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REGULARITY CRITERIA INVOLVING
THE PRESSURE FOR THE WEAK SOLUTIONS

TO THE NAVIER-STOKES EQUATIONS

LUIGI C. BERSELLI AND GIOVANNI P. GALDI

(Communicated by David S. Tartakoff)

Abstract. In this paper we consider the Cauchy problem for the n-dimen-
sional Navier-Stokes equations and we prove a regularity criterion for weak
solutions involving the summability of the pressure. Related results for the
initial-boundary value problem are also presented.

1. Introduction

We consider the Cauchy problem for the Navier-Stokes equations in Rn, n ≥ 3,
∂v
∂t
− ν∆v + (v · ∇) v +∇p = 0 in Rn × (0, T ),

∇ · v = 0 in Rn × (0, T ),
v|t=0 = v0(x) in Rn.

(1.1)

For any domain Ω ⊆ Rn, we let H2(Ω) denote the closure, with respect to the
L2-norm, of the space D(Ω) = {φ ∈ (C∞0 (Ω))n : ∇ ·φ = 0}. Then, it is well-known
that for a given v0 ∈ H2(Rn) there exists at least a weak-solution (à la Leray-Hopf)
v to (1.1), that is,

v ∈ L∞(0, T ;L2(Rn)) ∩ L2(0, T ;H1(Rn)),

which satisfies the (weak) energy inequality (see (2.4) in Section 2; Leray [19] and
Hopf [13]). However, the uniqueness and regularity of weak solutions is still an open
problem.1 It is also well-known, that uniqueness and full regularity is obtained
under suitable extra-assumptions. In particular, if a weak solution satisfies at least
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one of the following conditions

i) v ∈ Lr(0, T ;Ls(Rn)) with
2
r

+
n

s
≤ 1, for s > n,

ii) v ∈ C(0, T ;Ln(Rn)),

iii) v ∈ L∞(0, T ;Ln(Rn)) and ‖v‖L∞(0,T ;Ln) is “small,”

(1.2)

then it is unique in the class of weak solutions2; see Prodi [21] and Serrin [23].
Furthermore, it is of class C∞ in (0, T ]×Rn; see Leray [19], Sohr [24], and Giga [11].
Regularity results, under slightly weaker assumptions, are also given in Beirão da
Veiga [5], Kozono and Sohr [18], and Berselli [7]. Furthermore, interior regularity
(in the space variables) of weak solutions that satisfy “locally” condition (1.2) can
be proved; see for instance Serrin [23], Takahashi [27, 28], Struwe [26], and the
references of Section 5 in [10]. However, the methods used to prove the interior
regularity results are quite different from those used in this paper.

Full regularity of weak solutions can also be proved under alternative assump-
tions on the gradient of the velocity ∇u. Specifically, if

∇u ∈ Lr(0, T ;Ls(Rn)) with
2
r

+
n

s
= 2, for s >

n

2
,(1.3)

then weak solutions are of class C∞(Rn × (0, T ]); see Beirão da Veiga [2] and
Galdi [10]; see also Berselli [8] for a simple proof when n = 3.

We recall that the class (1.2) is important from the point of view of the relation
between scaling invariance and partial regularity of weak solutions; see for instance
Giga [11]. In fact, if a pair {v, p} solves (1.1), then so does the family {vλ, pλ}λ>0

defined by

vλ := λv(λx, λ2t), pλ := λ2 p(λx, λ2t).

Scaling invariance means that ‖vλ‖Lr(0,T ;Ls) = ‖v‖Lr(0,T ;Ls) and this happens if
and only if r and s satisfy (1.2). Likewise, one has ‖∇vλ‖Lr(0,T ;Ls) = ‖∇v‖Lr(0,T ;Ls)

if and only if r and s are as in (1.3).
The objective of this paper is to investigate what regularity, for the initial-value-

problem (1.1), can be inferred assuming some conditions on the pressure p. This
problem has been treated by several authors. Specifically, in [14] Kaniel proved
that (in a bounded three-dimensional domain Ω) the condition

p ∈ L∞(0, T ;Lq(Ω)), for q >
12
5
,

implies that v is in the class (1.2)(i), which is a regularity class also for the initial
boundary value problem; see [11, 24].

More recently, this result has been improved by Berselli [6], who proved that if

p ∈ Lα(0, T ;L
αn

α+n−2 (Ω)), α > n, Ω ⊆ Rn, n ≥ 3,(1.4)

then the velocity is in the class (1.2)(i).
Furthermore, in the framework of weak (Marcinkiewicz) Lp∗ spaces, Beirão da

Veiga [3] proved (as a corollary of a main result) that if

p ∈ Lγ∗(Ω× (0, T )), for γ >
n+ 2

2
,

2For uniqueness, the smallness assumption in iii) can be removed; see Kozono and Sohr [17].
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again v is in the class (1.2)(i). Note that r = s = (n+ 2)/2 satisfy (1.5) below.
We wish to mention another result of Beirão da Veiga [4], where a sufficient

condition involving p/(1 + |v|) was given.
It is worth remarking that all the above results are partial, in the following sense.

The scaling invariance for the pressure requires that ‖pλ‖Lr(0,T ;Ls) = ‖p‖Lr(0,T ;Ls),
and this happens if and only if

p ∈ Lr(0, T ;Ls(Rn)) with
2
r

+
n

s
= 2, for s >

n

2
.(1.5)

Therefore, we expect that condition (1.5) is “optimal” as, in fact, conjectured in [4].
To give more weight to this conjecture, we recall that, for the Cauchy problem, the
following inequality holds (in the sequel ‖ . ‖γ , for 1 ≤ γ ≤ ∞, will denote the
Lγ(Rn)-norm of both scalar and vector-valued functions)

‖p‖γ ≤ C‖v‖22γ , 1 < γ < +∞.(1.6)

Equation (1.6) easily follows by applying the “div” operator on both sides of (1.1),
and using the Calderón-Zygmund theorem. Therefore, we obtain (roughly speaking)
that the pressure behaves as velocity squared. Now, from (1.6) we find that

‖p‖Lr/2(0,T ;Ls/2) ≤ C‖v‖2Lr(0,T ;Ls), with
2
r

+
n

s
= 1,

and consequently, condition (1.2) implies (1.5).
Very recently Chae and Lee [9], in the case of the three-dimensional Cauchy

problem, have proved that if p satisfies

p ∈ Lr(0, T ;Ls(Rn)) with
2
r

+
3
s
< 2, for s >

3
2
,(1.7)

then v is in the class (1.2)(i). Notice that both (1.7) and (1.4) are stronger than
(1.5). The objective of this paper is to show that (1.5) is sufficient for the full
regularity of weak solutions. Specifically, we have

Theorem 1.1. Let v0 ∈ H2(Rn) ∩ Ln(Rn), for n ≥ 3. If the pressure p satisfies
condition (1.5), then v, p ∈ C∞(Rn × (0, T ]). In the cases n = 3, 4, the condition
on the initial data can be relaxed to v ∈ H2(Rn).

The proof of this result will be achieved by a suitable modification of the method
used in [9].

Remark 1.2. The pressure associated to a weak solution satisfies the following reg-
ularity property:

p ∈ Lr(0, T ;Ls(Rn)) with
2
r

+
n

s
= n;

see Sohr and von Wahl [25].

Remark 1.3. In the limit case r = ∞, s = n/2 of condition (1.5) it is possible
to prove full regularity, provided that the norm ‖p‖L∞(0,T ;Ln/2) is small enough.
This is the counterpart of condition (1.2)(iii). In this respect, we recall that the
regularity of a weak solution with v ∈ L∞(0, T ;Ln(Rn)) is still an outstanding
open problem.
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2. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. To this end, we collect some
preliminary results, due to Kato [15] and Giga [11].

Proposition 2.1. The following properties hold:

i) Suppose that v0 ∈ Lq(Rn), q ≥ n. Then, there is T0 > 0 and a unique solution
of (1.1) on [0, T0) such that

v ∈ BC([0, T0);Lq(Rn)) ∩ Lr(0, T0;Ls(Rn)),

t1/rv ∈ BC([0, T0);Ls(Rn)),
(2.1)

where 2/r + n/s = n/q, s > n.
ii) Suppose that v0 ∈ Ln(Rn) ∩Lq(Rn), 1 < q < n. Then, there is T0 > 0 and a

unique solution of (1.1) on [0, T0) such that

v and t1/2∇v ∈ BC([0, T0);Ln(Rn) ∩ Lq(Rn)).(2.2)

iii) Let (0, T ∗) be the maximal interval such that v solves problem (1.1) in
C((0, T ∗);Lq(Rn)), q > n. Then

‖v(τ)‖q ≥
C

(T ∗ − τ)
q−n
2q

,(2.3)

for some constant C independent of T ∗ and q.
iv) Let v be a solution of (1.1) on (0, T0) in the class (2.1). Suppose that v0 ∈

L2(Rn); then v is also a weak solution, that is,

v ∈ L∞(0, T0;L2(Rn)) ∩ L2(0, T0;H1(Rn))

and v satisfies the energy inequality

‖v(t)‖22 + 2ν
∫ t

0

‖∇v(τ)‖22 dτ ≤ ‖v0‖22 for all t ∈ [0, T0].(2.4)

v) Let v be a weak solution satisfying (1.2), for some s > n. Then v belongs to
C∞(Rn × (0, T ]).

Remark 2.1. The results of Proposition 2.1 hold also for the initial-boundary value
problem (with homogeneous Dirichlet boundary conditions), if the domain Ω sat-
isfies at least one of the following properties:

1) Ω is the half space Rn
+, n ≥ 3;

2) Ω is a bounded domain in Rn, n ≥ 3, with C∞-boundary ∂Ω;
3) Ω is an exterior domain in Rn, n ≥ 3, i.e., a domain having a compact

complement Rn\Ω with C∞-boundary ∂Ω.

For the proof in case 1) see Kozono [16]; if Ω satisfies 2), see Giga [11]. Finally, if
Ω satisfies 3), see Iwashita [12].

Proof of Theorem 1.1. By using the results of the previous proposition, the weak
solution v is smooth in some time-interval (0, T ∗), T ∗ ≤ T. We suppose that this
interval is maximal and per absurdum we suppose that T ∗ < T. In particular,
v, p ∈ C∞(Rn× (0, T ∗)), and v is in the class (2.2). Therefore, the calculations we
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are going to do are completely justified and, in particular, all the boundary integrals
arising in the integrations by parts, needed to obtain (2.5), vanish. Following
Rionero and Galdi [22] and Beirão da Veiga [1], we multiply (1.1) by |v|n−2v and
perform suitable integrations by parts over Rn to obtain, for t ∈ (0, T ∗),

1
n

d

dt
‖v‖nn+ν

∫
Rn

|v|n−2|∇v|2 dx+ 4ν
n− 2
n2
‖∇|v|n/2‖22 ≤

2(n− 2)
n

I,(2.5)

where

I def=
∫

Rn

|p| |v|n−2
2 |∇|v|n/2| dx.

In the sequel we will use many times two basic inequalities. The first one is the
classical interpolation inequality for f ∈ Lp(Rn) ∩ Lq(Rn)

‖f‖r ≤ ‖f‖λp‖f‖1−λq for p < r < q, with λ =
p(q − r)
r(q − p) .(2.6)

The other one is the following Sobolev type inequality

‖f‖ n2

n−2

≤ C‖∇|f |n/2‖2/n2 ,(2.7)

obtained by applying the embedding H1(Rn) ⊂ L
2n
n−2 (Rn) to the function |f |n/2.

In the sequel we denote with C possibly different positive constants that do not
depend on v but, at most, on n and ν.

We shall distinguish several cases where the integral I in the right-hand side of
(2.5) is estimated in different ways:

Case 1): n ≤ s <∞.
In this case we apply, in the order, the Hölder inequality with exponents n, 2n

n−2 , 2,
the interpolation inequality (2.6), the Calderón-Zygmund inequality, and the Young
inequality to obtain

I ≤ ‖p‖n ‖v‖
n−2

2
n ‖∇|v|n/2‖2

≤ ‖p‖
s

2s−n
s ‖p‖

s−n
2s−n
n/2 ‖v‖

n−2
2

n ‖∇|v|n/2‖2

≤ C‖p‖
s

2s−n
s ‖v‖

2(s−n)
2s−n
n ‖v‖

n−2
2

n ‖∇|v|n/2‖2

≤ C‖p‖
2s

2s−n
s ‖v‖

2sn−n2−2n
2s−n

n +
2ν(n− 2)

n2
‖∇|v|n/2‖22.

Observe that, since n ≤ s <∞, the quantity

δ ≡ 2sn− n2 − 2n
2s− n = n

(
1− 2

2s− n

)
belongs to (0, n).
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Case 2):
n2

2(n− 1)
≤ s < n.

We apply, in the order, the Hölder inequality with exponents s, 2s
s−2 , 2, the inter-

polation inequality (2.6), the Sobolev inequality (2.7), and the Young inequality to
obtain

I ≤ ‖p‖s‖v‖
n−2

2
s(n−2)
s−2

‖∇|v|n/2‖2

≤ ‖p‖s‖v‖
2sn−2s−n2

2s
n ‖v‖

n(n−s)
2s

n2
n−2

‖∇|v|n/2‖2

≤ C‖p‖s‖v‖
2sn−2s−n2

2s
n ‖∇|v|n/2‖n/s2

≤ C‖p‖
2s

2s−n
s ‖v‖

2sn−n2−2s
2s−n

n +
2ν(n− 2)

n2
‖∇|v|n/2‖22.

Observe that, since
n2

2(n− 1)
≤ s < n, the quantity

δ ≡ 2sn− n2 − 2s
2s− n = n

(
1− 2s

n(2s− n)

)
belongs to [0, n).

Case 3): n/2 < s <
n2

2(n− 1)
.

We apply, in the order, the Hölder inequality with exponents n2

2(n−1) ,
n2

2(n−2)2 , 2,
the interpolation inequality (2.6), the Calderón-Zygmund inequality, the Sobolev
inequality (2.7), and the Young inequality to obtain

I ≤ ‖p‖ n2

2(n−1)

‖v‖
n−2

2
n2

n−2

‖∇|v|n/2‖2

≤ ‖p‖
2s

n2−2s(n−2)
s ‖p‖

n2−2sn+2s
n2−2sn+4s
n2

2(n−2)

‖v‖
n−2

2
n2

n−2

‖∇|v|n/2‖2

≤ C‖p‖
2s

n2−2s(n−2)
s ‖v‖

2n
2−2sn+2s
n2−2sn+4s + n−2

2
n2

n−2

‖∇|v|n/2‖2

≤ C‖p‖
2s

n2−2s(n−2)
s ‖∇|v|n/2‖

2n2−4sn+2n+4s
n2−2sn+4s

2

≤ C‖p‖
2s

2s−n
s +

2ν(n− 2)
n2

‖∇|v|n/2‖22.
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Case 4): s =∞.
We apply, in the order, the Hölder inequality with exponents n, 2n

(n−2) , 2, the
Calderón-Zygmund inequality, and the Young inequality to obtain

I ≤ ‖p‖1/2∞ ‖p‖
1/2
n/2‖v‖

n−2
2

n ‖∇|v|n/2‖2

≤ C‖p‖1/2∞ ‖v‖n‖v‖
n−2

2
n ‖∇|v|n/2‖2

≤ C‖p‖∞‖v‖nn +
2ν(n− 2)

n2
‖∇|v|n/2‖22.

We have thus shown that, for a suitable δ = δ(s) ∈ [0, 1], the following differential
inequality holds:

1
n

d

dt
‖v‖nn + ν

∫
Rn

|v|n−2|∇v|2 dx+ 2ν
n− 2
n2
‖∇|v|n/2‖22 ≤ C‖p‖rs‖v‖n(1−δ)

n ,(2.8)

for r, s merely satisfying the assumption (1.5). Once (2.8) has been established, by
Gronwall’s lemma (see for instance Lemma 3 in reference [9]), if δ ∈ [0, 1), we have
that,

‖v(t)‖nn ≤ C

‖v0‖nn +
(∫ t

0

‖p(τ)‖rs dτ
) 1

1−δ


and consequently

v ∈ L∞(0, T ∗;Ln(Rn)).(2.9)

If δ = 1, we obtain (2.9), by integrating (2.8) (with δ = 1). Integrating (2.8) with
respect to t and using (2.9), we get∫ T∗

0

∫
Rn

|v|n−2|∇v|2 dx dτ = M1 <∞,
∫ T∗

0

‖∇|v|n/2‖22 dτ = M2 <∞.

The latter estimate, along with (2.7), implies that

|v|n/2 ∈ L2(0, T ∗;H1(Rn)) ⊂ L2(0, T ∗;L
2n
n−2 (Rn)),

that is,

v ∈ Ln(0, T ∗;L
n2

n−2 (Rn)).(2.10)

The interpolation inequality (2.6), together with (2.9) and (2.10), then furnishes

v ∈ Lr(0, T ∗;Ls(Rn)), with
2
r

+
n

s
= 1, n ≤ s ≤ n2

n− 2
.(2.11)

By i) of Proposition 2.1, for each ε > 0, there exists 0 < ξ < ε such that v(ξ) ∈
Ls(Rn), for some n < s ≤ n2

n−2 . We can now use the local existence of smooth
solution starting from u(ξ), since for them we can estimate the life-span of existence
and we can give the blow-up estimate (2.3). The estimate (2.11) implies that this
cannot happen for all Ls-norm with s ∈ (n, n2/(n− 2)], since

∞ =
∫ T∗

ξ

Cr

(T ∗ − τ)
r(s−n)

2s

dτ ≤
∫ T∗

ξ

‖v(τ)‖rs dτ <∞ for
2
r

+
n

s
= 1.
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Thus, we proved that v ∈ C∞(Rn × (ξ, T ]). Since ξ > 0 can be chosen arbitrarily
small and v0 ∈ L2(Rn), by v) of Proposition 2.1 we conclude the proof.

In the cases n = 3, 4, the local existence of weak solutions implies that, for
each ε > 0 there exists 0 < η < ε such that a given weak solution v satisfies
v(η) ∈ H1(Rn) ⊂ Ln(Rn). By choosing an arbitrary positive η and by using the
same argument used before, now on the time interval [η, T ∗), we can conclude the
proof.

3. Remarks for the problem in a general domain

In this section we prove some results concerning the initial-boundary value prob-
lem in a domain Ω as in Remark 2.1 (in particular, we consider the Navier-Stokes
equation in a domain Ω 6= Rn). We observe that the results in references [3, 4, 14, 6]
hold also in a bounded domain, while that of Chae and Lee [9], due to the use of
the Calderón-Zygmund inequality, applies only to the Cauchy problem (in R3).

When considering the problem in a domain with boundaries it is difficult to find
appropriate estimates involving the pressure in terms of the velocity, and a simple
inequality as (1.6) is not available.

We begin by observing that estimate (2.5) still holds; for the details see [4, 6]. We
notice next that, in Case 2) of the previous theorem, we did not use the Calderón-
Zygmund inequality. Therefore, the same calculations are valid also in a (smooth)
domain Ω ⊂ Rn. In fact, we can prove the following result.

Theorem 3.1. Let Ω be a domain as in Remark 2.1. Let v0 ∈ H2(Ω)∩Ln(Ω), for
n ≥ 3. If the pressure p satisfies

p ∈ Lr(0, T ;Ls(Ω)) with
2
r

+
n

s
= 2, for

n2

2(n− 1)
≤ s ≤ n,

then v ∈ C∞(Ω × (0, T ]). Again, in the cases n = 3, 4, the condition on the initial
data can be relaxed to v ∈ H2(Ω).

Proof. We multiply the Navier-Stokes equations by |v|n−2v and we integrate by
parts over Ω to obtain

1
n

d

dt
‖v‖nn + ν

∫
Ω

|v|n−2|∇v|2 dx+ 4ν
n− 2
n2
‖∇|v|n/2‖22 ≤

2(n− 2)
n

I ′,

where

I ′ def=
∫

Ω

|p||v|
n−2

2 |∇|v|n/2| dx,

and now ‖ . ‖p denotes the norm of the Lebesgue space Lp(Ω).
When n2/2(n− 1) ≤ s < n, we use the same estimate as in Case 2. The only

result to be proved is when s = n. In this case we can estimate the term I′ in the
following way, by applying the Hölder inequality with exponents n, 2n

n−2 , 2, and the
Young inequality:

I ′ ≤ ‖p‖n‖v‖
n−2
n

n ‖∇|v|n/2‖2

≤ C‖p‖2n‖v‖n−2
n +

2ν(n− 2)
n2

‖∇|v|n/2‖22.
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The proof follows now by using the same techniques used in the proof of Theo-
rem 1.1. For the local existence of smooth solutions with initial data in Ln(Ω), and
for the regularity of solutions satisfying (1.2), see Remark 2.1.

Remark 3.2. Due to the aforementioned lack of estimate (1.6) when Ω 6= Rn, the
validity of Theorem 1.1 remains an interesting open question in such a case. In this
situation, the best results known, for s > n, are that given in [3, 6].

Finally, we prove the following theorem which greatly improves the result shown
by O’Leary [20].

Theorem 3.3. Let Ω be either the whole space Rn, or a domain as in Remark 2.1.
Let be v0 ∈ H2(Ω) ∩ Ln(Ω). If ∇p satisfies the condition

∇p ∈ Lr(0, T ;Ls(Ω)) with
2
r

+
n

s
= 3, for s ∈

[
n2

3n− 2
, n

]
,(3.1)

then v ∈ C∞(Ω× (0, T ]).

Proof. We multiply the Navier-Stokes equations by |v|n−2v and we integrate by
parts over Ω to obtain

1
n

d

dt
‖v‖nn + ν

∫
Ω

|v|n−2|∇v|2 dx+ 4ν
n− 2
n2
‖∇|v|n/2‖22 ≤

∫
Ω

|∇p| |v|n−1 dx.(3.2)

We estimate the right-hand side

I ′′ =
∫

Ω

|∇p| |v|n−1 dx

in the following way, by using, in the order, the Hölder inequality with 1
s + 1

s′ =
1, the interpolation inequality (2.6), the Sobolev inequality (2.7), and the Young
inequality:

I ′′ ≤ ‖∇p‖s ‖ |v|n/2‖
2(n−1)
n

2(n−1)s′

n

≤ ‖∇p‖s ‖ |v|n/2‖
n2−(n−1)(n−2)s′

ns′
2 ‖ |v|n/2‖

(n−1)s′−n
s′

2n
n−2

≤ C‖∇p‖s‖v‖
n2−(n−1)(n−2)s′

2s′
n ‖∇|v|n/2‖

(n−1)s′−n
s′

2

≤ C‖∇p‖
2s′

n+(3−n)s′
s ‖v‖

n2−(n−1)(n−2)s′

n+(3−n)s′
n +

2ν(n− 2)
n2

‖∇|v|n/2‖22

= C‖∇p‖
2s

3s−n
s ‖v‖

n2−(n−1)(n−2)s′

n+(3−n)s′
n +

2ν(n− 2)
n2

‖∇|v|n/2‖22.

Observe that
n2 − (n− 1)(n− 2)s′

n+ (3− n)s′
≤ n, ∀ s′ ≥ 1

and the proof follows as in the previous theorems.
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Remark 3.4. The interest in the last result stems essentially on the limit case

∇p ∈ L1(0, T ;Ln(Ω)).

In fact, for Ω a (Lipschitz) bounded subset of Rn, setting

D1,q(Ω)
def
=
{
φ ∈ L1

loc(Ω) such that
∫

Ω

|∇φ|q dx <∞
}
,

we have that D1,q(Ω) ⊂ Lq
∗
(Ω) for 1/q∗ = 1/q − 1/n, when q < n. In the case

where q = n we have D1,n(Ω) 6⊂ L∞(Ω). When Ω = Rn, the inclusion still holds
if we impose that the functions “vanish at infinity.” (This assumption is not too
restrictive, since we can impose p→ 0 as |x| → ∞, due to the fact that the pressure
is known up to an additive constant). This observation implies, in the light of (3.1),
that the condition in Theorem 1.1 can be improved to the following one:

p ∈ L1(0, T ;L∞(Rn) ∪D1,n(Rn)).
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[13] E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math.
Nachr. 4 (1951), 213–231. MR 14:327b

[14] S. Kaniel, A sufficient condition for smoothness of solutions of Navier-Stokes equations,
Israel J. Math. 6 (1968), 354–358 (1969). MR 39:5965

[15] T. Kato, Strong Lp-solutions of the Navier-Stokes equation in Rm, with applications to weak
solutions, Math. Z. 187 (1984), no. 4, 471–480. MR 86b:35171

[16] H. Kozono, Global Ln-solution and its decay property for the Navier-Stokes equations in
half-space Rn

+, J. Differential Equations 79 (1989), no. 1, 79–88. MR 90f:35163

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=88b:35154
http://www.ams.org/mathscinet-getitem?mr=96m:35035
http://www.ams.org/mathscinet-getitem?mr=99i:35123
http://www.ams.org/mathscinet-getitem?mr=2001d:76025
http://www.ams.org/mathscinet-getitem?mr=2001m:35250
http://www.ams.org/mathscinet-getitem?mr=2000f:35111
http://www.ams.org/mathscinet-getitem?mr=2002c:35207
http://www.ams.org/mathscinet-getitem?mr=87h:35157
http://www.ams.org/mathscinet-getitem?mr=91d:35167
http://www.ams.org/mathscinet-getitem?mr=14:327b
http://www.ams.org/mathscinet-getitem?mr=39:5965
http://www.ams.org/mathscinet-getitem?mr=86b:35171
http://www.ams.org/mathscinet-getitem?mr=90f:35163


REGULARITY CRITERIA INVOLVING THE PRESSURE 3595

[17] H. Kozono and H. Sohr, Remark on uniqueness of weak solutions to the Navier-Stokes equa-
tions, Analysis 16 (1996), no. 3, 255–271. MR 97e:35133

[18] H. Kozono and H. Sohr, Regularity criterion on weak solutions to the Navier-Stokes equations,
Adv. Differential Equations 2 (1997), no. 4, 535–554. MR 97m:35206

[19] J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math. 63 (1934),
193–248.

[20] M. O’Leary, Pressure conditions for the local regularity of solutions of the Navier-Stokes
equations, Electron. J. Differential Equations (1998), Paper No. 12, 9 pp. (electronic). MR
99c:35188
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