REGULARITY FOR SOLUTIONS TO OBSTACLE PROBLEMS

J.H. Michael

This is a report on some research done jointly with William P. Ziemer at the Centre for Mathematical Analysis. The research establishes interior regularity for a solution to a classical obstacle problem of general type.

1. INTRODUCTION

Let Ω be a bounded non-empty open set of R^n . Let K be the convex subset of the Sobolev space $W^{1,\alpha}(\Omega)$ consisting of all v, such that v agrees with a boundary function θ on $\partial\Omega$ in a suitable way and

$$v(x) \ge \psi(x)$$

for almost all $\mathbf{x} \in \Omega$, where ψ is a function defined on Ω (the "obstacle"). Put

$$I(v) = \int_{\Omega} F(x, v(x), Dv(x)) dx$$
 (1)

for v ∈ K , where F is a function with suitable properties. Let

$$\sigma = \inf_{\mathbf{v} \in K} \mathbf{I}(\mathbf{v}) \tag{2}$$

and suppose there is a function $u \in K$, such that

$$I(u) = \sigma . (3)$$

The above is a general description of a classical obstacle problem and u is a solution. A great deal of research has been done on the regularity of such solutions [1,2,4]. Our research assumes much less about the function than has been assumed in earlier work.

Actually our results are obtained in a slightly more general setting. It is well known that if $u \in K$ is such that (3) holds and the function F satisfies appropriate conditions, then

$$\sum_{i=1}^{n} \int_{\Omega} \frac{\partial F}{\partial P_{i}} (x, u(x), Du(x)) \frac{\partial \phi}{\partial x_{i}} (x) dx
+ \int_{\Omega} \frac{\partial F}{\partial z} (u, u(x), Du(x)) \phi(x) dx \ge 0 ,$$
(4)

for all $\phi \in W_0^{1,\alpha}(\Omega)$ with

$$\phi(x) \ge \psi(x) - u(x) \tag{5}$$

for almost all $x \in \Omega$.

This is a special case of the weak inequality:

$$\sum_{i=1}^{n} \int_{\Omega} A_{i}(x, u(x), Du(x)) \frac{\partial \phi}{\partial x_{i}}(x) dx$$

$$+ \int_{\Omega} B(x, u(x), Du(x)) \phi(x) dx \ge 0$$
(6)

for all $\phi \in W_0^{1,\alpha}(\Omega)$ with

$$\phi(\mathbf{x}) \ge \psi(\mathbf{x}) - \mathbf{u}(\mathbf{x}) \tag{7}$$

for almost all $x\in\Omega$. Our research is concerned with this more general inequality. It will be assumed that $u\in W^{1,\alpha}(\Omega)$ (where $1\leq\alpha\leq\infty$)

$$u(x) \ge \psi(x)$$
 (8)

for almost all $x \in \Omega$ and u satisfies the inequality (6) for all φ satisfying (7). It will also be assumed that ψ is an upper semicontinuous function on Ω satisfying the approximate continuity condition:

$$\psi(\mathbf{x}) = \lim_{\rho \to 0+} \int_{|\xi - \mathbf{x}| < \rho} \psi(\xi) \, d\xi . \tag{9}$$

[The symbol \oint denotes the integral average.] The coefficients A_i and B are Borel measurable functions on $\Omega \times R \times R^n$ and they satisfy the following standard conditions.

$$|A(x,z,p)| \le \mu |p|^{\alpha-1} + \mu |z|^{\alpha-1} + \nu$$
, (10)

$$p \circ A(x,z,p) \ge |p|^{\alpha} - \mu|z|^{\alpha} - \nu$$
, (11)

$$|B(x,z,p)| \le \mu |p|^{\alpha-1} + \mu |z|^{\alpha-1} + \nu \tag{12}$$

for $x \in \Omega$, $z \in R$, $p \in R^n$, where μ , ν are non-negative constants.

2. DISCUSSION OF THE RESULTS.

We observe to begin with that as a consequence of the upper semicontinuity, ψ is locally bounded above.

A standard iteration procedure followed by an interpolation argument (see [3] and [5]) yields the following.

2.1 LEMMA Let $M_0>0$ and $\gamma>0$. There exists a constant c>0 and such that, for every $x_0\in\Omega$, every $\rho\in(0,1]$ for which $\overline{B_\rho(x_0)}\subset\Omega$ and every constant M for which $|M|\leq M_0$, it is true that

(i) the inequality

$$\begin{aligned} & \text{ess sup} \quad (\mathbf{u}(\mathbf{x}) - \mathbf{M})^{-} \\ & |\mathbf{x} - \mathbf{x}_{0}| < \frac{1}{2}\rho \end{aligned} & \leq C \left[\int_{\left|\mathbf{x} - \mathbf{x}_{0}\right| < \rho} \left\{ (\mathbf{u}(\mathbf{x}) - \mathbf{M})^{-} \right\}^{\gamma} d\mathbf{x} \right]^{\frac{1}{\gamma}} + C\rho \end{aligned}$$

always holds and

(ii) the inequality

$$\begin{split} & \underset{\left| \mathbf{x} - \mathbf{x}_{0} \right| < \frac{1}{2}\rho}{\text{ess sup}} \quad \left(\mathbf{u} \left(\mathbf{x} \right) - \mathbf{M} \right)^{\frac{1}{\gamma}} \\ & \leq C \left[\int_{\left| \mathbf{x} - \mathbf{x}_{0} \right| < \rho} \left\{ \left(\mathbf{u} \left(\mathbf{x} \right) - \mathbf{M} \right)^{\frac{1}{\gamma}} \right\}^{\gamma} d\mathbf{x} \right]^{\frac{1}{\gamma}} + C\rho \end{split}$$

holds, provided that $\psi(x) \leq M$ for all $x \in \overline{B_{\rho}(x_0)}$.

It follows immediately from 2.1 that $\,u\,$ is locally bounded on $\,\Omega\,$.

By using a standard iteration, combined with the John-Nirenberg lemma, we are able to prove

2.2 LEMMA Let $M_0>0$. There exist B>0, c>0, $\gamma\in\{0,1\}$, such that for every $x_0\in\Omega$, every $\rho\in\{0,1\}$ for which $\overline{B_{\rho}(x_0)}\subset\Omega$ and every M for which $|M|\leq M_0$ and $u(x)\geq M$ for almost all $x\in B_{\rho}(x_0)$, the inequality

holds.

Consider an arbitrary $\mathbf{x}_0\in\Omega$ and a $\rho\in(0,1]$ such that $\overline{B_{\rho}(\mathbf{x}_0)}\subset\Omega$. Put

$$m_{\lambda} = \underset{|x-x_0| < \lambda}{\text{ess inf}} u(x)$$

for $0 < \lambda \le \rho$. By 2.2

$$m_{\frac{1}{2}\rho} - m_{\rho} \ge C \left[\int_{|x-x_{0}| < \rho} (u(x) - m_{\rho})^{\gamma} dx \right]^{\frac{1}{\gamma}}$$

and hence

$$m_{\frac{1}{2}\rho} - m_{\rho} \ge C(M - m_{\rho})^{-\left(\frac{1-\gamma}{\gamma}\right)} \left[\int_{\left|x-x_{\rho}\right| < \rho} (u(x) - m_{\rho}) dx \right]^{\frac{1}{\gamma}}, \tag{13}$$

where M is an upper bound for u . But, since u is locally bounded above, m approaches a limit as 0 \rightarrow 0+ . Hence

$$\int_{\left|x-x_{0}\right|<\rho}\left(u\left(x\right)-m_{\rho}\right)dx\Rightarrow0$$

as $\rho \rightarrow 0+$. Then

$$\lim_{\rho \to 0+} \int_{|x-x_0| < \rho} u(x) dx \text{ exists and}$$

$$= \text{ess lim inf } u(x) . \tag{14}$$

We now define

$$u(x_0) = \lim_{\rho \to 0+} \int_{|x-x_0| < \rho} u(x) dx$$
 (15)

for all $x_0 \in \Omega$. Then

$$u(x) \ge \psi(x)$$

for all $\ x \in \Omega$. It follows from (14) and (15) that $\ u$ is lower semicontinuous on $\ \Omega$.

Put

$$H = \{x; x \in \Omega \text{ and } u(x) = \psi(x)\}$$
 (16)

and

$$\Omega_{O} = \Omega \sim H . \tag{17}$$

Then H is closed relative to Ω and Ω_0 is open. Standard regularity theory for solutions to quasi-linear partial differential equations gives

2.3 LEMMA There exists a $\delta \in (0,1)$ and such that, for every compact subset K of Ω_0 , u is Hölder continuous with exponent δ on K.

Consider a point \mathbf{x}_0 of the contact set H . Let

$$\Gamma > u(x_0) = \psi(x_0)$$

and let $\rho \in (0,1]$ be such that $\overline{B_{\rho}(x_0)} \subseteq \Omega$ and

$$\sup_{\left|\mathbf{x}-\mathbf{x}_{O}\right| \leq \rho} \psi(\mathbf{x}) < \Gamma .$$

By 2.1 (ii), with $\gamma = 1$,

$$\sup_{\left|\mathbf{x}-\mathbf{x}_{0}\right|\leq\frac{1}{2}\rho}\left(\mathbf{u}\left(\mathbf{x}\right)-\Gamma\right)^{+}\leq C+\int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|\leq\rho}\left(\mathbf{u}\left(\mathbf{x}\right)-\Gamma\right)^{+}d\mathbf{x}+C\rho.$$
(18)

Now let

$$w(x) = \inf\{u(x), \Gamma\}$$
.

Then

$$u = (u-\Gamma)^+ + w$$

so that by (15)

$$\int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|<\rho} \left(\mathbf{u}\left(\mathbf{x}\right)-\Gamma\right)^{+} d\mathbf{x} + \int_{\left|\mathbf{x}-\mathbf{x}_{0}\right|<\rho} \mathbf{w}\left(\mathbf{x}\right) d\mathbf{x} \neq \mathbf{u}\left(\mathbf{x}_{0}\right)$$
(19)

as $\rho \rightarrow 0+$. But

$$w(x) \ge \inf_{\left|x-x_0\right| \le \rho} u(x)$$

when $|x-x_0| < \rho$, so that by (14) and (15)

$$\lim_{\rho \to 0+} \inf \frac{\int_{|x-x_0| < \rho} w(x) \, dx \ge u(x_0)}{|x-x_0| < \rho} \ .$$

Therefore, by (19)

$$\lim_{\rho \to 0+} \sup \int_{\left|x-x_{0}\right| < \rho} \left(u(x) - \Gamma\right)^{+} dx \le 0$$

and hence by (18)

$$\lim \sup_{x \to x_0} u(x) \le \Gamma . \tag{20}$$

Since Γ was arbitrary and we already know that $\,u\,$ is lower semicontinuous at $\,x_0^{}$. Thus $\,u\,$ is continuous on $\,\Omega\,$.

Now we consider a point x_0 of the contact set H at which ψ is Hölder continuous; i.e., we suppose there exists a δ \in (0,1) and an E , such that

$$\left|\psi(\mathbf{x}) - \psi(\mathbf{x}_0)\right| \le \mathbb{E}\left|\mathbf{x} - \mathbf{x}_0\right|^{\delta} \tag{21}$$

for all $x \in \Omega$. By (13),

$$m_{\frac{1}{2}\rho} - m_{\rho} \ge C! \left[\int_{|x-x_{0}| < \rho} (u(x) - m_{\rho}) dx \right]^{\frac{1}{\gamma}}, \tag{22}$$

so that (putting $\Lambda = (C')^{-\gamma}$),

$$\begin{split} & \int_{\left|\mathbf{x} - \mathbf{x}_{0}\right| < \rho} \mathbf{u}(\mathbf{x}) \, \mathrm{d}\mathbf{x} \leq \mathbf{m}_{\rho} + \Lambda \left(\mathbf{m}_{\frac{1}{2}\rho} - \mathbf{m}_{\rho}\right)^{\gamma} \\ & \leq \mathbf{u}(\mathbf{x}_{0}) + \Lambda \left(\psi(\mathbf{x}_{0}) - \mathbf{m}_{0}\right)^{\gamma} . \end{split}$$

But

$$\mathbf{m}_{\rho} \; \geq \; \inf_{\left| \; \mathbf{x} - \mathbf{x}_{0} \; \right| < \rho} \; \psi \left(\mathbf{x} \right) \; \geq \; \psi \left(\mathbf{x}_{0} \right) \; - \; \mathbf{E} \rho^{\delta}$$

and hence

$$\int_{|\mathbf{x}-\mathbf{x}_0| < \rho} \mathbf{u}(\mathbf{x}) \, d\mathbf{x} \le \mathbf{u}(\mathbf{x}_0) + \Lambda \mathbf{E}^{\gamma} \rho^{\delta \gamma} . \tag{23}$$

Put

$$\Gamma_{\rho} = \sup_{|\mathbf{x} - \mathbf{x}_{0}| < \rho} \psi(\mathbf{x})$$

and

$$w_{\rho}(x) = \inf\{u(x), \Gamma_{\rho}\}$$
.

Then

$$u = w_O + (u-\Gamma_O)^{+}$$

so that by (23)

$$\int_{\left|\mathbf{x}-\mathbf{x}_{0}\right| < \rho} \mathbf{w}_{\rho}(\mathbf{x}) \, \mathrm{d}\mathbf{x} + \int_{\left|\mathbf{x}-\mathbf{x}_{0}\right| < \rho} \left(\mathbf{u}(\mathbf{x}) - \Gamma_{\rho}\right)^{+} \! \mathrm{d}\mathbf{x} \leq \mathbf{u}(\mathbf{x}_{0}) + \Lambda \mathbf{E}^{\gamma} \rho^{\delta \gamma} \quad . \tag{24}$$

But

$$\int_{\left| \mathbf{x} - \mathbf{x}_0 \right| < \rho} \mathbf{w}_{\rho} \left(\mathbf{x} \right) \mathrm{d} \mathbf{x} \, \geq \, \int_{\left| \mathbf{x} - \mathbf{x}_0 \right| < \rho} \psi \left(\mathbf{x} \right) \mathrm{d} \mathbf{x} \, \geq \, \psi \left(\mathbf{x}_0 \right) \, - \, \mathrm{E} \rho^{\delta}$$

and therefore by (24)

$$+ \int_{\left\|\mathbf{x} - \mathbf{x}_{\Omega}\right\| < \rho} \left(\mathbf{u}\left(\mathbf{x}\right) - \Gamma_{\rho}\right)^{+} \! \mathrm{d}\mathbf{x} \, \leq \, \Lambda \mathbf{E}^{\gamma} \rho^{\delta \gamma} \, + \, \mathbf{E} \rho^{\delta} \, .$$

Hence, by Lemma 2.1 (ii),

$$\sup_{\left\|x-x_{0}\right\|\leq\frac{1}{2}\rho}\left(u\left(x\right)-\Gamma_{\rho}\right)\leq C\Lambda E^{\gamma}\rho^{\delta\gamma}+CE\rho^{\delta}+C\rho\ .$$

Therefore

$$\sup_{\left|\mathbf{x}-\mathbf{x}_{0}\right|<\frac{1}{2}\rho}\left(\mathbf{u}\left(\mathbf{x}\right)-\mathbf{u}\left(\mathbf{x}_{0}\right)\right)\leq\mathsf{C}\mathsf{\Lambda}\mathsf{E}^{\gamma}\mathsf{\rho}^{\delta\gamma}+\mathsf{C}\mathsf{E}\mathsf{\rho}^{\delta}+\mathsf{C}\mathsf{p}+\mathsf{E}\mathsf{p}^{\delta}\;.\tag{25}$$

Since

$$\inf_{\left|\mathbf{x}-\mathbf{x}_{0}\right|<\frac{1}{2}\rho}\left(\mathbf{u}\left(\mathbf{x}\right)-\mathbf{u}\left(\mathbf{x}_{0}\right)\right)\geq\inf_{\left|\mathbf{x}-\mathbf{x}_{0}\right|<\frac{1}{2}\rho}\left(\psi\left(\mathbf{x}\right)-\psi\left(\mathbf{x}_{0}\right)\right)$$

$$\geq-\operatorname{E}_{0}^{\delta}$$

it follows from (25) that $\, u \,$ is Hölder continuous at $\, x_{0} \,$.

It is now possible to prove the following theorem:

2.3 THEOREM Suppose $\delta \in (0,1)$ is such that ψ is Hölder continuous with exponent δ on every compact subset of Ω . Then there exists a $\delta' \in (0,1)$ such that u is Hölder continuous with exponent δ' on every compact subset of Ω .

REFERENCES

- [1] M. Biroli, Regularity results for some elliptic variational inequalities with bounded measurable coefficients and applications. Nonlinear analysis (Berlin, 1979) 29-40, Abh. Akad. Wiss. DDR, Abt. Math.

 Naturwiss. Tech., 1981, 2, Akademie-Verlage, Berlin 1981.
- [2] H. Beirão da Veiga, Sur la régularité des solutions de l'équation $\operatorname{div}_{\mathbb{A}}(\mathbf{x},\mathbf{u},\nabla\mathbf{u}) = B(\mathbf{x},\mathbf{u},\nabla\mathbf{u}) \quad avec \ des \ conditions \ aux \ limites \ unilatérales \ et$ $m \hat{e} l \acute{e} e s$. Ann. Mat. 93, 173-230 (1972).
- [3] E. Di Benedetto and N.S. Trudinger, Harnack inequalities for quasi-minima of variational integrals. Ann. L'Inst. Henri Poincaré, Nonlinear Analysis, 1, No.4, 295-308 (1984).
- [4] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications. Academic Press, 1980.
- [5] N.S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations. Comm. Pure Appl. Math. 20, 721-747, (1967).