9.
Corollary 2.10. Let C be a convex subset of X such that qriC �= ∅ and

cl cone(C − x0) is not a linear subspace of X, where x0 ∈ X. Then there exists
x∗ ∈ X∗, x∗ �= 0, such that 〈x∗, x〉 ≤ 〈x∗, x0〉 for all x ∈ C.

Proof. We take, in Theorem 2.9, S := C and T := {x0}. Then we apply Proposi-
tion 2.5 (iii) and (ix) to obtain the conclusion.
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3. Fenchel duality. In this section we give some new Fenchel duality results
stated in terms of the quasi interior and quasi-relative interior, respectively.

Consider the convex optimization problem

(PF ) inf
x∈X
{f(x) + g(x)},

where X is a separated locally convex vector space and f, g : X → R are proper
convex functions such that dom(f)∩ dom(g) �= ∅. The Fenchel dual problem to (PF )
is the followiing:

(DF ) sup
x∗∈X∗

{−f∗(−x∗)− g∗(x∗)}.

We denote by v(PF ) and v(DF ) the optimal objective values of the primal and the
dual problem, respectively. Weak duality always holds; that is, v(DF ) ≤ v(PF ). For
strong duality, the case when v(PF ) = v(DF ) and (DF ) has an optimal solution,
several generalized interior-point regularity conditions were given in the literature. In
order to recall them we need the following generalized interior notions. For a convex
subset C of X we have:

• coreC := {x ∈ C : cone(C − x) = X}, the core of C [14], [17];
• icrC := {x ∈ C : cone(C − x) is a linear subspace}, the intrinsic core of C
[1], [9], [17];
• sqriC := {x ∈ C : cone(C − x) is a closed linear subspace}, the strong quasi-

relative interior of C [2], [17].
We have the following inclusions:

coreC ⊆ sqriC ⊆ qriC and coreC ⊆ qiC ⊆ qriC.

If X if finite-dimensional, then qriC = sqriC = icrC = riC [3], [8] and coreC =
qiC = intC [12], [14].

Consider now the following regularity conditions:
(i) 0 ∈ int(dom(f)− dom(g));
(ii) 0 ∈ core(dom(f)− dom(g)) (cf. [14]);
(iii) 0 ∈ icr(dom(f)−dom(g)) and aff(dom(f)−dom(g)) is a closed linear subspace

(cf. [8]);
(iv) 0 ∈ sqri(dom(f)− dom(g)) (cf. [15]).
Let us notice that all of these conditions guarantee strong duality if we suppose

the additional hypotheses that the functions f and g are lower semicontinuous and
X is a Fréchet space. Between the above conditions we have the following relation:
(i)⇒ (ii)⇒ (iii)⇔ (iv) [8].

Trying to give a similar regularity condition for strong duality by means of the
notion of a quasi-relative interior of a convex set, a natural question arises: Is the
condition 0 ∈ qri(dom(f) − dom(g)) sufficient for strong duality? The following
example (which can be found in [8]) gives us a negative answer, and this means that we
need additional assumptions in order to guarantee Fenchel duality (see Theorem 3.5).

Example 3.1. As in [8], we consider X = l2, the Hilbert space consisting of all
sequences x = (xn)n∈N such that

∑∞
n=1 x

2
n <∞. Consider also the sets

C = {x ∈ l2 : x2n−1 + x2n = 0 ∀n ∈ N},

S = {x ∈ l2 : x2n + x2n+1 = 0 ∀n ∈ N}.
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The sets C and S are closed linear subspaces of l2 and C ∩ S = {0}. Define the
functions f, g : l2 → R by f = δC and g(x) = x1 if x ∈ S and +∞ otherwise. One
can see that f and g are proper, convex, and lower semicontinuous functions with
dom(f) = C and dom(g) = S. As was shown in [8], v(PF ) = 0 and v(DF ) = −∞, so
we have a duality gap between the optimal objective values of the primal problem and
its Fenchel dual. Moreover, S − C is dense in l2; thus cl cone(dom(f) − dom(g)) =
cl(C − S) = l2. The last relation implies that 0 ∈ qi(dom(f) − dom(g)), hence
0 ∈ qri(dom(f)− dom(g)).

Let us notice that if v(PF ) = −∞, by the weak duality follows that also strong
duality holds. This is the reason why we suppose in the following that v(PF ) ∈ R.

Lemma 3.2. The following relation is always true:

0 ∈ qri(dom(f)− dom(g))⇒ (0, 1) ∈ qri[epi(f)− êpi(g − v(PF ))].

Proof. One can see that êpi(g − v(PF )) = {(x, r) ∈ X × R : r ≤ −g(x) + v(PF )}.
Let us prove first that (0, 1) ∈ epi(f) − êpi(g − v(PF )). Since infx∈X [f(x) + g(x)] =
v(PF ) < v(PF ) + 1, there exists x′ ∈ X such that f(x′) + g(x′) < v(PF ) + 1. Then
(0, 1) = (x′, v(PF ) + 1− g(x′))− (x′,−g(x′) + v(PF )) ∈ epi(f)− êpi(g − v(PF )).

Now let (x∗, r∗) ∈ Nepi(f)−êpi(g−v(PF ))(0, 1). We have

(5) 〈x∗, x− x′〉+ r∗(µ− µ′ − 1) ≤ 0 ∀(x, µ) ∈ epi(f) ∀(x′, µ′) ∈ êpi(g − v(PF )).

For (x, µ) := (x0, f(x0)) and (x′, µ′) := (x0,−g(x0) + v(PF ) − 2) in (5), where x0 ∈
dom(f) ∩ dom(g) is fixed, we get r∗(f(x0) + g(x0) − v(PF ) + 1) ≤ 0, and hence
r∗ ≤ 0. As infx∈X [f(x) + g(x)] = v(PF ) < v(PF ) + 1/2, there exists x1 ∈ X such
that f(x1)+ g(x1) < v(PF )+ 1/2. By taking now (x, µ) := (x1, f(x1)) and (x′, µ′) :=
(x1,−g(x1) + v(PF ) − 1/2) in (5) we obtain r∗(f(x1) + g(x1) − v(PF ) − 1/2) ≤ 0,
and so r∗ ≥ 0. Thus r∗ = 0, and (5) gives: 〈x∗, x − x′〉 ≤ 0 for all x ∈ dom(f) for
all x′ ∈ dom(g). Hence x∗ ∈ Ndom(f)−dom(g)(0). Since Ndom(f)−dom(g)(0) is a linear
subspace of X∗ (cf. Proposition 2.2), we have 〈−x∗, x−x′〉 ≤ 0 for all x ∈ dom(f) for
all x′ ∈ dom(g), and so −(x∗, r∗) = (−x∗, 0) ∈ Nepi(f)−êpi(g−v(PF ))(0, 1), showing that
Nepi(f)−êpi(g−v(PF ))(0, 1) is a linear subspace of X∗ × R. Hence, by applying again

Proposition 2.2, we get (0, 1) ∈ qri[epi(f)− êpi(g − v(PF ))].
Proposition 3.3. Assume that 0 ∈qi[(dom(f)−dom(g))− (dom(f)−dom(g))].

Then Nco[(epi(f)−êpi(g−v(PF )))∪{(0,0)}](0, 0) is a linear subspace of X∗ × R if and only
if Nco[(epi(f)−êpi(g−v(PF )))∪{(0,0)}](0, 0) = {(0, 0)}.

Proof. The sufficiency is trivial. Now let us suppose that the set
Nco[(epi(f)−êpi(g−v(PF )))∪{(0,0)}](0, 0) is a linear subspace of X∗ × R. Take (x∗, r∗) ∈
Nco[(epi(f)−êpi(g−v(PF )))∪{(0,0)}](0, 0). Then

(6) 〈x∗, x− x′〉+ r∗(µ− µ′) ≤ 0 ∀(x, µ) ∈ epi(f) ∀(x′, µ′) ∈ êpi(g − v(PF )).

Let x0 ∈ dom f ∩ dom(g) be fixed. By taking (x, µ) := (x0, f(x0)) ∈ epi(f) and
(x′, µ′) := (x0,−g(x0) + v(PF ) − 1/2) ∈ êpi(g − v(PF )) in the previous inequal-
ity, we get r∗(f(x0) + g(x0) − v(PF ) + 1/2) ≤ 0, implying r∗ ≤ 0. As the set
Nco[(epi(f)−êpi(g−v(PF )))∪{(0,0)}](0, 0) is a linear subspace of X∗ × R, the same argu-
ment applies also for (−x∗,−r∗), implying −r∗ ≤ 0. In this way we get r∗ = 0. The
inequality (6) and the relation (−x∗, 0) ∈ Nco[(epi(f)−êpi(g−v(PF )))∪{(0,0)}](0, 0) imply
that

〈x∗, x− x′〉 = 0 ∀(x, µ) ∈ epi(f) ∀(x′, µ′) ∈ êpi(g − v(PF )),
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which is nothing else than 〈x∗, x−x′〉 = 0 for all x ∈ dom(f) for all x′ ∈ dom(g), and
thus 〈x∗, x〉 = 0 for all x ∈ dom(f) − dom(g). Since x∗ is linear and continuous, the
last relation implies that 〈x∗, x〉 = 0 for all x ∈ cl cone[(dom(f)−dom(g))−(dom(f)−
dom(g))] = X; hence x∗ = 0, and the conclusion follows.

Remark 3.4. (a) By (1) one can see that cl cone co[(epi(f) − êpi(g − v(PF ))) ∪
{(0, 0)}] = cl cone[epi(f) − êpi(g − v(PF ))]. Hence one has the following sequence of
equivalences: Nco[(epi(f)−êpi(g−v(PF )))∪{(0,0)}](0, 0) is a linear subspace of X∗ × R ⇔
(0, 0) ∈ qri co[(epi(f)−êpi(g−v(PF )))∪{(0, 0)}]⇔ cl cone co[(epi(f)−êpi(g−v(PF )))∪
{(0, 0)}] is a linear subspace of X × R ⇔ cl cone(epi(f) − êpi(g − v(PF ))) is a linear
subspace of X × R. The relation Nco[(epi(f)−êpi(g−v(PF )))∪{(0,0)}](0, 0) = {(0, 0)} is
equivalent to (0, 0) ∈ qi co[(epi(f) − êpi(g − v(PF ))) ∪ {(0, 0)}] (cf. Proposition 2.4),
so in the case 0 ∈ qi[(dom(f)− dom(g))− (dom(f)− dom(g))] the conclusion of the
previous proposition can be reformulated as follows:

cl cone(epi(f)− êpi(g − v(PF ))) is a linear subspace of X × R⇔

(0, 0) ∈ qi co[(epi(f)− êpi(g − v(PF ))) ∪ {(0, 0)}]

or, equivalently,

(0, 0) ∈ qri co[(epi(f)− êpi(g − v(PF ))) ∪ {(0, 0)}]⇔

(0, 0) ∈ qi co[(epi(f)− êpi(g − v(PF ))) ∪ {(0, 0)}].

(b) One can prove that the primal problem (PF ) has an optimal solution if and
only if (0, 0) ∈ epi(f) − êpi(g − v(PF )). This means that if we suppose that the
primal problem has an optimal solution and 0 ∈ qi[(dom(f) − dom(g)) − (dom(f) −
dom(g))], then the conclusion of the previous proposition can be rewritten as follows:
N(epi(f)−êpi(g−v(PF )))(0, 0) is a linear subspace of X∗ × R if and only if
N(epi(f)−êpi(g−v(PF )))(0, 0) = {(0, 0)} or, equivalently,

(0, 0) ∈ qri[epi(f)− êpi(g − v(PF ))]⇔ (0, 0) ∈ qi[epi(f)− êpi(g − v(PF ))].

We give now the first strong duality result for (PF ) and its Fenchel dual (DF ).
Let us notice that for the functions f and g we suppose just convexity properties, and
we do not use any closedness type of condition.

Theorem 3.5. Suppose that 0 ∈ qi[(dom(f) − dom(g)) − (dom(f) − dom(g))],
0 ∈ qri(dom(f)−dom(g)), and (0, 0) /∈ qri co[(epi f− êpi(g−v(PF )))∪{(0, 0)}]. Then
v(PF ) = v(DF ), and (DF ) has an optimal solution.

Proof. Lemma 3.2 ensures that (0, 1) ∈ qri[epi(f) − êpi(g − v(PF ))], and hence
qri[epi(f)− êpi(g−v(PF ))] �= ∅. The condition (0, 0) /∈ qri co[(epi f− êpi(g−v(PF )))∪
{(0, 0)}], together with the relation cl cone co[(epi f − êpi(g − v(PF ))) ∪ {(0, 0)}] =
cl cone[epi(f)− êpi(g − v(PF ))], implies that cl cone[epi(f)− êpi(g − v(PF ))] is not a
linear subspace of X ×R. We apply Corollary 2.10 with C := epi(f)− êpi(g− v(PF ))
and x0 = (0, 0). Thus there exists (x∗, λ) ∈ X∗ × R, (x∗, λ) �= (0, 0) such that

(7) 〈x∗, x〉+ λµ ≥ 〈x∗, x′〉+ λµ′ ∀(x, µ) ∈ êpi(g − v(PF )) ∀(x′, µ′) ∈ epi(f).

We claim that λ ≤ 0. Indeed, if λ > 0, then for (x, µ) := (x0,−g(x0) + v(PF )) and
(x′, µ′) := (x0, f(x0) + n), n ∈ N, where x0 ∈ dom(f) ∩ dom(g) is fixed, we obtain
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from (7): 〈x∗, x0〉 + λ(−g(x0) + v(PF )) ≥ 〈x∗, x0〉 + λ(f(x0) + n) for all n ∈ N. By
passing to the limit as n→ +∞ we obtain a contradiction. Next we prove that λ < 0.
Suppose that λ = 0. Then from (7) we have 〈x∗, x〉 ≥ 〈x∗, x′〉 for all x ∈ dom(g) for
all x′ ∈ dom(f), and hence 〈x∗, x〉 ≤ 0 for all x ∈ dom(f) − dom(g). By using the
second part of Theorem 2.7, we obtain 0 �∈ qri(dom(f)− dom(g)), which contradicts
the hypothesis. Thus we must have λ < 0, and so we obtain from (7):〈

1
λ
x∗, x

〉
+ µ ≤

〈
1
λ
x∗, x′

〉
+ µ′,∀(x, µ) ∈ êpi(g − v(PF )),∀(x′, µ′) ∈ epi(f).

Let be r ∈ R such that

µ′ + 〈x∗0, x′〉 ≥ r ≥ µ+ 〈x∗0, x〉 ∀(x, µ) ∈ êpi(g − v(PF )) ∀(x′, µ′) ∈ epi(f),

where x∗0 := 1
λx
∗. The first inequality shows that f(x) ≥ 〈−x∗0, x〉 + r for all x ∈ X,

that is, f∗(−x∗0) ≤ −r. The second one gives us −g(x) + v(PF ) + 〈x∗0, x〉 ≤ r for all
x ∈ X; hence g∗(x∗0) ≤ r−v(PF ), and so we have −f∗(−x∗0)−g∗(x∗0) ≥ r+v(PF )−r =
v(PF ). This implies that v(DF ) ≥ v(PF ). As the opposite inequality is always true,
we get v(PF ) = v(DF ), and x∗0 is an optimal solution of the problem (DF ).

The above theorem combined with Remark 3.4(b) gives us the following result.
Corollary 3.6. Suppose that the primal problem (PF ) has an optimal solution,

0 ∈ qi[(dom(f) − dom(g)) − (dom(f) − dom(g))], 0 ∈ qri(dom(f) − dom(g)), and
(0, 0) /∈ qri[epi(f)− êpi(g− v(PF ))]. Then v(PF ) = v(DF ), and (DF ) has an optimal
solution.

Remark 3.7. The condition 0 ∈ qi[(dom(f)−dom(g))−(dom(f)−dom(g))] implies
that

0 ∈ qri(dom(f)− dom(g))⇔ 0 ∈ qi(dom(f)− dom(g)).

Indeed, denote that C := dom(f) − dom(g). Obviously 0 ∈ qiC implies that
0 ∈ qriC. Suppose now that 0 ∈ qriC, and let x∗ ∈ NC(0) be arbitrary. We have
〈x∗, x〉 ≤ 0 for all x ∈ C. Since NC(0) is a linear subspace of X∗, we obtain 〈x∗, x〉 = 0
for all x ∈ C. We get further 〈x∗, x〉 = 0 for all x ∈ cl cone(C−C) = X, which implies
that x∗ = 0. Thus NC(0) = {0}, and the conclusion follows.

Some stronger versions of Theorem 3.5 and Corollary 3.6, respectively, follow.
Theorem 3.8. Suppose that 0 ∈ qi(dom(f)− dom(g)) and (0, 0) /∈ qri co[(epi(f)

− êpi(g − v(PF ))) ∪ {(0, 0)}]. Then v(PF ) = v(DF ), and (DF ) has an optimal solu-
tion.

Proof. We have dom(f) − dom(g) ⊆ (dom(f) − dom(g)) − (dom(f) − dom(g)),
so the condition 0 ∈ qi(dom(f) − dom(g)) implies that 0 ∈ qi[(dom(f) − dom(g)) −
(dom(f) − dom(g))] and 0 ∈ qri(dom(f) − dom(g)). Then we apply Theorem 3.5 to
obtain the conclusion.

Corollary 3.9. Suppose that the primal problem (PF ) has an optimal solution,
0 ∈ qi(dom(f) − dom(g)), and (0, 0) /∈ qri[epi(f) − êpi(g − v(PF ))]. Then v(PF ) =
v(DF ), and (DF ) has an optimal solution.

Theorem 3.10. Suppose that dom(f)∩qri dom(g) �= ∅, 0 ∈ qi(dom(g)−dom(g)),
and (0, 0) /∈ qri co[(epi(f) − êpi(g − v(PF ))) ∪ {(0, 0)}]. Then v(PF ) = v(DF ), and
(DF ) has an optimal solution.

Proof. We apply Lemma 2.6 with A := dom(g) and B := dom(f). We get
0 ∈ qi(dom(g) − dom(f)) or, equivalently, 0 ∈ qi(dom(f) − dom(g)). We obtain the
result by applying Theorem 3.8.
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Corollary 3.11. Suppose that the primal problem (PF ) has an optimal solution,
dom(f) ∩ qri dom(g) �= ∅, 0 ∈ qi(dom(g)− dom(g)), and (0, 0) /∈ qri[epi(f)− êpi(g −
v(PF ))]. Then v(PF ) = v(DF ), and (DF ) has an optimal solution.

Remark 3.12. (a) We introduced above three new regularity conditions for Fenchel
duality. As one can easily see from the proof of these results, the relation between
these conditions is the following one: The regularity condition given in Theorem 3.10
(Corollary 3.11) implies the one given in Theorem 3.8 (Corollary 3.9), which implies
the one given in Theorem 3.5 (Corollary 3.6).

(b) If we renounce the condition (0, 0) /∈ qri co[(epi(f)− êpi(g−v(PF )))∪{(0, 0)}],
or, respectively, (0, 0) /∈ qri(epi(f) − êpi(g − v(PF ))), in the case when the primal
problem has an optimal solution, then the duality results given above may fail. By
using again Example 3.1 we show that these conditions are essential in our theory.
Let us notice that for the problem in Example 3.1 the conditions 0 ∈ qi[(dom(f) −
dom(g))− (dom(f)− dom(g))] and 0 ∈ qri(dom(f)− dom(g)) are fulfilled. We prove
in the following that in the aforementioned example we have (0, 0) ∈ qri(epi(f) −
êpi(g − v(PF ))). Note that the scalar product on l2, 〈·, ·〉 : l2 × l2 → R, is given by
〈x, y〉 =

∑∞
n=1 xnyn for all x = (xn)n∈N, y = (yn)n∈N ∈ l2. Also, for k ∈ N, we denote

by e(k) the element in l2 which has on the kth position 1 and on the other positions 0,
that is, e(k)

n = 1, if n = k and e(k)
n = 0, for all n ∈ N\{k}. We have epi(f) = C×[0,∞).

Further, êpi(g − v(PF )) = {(x, r) ∈ l2 × R : r ≤ −g(x)} = {(x, r) ∈ l2 × R : x =
(xn)n∈N ∈ S, r ≤ −x1} = {(x,−x1 − ε) ∈ l2 × R : x = (xn)n∈N ∈ S, ε ≥ 0}. Then
A := epi(f) − êpi(g − v(PF )) = {(x − x′, x′1 + ε) : x ∈ C, x′ = (x′n)n∈N ∈ S, ε ≥ 0}.
Take (x∗, r) ∈ NA(0, 0), where x∗ = (x∗n)n∈N. We have

(8) 〈x∗, x− x′〉+ r(x′1 + ε) ≤ 0 ∀x ∈ C ∀x′ = (x′n)n∈N ∈ S ∀ε ≥ 0.

By taking in (8) x′ = 0 and ε = 0 we get 〈x∗, x〉 ≤ 0 for all x ∈ C. As C is a linear
subspace of X we have

(9) 〈x∗, x〉 = 0 ∀x ∈ C.

Since e(2k−1) − e(2k) ∈ C, for all k ∈ N, the relation (9) implies that

(10) x∗2k−1 − x∗2k = 0 ∀k ∈ N.

From (8) and (9) we obtain

(11) 〈−x∗, x′〉+ r(x′1 + ε) ≤ 0 ∀x′ = (x′n)n∈N ∈ S ∀ε ≥ 0.

By taking ε = 0 and x′ := me1 ∈ S in (11), where m ∈ Z is arbitrary, we get
m(−x∗1 + r) ≤ 0 for all m ∈ Z, and thus r = x∗1. For ε = 0 in (11) we obtain
−

∑∞
n=1 x

∗
nx
′
n + rx′1 ≤ 0 for all x′ ∈ S. By taking into account that r = x∗1, we

get −
∑∞
n=2 x

∗
nx
′
n ≤ 0 for all x′ ∈ S. As S is a linear subspace of X it follows that∑∞

n=2 x
∗
nx
′
n = 0 for all x′ ∈ S, but, since e(2k) − e(2k+1) ∈ S for all k ∈ N, the above

relation shows that

(12) x∗2k − x∗2k+1 = 0 ∀k ∈ N.

By combining (10) with (12) we get x∗ = 0 (since x∗ ∈ l2). Because r = x∗1, we
also have r = 0. Thus NA(0, 0) = {(0, 0)}, and Proposition 2.4 gives us the desired
conclusion.
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(c) Since in all of the strong duality results given above one must have that
0 ∈ qi[(dom(f)−dom(g))− (dom(f)−dom(g))], in view of Remark 3.4, the condition
(0, 0) �∈ qri co[(epi(f) − êpi(g − v(PF ))) ∪ {(0, 0)}] (respectively, (0, 0) �∈ qri[epi(f) −
êpi(g − v(PF ))]) is equivalent to (0, 0) �∈ qi co[(epi(f) − êpi(g − v(PF ))) ∪ {(0, 0)}]
(respectively, (0, 0) �∈ qi[epi(f)− êpi(g − v(PF ))]).

(d) We have the following relation:

(0, 0) ∈ qi co[(epi(f)− êpi(g − v(PF ))) ∪ {(0, 0)}]⇒ 0 ∈ qi(dom(f)− dom(g)).

Indeed, (0, 0) ∈ qi co[(epi(f)− êpi(g−v(PF )))∪{(0, 0)}]⇔ cl cone co[(epi(f)− êpi(g−
v(PF ))) ∪ {(0, 0)}] = X × R; hence cl cone(epi(f) − êpi(g − v(PF ))) = X × R. Since
cl cone(epi(f) − êpi(g − v(PF ))) ⊆ cl cone(dom(f) − dom(g)) × R, this implies that
cl cone(dom(f)− dom(g)) = X, that is, 0 ∈ qi(dom(f)− dom(g)). Hence

0 �∈ qi(dom(f)− dom(g))⇒ (0, 0) �∈ qi co[(epi(f)− êpi(g − v(PF ))) ∪ {(0, 0)}].

Nevertheless, in the regularity conditions given above one cannot substitute the con-
dition (0, 0) �∈ qri co[(epi(f) − êpi(g − v(PF ))) ∪ {(0, 0)}] by the “nice-looking” one
0 �∈ qi(dom(f) − dom(g)), since in all three strong duality theorems the other hy-
potheses we consider imply that 0 ∈ qi(dom(f)− dom(g)) (cf. Remark 3.7).

Example 3.13. Consider again the spaceX = l2 equipped with the norm ‖·‖ : l2 →
R, ‖x‖2 =

∑∞
n=1 x

2
n for all x = (xn)n∈N ∈ l2. We define the functions f, g : l2 → R by

f(x) =
{
‖x‖ if x ∈ x0 − l2+,
+∞ otherwise

and

g(x) =
{
〈c, x〉 if x ∈ l2+,
+∞ otherwise,

where l2+ = {(xn)n∈N ∈ l2 : xn ≥ 0,∀n ∈ N} is the positive cone, x0 = ( 1
n )n∈N,

and c = ( 1
2n )n∈N. Note that v(PF ) = infx∈l2{f(x) + g(x)} = 0, and the infimum is

attained at x = 0. We have dom(f) = x0 − l2+ = {(xn)n∈N ∈ l2 : xn ≤ 1
n ,∀n ∈ N}

and dom(g) = l2+. Since qri l2+ = {(xn)n∈N ∈ l2 : xn > 0,∀n ∈ N} (cf. [3]), we
get dom(f) ∩ qri dom(g) = {(xn)n∈N ∈ l2 : 0 < xn ≤ 1

n ,∀n ∈ N} �= ∅. Also,
cl cone(dom(g) − dom(g)) = l2, so 0 ∈ qi(dom(g) − dom(g)). Further, epi(f) =
{(x, r) ∈ l2 × R : x ∈ x0 − l2+, ‖x‖ ≤ r} = {(x, ‖x‖+ ε) ∈ l2 × R : x ∈ x0 − l2+, ε ≥ 0}
and êpi(g − v(PF )) = {(x, r) ∈ l2 × R : r ≤ −g(x)} = {(x, r) ∈ l2 × R : r ≤
−〈c, x〉, x ∈ l2+} = {(x,−〈c, x〉 − ε) : x ∈ l2+, ε ≥ 0}. We get epi(f)− êpi(g− v(PF )) =
{(x−x′, ‖x‖+ε+〈c, x′〉+ε′) : x ∈ x0−l2+, x′ ∈ l2+, ε, ε

′ ≥ 0} = {(x−x′, ‖x‖+〈c, x′〉+ε) :
x ∈ x0 − l2+, x

′ ∈ l2+, ε ≥ 0}.
In the following we prove that (0, 0) /∈ qri(epi(f)− êpi(g− v(PF ))). By assuming

the contrary we would have that the set cl(cone(epi(f)− êpi(g − v(PF )))) is a linear
subspace. Since (0, 1) ∈ cl(cone(epi(f)− êpi(g−v(PF )))) (take x = x′ = 0 and ε = 1)
we must have that also (0,−1) belongs to this set. On the other hand, one can easily
see that for all (x, r) belonging to cl(cone(epi(f)− êpi(g−v(PF )))) it holds that r ≥ 0.
This leads to the desired contradiction.

Hence the conditions of Corollary 3.11 are fulfilled, and thus strong duality holds.
Let us notice that the regularity conditions given in Corollaries 3.6 and 3.9 are also
fulfilled (see Remark 3.12(a)).
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On the other hand, l2 is a Fréchet space (being a Hilbert space), the functions f
and g are lower semicontinuous, and, as sqri(dom(f)− dom(g)) = sqri(x0 − l2+) = ∅,
none of the constraint qualifications (i)–(iv) presented in the beginning of this section
can be applied for this optimization problem.

As for all x∗ ∈ l2 it holds that

g∗(x∗) =
{

0 if x∗ ∈ c− l2+,
+∞ otherwise

and (see Theorem 2.8.7 in [17])

f∗(−x∗) = inf
x∗1+x∗2=−x∗

{‖ · ‖∗(x∗1) + δ∗x0−l2+
(x∗2)} = inf

x∗1+x∗2=−x∗,
‖x∗1‖≤1,x∗2∈l

2
+

{〈x∗2, x0〉},

the optimal objective value of the Fenchel dual problem is

v(DF ) = sup
x∗∈X∗

{−f∗(−x∗)− g∗(x∗)}

= sup
x∗2∈l

2
+−c−x

∗
1 ,

‖x∗1‖≤1,x∗2∈l
2
+

{〈−x∗2, x0〉} = sup
x∗2∈l2+

{〈−x∗2, x0〉} = 0,

and x∗2 = 0 is the optimal solution of the dual.
In the following, by using the results introduced above, we give regularity condi-

tions for the following convex optimization problem:

(PA) inf
x∈X
{f(x) + (g ◦A)(x)},

where X and Y are separated locally convex vector spaces with their topological dual
spaces X∗ and Y ∗, respectively, A : X → Y is a linear continuous mapping, f : X →
R, and g : Y → R are proper convex functions such that A(dom(f)) ∩ dom(g) �= ∅.
The Fenchel dual problem to (PA) is (cf. [17])

(DA) sup
y∗∈Y ∗

{−f∗(−A∗y∗)− g∗(y∗)},

whereA∗ : Y ∗ → X∗ is the adjoint operator ofA, defined in the usual way: 〈A∗y∗, x〉 =
〈y∗, Ax〉 for all (y∗, x) ∈ Y ∗ ×X. We denote by v(PA) and v(DA) the optimal objec-
tive values of the primal and the dual problem, respectively. We suppose also that
v(PA) ∈ R. In the following theorem the set

A× idR(epi(f)) = {(Ax, r) ∈ Y × R : f(x) ≤ r}

is the image of epi(f) through the operator A× idR.
Theorem 3.14. Suppose that 0 ∈ qi[(A(dom(f)) − dom(g)) − (A(dom(f)) −

dom(g))], 0 ∈ qri(A(dom(f))−dom(g)), and (0, 0) /∈ qri co[(A× idR(epi(f))− êpi(g−
v(PA))) ∪ {(0, 0)}]. Then v(PA) = v(DA), and (DA) has an optimal solution.

Proof. Let us introduce the following functions: F,G : X × Y → R, F (x, y) =
f(x) + δ{x∈X:Ax=y}(x), and G(x, y) = g(y). The functions F and G are proper and
convex, and inf(x,y)∈X×Y [F (x, y) + G(x, y)] = infx∈X{f(x) + (g ◦ A)(x)} = v(PA).
Moreover, dom(F ) = dom(f)×A(dom(f)) and dom(G) = X × dom(g), so dom(F )∩
dom(G) �= ∅. Further,

dom(F )− dom(G) = X × (A(dom(f))− dom(g)).
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By combining the last relation with the hypotheses, we obtain (0, 0) ∈ qi[(dom(F )−
dom(G))− (dom(F )− dom(G))] and (0, 0) ∈ qri(dom(F )− dom(G)). Since epi(F ) =
{(x,Ax, r) : f(x) ≤ r} and êpi(G − v(PA)) = {(x, y, r) : r ≤ −G(x, y) + v(PA)} =
X × êpi(g − v(PA)), we obtain

epi(F )− êpi(G− v(PA)) = X × (A× idR(epi(f))− êpi(g − v(PA))),

and this means that (0, 0, 0) /∈ qri co[(epi(F )− êpi(G−v(PA)))∪{(0, 0, 0)}]. Theorem
3.5 yields for F and G:

inf
(x,y)∈X×Y

[F (x, y) +G(x, y)] = max
(x∗,y∗)∈X∗×Y ∗

{−F ∗(−x∗,−y∗)−G∗(x∗, y∗)}.

On the other hand, F ∗(x∗, y∗) = f∗(x∗ +A∗y∗) for all (x∗, y∗) ∈ X∗ × Y ∗, and

G∗(x∗, y∗) =
{

g∗(y∗) if x∗ = 0,
+∞ otherwise.

Therefore, max(x∗,y∗)∈X∗×Y ∗{−F ∗(−x∗,−y∗)−G∗(x∗, y∗)} = maxy∗∈Y ∗{−f∗(−A∗y∗)
− g∗(y∗)}, and the conclusion follows.

Corollary 3.15. Suppose that the primal problem (PA) has an optimal solution,
0 ∈ qi[(A(dom(f))−dom(g))−(A(dom(f))−dom(g))], 0 ∈ qri(A(dom(f))−dom(g)),
and (0, 0) /∈ qri[A × idR(epi(f)) − êpi(g − v(PA))]. Then v(PA) = v(DA), and (DA)
has an optimal solution.

Theorem 3.16. Suppose that 0 ∈ qi(A(dom(f))−dom(g)) and (0, 0) /∈ qri co[(A×
idR(epi(f))− êpi(g− v(PA)))∪ {(0, 0)}]. Then v(PA) = v(DA), and (DA) has an op-
timal solution.

Proof. By considering the functions F and G from the proof of Theorem 3.14, we
have cl cone(dom(F ) − dom(G)) = X × cl cone(A(dom(f))− dom(g)) = X × Y , and
thus (0, 0) ∈ qi(dom(F )− dom(G)). Also we have (0, 0, 0) /∈ qri co[(epi(F )− êpi(G−
v(PA))) ∪ {(0, 0, 0)}]. Theorem 3.8 yields for F and G:

inf
(x,y)∈X×Y

[F (x, y) +G(x, y)] = max
(x∗,y∗)∈X∗×Y ∗

{−F ∗(−x∗,−y∗)−G∗(x∗, y∗)},

and the conclusion follows.
Corollary 3.17. Suppose that the primal problem (PA) has an optimal solution,

0 ∈ qi(A(dom(f))−dom(g)), and (0, 0) /∈ qri[A× idR(epi(f))− êpi(g− v(PA))]. Then
v(PA) = v(DA), and (DA) has an optimal solution.

Theorem 3.18. Suppose that A(dom(f)) ∩ qri dom(g) �= ∅, 0 ∈ qi(dom(g) −
dom(g)) and (0, 0) /∈ qri co[(A×idR(epi(f))−êpi(g−v(PA)))∪{(0, 0)}]. Then v(PA) =
v(DA), and (DA) has an optimal solution.

Proof. Consider again the functions F and G defined as in the proof of Theorem
3.14. We have dom(F )∩qri dom(G) = (dom(f)× (A(dom(f)))∩ (X×qri dom(g))) =
dom(f) × (A(dom(f)) ∩ qri dom(g)) �= ∅. Also, cl cone(dom(G) − dom(G)) = X ×
cl cone(dom(g)− dom(g)) = X × Y , and hence (0, 0) ∈ qi(dom(G)− dom(G)). More-
over, (0, 0, 0) /∈ qri co[(epi(F )− êpi(G− v(PA)))∪{(0, 0, 0)}]. Theorem 3.10 yields for
F and G:

inf
(x,y)∈X×Y

[F (x, y) +G(x, y)] = max
(x∗,y∗)∈X∗×Y ∗

{−F ∗(−x∗,−y∗)−G∗(x∗, y∗)},

and the conclusion follows.
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Corollary 3.19. Suppose that the primal problem (PA) has an optimal solu-
tion, A(dom(f)) ∩ qri dom(g) �= ∅, 0 ∈ qi(dom(g) − dom(g)), and (0, 0) /∈ qri[A ×
idR(epi(f))− êpi(g − v(PA))]. Then v(PA) = v(DA), and (DA) has an optimal solu-
tion.

4. Lagrange duality. By using an approach due to Magnanti (cf. [13]), in this
section we derive from the results in the previous section some duality results con-
cerning the Lagrange dual problem. We work in the following setting. Let X be
a real linear topological space and S a nonempty subset of X. Let Y be a sepa-
rated locally convex space partially ordered by a convex cone C. Let f : S → R

and g : S → Y be two functions such that the function (f, g) : S → R × Y , de-
fined by (f, g)(x) = (f(x), g(x)), for all x ∈ S, is convexlike with respect to the cone
R+ × C ⊆ R × Y ; that is, the set (f, g)(S) + R+ × C is convex. Let us notice that
this property implies that the sets f(S)+ [0,∞) and g(S)+C are convex (the reverse
implication does not always hold). Consider the optimization problem

(PL) inf
x∈S

g(x)∈−C

f(x),

where the constraint set T = {x ∈ S : g(x) ∈ −C} is assumed to be nonempty. The
Lagrange dual problem associated to (PL) is

(DL) sup
λ∈C∗

inf
x∈S

[f(x) + 〈λ, g(x)〉],

where C∗ = {x∗ ∈ X∗ : 〈x∗, x〉 ≥ 0,∀x ∈ C} is the dual cone of C. Let us denote by
v(PL) and v(DL) the optimal objective values of the primal and the dual problem,
respectively. A regularity condition for strong duality between (PL) and (DL) was
proposed in Theorem 2.2 in [4]. We show first that this theorem has self-contradictory
assumptions. To this end we prove the following lemma.

Lemma 4.1. Suppose that cl(C − C) = Y and there exists x ∈ S such that
g(x) ∈ − qriC. Then the following assertions are true:

(a) 0 ∈ qi(g(S) + C);
(b) cl cone[qri(g(S) + C)] is a linear subspace of Y .
Proof. (a) We apply Lemma 2.6 with A := −C and B := g(S) + C. The

condition cl(C − C) = Y implies that 0 ∈ qi(A− A), while the Slater-type condition
g(x) ∈ − qriC ensures that g(x) ∈ qriA ∩ B. Hence, by Lemma 2.6 we obtain
0 ∈ qi(A−B), that is, 0 ∈ qi(−g(S)−C), which is nothing else than 0 ∈ qi(g(S)+C).

(b) From (a) it follows that 0 ∈ qri(g(S) + C). By applying Proposition 2.5(vii)
we get 0 ∈ qri(qri(g(S) + C)), which is nothing else than cl cone[qri(g(S) + C)] is a
linear subspace of Y .

In order to get strong duality between (PL) and (DL) in Theorem 2.2 in [4] the
authors ask that the following hypotheses are fulfilled: cl(C − C) = Y , there exists
x ∈ S such that g(x) ∈ − qriC, qri(g(S) + C) �= ∅, and cl cone[qri(g(S) + C)] is not
a linear subspace of Y . The previous lemma proves that these assumptions are in
contradiction.

Next we prove some Lagrange duality results written in terms of the quasi interior
and quasi-relative interior, respectively. As in the previous section, we may suppose
that v(PL) is a real number.

Consider the following convex set:

Ev(PL) = {(f(x) + α− v(PL), g(x) + y) : x ∈ S, α ≥ 0, y ∈ C} ⊆ R× Y.
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Let us notice that the set −Ev(PL) is in analogy with the conic extension, a notion
used by Giannessi in the theory of image space analysis (see [7]). One can easily prove
that the primal problem (PL) has an optimal solution if and only if (0, 0) ∈ Ev(PL).
Let us introduce the functions f1, f2 : R× Y → R,

f1(y0, y1) =
{

y0 if (y0, y1) ∈ Ev(PL) + (v(PL), 0),
+∞ otherwise,

and f2 = δR×(−C). It holds that

(13) dom(f1)− dom(f2) = R× (g(S) + C).

Moreover, as pointed out by Magnanti (cf. [13]), we have

(14) inf
(y0,y1)∈R×Y

{f1(y0, y1) + f2(y0, y1)} = inf
x∈S

g(x)∈−C

f(x) = v(PL)

and
(15)

sup
(y∗0 ,y

∗
1 )∈R×Y ∗

{−f∗1 (−y∗0 ,−y∗1)− f∗2 (y
∗
0 , y
∗
1)} = sup

λ∈C∗
inf
x∈S

[f(x) + 〈λ, g(x)〉] = v(DL).

With this approach, we can derive from the strong duality results given for Fenchel
duality corresponding strong duality results for Lagrange duality.

Theorem 4.2. Suppose that 0 ∈ qi[(g(S) +C)− (g(S) +C)], 0 ∈ qri(g(S) +C),
and (0, 0) �∈ qri co(Ev(PL) ∪ {(0, 0)}). Then v(PL) = v(DL), and (DL) has an optimal
solution.

Proof. The hypotheses of the theorem and (13) imply that the conditions (0, 0) ∈
qi[(dom(f1)−dom(f2))−(dom(f1)−dom(f2))] and (0, 0) ∈ qri(dom(f1)−dom(f2)) are
fulfilled. Further, epi(f1) = {(y0, y1, r) ∈ R×Y ×R : (y0, y1) ∈ Ev(PL)+(v(PL), 0), y0 ≤
r} = {(f(x)+α, g(x)+y, r) : x ∈ S, α ≥ 0, y ∈ C, f(x)+α ≤ r}, and êpi(f2−v(PL)) =
{(y0, y1, r) ∈ R× Y × R : r ≤ −f2(y0, y1) + v(PL)} = {(y0, y1, r) ∈ R× Y × R : y0 ∈
R, y1 ∈ −C, r ≤ v(PL)} = R× (−C)× (−∞, v(PL)]. Thus epi(f1)− êpi(f2− v(PL)) =
epi(f1)+R×C× [−v(PL),+∞) = {(f(x)+α+a, g(x)+y, r−v(PL)+ε) : x ∈ S, α ≥
0, a ∈ R, y ∈ C, ε ≥ 0, f(x)+α ≤ r} = {(f(x)+α+a, g(x)+y, f(x)+α+ ε−v(PL)) :
x ∈ S, α ≥ 0, a ∈ R, y ∈ C, ε ≥ 0}, and this means that

epi(f1)− êpi(f2 − v(PL)) = R× {(g(x) + y, f(x) + α− v(PL)) : x ∈ S, α ≥ 0, y ∈ C}.

Thus (0, 0, 0) ∈ qri co[(epi(f1) − êpi(f2 − v(PL))) ∪ {(0, 0, 0)}] if and only if (0, 0) ∈
qri co(Ev(PL) ∪{(0, 0)}). Now we can apply Theorem 3.5 for f1 and f2, and we obtain

inf
(y0,y1)∈R×Y

{f1(y0, y1) + f2(y0, y1)} = max
(y∗0 ,y

∗
1 )∈R×Y ∗

{−f∗1 (−y∗0 ,−y∗1)− f∗2 (y
∗
0 , y
∗
1)}.

By (14) and (15) the conclusion follows.
Corollary 4.3. Suppose that the primal problem (PL) has an optimal solution,

0 ∈ qi[(g(S) + C) − (g(S) + C)], 0 ∈ qri(g(S) + C), and (0, 0) �∈ qri Ev(PL). Then
v(PL) = v(DL), and (DL) has an optimal solution.

Further, like for Fenchel duality, other Lagrange duality results can be stated.
Theorem 4.4. Suppose that 0 ∈ qi(g(S)+C) and (0, 0) �∈ qri co(Ev(PL)∪{(0, 0)}).

Then v(PL) = v(DL), and (DL) has an optimal solution.
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Proof. This is a direct consequence of the previous theorem since g(S) + C ⊆
(g(S) + C) − (g(S) + C), and so the condition 0 ∈ qi(g(S) + C) implies that 0 ∈
qi[(g(S) + C)− (g(S) + C)] and 0 ∈ qri(g(S) + C).

Corollary 4.5. Suppose that the primal problem (PL) has an optimal solution,
0 ∈ qi(g(S) + C), and (0, 0) �∈ qri Ev(PL). Then v(PL) = v(DL), and (DL) has an
optimal solution.

Theorem 4.6. Suppose that cl(C − C) = Y and there exists x ∈ S such that
g(x) ∈ − qriC. If (0, 0) �∈ qri co(Ev(PL) ∪ {(0, 0)}), then v(PL) = v(DL), and (DL)
has an optimal solution.

Proof. The condition (0, 0) �∈ qri co(Ev(PL) ∪ {(0, 0)}) implies that (0, 0, 0) /∈
qri co[(epi(f1)− êpi(f2− v(PL)))∪{(0, 0, 0)}] (cf. the proof of Theorem 4.2). Further,
we have dom(f1) ∩ qri dom(f2) = [Ev(PL) + (v(PL), 0)] ∩ qri(R × (−C)) = [Ev(PL) +
(v(PL), 0)]∩ [R×(− qriC)]. From the Slater-type condition we get that (f(x), g(x)) ∈
[Ev(PL)+(v(PL), 0)]∩ [R×(− qriC)], and hence dom(f1)∩qri dom(f2) �= ∅. Moreover,
cl cone(dom(f2) − dom(f2)) = cl cone[R × (C − C)] = R × cl(C − C) = R × Y , and
hence (0, 0) ∈ qi(dom(f2)− dom(f2)). By Theorem 3.10 for f1 and f2 we obtain

inf
(y0,y1)∈R×Y

{f1(y0, y1) + f2(y0, y1)} = max
(y∗0 ,y

∗
1 )∈R×Y ∗

{−f∗1 (−y∗0 ,−y∗1)− f∗2 (y
∗
0 , y
∗
1)},

and by using again (14) and (15) the conclusion follows.
Corollary 4.7. Suppose that the primal problem (PL) has an optimal solution,

cl(C −C) = Y , and there exists x ∈ S such that g(x) ∈ − qriC. If (0, 0) �∈ qri Ev(PL),
then v(PL) = v(DL), and (DL) has an optimal solution.

Remark 4.8. Let us notice that from the above results one can derive duality
theorems for the case when, in the set of constraints, one has also equalities defined
by affine functions. Indeed, consider the optimization problem

(P affL ) inf
x∈S

g(x)∈−C
h(x)=0

f(x),

where h : X → Z is an affine mapping and Z is a real normed space (the hypotheses
regarding the functions f and g remain the same as in the beginning of this section).
The Lagrange dual problem associated to (P affL ) is

(Daff
L ) sup

λ∈C∗
µ∈Z∗

inf
x∈S

[f(x) + 〈λ, g(x)〉+ 〈µ, h(x)〉],

where Z∗ is the topological dual space of Z.
By using Theorems 4.2 and 4.4 one can formulate Lagrange duality theorems for

(P affL ) and (Daff
L ) by noticing that the primal problem can be reformulated as

inf
x∈S

g(x)∈−C
h(x)=0

f(x) = inf
x∈S

u(x)∈−(C×{0})

f(x),

where u : S → Y × Z, u(x) = (g(x), h(x)). For the optimization problem with
equality and cone constraints some regularity conditions have been given in [5] by
using the notion of a quasi-relative interior. Along them in the strong duality theorem
(Theorem 3.1 in [5]) a “separation assumption,” called by the authors Assumption S,
is imposed. Unfortunately, this assumption is not only a sufficient condition for having
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strong duality, as claimed in the paper, but actually an equivalent formulation of this
situation (this makes the other regularity conditions inoperative). More than that,
in the proof of Theorem 3.1 in [5] a mistake occurred, namely, in the relation after
inequality (8) when trying to prove the “nonverticality” of the separating hyperplane.

The approach we propose above offers a viable alternative for dealing with La-
grange duality for this class of optimization problems.

Acknowledgments. The authors are thankful to two anonymous reviewers for
comments and remarks which have improved the quality of the paper.
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