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REGULARITY CRITERION
IN TERMS OF PRESSURE FOR
THE NAVIER-STOKES EQUATIONS

Dongho Chae ( and Jihoon Lee
School of Mathematics (@)
University of Minnesota
127 Vincent Hall, 206 Church Street SE
Minneapolis, MN 55455, USA
and
Department of Mathematics (#>(?)

Seoul National University
Seoul 151-742, Korea

Abstract

We obtain a regularity criterion of a Leray-Hopf weak solution of the Navier-
Stokes equations in R? x [0,7] in terms of the integrability of pressure. We
first establish a priori estimates for L°(R3) , s > 3, smooth soutions, and
then use the standard continuation argument for the local smooth solutions.
Our criterion, in particular, implies the previous results due to Serrin on the
regularity criterion in terms of velocity fields.
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1 Introduction

In this paper, we consider the initial value problem for the Navier-Stokes equations
in R® x [0,7),

%+(U-V)U—Au:—Vp (1)
divu =0 (2)
u(z,0) = uo(2), (3)



where u = (u1, ug, u3) with u = u(zx,t) and p = p(z,t) denote unknown fluid velocity
and scalar pressure, respectively, while uy is a given initial velocity satisfying div
ug = 0. We denoted

L ou 0?u
(u-V)u:;uja—xj, AUZZ@

in the above. For given uy € L*(R®) with div uy = 0 in the sense of distri-
bution a global weak solution u to the Navier-Stokes equations, belonging to the
space L>(0,T; L*(R®)) N L?(0,T; H'(R3)) was constructed by Leray[10] and Hopf[6],
which we call Leray-Hopf weak solution. Regularity of such Leray-Hopf weak so-
lutions is one of the most outstanding open problems in mathematical fluid me-
chanics. We note here that there are partial regularity results by Schaffer and by
Caffarelli-Kohn-Nirenberg(See[2] and references therein. See also for a recent sim-
plification of the proof in [2] due to Lin[11].). On the other hand, pioneered by
Serrin[13] (See also [13].), and extended and improved by Fabes-Jones-Riviere[4],
Giga[5] and Struwe[14](For the recent progress on the problem of the marginal case
see also [9], and references therein.), there exist regularity criteria of the Leray-Hopf
weak solutions which state that if u is a Leray-Hopf weak solution belonging to
L7 = L*(0,T; L (R?)) with exponents s and v satisfying % + % < 1, then u is ac-
tually a solution of class C®(R3 x (0,7)). For the space Lz>" let us introduce the

norm L
T o
lull s = ( / ||u(t>||zdt) |

lu@l, = 4 (s lu(zt)dz)” if1<g<oo
€ss SUPgegs |u(7,t)| if v = o0

where

Following the notion of scaling dimensions for various quantities in the Navier-Stokes
equations in [2], the norm |[[u|ze~ has the scaling dimension zero, or negative if
%—}-% < 1. On the other hand, if 2 + % < 2, both |[Dul|za~ and [|p[|za~ have scaling
dimension zero, or negative. Related to this point, Beirdo da Veiga[l] proposed
another regularity criterion in terms of Du, which states that for Leray-Hopf weak
solution u, the condition Du € L37 with %-i—% < 2 where 2 < v < oo implies
that C°(R® x (0,7)). We also remark that in [3] authors have improved Beirao da
Veiga’s regularity criterion by imposing that only the two components vorticity field
belong to the same class. It is thus natural to consider the problem of obtaining the
regularity condition in terms of p € L7” with 2 + % < 2 with appropriate restriction
on the range of o and . Actually, in [2] connection between the regularity of velocity
fields and strong ingerability of pressure was suggested. We study that problem in
this paper, and the followings are our main results. The first one is on the a priori

estimates for smooth solutions.



Theorem 1 ( a pripori estimates ) Suppose s > 3, % <y<o00,andl <a< oo
are given. Let us define n = n(y,s,a) by

:{ max{y,s} if ﬁ <y <o
« if 5 <v<i3

Suppose ug € L*(R®) with div ug = 0. Assume (u,p) is a smooth solution of the
problem (1.1)-(1.3) in R® x (0,T). If p € LT with 2 — 2 — % > %, or |
is sufficiently small, then v € L®(0,T; L%) N L*(0,T; L3). Moreover, the following
estimates hold true.

Pl

(i) If v = oo, then

sup. [[u(®)[5 + [[ul; 50 < Cluolls exp (Clpllyee ) (4)
0<t<T T

where C = C(s).
(ii) If 3 <y < oo, then

sup [lu(@)|ls + [lull7sz < Clluolls + lIpll7an), (5)
0<t<T T T

where C = C(s,a,v,T).

(iii) Ify =2 and ||p||ooyg is sufficiently small, then
sup [lu(@)[[$ + llull7sz < Clluoll;, (6)
0<t<T T
where C = C(5, Pl ).

Theorem 2 ( regularity criterion) Let uy € L?(R*)NLY(R?) for some q > 3, and
div ug = 0 in the sense of distribution. Suppose u is a Leray-Hopf solution of (1)-(3)
in [0,T). If pe L7 (R®) with %+% <2adl<a<oo, $<y<oo,orpe L™,

or else ”p”L“”% is sufficiently small, then u is a regular solution in [0,T).
T

In order to discuss implications of Theorem 2, and for later use in the proof of
Theorem 1 we recall the well-known pressure-velocity relation in R?, given by

3
p=) RiRj(u;),
ij=1

where (R;)?_; are the Riesz transforms in R®. (This is obtained formally by taking
divergence of (1), and solving the resulting equation for p.) The Calderon-Zygmund
inequality implies, then

Ipll, < Cllull3,, 1<7v<oco, (7)
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and from this we immediately have

||p||L%’7 < C”U”ig‘a,zy. (8)

Remark 1. From the inequality (8) we find that the Serrin type of condition for u,
u € Ly with 2 + 2 < 1, implies our condition for p in Theorem 1, and we obtain
regularity for the weak solution w by applying our theorem, i.e. our result implies
previous regularity criterion results in [13].

Remark 2. In [7], Kaniel* obtained actually a regularity criterion in terms of pres-
sure, which states that p € L3, v > % implies regularity of a weak solution. This
result is obviously implied by Theorem 2.

x The authors would like to thank Professor G. Galdi for informing them of Kaniel’s

paper[7].

2 Proof of Main Theorems

We first establish the following Gronwall type of lemma.

Lemma 3 Let a(t) and b(t) be nonnegative functions on [0,00) and 0 < § < 1.
Suppose a nonnegative function y(t) satisfies the differential inequality

y'(t) +b(t) <a®)y’(t)  on[0,00),  y(0) =1y 9)
Then, there ezists a constant C = C(J) such that

1

y(t) + /Otb(s)ds <C {yo + (/Ota(s)ds) H} Vt € [0, 00). (10)

Proof: Solving the differential inequality ¥ < a(t)y’, we obtain easily

1
t -5
v < {ube+0-9) [ ais]
0 1
t 3
< {yé_5+/ a(s)ds} t>0. (11)
0
Substituting (11) into (9), and integrating the resulting inequality over [0,¢], we

deduce
5

y(t)—yo-l-/otb(s)ds < /Ot“(s)dS{yé““r/Ota(s)dS}ﬁ
< {?/édJr/Ota(s)ds}l_
< 2% {yo+ (/Ota(s)ds>l+},



Setting C(9) 2i% + 1, we have (10).m

Proof of Theorem 1: Taking L?(R®)-inner product of (1) with su|u|*2, we ob-
tain after integration by part

i/ \u\sda:+2/ |V|ul??dz = s/ p(u - V)|ul|* ?dx
dt Jrs R3 R3
< 2s-2) [ IpllaliTiulfdo =1, (12
R3

where we used the equality

—2
/(Au)-u|u|s_2dx - —/ Ve~ / IV [l 2|2
R3 R3 R3

2 s
= =5 [ IVlPp e =<2 [Vt Pda,
2 R3 S JRr3

Below we estimate I of (12) case by case. Before doing that we recall the well-known
LP— interpolation inequality

lullr < lullpllully, (13)
where % = % + %, 0<60<1,1<p,q<o0o,and the Sobolev inequality,

0,2 52
[ullss = lllulzlls < Cl[V]ulz]3 (14)

In the all cases below it is assumed that 1 < a < oo.
Case 1: v = oo.

~
IN

1 1 8=2 s
2(s = 2)|pllollpllz [lulls* [IV]ul>]l2 (By the Hélder’s inequality)

1 s s
Cllpllg||ul|2[|V]u|z]|2 (By the Calderon-Zygmund inequality, (7))

<
< Clplloollull; + IV]ul#]13. (By Young’s inequality) (15)

From (15) and (12) we obtain
d s 5912 s
gllulls + IVIulzllz < Cliplloo]lull;- (16)
Applying the standard Gronwall inequality, we deduce from (16)
T S
sup IIUI|§+/ IV [ul2 |3t < [luoll; exp(Clpll 1) (17)
0<t<T 0

From the Sobolev inequality, (14), for second term of the left hand side of (17) we
have (4).



. _ 2 _ 5=3
Case 2: s<y<ooand2-—= > =

3
v

~
VAN

2(s = 2)|Ip||s ||u||s ||V|u| ||2 (By the Hdlder’s inequality)

VAN

2(s — 2)|lpll s||P||2” “Jlully® [¥]ul? ]l (By the interpolation inequality, (13))

2ys—2s8— s2

C’||p||27 lulls ©7* ||V|u|?2]|; (By the Calderon-Zygmund’s estimate, (7))

IN

IN

__2s s
Clpll= ulls™™ + [ VJul 3. (By Young’s incquality) (18)

Combining this with (12), the following inequality holds.
276
||u||5 + [V ]ul 2[5 < C||p||2” lulls (19)

Applying (10) with 6 =1 — ﬁ, and, using Holder’s inequality, we obtain

T 5 1o T 5 '7T
sup [l + [ 191l B < €9 i+ ([ 017 )
0<t<T 0 0

< C(M)([luoll§ + [Pl 7a) (20)

Applying the Sobolev inequality, (14), to estimate (20) in the left hand direction, we
obtain (5).

. 3s —_2_ 3> 53
Case 3: 25 <y<sand2-Z 5= 5

~
INA

572 S .. ) . .
2(s — 2)||p||7||u||wfs_2) IV|ulz]|l2 (By Holder’s inequality)

y8— 33+'y 35—3%

2(s = 2)|Iplly ||u||s S| P ||V|u|§||2 (By the interpolation inequality, (13))

IN

3s+vs8—3xy
< Cllplly ||u|| ||V|u| Iy ™ (By the Sobolev inequality, (14))
< C||p||$_3s+3"||u||s G +[|V|u|2[3. (By Young’s inequality) (21)

From (21) and (12), we find the following inequality holds.

ey 2 )
||UI|5+||V|U\ I3 < Cllplly = [lulls >+, (22)

Applying (10) with 6 =1 — m, we have

y8—3s+3y
2

T . :
sup |lu(?)|3 +/ IV]ulz]l3dt < C < |luoll® + (/ Ip()]17 38+37dt)
0 0

0<t<T

< C(T)(lluoll§ + Pl za) (23)

6



Applying the Sobolev inequality to estimate (23) as previously, we obtain (5).

Case 4: 3<y< 22 and2-2 -

3 s—=3
s+1 «a 0% Z a °

-2 .
I < 2(s— 2)||p||%||u||3s2 IV|ulz|]2 (By Holder’s inequality)

(s=1)y 3s—y—sy 2

IN

(s=1)y 382—657+Gs R

< Clpll== lullss =" ||V|ul2]]2 (By Calderon-Zygmund’s estimate, (7))
(s—1)y o Bs=8yt6

< Clpllv=2 [|V]ulz||;>*>  (By Sobolev’s inequality, (14))
(s=1)y

< Cliplly"™ +[[VIul>[3. (By Young’s inequality)

From (24) and (12), we have

(s—1)y

d s =
Sl +1VIul2li5 < Clply -

(25)

By integrating the both sides of (25) over [0, T'], the following inequality is immediate.

(s—1)y

T T
sup u(t)l+ [ 191l 1Bt < ol +C [ ol
0<t<T 0 ;

(26)

Applying Holder’s inequality in the right hand direction, and the Sobolev inequality

in the left hand direction of (26) as previously, we obtain (5).

Case 5: v =3

2.
Setting v = 2 in the 4-th inequality from above of (24), we have
1 s
L Culpl3IIV [ul 5.
Then we see from (12),

d s s
—llu@)l; + 2 V]ulz]3 < Ci( sup |Ip(t)]|
dt 0<t<T

(VIS RNIE

) <1, then

[MIINE

If C1( sup [|p(2)]]
0<t<T

T
pr@M+/HWWﬁﬁgwm-
0<t<T 0

IV ul 215

(27)

(28)

(29)

Applying the Sobolev inequality (14) to (29), we obtain (6). Proof of Theorem 1 is

complete.ll

In order to prove Theorem 2 we recall the following result due to Y. Giga.

7

2(s = 2)llplly" ™ llplls* ™ lulls7 [[Vlulé]l2 (By the interpolation inequality, (13))

(24)



Theorem 4 (Giga, [5], pp. 202) Suppose uy € L*(R?), s > 3, then there exists T
and a unique classical solution v € BC([0,Tp); L*(R?)). Moreover, let (0,T,) be the
mazimal interval such that u solves (1)-(8) in C((0,T.); L*(R®)), s > 3. Then

el 2 s (30)

with constant C' independent of T, and s.

Proof of Theorem 2: We consider here the case p € L3” with 2 ats 3 <2,1<a< oo,
2 < 4 < 00 . The other cases of which p € Ly*, or else ||p| Lo is sufficiently small

are similar. Since uy € L?(R3)NLI(R3) for some q > 3, uy € LS (R3) for any s € (3, ¢q).
We now fix s € (3,¢) so that

2
(2— ——§> min{w, 7,3} > s — 3.
v

(0%

Then, 2 — % — % > % holds, and, by the apriori estimate in Theorem 1 combined
with the standard continuation argument, which is possible thanks to the estimate
(30) of Theorem 4, we can continue our local smooth solution corresponsing to initial
data ug € L*(R?) to obtain u € BC([0, T]; L*(R?*))NC>®(R? x (0,7T)). This completes
the proof of Theorem 2. M.
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