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Regularity in Free Boundary Problems.

D. KINDERLEHRER (*) - L. NIRENBERG (**) (1)

dedicated to Hans Lewy

1. - Introduction.

This paper is concerned with the local regularity of free boundary hyper-
surfaces, in n dimensional space, for elliptic and parabolic second order partial
differential equations. In a free boundary problem, part of the problem
is to determine the position and regularity of the free boundary. In order

to do this one is usually provided with more boundary conditions at the free
boundary than one has for a known boundary. We begin with some simple
model examples. In all but Ex. 4, S~ represents a domain in n&#x3E;2, with
the origin on its boundary All our discussion is purely local, near the
origin, and our results have the following nature: assuming some degree of
regularity of the free boundary and of the solution near it, specifically con-
ditions (I) and (II) below, we prove further regularity. The conditions

(I, II) are rather strong and not always satisfied in practice as we indicate.
In a neighbourhood of the origin we assume:

(I) The boundary is a C1 hypersurface «free boundary &#x3E;&#x3E;.

(II) u(x) is a real function of class C2 in Q u T.

When we speak of u or Q u T we always mean just near the origin.
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EXAMPLE 1 (arising from problems of variational inequalities): u(x) is

a solution in Q of

having zero Cauchy data on = = 0 where aulav is the

normal derivative of u on T.

EXAMPLE 2 (arising in axially symmetric problems of cavity flow):
u satisfies an elliptic equation like

and

EXAMPLE 3 (arising in cavity flow and water waves) : u satisfies

and

EXAMPLE 4 (arising in a one phase Stefan problem): Here S~ is a domain
in Rn+l with variables x = (xl, ... , xn) and The origin is on aS2 and

near the origin 8Q is a C’ hypersurface T which is not tangent to the hyper-
plane t = 0 at the origin. u(x1, ... , xn, t) satisfies

This is the analogue of Example 1 for the heat operator.
In each of these examples we ask the question: Because of the t2vo boundary

conditions on 1~, in place of the usual single condition, and under suitable
assumptions (including regularity) on the given data, can one prove that r
is regular-say C°° or even real analytic?

We have positive results in each of these examples except Ex. 3 for n &#x3E; 2.
In this case local regularity is not to be expected. Here is a simple counter-
example in the case f (x) _--_ 1. The function u(x) - xl clearly satisfies (1.4)
and Igrad ul =1 everywhere. If we take for T a cylinder with generators
parallel to he xl axis:
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we see that aulav = 0 on .r. Thus all the conditions are satisfied for any a

in C1, and no further smoothness of 1~ can be inferred. (This argument
fails for n = 2, and indeed in that case one has positive results in Ex. 3,
for if v is the harmonic conjugate of u, with v(O) = 0, then v satisfies con-
ditions of Ex. 2-for which positive results are established.) This shows

that the problem of regularity of the free boundary in the situation of Ex. 3
with n &#x3E; 2 is not a purely local one. To prove regularity in such a problem
(if it exists) one will have to use all the global data in the problem.

We now present a bit of background for these examples and our results.
The situation of Ex. 1 arises in variational inequalities of which the following
is a simple model case. Consider functions w(x) defined in a bounded domain G
in Rn with smooth boundary, satisfying w = 0 on aG, and lying above some
obstacle, i.e.

in G.

Here is, for simplicity, a given smooth function with 1p  0 on ~G.
The problem is to find such a w with minimum energy

It is not difficult to show the existence of a minimizing (generalized) solution,
and to see that in the region S~ where w &#x3E; 1p the function w is harmonic.
It is natural to ask: how regular is the solutions The main results on ex-

istence and regularity are due to Lewy and Stampacchia (see [20] and also [26]
and [14] for further material and references). Brézis and Kinderlehrer [3]
(see also Gerhardt [13]) have shown that the solution w is in class i.e., w is
in C1 and its first derivatives are Lipschitz continuous. This result is optimal
as the following one dimensional picture illustrates (here is strictly concave)
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w = 1p in and w is linear outside; at the points x2 , the second

derivatives of w therefore have jumps.
The next question that one may ask is: how regular is the « free boundary »

of Q : In the case n = 2 this was initiated by Lewy and Stam-

pacchia [20] (see also Lewy [19]), and our paper grew out of an attempt
to extend their results to n &#x3E; 2-in which we have only partially succeeded.
For other work in this area we refer to Caffarelli and Rivi6re [7] and
to [14], [15]. Further remarks in the case n = 2 are presented here in § 5.
The question of regularity of 8Q n G is reduced to the situation of Ex. 1
by the following device: Let u = w - y. Since u = 0 in the interior of

and u E 01,1 we expect that

while

This is the situation of Ex. 1 provided 8Q m G is a C’ hypersurface. However
this need not be the case. Schaeffer [23] has constructed examples for
n = 2 in which y is real analytic, with AV 0, for which 8Q may have
singularities. We describe such an example in § 5. Furthermore even if

aS2 n G is a C’ hypersurface it is not clear a priori that the function w (hence u)
has continuous second derivatives in S2. Recently however Caffarelli has
established this and condition (I) for solutions of (1.8) and (1.9) in case 8Q
is a Lipschitz boundary [5] and in even more general situations [6].

Our result is the following

THEOREM 1. In Ex. 1 assume conditions (I) and (II)..Zet 0  a(x) E 01
in a full neighbourhood of the origin. Then

(i) for every positive cx  1.

(ii) If, furthermore, a E C-+,,, i.e. a is of class C- and its derivatives

of order m satisfy a Holder condition with exponent p,  1, then r is a hyper-
surface of class 

(iii ) If a is analytic so is l .

Note that some condition like a =1= 0 is needed. For instance if ac - 0,
then u = 0 in SZ, and .1~ need not be regular.

We shall actually prove a more general result than Theorem 1, in which
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the equation (1.1) is replaced by a general nonlinear elliptic equation (2)

with I’ of class 01 in all the arguments.

THEOREM 1’. Assume conditions ( I ), ( II ), that u satis f ies (1.10) and hacs
zero Cauchy data on F. Assume also (3)

Then (i ) for every positive a  1 in a neighbourhood of the origin.
(ii) Furthermore if F E C-+IA as a f unction of its arguments, m ~ 1, 0  ,u  1

then (iii) if F is analytic so is r.
We turn more briefly to the other examples. Ex. 2 and 3 arise in cavi-

tational flow as in the Riabouchinsky model [22] of flow of a liquid past an
obstacle which generates a vapour cavity (see also [11] and [12]). In [12],
Garabedian, Lewy and Schiffer proved the smoothness of the free boundary
in the case of three dimensional flow which is rotationally symmetric about
an axis. (Ex. 3 occurs in the case of steady progressing water waves; see
for example Stoker [27], §§1.3 and 1.4.)

We shall formulate our results for the general equation (1.10) in

place of (1.2).

THEOREM 2. I n Ex. 2 assume ( I ), ( I I ), that u sactis f ies (1.10), and (1.3)
and that

at the origin .

Assume also that the function g(x, p,, ..., pn) E C2 and satisfies

Then (i) for every positive «  1, (ii) If, furthermore, F E 

9 c- C-+ ’+Iz, m &#x3E; 1, 0p,1 then (iii) If F and g are analytic
so is .r.

Theorem 2 applies to the free boundary value problem of a pendant
drop hanging from the ceiling; where the edge (free boundary) of the drop

(2) To say that the equation is « elliptic at u » means the linearization of the
operator at u is elliptic, i.e..F’u~~x f (x, u, ... , D2u) is a definite symmetric matrix.

(3) This is just to ensure that the second normal derivative to h of u at the
origin is not zero.
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touches the ceiling, the angle between the lower surface of the drop and the
ceiling is given. The equation is close to the minimal surface equation,
see e.g. [8]. Under sufficient regularity (i.e. (I) and (II)) analyticity of the
free boundary follows. This was brought to our attention by R. Finn.

Theorems 1’ and 2 also prove the regularity of the boundary of the
capillary surface in a tube obtained by Simon and Spruck [24].

In addition, Theorem 2 yields a partial extension to higher dimensions
of a theorem of Lewy [18] on the analyticity of the curve of contact of a
minimal surface S with a given surface 27 in R3 to which part of the

boundary of S is restricted. The natural boundary condition is that S

and 27 meet orthogonally. Lewy showed first that is a rectifiable

curve and then that it is analytic in case 27 is analytic. Using Theorem 2
one may see that the conclusion of analyticity (0’) holds in any dimensions,
for a minimal hypersurface S in whose boundary is partially restricted
to a given analytic ( C°° ) hypersurf ace in case we known that

and that S is of class C2 up to and including 1~’.

Finally for Ex. 4 we consider in place of (1.6) the general nonlinear
parabolic equation

with .F’ elliptic for each t and ..., 0) o 0. In place of (II) we assume

(II )’ : u and belong to C1 in i =1, ... , n.
We shall formulate the result only in the 000 case though it is clear that

it may be extended as in the preceding, to cases of finite differentiability.

THEOREM 3. In Ex. 4 assume (I), (II)’, and that u is a solution o f (1.12)
satisfying (1.7). Here for each t, F is elliptic at u (uni f ormly in t). If .F E C°°,
then re 000.

REMARK. It is natural to ask whether h is analytic in case .F is. In

general the answer is no since analyticity is not a local property for para-
bolic equations. To prove analyticity one would have to use the full global
data of the problem. For the case of one space variable such a result has been

recently proved by Friedman [10]. In a subsequent paper we prove such
a result in a particular one-phase Stefan problem in n dimensions. In addi-

tion we prove the following addendum to Theorem 3:

THEOREM 3’ : I f in Theorem 3 we also assume that F is analytic then,
for each T, analytic.
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In a third paper jointly with J. Spruck we treat regularity of free

boundaries separating two different media such as arise in certain problems
of plasma physics.

The idea of the proofs of our results is simple. In each case we perform
a transformation of variable which makes use of the solution to map the

region S~ into a region # in such a manner that the image of T becomes flat.
Then we use the known regularity theory for solutions of nonlinear elliptic
and parabolic equations in a domain with given (in this case flat) boundary,
under suitable (coercive) boundary conditions. The transformations of

variable are of two kinds: either (a) a form of the hodograph transformation,
and the associated Legendre transform of the function, or (b) we introduce
the function u as a new independent variable-this is described in § 3. It is

convenient to perform hodograph and associated Legendre transforms with
respect to some, say xl, ... , xk, of the independent variables. These are de-
scribed in the next section.

2. - Partial hodograph and Legendre transformations.

Recall the familiar hodograph and Legendre transformations: Given

a function u(x) whose Hessian matrix Uaeae = is nonsingular, the

hodograph transformation is a local mapping of a region into a new region
= grad u.

One can then compute the x-derivatives of u in terms of the y-derivatives

of the Legendre transform v of so that any
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(Modified) Partial hodograph and Legendre transforms : Consider a C1 func-

tion in a domain in Rn. For fixed k n we assume uxa. E 01, a :k, and
we wish to make a local 01 change of variable

which we assume to have nonsingular Jacobian, i.e. the matrix,

is nonsingular .

This is called the (modified) hodograph transformation with respect to
Xl, ... , Xk . The associated Legendre transform with respect to ri, ... , xk is
defined as

The function v(y) satisfies

So v E C’ and vya E C’ for a c k. This is readily seen from the following
computation (since ya = - uxa)

The reason for choosing this modified definition of the hodograph and
Legendre transforms is the following. If one now performs this same trans-
formation on v with respect to the variable yk+1, the result obtained is the
same as applying the transformation on the original function with respect
to the variables xl, ..., xk+l 9 as one easily sees.

Assuming sufficient smoothness we now compute formally the derivatives
of u which we denote by subscripts = uij in terms of the

derivatives of v(y), = vij -. In what follows the indices i, j run
from 1 to n; run from 1 to k ; r, s run from 1~ -~-1 to n.
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From (2.1) and (2.3) we see that the Jacobian matrix is

Hence is expressed in terms of the second derivatives of v(y),

From (2.1) and (2.3) we have

and therefore we obtain expressions for the second derivatives:

Thus a second order differential operator F(r, u, Du, is transformed

to a second order operator -P for v. More generally, this is true for an

operator of any order-it is transformed to one of the same order. In par-
ticular if k = n the Laplace operator d u becomes

In the case k = 1 the Laplace operator becomes, as one easily verifies

from (2.7) and (2.5’) below,

LEMMA 2.1. elliptic so is the transformed oper-
for v.

This seems intuitively obvious since one cannot imagine that changing
variables could spoil ellipticity.

PROOF. As we pointed out, our partial hodograph and Legendre trans-
formations can be achieved by a succession of simple ones, each with respect
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to one variable. Therefore it suffices to prove the lemma for such a simple
one, i.e. for k =1. In this case (2.5) takes the form

To prove ellipticity of F and v we must show that if we perturb v by 6w,
the linearized operator

is elliptic. This operator has as leading part

where the buij is the corresponding linearized change in From (2.7)
and (2.5’) we see that, setting FUll = and using summation convention,

Thus ellipticity of L is equivalent to definiteness of the following quadratic
form (recall that r, s go from 2 to n)

where

as one easily verifies. Since Fit is definite the desired result follows and

the lemma is proved.
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REMARK. If u(xl, ..., xn, t) satisfies a parabolic equation

with positive definite for each t, and if we perform the partial hodo-
graph and Legendre transformations with respect to some of the space
variables x we see, as above, that the transform v(y, t) satisfies the equation

and (1’ ) is positive definite for each t. Thus v also satisfies a parabolic
equation.

3. - Another transformation of variable.

Let u(x) be a C" function defined in some open set in Rn, and suppose

in a neighbourhood of a point. Then locally we may make a C’ change of
variables y = (xl, ..., Xn-11, u). The derivatives of u may be expressed in
terms of the derivatives of

so that if u satisfies a partial differential equation the equation is trans-

formed into one for w.

In case u = 0 on some hypersurface 7" this transformation has the effect
of mapping T to the flat surface yn = 0. This transformation has been

used for this purpose by Friedrichs [11] in a study of jet flow, and we will
use it in proving Theorem 2.

Assuming smoothness, let us compute the derivatives of u in terms of
derivatives of w. The Jacobian matrix is
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Thus

Hence

As before we have the following whose proof we omit.

LMMA 3.1. An elliptic operator .F’(x, u, Du, D2 u) is trans f ormed into an
operator p(y, w, Dw, D2 w) which is also elliptic.

In particular the Laplace operator becomes

4. - Proofs of results.

PROOF OF THEOREM 1’ (4). We may assume that the positive xl axis is
the exterior normal to T at the origin. Since grad u = 0 on 1~ it follows
that all the second derivatives of u vanish at the origin except u11(o) ~ 0
in virtue of condition (1.11); say &#x3E; 0.

Since C" and uxl E it is easy to see that we may extend uxl
as a C’ function to a full neighbourhood of the origin. In a neighbourhood

(4) Our original proofs of Theorem 1’ and 3 made use of the classical hodograph
and Legendre transforms with respect to all space variables; the proof presented
here uses partial transformations with respect to one variable only. The original
proof is presented in [16].
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of the origin we now carry out the hodograph and Legendre transforma-
tions of § 2 for the function u with respect to the variable xl.

The hypersurface .1~ is mapped into the flat hypersurface yl = 0 and Q is
mapped into y’ &#x3E; 0. In near the origin, the corresponding Legendre
transform

is of class C2 (because of (2.3)) and satisfies the boundary conditions

By Lemma 2.1 v satisfies an elliptic equation -P = 0 in the image region
In case u satisfied (1.1) the equation for v is in fact, as we see

from (2.8’),

We are now in a position to use known regularity theory for nonlinear
elliptic boundary value problems. -P is a C’ function of its arguments.
By Theorem 11.1’ in [I], v E 02+a, for every positive cx  1 up to the bound-
ary yn = 0. Since T is given by the inverse map

we obtain the first assertion (i) of Theorem 1’. Under the conditions for (ii)
of the theorem we may now apply Theorem 11.1 of [1] which assures us that
v E in near the origin. Hence we conclude from (4.5) that
FE Finally if F is analytic, so is F, and we find with the aid of
the results of § 6.7 in [21] that v is analytic in yi &#x3E;0. Hence .T’ is an-

alytic. Q.e.d.

REMARK. The strong assumption (II) enters in a crucial way. It guar-
antees that the function v(y) which satisfies ~( ~ ) = 0 in y’ &#x3E; 0 belongs
to C2 in This is the minimum one needs (at the present state of our

knowledge) in order to deduce further regularity for solutions of nonlinear
elliptic equations. For n = 2 however, stronger results do exist, enabling
one, as in [15] to weaken the hypotheses.

We use a similar argument to prove Theorem 3.
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PROOF OF THEOREM 3. We may suppose that .1~ has the form

with Jza(0 ) = 0, oc  n. As in the preceding case we find that all derivatives
= 0 except &#x3E; 0 say.

As before, extend uxl, to a full neighbourhood of the origin in Rn+l as
a C’ function. In a neighbourhood of the origin we perform the partial
hodograph and Legendre transforms of u with respect to the variable

xl, I i.e. we introduce new variables

The image of Q near the origin is the set y 1 &#x3E; 0 near the origin and there the
associated Legendre transform v = --f- u then satisfies a nonlinear para-
bolic equation. On the flat boundary we have the boundary condition

Furthermore v and v~,, j =1, ... , n, belong to C’ in 
We wish now to apply the analogues of the elliptic regularity results

Theorems 11.1’, 11.1 of [1]. We do not know a specific reference for these
results but they are proved in the same manner as in the elliptic case. In the
elliptic theory, y Theorem 11.1’ and 11.1 are proved by considering difference
quotients in directions parallel to the boundary and applying known estimates
for linear elliptic equations-these in turn are based on estimates for linear
elliptic equations with constant coefficients. For Theorem 11.1’ one uses
the LD estimates up to the boundary for large p, and for Theorem 11.1 one
uses the Schauder estimates up to the boundary. For second order linear

parabolic equations analogous estimates have been established enabling
one to carry through the same proofs. The appropriate L° estimates are
due to Solonnikov, see for instance Theorem 5.7 of [25], while the appro-
priate Schauder estimates for second order equations are due to Friedman

(see Theorem 4 in § 7 of [9] or Theorem 4.11 in [25]). We may therefore
regard Theorem 3 as proved.

PROOF oF THEOREM 2. We may suppose the positive xn axis is the

exterior normal to .1~ at the origin. Because of conditions (I) and (II) we
may extend u to a full neighbourhood of the origin as a function in Cl. We
may suppose &#x3E; 0. In a neighbourhood of the origin make the tran-
sformation
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described in § 3. This transformation maps the part of D near the origin
into the region y,,  0 near the origin. Since U E C2 in SZ U 1~ we see that

the function

is in

By Lemma 3.1 w satisfies an elliptic equation there, while it satisfies the
boundary condition:

Using the hypothesis g1Jn 0 0, it is easy to verify that the conditions of

Theorems 11.1’, 11.1 of [1] and § 6.7 in [21] are satisfied. Hence we find in
the respective cases (i), (ii), (iii) that near the origin in yn c 0, W E C2+" for
every positive a  1, WE and finally w is analytic. Since .1~ is described
by zn = w(xl, ..., Xn-1, 0) the theorem is proved.

5. - Comparison of theorem 1 ( iii) with two dimensional results.

We now consider a two dimensional result of Lewy and Stampacchia [20]
(see also Lewy [19]). Its essential features may be summarized as follows.

THEOREM. Suppose that Q is a simply connected domain in the

Z = Xl -~- iX2 plane whose boundary contains a Jordan arc .1~. Suppose that
a(xl, x2) is a real positive anaclytic f unction in a neighbourhood of r and
u E U r) n 02(Q) satis f ies

Then 1~’ admits an analytic parametrization as the boundary values on (-1,1 )
of a conformal mapping

which may be extended across Im t = 0 as a holomorphic function.
The case where a is not analytic is treated in [15].
This statement is stronger than Theorem 1 (iii) not only because it is not
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assumed that belongs to C2(Q V but also because it permits cusp

singularities of T which are parametrizable as the boundary values of a
conformal mapping. These cusps may in fact occur. Schaeffer [23] has
recently given examples of this phenomenon (and has also considered the

case of an infinitely differentiable a (x1, x2 ) ) . Here we exhibit a simple ex-
ample which characterizes this behaviour where a(xl, x,) is analytic.

Let t = tl + it2, Z = Xl + ix~ be complex variables and consider the

mapping from

onto a domain

given by

This maps (-1, 1 ) onto the curve

We shall find, for some 8&#x3E; 0, a function

such that

and

More precisely, y we shall show that (5.1) may be satisfied if and only if
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In the language of variational inequalities, a function u satisfying (5.1)
is a solution of the problem: determine u E g so that

where

with the property that

Observe that if u is a solution of (5.1) then, in S~, is

harmonic, so wa is holomorphic; and w,, = - ~ on T. These conditions de-

termine the function u.

Since the curve .1~ has an analytic parametrization as the boundary values
of a conformal mapping, we know there exists a function f (z) holomorphic
in D such that

In fact

has this property. To describe the behavior of f we find z as a function
of t. It is easy to see that

The function is then found by integration.

for 8 sufficiently small. Clearly and, since
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Introducing polar coordinates

one easily determines the first term in w,

From (5.3) one sees that

Therefore the condition p = 4k + 1 is necessary.

To see that it is sufficient, we observe, since ,u/2 -~--1 &#x3E; 2 , 1

So on each vertical line xl = a, u(a, x2) is a convex Cl,l function.

For a  0 it follows from the symmetry of u 0 ) = 0; hence u(a, x2)
attains its minimum at (a, 0)-which is positive as we have already seen.
If a &#x3E; 0 0 ) = 0 since = 0 in a neighbourhood of (a, 0). Hence

min u = 0. It follows that
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