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Abstract We prove that a weakly Dirac-harmonic map from a Riemann spin surface to a
compact hypersurface N ⊂ R

d+1 is smooth.
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1 Introduction

As critical points of an action functional, which is motivated by the supersymmetric
nonlinear sigma model from quantum field theory [3], Dirac-harmonic maps are defined as
solutions of a system of nonlinear elliptic equations which couples harmonic-type equations
and Dirac-type equations in a natural way [2].

It is observed in [2] that the conformal invariance of harmonic maps in two dimensions and
Dirac operators in arbitrary finite dimensions are preserved in the case of two-dimensional
Dirac-harmonic maps. This brings the study of Dirac-harmonic maps into the framework of
two-dimensional conformally invariant variational problems. As a typical problem in calcu-
lus of variation, the regularity issue for weak solutions is of particular importance. For the
regularity of weakly harmonic maps, see for instance [5,6].

Chen et al. [1] studied the regularity problem for Dirac-harmonic map and proved that
any weakly Dirac-harmonic map from a spin surface to the standard sphere S

d is actually
smooth. They [1] observed a Jacobian structure of the Dirac-harmonic map equation for
spherical target manifold and proved the regularity property by applying Wente’s lemma
[11]. However, when the target are general compact Riemannian manifolds, the spinor terms
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in the harmonic-type equations for Dirac-harmonic maps cannot be written as a Jacobian
form and thus Wente’s lemma cannot be applied to obtain the regularity.

Recently, Rivière [10] discovered the existence of a conservation law for weak solutions
of the Euler-Lagrange equations of conformally invariant variational integrals in two dimen-
sions. He succeeded in writing two-dimensional conformally invariant nonlinear elliptic
PDEs (e.g. harmonic map equations, prescribed mean curvature equations, etc.) in diver-
gence form, from which one can recover all the classical regularity results for such weak
solutions and obtain new results.

In this paper, we observe that, when the target is a compact hypersurface N ⊂ R
d+1, the

harmonic-type equations for Dirac-harmonic maps can be written in a special form to which
Rivière’s regularity results can be applied. Our result is the following:

Theorem 1.1 A weakly Dirac-harmonic map (φ, ψ) from a Riemann spin surface M to a
compact hypersurface N ⊂ R

d+1 is smooth.

2 Dirac-harmonic maps

Let (M, h) be an oriented, compact Riemannian surface with a fixed spin structure. Let�M
be the spinor bundle over M with a hermitian metric 〈·, ·〉�M and a compatible spin con-
nection ∇. For X ∈ �(T M), ψ ∈ �(�M), we denote by X · ψ the Clifford multiplication,
which satisfies the following relations:

〈X · ψ, ϕ〉 = −〈ψ, X · ϕ〉, X · Y · ψ + Y · X · ψ = −2h(X, Y )ψ,

for X, Y ∈ �(T M), ψ, ϕ ∈ �(�M). The Dirac operator /∂ is defined by /∂ψ := eα · ∇eαψ

for a local orthonormal frame {e1, e2} of T M and ψ ∈ �(�M). The summation convention
will be used throughout the paper. We refer to [4,7,9] for more spin geometric materials.

Let (N , g) be a compact Riemanian manifold of dimension d ≥ 2, and let its metric in
local coordinates be given by gi j , with Christoffel symbols �i

jk and Riemannian curvature
tensor Rm

li j . Let φ be a smooth map from M to N and φ∗T N the pull-back bundle of T N
under φ. Consider the twisted bundle �M ⊗ φ∗T N with the induced metric 〈·, ·〉�M⊗φ∗T N

and the induced connection ˜∇ := ∇⊗1+1⊗∇φ∗T N . We write the sectionψ of�M ⊗φ∗T N
locally as follows:

ψ(x) = ψ i (x)⊗ ∂yi (φ(x)),

where ψ i is a spinor and {∂yi } is a local basis on N . Then, ˜∇ can be expressed by

˜∇ψ = ∇ψ i (x)⊗ ∂yi (φ(x))+ �i
jkdφ j (x)ψk(x)⊗ ∂yi (φ(x)).

The Dirac operator along the map φ is defined by

/Dψ := eα · ˜∇eαψ

= /∂ψ i (x)⊗ ∂yi (φ(x))+ �i
jk∇eαφ

j (x)eα · ψk(x)⊗ ∂yi (φ(x)).

Set

χ(M, N ) := {(φ, ψ)|φ ∈ C∞(M, N ), ψ ∈ �(�M ⊗ φ∗T N )}.
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We consider the following functional defined on χ(M, N ):

L(φ, ψ) :=
∫

M

(|dφ|2 + 〈ψ, /Dψ〉)

=
∫

M

(

gi j (φ)h
αβ ∂φ

i

∂xα

∂φ j

∂xβ
+ gi j (φ)

〈

ψ i , /Dψ j
〉

�M

)

√

det(hαβ)dx1dx2,

where in the second formula the integral is expressed in terms of local data. The corresponding
Euler-Lagrange equations are


φm + �m
jk(φ)h

αβ∂αφ
j∂βφ

k = 1

2
Rm

li j (φ)〈ψ i ,∇φl · ψ j 〉, (1)

/∂ψ i + �i
jk(φ)∂αφ

j eα · ψk = 0. (2)

Here, ∇φl := ∂αφ
l eα = φl

αeα and “·” denotes the Clifford multiplication. Set

R(φ, ψ)(x) := 1

2
Rm

li j (φ(x))〈ψ i ,∇φl · ψ j 〉∂ym (φ(x)).

Then, (1) and (2) can be written in the following global form

τ(φ) = R(φ, ψ), (3)

/Dψ = 0, (4)

where τ(φ) ∈ �(φ∗T N ) is the tension field of the map φ. Solutions (φ, ψ) of (1), (2) are
called Dirac-harmonic maps from M to N .

Note that (1) and (2) are the intrinsic versions of the Dirac-harmonic map equations. Now
we shall give the extrinsic version of these equations. By the Nash-Moser embedding theo-
rem, we embed N into some R

K . Let A be the second fundamental form of N in R
K and P

the shape operator. It is not difficult to verify the following relation:

〈P(ξ ; X), Y 〉T N = 〈A(X, Y ), ξ 〉
RK (5)

for any X, Y ∈ �(T N ), ξ ∈ �(T ⊥N ), where T ⊥N is the normal bundle to N . Then, by the
Gauss equation (see [8]), we have

Rm
li j 〈ψ i ,∇φl · ψ j 〉 = gmk〈A(∂yk , ∂yi ), A(∂yl , ∂y j )〉〈ψ i ,∇φl · ψ j 〉

− 〈A(∂yk , ∂y j ), A(∂yl , ∂yi )〉)〈ψ i ,∇φl · ψ j 〉
= gmk〈A(∂yk , ∂yi ), A(∂yl , ∂y j )〉〈ψ i ,∇φl · ψ j 〉

+ gmk〈A(∂yk , ∂yi ), A(∂yl , ∂y j )〉〈ψ i ,∇φl · ψ j 〉
= 2Re gmk〈A(∂yk , ∂yi ), A(∂yl , ∂y j )〉〈ψ i ,∇φl · ψ j 〉
= 2Re gmk〈P(A(∂yl , ∂y j ); A(∂yi ), ∂yk )〈ψ i , eα · ψ j 〉φl

α, (6)

where in the last step we used (5). Set

A(dφ(eα), eα · ψ) := φi
αeα · ψ j ⊗ A(∂yi , ∂y j ), (7)

P(A(dφ(eα), eα · ψ);ψ) := P(A(∂yl , ∂y j ); ∂yi )〈ψ i , eα · ψ j 〉φl
α. (8)
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Then, Equs. (1) and (2) become the following form:

−
φ = A(dφ(eα), dφ(eα))+ Re P(A(dφ(eα), eα · ψ);ψ), (9)

/∂ψ = A(dφ(eα), eα · ψ). (10)

Here, φ is a map from M to R
K with

φ(x) ∈ N (11)

for any x ∈ M , and the spinor fieldψ along the mapφ is a K -tuple of spinors (ψ1, ψ2, . . . , ψK )

satisfying

∑

i

νiψ i = 0, for any normal vector ν =
K

∑

i=1

νi Ei at φ(x), (12)

where {Ei , i = 1, 2, . . . , K } is the standard basis of R
K . Set

χ
1,2
1,4/3(M, N ) := {(φ, ψ) ∈ W 1,2 × W 1,4/3 with (11) and (12) a.e.}.

Then the functional L(φ, ψ) is well defined for (φ, ψ) ∈ χ
1,2
1,4/3(M, N ). Critical points

(φ, ψ) of the functional L(φ, ψ) in χ1,2
1,4/3(M, N ) are called weakly Dirac-harmonic maps

from M to N (see [1]).
Note that A, P in (7), (8) are defined in terms of a fixed local coordinates of N . This

requires the continuity of the map φ. For weakly Dirac-harmonic maps, we need an extrinsic
version of the equations, where everything is written down in coordinates of the ambient
space R

K . To this end, we fix the canonical coordinates (y1, y2, . . . , yK ) of R
K . Let νl ,

l = d +1, . . . , K be an orthonomal frame field for the normal bundle T ⊥N to N . We denote
the corresponding section of φ∗(T ⊥N ) with the same symbol νl . Then, for X = Xi∂yi ∈
Ty N , Y = Y j∂y j ∈ Ty N , Z = Zl∂yl ∈ Ty N , we have ∇Y νk = ∑K

i=1 Y i ∂νk
∂yi , and the

following holds (c.f. [6], Chap. 1):

A(y)(X, Y ) = 〈X,∇Y νl〉νl =
〈

X, Y j ∂νl

∂y j

〉

νl = Xi Y j ∂ν
i
l

∂y j
νl , (13)

P(A(X, Y ); Z) = (∇Zνl)
� Xi Y j ∂ν

i
l

∂y j
=

(

∂νl

∂yk

)�
Xi Y j Zk ∂ν

i
l

∂y j
, (14)

where � denotes the projection : R
K → Ty N . In view of (7), (8), we can write A, P as

follows, for X = Xi∂yi ∈ Ty N , ψ = ψ j∂y j ∈ �M ⊗ Ty N , ϕ = ϕk∂yk ∈ �M ⊗ Ty N ,

A(X, ψ) = Xiψ j ⊗ ∂νi
l

∂y j
νl (15)

P(A(X, ψ);ϕ) =
(

∂νl

∂yk

)�
Xi 〈ϕk, ψ j 〉 ∂ν

i
l

∂y j
. (16)

By the symmetry of A(X, Y ) with respect to X and Y , we have

Xiψ j ⊗ ∂νi
l

∂y j
νl = X jψ i ⊗ ∂νi

l

∂y j
νl (17)

(

∂νl

∂yk

)�
Xi 〈ϕk, ψ j 〉 ∂ν

i
l

∂y j
=

(

∂νl

∂yk

)�
X j 〈ϕk, ψ i 〉 ∂ν

i
l

∂y j
. (18)

123



Ann Glob Anal Geom (2009) 35:405–412 409

Consider a weakly Dirac-harmonic map (φ, ψ) ∈ χ
1,2
1,4/3(M, N ). Let D be a domain

in M . Choose local isothermal (i.e. conformal) coordinates z = x1 + i x2 on D and let
e1 = ∂x1 , e2 = ∂x2 . We write

φ = φi∂yi , ψ = ψ j ⊗ ∂y j ,

and denote φ1 := ∇e1φ = φx1 , φ2 := ∇e2φ = φx2 . Then, we have

A(φα, φα) = φi
αφ

j
α

∂νi
l

∂y j
νl (19)

A(φα, eα · ψ) = φi
αeα · ψ j ⊗ ∂νi

l

∂y j
νl (20)

P(A(φα, eα · ψ);ψ) =
(

∂νl

∂yk

)�
φi
α〈ψk, eα · ψ j 〉 ∂ν

i
l

∂y j
. (21)

Note that φα ∈ T N and νl ∈ T ⊥N , hence,

φi
αν

i
l = 0, ∀α, l. (22)

It follows that

Am(φα, φα) = φi
αφ

j
α

∂νi
l

∂y j
νm

l − φi
αφ

j
α

∂νm
l

∂y j
νi

l = φi
α

(

φ j
α

∂νi
l

∂y j
νm

l − φ j
α

∂νm
l

∂y j
νi

l

)

. (23)

On the other hand, we have

Am(φα, eα · ψ) =
(

φi
αeα · ψ j ⊗ ∂νi

l

∂y j
νl

)m

= ∂νi
l

∂y j
νm

l φ
i
αeα · ψ j (24)

and

Re Pm(A(φα, eα · ψ);ψ) = Re φi
α〈ψk, eα · ψ j 〉 ∂ν

i
l

∂y j

(

∂νl

∂yk

)�,m

= φi
α

(

〈ψk, eα · ψ j 〉 + 〈ψk, eα · ψ j 〉
) ∂νi

l

∂y j

(

∂νl

∂yk

)�,m

= φi
α(〈ψk, eα · ψ j 〉 + 〈eα · ψ j , ψk〉) ∂ν

i
l

∂y j

(

∂νl

∂yk

)�,m

= φi
α(〈ψk, eα · ψ j 〉 − 〈ψ j , eα · ψk〉) ∂ν

i
l

∂y j

(

∂νl

∂yk

)�,m

= φi
α〈ψk, eα · ψ j 〉

(

∂νi
l

∂y j

(

∂νl

∂yk

)�,m
− ∂ν

i
l

∂yk

(

∂νl

∂y j

)�,m)

,(25)

where (·)m denotes the m-th component of a vector of R
K . Thus, we can write (9) and (10)

in the following extrinsic form in terms of the orthonomal frame field νl , l = d + 1, . . . , K ,
for T ⊥N .
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−
φm = φi
α

(

φ j
α

∂νi
l

∂y j
νm

l − φ j
α

∂νm
l

∂y j
νi

l

)

+ φi
α〈ψk, eα · ψ j 〉

(

∂νi
l

∂y j

(

∂νl

∂yk

)�,m
− ∂νi

l

∂yk

(

∂νl

∂y j

)�,m)

, (26)

/∂ψm = ∂νi
l

∂y j
νm

l φ
i
αeα · ψ j . (27)

3 Regularity for weakly Dirac-harmonic maps

When the target N is the standard sphere S
d ⊂ R

d+1, Chen et al. [1] observed a Jacobian
structure for Eq. (9), namely,

Proposition 3.1 Let M be a Riemann surface with a fixed spin structure and (φ, ψ) ∈
χ

1,2
1,4/3(M, S

d) a weakly Dirac-harmonic map from M to S
d . Let D be a simply connected

domain of M. Then there exists � = (�i j ) ∈ W 1,2(D,R(d+1)×(d+1)) such that

−
φ = ∂�

∂x

∂φ

∂y
− ∂�

∂y

∂φ

∂x
.

Moreover, they proved in [1] that

Theorem 3.1 Let (φ, ψ) : (D, δαβ) → (N , gi j ) be a weakly Dirac-harmonic map. If φ is
continuous, then (φ, ψ) is smooth.

Combining Proposition 3.1, Theorem 3.1 and Wente’s lemma [11], the following regular-
ity theorem was then proved in [1].

Theorem 3.2 Let M be a Riemann surface with a fixed spin structure. Suppose that (φ, ψ) ∈
χ

1,2
1,4/3(M, S

d) is a weakly Dirac-harmonic map from M to S
d . Thenφ ∈ C0, and hence (φ, ψ)

is smooth.

Before we consider the case of general target manifolds, let us recall Tristan Rivière’s
main result in [10].

Theorem 3.3 Let K ∈ N, and let D be the unit disk of R
2. For every � = (�i

j )1≤i, j≤K

in L2(D, so(K ) ⊗ R
2) (i.e.∀i, j ∈ 1, . . . , K ,�i

j ∈ L2(D,R2) and �i
j = −� j

i ), every

u ∈ W 1,2(D,RK ) solving

−
u = � · ∇u, (28)

is continuous, where the contracted notation in the above equation stands for ∀i = 1, . . . , K ,
−
ui = ∑K

j=1�
i
j · ∇u j in coordinates, where “·” is the scalar product of two vectors in

R
2.

We observe now that when the target N ⊂ R
d+1 is a compact hypersurface, (26) has a

structure similar to (28).

Proposition 3.2 Let M be a Riemann surface with a spin structure and N ⊂ R
d+1 be a

compact hypersurface. Let (φ, ψ) ∈ χ
1,2
1,4/3(M, N ) be a weakly Dirac-harmonic map from
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M to N. Let D be a domain in M with local conformal coordinates z = x1 + i x2. Then there
exists � = (�m

i )1≤i,m≤d+1 in L2(D, so(d + 1)⊗ R
2) such that

−
φ = � · ∇φ. (29)

Proof Let N ⊂ R
d+1 be a compact hypersurface with normal ν, then it follows from differ-

entiating the equation ν · ν = 1 that ∇ν ∈ T N , hence
(

∂ν

∂yk

)�,m
=

(

∂ν

∂yk

)m

=
(

∂νm

∂yk

)

, k,m = 1, 2, . . . , d + 1. (30)

By (25), we get

Re Pm(A(φα, eα · ψ);ψ) = φi
α〈ψk, eα · ψ j 〉

(

∂νi

∂y j

(

∂ν

∂yk

)�,m
− ∂νi

∂yk

(

∂ν

∂y j

)�,m)

= φi
α〈ψk, eα · ψ j 〉

(

∂νi

∂y j

∂νm

∂yk
− ∂νi

∂yk

∂νm

∂y j

)

. (31)

On the other hand, from (23), we have

Am(φα, φα) = φi
α

(

φ j
α

∂νi

∂y j
νm − φ j

α

∂νm

∂y j
νi

)

. (32)

Denote

�m
i := ( λm

i
µm

i

)

, i,m = 1, 2, ..., d + 1, (33)

where

λm
i :=

(

∂νi

∂y j
νm − ∂νm

∂y j
νi

)

φ
j
1 +

(

∂νi

∂y j

∂νm

∂yk
− ∂νi

∂yk

∂νm

∂y j

)

〈ψk, e1 · ψ j 〉, (34)

µm
i :=

(

∂νi

∂y j
νm − ∂νm

∂y j
νi

)

φ
j
2 +

(

∂νi

∂y j

∂νm

∂yk
− ∂νi

∂yk

∂νm

∂y j

)

〈ψk, e2 · ψ j 〉. (35)

Then, we can write (26) in the following form

−
φm = �m
i · ∇φi . (36)

Now it remains to show that � = (�m
i )1≤i,m≤d+1 ∈ L2(D, so(d + 1)⊗ R

2).

On the one hand, since (φ, ψ) ∈ χ1,2
1,4/3(M, N ) is a weakly Dirac-harmonic map, we must

have φ ∈ W 1,2 andψ ∈ W 1,4/3 ⊂ L4 (by the Sobolev embedding theorem). In view of (33),
(34) and (35), we have

�m
i ∈ L2(D,R2), ∀1 ≤ i, m ≤ d + 1.

On the other hand, it is easy to see from (34) and (35) that both λm
i and µm

i are real valued
and are skew-symmetric with respect to the indices i and m. Thus,

� = (�m
i )1≤i,m≤d+1 ∈ L2(D, so(d + 1)⊗ R

2).

This completes the proof. �
Proof of Theorem 1.1 The result follows from combining Proposition 3.2, Theorem 3.1 and
Theorem 3.3. �
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