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Regularity issues in the problem of fluid structure

interaction

David Gérard-Varet, Matthieu Hillairet

Abstract

We investigate the evolution of rigid bodies in a viscous incompressible fluid. The flow is
governed by the 2D Navier-Stokes equations, set in a bounded domain with Dirichlet boundary
conditions. The boundaries of the solids and the domain have Hölder regularity C1,α, 0 < α ≤ 1.
First, we show the existence and uniqueness of strong solutions up to collision. A key ingredient
is a BMO bound on the velocity gradient, which substitutes to the standard H2 estimate for
smoother domains. Then, we study the asymptotic behaviour of one C1,α body falling over a flat
surface. We show that collision is possible in finite time if and only if α < 1/2.

1. Introduction

To understand the dynamics of solid bodies immersed in a fluid is of primary physical interest,
with regards to a wide range of phenomena such as sedimentation, filtration, or coagulation. For
two-dimensional flows, under the assumption that the N bodies are rigid and homogeneous, and
that the fluid is incompressible and viscous, one considers classically the following model:

i) The velocity u and pressure p satisfy Navier-Stokes equations in the fluid domain F (t):

ρ (∂tu+ u · ∇u)− µ∆u = −∇p+ ρf

div u = 0, x ∈ F (t).
(1.1)

ii) The N solid bodies are described by the closures Si(t) of connected bounded domains Si(t),
1 ≤ i ≤ N . They have rigid velocity fields

ui(t, x) = vi(t) + ωi(t)(x− xi(t))⊥, x ∈ Si(t), 1 ≤ i ≤ N, (1.2)

where vi and ωi are the translation and angular velocities, whereas xi is the position of the
center of mass.

iii) The moving fluid and solid domains occupy a fixed bounded domain Ω of R2, with Dirichlet
boundary condition:

F (t) = Ω \ ∪N
i=1S

i(t), u = 0, x ∈ ∂Ω. (1.3)

iv) The fluid and solid systems are coupled by the continuity of the velocity,

u = ui, x ∈ ∂Si(t), (1.4)
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and the continuity of the stresses:

mi v̇i(t) =
∫

∂Si(t)

(
µ
∂u

∂n
− pn

)
dσ +

∫

Si(t)

ρif,

J i ω̇i(t) =
∫

∂Si

(x− xi)⊥ ·
(
µ
∂u

∂n
− pn

)
dσ +

∫

Si(t)

(x− xi)⊥ · ρif.

(1.5)

The positive constants ρ, µ are the density and viscosity of the fluid. The positive constants mi,
J i, ρi are the total mass, moment of inertia and density of the i-th solid. The source term f models
an additional forcing (like gravity). The vector n at the boundary ∂U of an open set U refers as
usual to the outward unit normal vector.

Although natural, these equations exhibit some unexpected features, in both two and three
dimensions. Hence, consider the case of one rigid body falling in a cavity (N = 1), under the action
of gravity. It can be shown that if the boundaries of the body and the cavity are smooth, then no
collision can occur in finite time. In other words, this system predicts that the kinetic energy of
the body is strongly dissipated by the viscosity, resulting in no collision between the body and
the boundary. This fact has been kwown from physicists for many years [4,6,9], and was recently
proved in one [32] and two dimensions [19,20]

This no-collision result is of course paradoxical. At the level of medium-sized objects, it goes
against Archimede’s law, and is clearly denied by common experiments. At a microscopic level,
it also lacks relevance, as rebounds between particles are often involved. Many physics papers
have been devoted to this paradox, trying to identify the flaw of the previous modelling. We refer
to the articles [7], [2] among many. Among the possible explanations, one of the most popular is
roughness. Indeed, the no-collision result relies on the fact that the boundary of the solid structure
is regular enough (namely C1,1). Small irregularities could then explain the occurence of collisions,
see [28], [26]. Moreover, the effect of surface roughness in the dynamics of particles has been recently
emphasized in experiments [8,23,33].

The aim of this paper is to study mathematically the roughness-induced effect on the collision
process. Therefore, we consider Hölder boundaries. Namely, we assume that

∂Ω ∈ C1,α, ∂Si ∈ C1,α, ∀ i, 0 < α ≤ 1. (1.6)

We will first consider the well-posedness of system (1.1)-(1.5), for such boundaries. We will establish
existence and uniqueness of some strong solutions, up to collision. Our result extends previous
results obtained for C1,1 boundaries. Once this well-posedness is obtained, we will turn to the
question of collision in finite time. We will consider the special case of one C1,α rigid body, falling
vertically over a horizontal flat surface. Losely, we will show the following:

1. For α ≥ 1/2, no collision can occur, and the strong solution exists for all time.
2. For α < 1/2, one can find solutions for which collision occurs.

This sharp criteria illustrates that roughness might be the reason for collision in fluid structure
interaction, and the reason for the apparent paradox of the classical modelling.

Before stating precisely the results, let us mention former mathematical studies. Fluid-solid
interaction has been the subject of many papers, mostly devoted to the existence theory for problem
(1.1)-(1.5). A key ingredient in many existence results is a weak formulation of the equations.
Introducing the global quantities

v(t, x) := u(t, x)1F (t)(x) +
N∑

i=1

ui(t, x)1Si(t)(x), (1.7)

ρ(t, x) := ρF (t, x) +
N∑

i=1

ρi(t, x) := ρ1F (t)(x) +
N∑

i=1

ρi1Si(t)(x), (1.8)
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the conservations of global momentum, global mass, and bodies masses yield respectively: for all
T > 0, for all ϕ ∈ V, for all ψ ∈ D([0, T )×Ω),

∫ T

0

∫

Ω

(
ρv · ∂tϕ+ ρv ⊗ v : D(ϕ)− 2µD(v) : D(ϕ) + ρf · ϕ

)
dxds +

∫

Ω

ρ0v0 · ϕ(0) = 0,

∫ T

0

∫

Ω

(
ρ∂tψ + ρu · ∇ψ

)
+

∫

Ω

ρ0ψ(0) = 0,

∫ T

0

∫

Ω

(
ρi∂tψ + ρiu · ∇ψ

)
+

∫

Ω

ρi
0ψ(0) = 0.

(1.9)

The space of test functions V is

V =
{
ϕ ∈ D([0, T )×Ω), ∇ · ϕ = 0, ρi(t)D(ϕ) = 0, ∀ t, ∀ 1 ≤ i ≤ N

}
.

The divergence, rigidity inside the fluid, and no-slip condition read respectively:

∇ · v = 0, ρiD(v) = 0, 1 ≤ i ≤ N, v|∂Ω = 0. (1.10)

We refer to B. Desjardins and M. Esteban [10] for the derivation of these equations. Similarly to
ρ, ρi and v, the initial data ρ0, ρi

0 and v0 are built upon the initial positions of the bodies Si
0 and

the initial fluid and solid velocities u0, vi
0, ω

i
0. We will assume that there is no-contact initially,

which means
Si

0 ∩ Sj
0 = ∅, Si

0 ⊂ Ω, ∀ 1 ≤ i, j ≤ N, i 6= j. (1.11)
Broadly speaking, previous studies deal with two kinds of solutions: weak and strong.

Definition 1. A weak solution on (0, T ), T > 0, is a family

(Si(t), F (t), v), 1 ≤ i ≤ N, F (t) = Ω \ ∪N
i=1S

i(t)

such that
i) Si(t) is a connected bounded domain, for all 0 < t < T , for all 1 ≤ i ≤ N .
ii) The scalar functions ρ, ρi defined in (1.8) and the vector field v satisfy

(ρ, ρi) ∈ L∞(0, T ×Ω), v ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1
0 (Ω)).

and equations (1.9), (1.10).

By classical results of R. Di Perna and P.-L. Lions [12] on the transport equations (1.9b,c), any
(ρ, ρi, v) satisfying ii) has the following additional regularity:

ρ, ρi ∈ C([0, T ]; L1(Ω)),

and the initial data is satisfied in this stronger sense. Moreover, any ρi satisfying (1.9c) is the
characteristic function of a measurable set:

ρi(t, x) = 1Si(t)(x), for a.e. t, x

see [12, vol1, th 2.1 page 23]. However, it is not clear that Si(t) should be open and connected,
so that this constraint i) is added to the definition of a weak solution. Then, using the rigidity
condition in (1.10), one can deduce that v(t, ·) is a rigid vector field on each Si(t), and by (1.9c),
that Si(t) = RtS

i
0, for a family of affine isometries Rt Lipschitz in t.

The existence of global in time (T = +∞) weak solutions was proved by E. Feireisl [14] and
San Martin and coauthors [27] extending earlier studies “up to collision between solids” [11,21,
22,5,18]. It holds in dimensions 2 and 3, with initial data satisfying (1.11) and

v0 ∈ L2(Ω), div v0 = 0, f ∈ L2((0, T ); H−1(Ω)).

Following the construction by E. Feireisl, no smoothness of the boundaries of the domain and the
solids is necessary for the existence of weak solutions. However, the uniqueness of such solutions
is unknown in general, even considering dimension 2 and pre-collisional times. After contact, it is
known that uniqueness does not hold, as some entropy condition is missing to describe properly
the post-collisional dynamics. This suggests to consider stronger solutions, namely
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Definition 2. A strong solution on (0, T ) is a weak solution with the following additional regu-
larity:

v ∈ L∞ (
0, T ;H1

0 (Ω)
) ∩ L2

(
0, T ; W 1,p(Ω)

)
for all finite p, ∂tv ∈ L2(0, T ; L2(Ω)).

Our first result is the following:

Theorem 1. (Well-posedness up to collision)
Let v0 ∈ H1

0 (Ω), ρi
0D(v0) = 0, ∀ i, f ∈ L2((0, T ); W 1,∞(Ω)), ∀T > 0. Assume (1.11),

and
∂Ω ∈ C1,α, ∂Si

0 ∈ C1,α, ∀ i, 0 < α ≤ 1.

Then, there exists a maximal T∗ ∈ (0,∞] with a unique strong solution on (0, T ) for all T < T∗.
Moreover, this strong solution exists up to the first collision, which means one of the following
alternatives holds true:

i) T∗ = ∞, δ(t) > 0 ∀ t.
ii) T∗ <∞, δ(t) > 0 ∀ t < T∗, lim

t→T∗
δ(t) = 0,

where δ(t) := min{ d(Si(t), Sj(t)), d(Si(t), ∂Ω), 1 ≤ i, j ≤ N, i 6= j}.
Note that by condition (1.11), and the Lipschitz dependance of Rt described above, δ is positive
at least for small times. Our theorem is an extension of results of B. Desjardins and M. Esteban
[10], and T. Takahashi [31], who proved respectively existence and uniqueness of strong solutions
in the case α = 1. See also [17] for well-posedness under further technical assumptions on the
solids. A key argument in these papers is the classical L2 7→ H2 regularity property for the inverse
of the Stokes operator, which holds in C1,1 domains. In particular, one can show that

∫ T

0

∫

F (t)

|∇2v(t, ·)|2 < +∞, 0 < T < T∗. (1.12)

In the case of general C1,α domains, this H2 regularity result is still true away from the
boundaries, and (ρ, v) still satisfies (1.1) in the strong sense, that is for almost every x, t. However
Theorem 1 requires a control up to the boundary . We will show that the following BMO bound:

∫ T

0

‖∇v(t, ·)‖2BMO(F (t)) < +∞, 0 < T < T∗,

substitutes to (1.12), allowing for our well-posedness result.

In a second part, we study if bodies can collide in finite time, that is if T∗ is finite or not. We
consider one C1,α solid moves vertically near a flat horizontal surface under the action of gravity.
More precisely, let us denote S(t) = RtS0 the position of the solid at time t. We make the following
assumptions:

1. The source term is f = −ge2, with g > 0, e2 = (0, 1).
2. The solid moves along the axis x1 = 0, that is Rt is a vertical translation.
3. The only possible collision points are on x1 = 0.
4. Near x1 = 0, ∂Ω is flat and horizontal.
5. Near x1 = 0, the lower and upper parts of ∂S(t) are given by

x2 − x−(t) = |x1|1+α, x2 − x+(t) = −|x1|2, 0 < t < T∗.

6. The solid is heavier than the fluid, i.e., ρ|S(t)
> ρ|F (t)

.

Note that if the initial configuration (Ω, S0, v0) is symmetric with respect to the x1-axis, then
the unique strong solution will be symmetric for all 0 < t < T∗, and the solid will move along the
vertical axis. Hence, there are plenty of configurations satisfying 1-6. A typical one is shown in
figure 1.

Our main result is the following.
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x−

x+

ge2

Fig. 1. Typical situation

Theorem 2. (Link between collision and boundary regularity)
For any strong solution satisfying 1-5, T∗ <∞ if and only if α < 1/2.

In physical terms, the theorem emphasizes the role of roughness in the collision scenario. Our
result extends the results of M. Hillairet [20] and T.I. Hesla [19] in the case α = 1, for which it
was shown that no collision occurs. Theorem 2 relies on the study of the stress

∫
∂S(t)

(∂nu− p n).
When the boundary is regular, this stress diverges strongly as the distance to the boundary δ
goes to zero. This mechanism prevents collision. When the regularity is weakened, the stress is
also weakened, and contact may occur. The proof of the theorem involves the construction of
appropriate test functions. In that respect, assumptions 2-5 are mostly technical, allowing to
handle the computations. As can be seen from our proof, most of our arguments are local, and use
only the weak bounds given by the conservation of energy. Hence, we believe that, as far as “real”
(not grazing) collisions are concerned, the result might persist for more general domains and weak
solutions. However, the source term must remain sufficiently integrable, as shown by an interesting
example of Starovoitov [30]. Losely, Starovoitov exhibits an example of a weak solution, colliding
in finite time, when Ω and the solid are two spheres. But the corresponding source term satisfies
only

f ∈ L2(0, T ; H−1(Ω)), ∀T > 0.

The L2 norm of f(t, ·) diverges as δ → 0, t → T∗. This allows to compensate the divergence of
the stress and to allow collision, even with regular boundaries. As shown by the first part of our
theorem, this phenomenon is ruled out for more realistic forcing (such as gravity).

The rest of the article is organized in three sections. Section 2 gathers regularity properties
for the Stokes operator in C1,α domains. Section 3 is devoted to the proof of theorem 1. Section
4 contains the proof of theorem 2.

2. Regularity properties in C1,α domains

Existence and uniqueness of strong solutions have only been considered when solids have C1,1

boundaries. More precisely, a key argument in the papers of B. Desjardins and M. Esteban or T.
Takahashi is the regularity estimate

‖∇u‖H1(O) + ‖p‖H1(O)/R ≤ C
(‖F‖H1(O) + ‖g‖H1(O)

)
(2.1)

satisfied by the weak solution (u, p) of the Stokes system




−∆u+∇p = div F, x ∈ O,
div u = g, x ∈ O,
u|∂O = 0,

(2.2)
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when O is a bounded domain with C1,1 boundary. Such inequality is no longer valid when ∂O has
weaker regularity. Only the interior estimate

‖∇u‖H1(K) + ‖p‖H1(K)/R ≤ C(K)
(‖F‖H1(O) + ‖g‖H1(O)

)
(2.3)

is satisfied, where K is any relatively compact open subset of O. As regards well-posedness issues,
this interior bound is not sufficient. We will need a control up to the boundary, given by the
following:

Proposition 1. Assume that O has a C1,α boundary, 0 < α < 1. Assume also that

F ∈ L2(O) ∩ BMO(O), g ∈ L2(O) ∩ BMO(O).

Then, the weak solution (u, p) of (2.2) satisfies

‖ (∇u, p) ‖BMO(O) ≤ C
(‖ (F, g) ‖BMO(O) + ‖ (F, g) ‖L2(O)

)
. (2.4)

We remind that BMO(O) is the set of functions f ∈ L1(O) such that

sup
B

1
|B|

∫

B

|f(x)− fB | dx < +∞, fB =
1
|B|

∫

B

f(x)dx,

where the supremum is taken over all the open balls B of O, that is all the intersections of O with
open disks. Note that the application

||f ||BMO(O) := sup
B

1
|B|

∫

B

|f(x)− fB | dx

defines only a semi-norm, as it is invariant by the addition of constants. An easy remark is that
BMO(O) is also characterized by: f ∈ L1(O), and

sup
B

inf
m

(
1
|B|

∫

B

|f(x)−m| dx
)
< +∞,

where the infimum is taken over all real constants, providing an equivalent semi-norm. One can
build an extension operator: BMO(O) 7→ BMO(R2), f 7→ f̃ , satisfying

c ‖f‖BMO(O) ≤ ‖f̃‖BMO(R2) ≤ C
(‖f‖BMO(O) + ‖f‖L1(O)

)
.

Hence, standard results for the whole space apply directly to our setting. For instance, f ∈
BMO(O) belongs to Lp(O) for any finite p, and

sup
B

(
1
|B|

∫

B

|f(x)− fB |p dx
)1/p

< +∞,

this expression defining again a semi-norm which is equivalent to the previous one. We also remind
the Sobolev imbedding in dimension 2:

H1(O) ↪→ BMO(O), ‖f‖BMO(O) ≤ C ‖∇f‖L2(O). (2.5)

which is simply deduced from Poincaré inequality. Finally, we remind the interpolation inequality:
for all θ ∈ (0, 1), for all 1 ≤ p, q < +∞ with (1− θ)q = p

‖f‖Lq(O) ≤ C ‖f‖1−θ
Lp(O)

(‖f‖BMO(O) + ‖f‖L1(O)

)θ
. (2.6)

We refer to [13,24] for exhaustive study of the space BMO.

Proof of the proposition. In the case of the whole space O = R2, the estimate (2.4) follows
from the continuity of the Riesz transform on BMO. In the case of a C1,α bounded domain, it is
connected to Hölder theory for elliptic systems. Such theory has been of course widely considered,
from various perspectives: see [1,3,16,15] for some examples. Although a BMO estimate like (2.4)
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is probably part of the folklore of this domain, we could not find a proper reference for it. For
the sake of completeness, we give here the main steps of (one possible) proof. The last step of the
proof relies on ideas of Giaquinta et Modica, used to establish Hölder estimates for the Stokes
system with Neumann boundary condition [15].

We start with a simple remark, to be used implicitly throughout the sequel: any f ∈ L2(U),
U open set, can be written f = div F , where F ∈ H1(U) satisfies

‖F‖BMO(U) ≤ C‖F‖H1(U) ≤ C ′ ‖f‖L2(U) (2.7)

This will allow to keep the source term in divergence form as we apply transformations to the
Stokes system.

Let (u, p) be the weak solution of (2.2), where p is normalized such that
∫
O p = 0. Standard

energy estimates yield

‖u‖H1(O) + ‖p‖L2(O) ≤ C
(‖F‖L2(O) + ‖g‖L2(O)

)
. (2.8)

Step 1 : Localization. Let Õi b Oi, i = 1 . . . N , two families of open sets covering O. Let ψi a
smooth function with compact support in Oi, such that ψi = 1 on Õi. The functions

ui := ψi u, pi := ψi p

satisfy 



−∆ui +∇pi = div
(
ψiF

) − F ∇ψi + 2(∇u)t∇ψi +∆ψi u + p∇ψi

:= div F i, x ∈ Oi ∩ O,
div u = g + ∇ψi · u := gi, x ∈ Oi ∩ O,

u|∂(Oi∩O) = 0.

(2.9)

By (2.8), the L2 ∩ BMO norms of F i and gi are controlled by the L2 ∩ BMO norms of F and g.
Thus, we can restrict ourselves to a subdomain, that is establish (2.4) with Oi ∩ O instead of O.

Step 2 : Local coordinates. If Oi does not intersect the boundary of O, one can extend all
functions by 0 and return to the case of R2 : the estimate follows from the continuity of the Riesz
transforms over BMO. If Oi intersects the boundary, we can assume with no loss of generality
that it is a local chart: there exists a C1,αdiffeomorphism

χ : Oi 7→ D(0, R), χ
(Oi ∩ ∂O)

= (−R,R)× {0}, χ
(Oi ∩ O)

= D+(0, R),

where D+(0, R) is the upper half disk of radius R centered at the origin. We define new fields v,
q, F ′, g′ by the relations

ui(x) := v(χ(x)), pi(x) := q(χ(x)), F i(x) = F ′(χ(x)), gi(x) = g′(χ(x)).

They satisfy 



−div (A∇v) + div (Bq) = div (BF ′), x ∈ D+(0, R),

B : ∇v = g′, x ∈ D+(0, R),
v|∂D+(0,R) = 0,

where

A =
1

det(∇χ)
(∇χ)t∇χ, B =

1
det(∇χ)

(∇χ)t.

Note that A is uniformly elliptic over D(0, R), and that A, B have C0,α coefficients. As usual,
(div M)i := ∂jMji, and M : N = Mij Nij for any 2x2 matrices M,N .
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Step 3 : Frozen coefficients. We write the previous system as




−div (A(0)∇v) + div (B(0)q) = div (F̃ ), x ∈ D+(0, R),

B(0) : ∇v = g̃, x ∈ D+(0, R),
v|∂D+(0,R) = 0,

(2.10)

where

F̃ := BF ′ + (A(0)−A(x))∇v + (B(0)−B(x))q, g̃ := g′ + (B(0)−B(x)) · ∇v.
Let us assume for a while that F̃ ∈ L2 ∩ BMO, g̃ ∈ L2 ∩ BMO, and that the estimate

‖ (∇v, q) ‖BMO(D+(0,R)) ≤ C
(
‖(F̃ , g̃)‖BMO(D+(0,R)) +

1
R
‖(F̃ , g̃)‖L2(D+(0,R))

)
, (2.11)

holds. A simple scaling argument shows that the constant C can be chosen independently of the
radius R. We now state the following a priori estimate: there exists a universal constant C′, and
ε(R) going to zero with R such that

‖(F̃ , g̃)‖BMO(D+(0,R)) +
1
R
‖(F̃ , g̃)‖L2(D+(0,R)) ≤ ε(R) ‖(∇v, q)‖BMO(D+(0,R))

+ C′
(
‖(F ′, g′)‖BMO(D+(0,R)) +

1
R
‖(F ′, g′)‖L2(D+(0,R)) +

1
R
‖(∇v, q)‖L2(D+(0,R))

)
.

(2.12)

For the sake of brevity, we focus on the BMO bound, as the L2 bound is straightforward. More
precisely, we just show how to bound ‖(A(0)−A(x))∇v‖BMO, because the other terms composing
F̃ and g̃ can be handled along the same lines. As emphasized at the beginning of the section, we
need to control

IB :=
1
|B|

∫

B

∣∣(A(x)−A(0)) ∇v(x) − c
∣∣ dx

for any ball B of D+(0, R) and some constant vector c (possibly depending on B). Let r be the
diameter of B and x0 a point in B. We choose c = (A(x0)−A(0)) (∇v)B . We get

IB ≤ C

r2

(∫

B

|A(x)−A(x0)| (∇v)B dx +
∫

B

|A(x)−A(0)| |∇v(x)− (∇v)B | dx
)

≤ C ′
(
rα−2

∫

B

|∇v(x)|dx + Rα ‖∇v‖BMO(D+(0,R))

)

≤ C ′
(
rα−2+2/q ‖∇v‖Lp(D+(0,R)) + Rα ‖∇v‖BMO(D+(0,R))

)
(2.13)

for any finite conjugate exponents p, q, i.e. p−1 + q−1 = 1. We choose q close enough to 1 so that
α− 2 + 2/q > 0. We stress that v has compact support in {|x| < R, x2 ≥ 0} (see step 1). Defining
an extension Dv of ∇v by

Dv(x1, x2) = (∇v)(x1,−x2), x2 < 0,

we have that Dv ∈ BMO(R2) ∩ L1(R2), and

||Dv||BMO(R2) ≤ C ||∇v||BMO(O)

with no lower order term. Hence, the interpolation inequality (2.6) can be improved into

||∇v||Lq(D+(0,R)) ≤ C ||∇v||1−θ
Lp(D+(0,R)) ||∇v||θBMO(D+(0,R)),

still with no lower order term, and therefore with a constant C which does not depend on R. We
deduce that

IB ≤ C ′′
(
Rα−2+2q‖∇v‖2/p

L2(D+(0,R)) ‖∇v‖
1−2/p
BMO(D+(0,R)) + Rα ‖∇v‖BMO(D+(0,R))

)

≤ C1R
γ ‖∇v‖BMO(D+(0,R)) + C2‖∇v‖L2(D+(0,R))
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for some universal positive constants γ, C1, C2. The estimate (2.12) follows.

Note that estimates (2.11) and (2.12) yield the bound (2.4). Indeed, up to take smaller R, that
is up to refine the covering of open sets Oi, we can assume that ε(R) ≤ 1/(2C). Hence, combining
(2.12)-(2.11), we obtain

‖ (∇v, q) ‖BMO(D+(0,R)) ≤ CR

(
‖(∇v, q)‖L2(D+(0,R))

+ ‖(F ′, g′)‖BMO(D+(0,R)) + ‖(F ′, g′))‖L2(D+(0,R))

)
.

Then, it is well-known that L2, H1 and BMO norms are preserved by C1 diffeomorphisms. This
allows to bound the right-hand side of the previous inequality:

‖(∇v, q)‖L2(D+(0,R)) + ‖(F ′, g′)‖BMO(D+(0,R)) + ‖(F ′, g′))‖L2(D+(0,R))

≤ C
(‖ui‖H1(Oi∩O) + ‖pi‖L2(Oi∩O) + ‖(F i, gi)‖L2(Oi∩O) + ‖(F i, gi)‖BMO(Oi∩O)

)

≤ C ′
(‖(F, g)‖L2(O) + ‖(F, g)‖BMO(O)

)

where the last line involves the basic estimate (2.8). As regards the left-hand side, we obtain the
lower bound

‖pi‖BMO(Oi∩O) ≤ C ‖q‖BMO(D+(0,R))

and along the lines of (2.13)

‖∇ui‖BMO(Oi∩O) = ‖∇χ∇v(χ(·))‖BMO(Oi∩O) ≤ C
(‖∇v‖BMO(D+(0,R)) + ‖∇v‖L2(D+(0,R))

)

This altogether implies (2.4).

We stress that (2.11) and (2.12) are only a priori estimates: ∇u, p, and therefore ∇v, q are only
supposed to be in L2, and not in BMO. Nevertheless, regularizing the coefficients of A and B,
establishing the same estimates for the regularized problem and passing to the limit allows to show
that the weak solutions are indeed in BMO and that the inequality holds. As this regularization
argument is very classical, we leave it to the reader.

Step 4: BMO estimate for the Stokes system in a half-disk. The final step of the proof is to
derive the estimate (2.11) for the system (2.10). By the reverse change of variables:

x 7→ (∇χ(0)t
)−1

x

we can assume that A(0) = B(0) = I2 is the identity matrix. By this linear mapping, the domain
D+(0, R) turns into the intersection of a plane and an ellipse, say E+. As all the vector fields in-
volved are compactly supported in E+, this Stokes system with Dirichlet boundary conditions still
holds in any half-disk containing E+. As this system is rotationally invariant, we can furthermore
assume the half-disk to be D+(0, R′) for some large enough R′. Finally, as the estimate (2.11) is
invariant by the dilations x 7→ R′x, we can consider the case R′ = 1. Eventually, we only have to
establish the inequality

‖(∇u, p)‖BMO(D+(0,1)) ≤ C
(‖(F, g)‖BMO(D+(0,1)) + ‖(F, g)‖L2(D+(0,1))

)

for the system 



−∆u+∇p = div F, x ∈ D+(0, 1),

div u = g, x ∈ D+(0, 1),
u|∂D+(0,1) = 0.

We remind that, if p is chosen such that
∫

D+(0,1)

p = 0, we already have the L2 estimate

‖(∇u, p)‖L2(D+(0,1)) ≤ C ‖(F, g)‖L2(D+(0,1)).
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We shall rely on ideas of Giaquinta and Modica, who prove in article [15] a Hölder estimate
for the Stokes equation with Neumann type boundary conditions. Let 0 < ρ ≤ R ≤ 2, and y in
D+(0, 1). We will denote

B(y, ρ) := D(y, ρ) ∩D+(0, 1), fy,ρ :=
1

|B(y, ρ)|
∫

B(y,ρ)

f, ∀ 0 < ρ ≤ R.

We decompose u = v + w, p = q + r, where (v, q) solves




−∆v +∇q = div F, x ∈ B(y,R),
div v = g − gy,R, x ∈ B(y,R),

v|∂B(y,R) = 0.

and (w, r) solves 



−∆w +∇r = 0, x ∈ B(y,R),
div w = gy,R, x ∈ B(y,R),

w|∂B(y,R) = u|∂B(y,R).

We must first derive an estimate on v and q. We state without proof the well-known inequality
(see [29])

‖q − qy,ρ‖L2(B(y,ρ)) ≤ C‖∇v‖L2(B(y,ρ)), (2.14)

where C does not depend on ρ by a simple scaling argument. Then, a standard energy estimate
yields ∫

B(y,R)

|∇v|2 = −
∫

B(y,R)

(
F − F y,R

) · ∇v +
∫

B(y,R)

(
g − gy,R

) · (q − qy,R)

which combined with (2.14) yields

‖∇v‖L2(B(y,R)) ≤ C
(‖F − F y,R‖L2(B(y,R)) + ‖g − gy,R‖L2(B(y,R)

)
. (2.15)

We now wish to obtain an estimate on w and r. As for q, the pressure r satisfies

‖r − ry,ρ‖L2(B(y,ρ)) ≤ C‖∇w‖L2(B(y,ρ)), (2.16)

As regards w, we want to show the estimate

‖∇w − (∇w)y,ρ‖L2(B(y,ρ)) ≤ C
ρ2

R2
‖∇w − (∇w)y,R‖L2(B(y,R)) (2.17)

where C does not depend on ρ or R. At first, up to replace w by w− x2

(
(∂2w1)y,R

gy,R

)
, which would

still be zero at the flat part of the boundary ∂B(y,R) ∩ {x2 = 0}, and would still satisfy (2.17),
we can assume that

(∂2w1)y,R = gy,R = 0.

If ρ > R/2, inequality (2.17) is trivially satisfied. If ρ < R/2, there are two cases.

If B(y,R) ⊂ {x2 > 0}, the ball B(y,R) does not intersect the boundary of D+(0, 1). We can
use the interior estimate provided by Giaquinta and Modica in [15]: we can apply proposition 1.9,
estimate (1.14) to the derivatives of w, which are still solutions of the Stokes equation, and this
yields exactly (2.17).

If B(y,R) ∩ {x2 = 0} 6= ∅, we write

‖∇w − (∇w)y,ρ‖L2(B(y,ρ)) ≤ C ρ ‖∇2w‖L2(B(y,ρ))

≤ C ρ2 ‖∇2w‖L∞(B(y,ρ)) ≤ Cρ2 ‖∇2w‖L∞(B(y,R/2))

≤ C(R) ρ2‖∇w‖L2(B(y,R))
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Note that the first inequality is simply poincaré’s inequality, whereas the last one stems from
classical interior regularity results for the Stokes operator. Simple scaling considerations give the
bound C(R) ≤ C/R2 for some constant C that does not depend on R. To prove (2.17), it is
therefore enough to show that: for any solution w of the Stokes equation

{
−∆w +∇p = 0, x ∈ B(y,R),

div w = 0, x ∈ B(y,R),

satisfying moreover

(∂2w1)y,R = 0, w = 0 on ∂B(y,R) ∩ {x2 = 0} (2.18)

we have

‖∇w‖L2(B(y,R)) ≤ C ‖∇w − (∇w)y,R‖L2(B(y,R)) if ∂B(y,R) ∩ {x2 = 0} 6= ∅. (2.19)

Again, the constant C in the r.h.s can be chosen independently of R.

If inequality (2.19) were not to be satisfied, one could find solutions wn satisfying (2.18), and
such that

‖∇wn‖L2(B(y,R)) = 1, ‖∇w − (∇wn)y,R‖L2(B(y,R)) −−−−−→
n→+∞

0.

From the first equality, up to a subsequence, wn → w weakly in H1(B(y,R)). This implies the
convergence of the averages (∇wn)y,R → (∇w)y,R. Moreover, by standard ellipticity properties of
the Stokes operator, we have

‖∇2wn‖L2(B) ≤ C(R,B), ∀B b B(y,R)

so that wn → w strongly in H1(B). Hence, we obtain, as n→ +∞,

∇w = (∇w)y,R on B.

From the second condition in (2.18) and the divergence-free condition, we get

(∂1w)y,R = 0, (∂2w2)y,R = 0.

Moreover, by the first condition in (2.18), we also have (∂2w1)y,R = 0. Hence, (∇w)y,R = 0,
and ∇w = 0 in any subset B relatively compact in B(y,R). Thus, ∇w = 0 on B(y,R) which
contradicts the assumption that its L2 norm is 1.

This last argument leads to the desired inequality (2.19) on (2.17). Combining (2.15) and
(2.17), we obtain

‖∇u − (∇u)y,ρ‖L2(B(y,ρ)) ≤ ‖∇w − (∇w)y,ρ‖L2(B(y,ρ)) + ‖∇v − (∇v)y,ρ‖L2(B(y,ρ))

≤ C

(
ρ2

R2
‖∇w − (∇w)y,R‖L2(B(y,R)) + ‖∇v‖L2(B(y,R))

)

≤ C ′
(
ρ2

R2
‖∇u − (∇u)y,R‖L2(B(y,R)) + ‖F − F y,R‖L2(B(y,R)) + ‖g − gy,R‖L2(B(y,R)

)

≤ C ′′
(
ρ2

R2
‖∇u − (∇u)y,R‖L2(B(y,R)) + ‖(F, g)‖BMO(D+(0,1))R

2

)

We use lemma 0.6 of [15] to conclude that

‖∇u − (∇u)y,ρ‖L2(B(y,ρ)) ≤ C ‖(F, g)‖BMO(D+(0,1)) ρ
2,

which provides the BMO control of ∇u. The BMO control of the pressure p then follows from
(2.14), (2.16). This ends the proof.

In the next section, we will use this proposition to show well-posedness of the PDE’s system
(1.1)-(1.5). Before that, we state a regularity result of Sobolev type for the Stokes system in C1,α

domains. It will allow to give a meaning in the trace sense to the stress tensor at the solid boundary
(∂nu− p n)|∂Si .
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Proposition 2. Assume that O has a C1,α boundary, 0 < α < 1. Let s, τ such that s < α and
s ≤ 2/τ . Assume that

F ∈ L2(O) ∩W s,τ (O), g ∈ L2(O) ∩W s,τ (O).

Then, the weak solution (u, p) of (2.2) satisfies

‖ (∇u, p) ‖W s,τ (O) ≤ C
(‖ (F, g) ‖W s,τ (O) + ‖ (F, g) ‖L2(O)

)
. (2.20)

We remind that for all 0 < s < 1, the fractional Sobolev space W s,τ (O) is the set of measurable
functions u ∈ Lτ (Ω) satisfying

‖u‖W s,τ (O) :=
(∫ ∫

O×O

|u(x)− u(y)|τ
|x− y|n+sτ

dxdy

)1/τ

< +∞,

this last expression defining a semi-norm. The assumption s ≤ 2/τ in the proposition ensures the
continuous imbedding

H1(O) ↪→W s,τ (O), ‖f‖W s,τ (O) ≤ C ‖f‖H1(O). (2.21)

Similarly, the constraint s < α is such that C0,α(O) ↪→W s,τ (O).

Sketch of proof of the proposition. The proof of the Sobolev estimate (2.20) mimics the
proof of the BMO estimate (2.4), so that we only quote the few changes to be made.

Steps 1 and 2 (localization and use of local coordinates) remain the same, up to the replacement
of BMO by W s,τ in every argument.

In step 3, the only change is in the derivation of

‖(F̃ , g̃)‖W s,τ (D+(0,R)) +
1
Rα

‖(F̃ , g̃)‖L2(D+(0,R)) ≤ ε(R) ‖(∇v, q)‖W s,τ (D+(0,R))

+ C′
(
‖(F ′, g′)‖W s,τ (D+(0,R)) +

1
Rα

‖(F ′, g′)‖L2(D+(0,R)) +
1
Rα

‖(∇v, q)‖L2(D+(0,R))

)
,

α = s + 1 − 2τ , which substitutes to (2.12). Again, we just show how to bound ‖(A(0) −
A(x))∇v‖W s,τ , as all other terms that compose F̃ and g are treated in the same manner. We
write

∫ ∫

D+(0,R)×D+(0,R)

|(A(0)−A(x))∇v(x)− (A(0)−A(y))∇v(y)|τ
|x− y|n+sτ

dxdy

≤ C
(∫ ∫

D+(0,R)×D+(0,R)

|A(0)−A(x)|τ |∇v(x)−∇v(y)|
τ

|x− y|n+sτ
dxdy

+
∫ ∫

D+(0,R)×D+(0,R)

|∇v(y)|τ |A(x)−A(y)|τ
|x− y|n+sτ

dxdy
)

≤ C

(
‖∇v‖τ

W s,τ (D+(0,R)) sup
x∈D+(0,R)

|A(x)−A(0)|τ + Rτ(α−s) ‖∇v‖τ
Lτ (D+(0,R))

)

≤ ε′(R)
(
‖∇v‖τ

W s,τ (D+(0,R)) + ||∇v||τLτ (D+(0,R))

)
,

which allows to conclude as in the previous proof.

Step 4, that is the W s,τ estimate, 0 < s < 1, for the Stokes equation in a half-disk, follows
from a simple interpolation of similar inequalities for W 0,τ and W 1,τ .
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3. Strong solutions

This section is devoted to the proof of theorem 1. Broadly, we shall prove existence and unique-
ness of strong solutions as long as the distance between solid boundaries δ(t) satisfies δ(t) > δ0,
where δ0 > 0 is arbitrary. The fact that strong solutions can not exist after collision will be dis-
cussed eventually. This altogether will of course imply the result. In what follows, constants will
depend implicitly on δ0.

We treat separately the existence and uniqueness parts. The existence result follows the lines of
[10], whereas the uniqueness result is inspired by [31]. We thus rely substantially on these articles,
and put the stress only on the changes due to our not so regular C1,α boundaries.

Our (refined) existence result reads:

Proposition 3. (Existence of strong solutions)
Let δ0 > 0, v0 ∈ H1

0 (Ω), ρi
0D(v0) = 0, ∀ i, f ∈ L2((0, T ) × Ω), ∀T > 0. Assume (1.11),

and
∂Ω ∈ C1,α, ∂Si

0 ∈ C1,α, ∀ i, 0 < α ≤ 1.

Then there exists a strong solution on (0, T ) for some T > 0. Moreover, one of the following
alternatives holds true:

i) One can take T arbitrarily large and δ(t) > δ0 for all t ≤ T .
ii) One can take T such that δ(t) > δ0 for all t < T and limt→T δ(t) = δ0.

In both cases, the strong solution has the additional regularity
∫ T

0

‖∇v(t)‖2BMO(F (t))dt +
∫ T

0

‖q‖2BMO(F (t))dt < +∞

and ∫ T

0

‖∇v(t)‖2H1(Fε(t))dt +
∫ T

0

‖q‖2H1(Fε(t))/Rdt < +∞,

where q is the corresponding pressure field, and

Fε(t) := {x ∈ F (t) s.t. dist(x, ∂F (t)) > ε}, ε > 0.

Proof of the proposition. Following [10], we establish a priori estimates for a sufficiently
smooth solution (v, q) on (0, T ), s.t δ(t) > δ0 for all t < T .

We first take ϕ = v as a test function, which yields the standard energy inequality

‖v‖L∞(0,T ; L2(Ω)) + ‖v‖L2(0,T ;H1
0 (Ω)) ≤ C

(‖v0‖L2(Ω) + ‖f‖L2((0,T )×Ω)

)
(3.1)

Then, we take ϕ = ∂tv as a test function, which yields
∫ t

0

∫

Ω

|∂tv|2 + µ

∫

Ω

|D(v)(t)|2 ≤ C

(∫

Ω

|D(v0)|2 +
∫ t

0

∫

Ω

|f |2 +
∫ t

0

∫

Ω

|v · ∇v|2
)

(3.2)

Note that the l.h.s in (3.1), resp. (3.2) controls the L∞ ∩ L2 norm of vi, ωi, resp. the L2 norm of
v̇i, ω̇i. We now use Stokes regularity to bound the last term in (3.2).

The Navier-Stokes equation for the fluid part can be written
{
µ∆v −∇q = ρ (∂tv + v · ∇v − f) , div v = 0, x ∈ F (t),

v|∂Si(t) = vi(t) + ωi(t)(x− xi(t))⊥, v|∂Ω∩∂F (t) = 0.
(3.3)

As the solids and the cavity do not touch (δ(t) ≥ δ0), it is standard to build a solenoidal vector
field w(t, ·) ∈ H∞(Ω) such that

w(t, ·)|Si(t) = vi(t) + ωi(t)(x− xi(t))⊥, w(t, ·)|∂Ω = 0,
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with the estimate ‖w(t, ·)‖Hs ≤ Cs

∑
i(|vi(t)|+ |ωi(t)|). Then, the function u = v − w satisfies

{
µ∆u−∇q = ρ (∂tv + v · ∇v − f)− µ∆w, div u = 0, x ∈ F (t),
u|∂F (t) = 0.

As F (t) is a C1,α open domain, we can apply the estimates of the previous section. If q is normalized
so that

∫
F (t)

q(t, ·) = 0, we have, by (2.7) and propositions 1,2

‖(∇u, q)(t)‖L2(F (t)) + ‖(∇u, q)(t)‖H1(Fε(t)) + ‖(∇u, q)(t)‖BMO(F (t))

+ ‖(∇u, q)(t)‖W s,τ (F (t)) ≤ C
(
‖∂tv(t)‖L2(F (t)) + ‖v · ∇v(t)‖L2(F (t))

+ ‖f(t)‖L2(F (t)) +
∑

i

(|vi(t)|+ |ωi(t)|)
)
.

We remind that this bound holds for all s, τ such that s < α, and s ≤ 2/τ . Back to the original
field v, and using the interpolation inequality (2.6), we get: for all finite r

‖(∇v, q)(t)‖2Lr(F (t)) + ‖(∇v, q)(t)‖2H1(Fε(t)) + ‖(∇v, q)(t)‖2BMO(F (t)

+ ‖(∇v, q)(t)‖2W s,τ (F (t)) ≤ C ′
(
‖∂tv(t)‖2L2(F (t)) + ‖v · ∇v(t)‖2L2(F (t))

+ ‖f(t)‖2L2(F (t)) +
∑

i

(|vi(t)|2 + |ωi(t)|2)
)
.

(3.4)

By a time integration of (3.4) from 0 to t, and a linear combination with (3.1) and (3.2), we obtain
∫ t

0

(
‖∂tv(s)‖2L2(Ω) + ‖∇v(s)‖2Lr(Ω) + ‖(∇v, q)(s)‖2H1(Fε(s)) + ‖(∇v, q)(s))‖2BMO(F (s))

+ ‖(∇v, q)(s)‖2W s,τ (F (s))

)
ds + ‖∇v(t)‖L2(Ω)

≤ C(T )
(
‖v0‖2H1(Ω) + ‖f‖2L2((0,T )×Ω) +

∫ t

0

‖v · ∇v(s)‖2L2(Ω) ds

)
(3.5)

where C(T ) is an increasing function of T . To have a closed estimate, it remains to handle the
nonlinear term. We split it into

∫ t

0

∫

Ω

|v · ∇v|2 =
∫ t

0

∫

F (s)

|v · ∇v(s)|2 ds +
∑

i

∫ t

0

∫

Si(s)

|v · ∇v(s)|2 ds

The last term in the decomposition clearly satisfies

∑

i

∫ t

0

∫

Si(s)

|v · ∇v(s)|2 ds ≤ C
∑

i

∫ t

0

|vi(s)|4 + |ωi(s)|4 ds ≤ C ′

where C ′ depends on ‖v0‖L2 and ‖f‖L2(0,T )×Ω . The first term is bounded in the following way:
∫ t

0

‖v · ∇v(s)‖2L2(F (s)) ds ≤
∫ t

0

‖v(s)‖2L4(F (s))‖∇v(s)‖2L4(F (s)) ds

≤ C

∫ t

0

‖v(s)‖L2(F (s))‖v(s)‖H1(F (s))‖∇v(s)‖L2(F (s))

(‖∇v(s)‖BMO(F (s)) + ‖∇v‖L2(F (s))

)
ds

≤ C ‖v‖L∞(0,T ; L2(Ω))

∫ t

0

‖∇v(s)‖2L2(Ω)

(‖∇v(s)‖BMO(F (s)) ds + ‖∇v(s)‖L2(F (s))

)
ds

≤ C ′ + α

∫ t

0

‖∇v(s)‖2BMO(F (s)) ds + Cα

∫ t

0

‖∇v(s)‖4L2(Ω)

(3.6)
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where α is arbitrary and C ′, Cα are increasing functions of ‖v0‖L2(Ω) and ‖f‖L2((0,T )×Ω). Note that
the second line is deduced from the use of Gagliardo-Nirenberg inequality and the interpolation
inequality (2.6). Choosing α small enough, (3.6) and (3.5) imply that

‖∇v(t)‖H1(Ω) ≤ C +
∫ t

0

‖∇v(s)‖2H1(Ω) ‖∇v(s)‖2H1(Ω) ds.

using Gronwall lemma, and the fact that
∫ T

0
‖∇v(s)‖2H1(Ω) is bounded through (3.1), we obtain

‖∇v‖L∞(H1(Ω)) ≤ C

where C is an increasing function of T , ‖v0‖H1(Ω) and ‖f‖L2((0,T )×Ω). using this bound in (3.5),
we finally obtain:

∫ T

0

(
‖∂tv(t)‖2L2(Ω) + ‖∇v(t)‖2Lr(Ω) + ‖(∇v, q)(t)‖2H1(Fε(t)) + ‖(∇v, q)(t)‖2BMO(F (t)

+ ‖(∇v, q)(t)‖2W s,τ (F (t))

)
dt + ‖∇v‖L∞(L2(Ω)) ≤ C

(
T, ‖v0‖H1(Ω), ‖f‖L2(0,T×Ω)

)
.

(3.7)

These a priori estimates are as usual the key element in the construction of strong solutions, as
it provides compactness for a sequence of approximate solutions. In the case of C1,1 boundaries,
the issue of building such approximate solutions and passing to the limit has been adressed in B.
Desjardins and M. Esteban, as well as in many other studies. As it adapts straightforwardly to
our case, we do not give further detail and refer to these papers.

Let us stress that the W s,τ regularity of (∇v, q) allows to define the stress tensor at the bound-
ary (∂nv − q n) |∂F (t). Indeed, taking indices s, τ such that τ s > 1 (together with the requirements
s < α, τ s ≤ 2), one can define the traces of ∇v and q as elements of W s−1/τ,τ (∂F (t)) for almost
all t. Note also that the regularity properties

v ∈ L2(0, T ; W 1,4(Ω)), ∂tv ∈ L2(0, T ;L2(Ω))

of a strong solution v are enough to ensure that the right-hand side in (3.3) belongs to L2((0, T )×
Ω). If δ(t) ≥ δ0 for all t < T , this automatically implies the L2(H2

loc), L
2(BMO) and L2(W s,τ )

bounds on (∇v, q) restricted to the fluid domain. This shows the last statement of the proposition,
and concludes the existence part.

We now turn to the uniqueness of strong solutions. Our result is

Proposition 4. (uniqueness of strong solutions)

Let δ0 > 0, v0 ∈ H1
0 (Ω), ρi

0D(v0) = 0, ∀ i, f ∈ L2(0, T ;W 1,∞(Ω)), ∀T > 0. Assume
(1.11), and

∂Ω ∈ C1,α, ∂Si
0 ∈ C1,α, ∀ i, 0 < α ≤ 1.

There is at most one strong solution on (0, T ) such that δ(t) > δ0 for all t < T .

Proof of the proposition. We follow closely the work of T. Takahashi related to C1,1 bound-
aries. We focus on changes due to our not so regular C1,α domains. As in [31], we just consider the
case N = 1, F = 0, that is one solid S(t) immersed in the cavity Ω, without forcing. To lighten
notations, we also assume that the density ρ = 1 in the solid and the fluid domains. Minor changes
allow to handle the general case.

Step 1: Lagrangian coordinates. The first step in the analysis of uniqueness for this free surface
problem is to get back to a fixed domain, by a change of variables of lagrangian type. Let v0 ∈
H1(Ω) and S(0) the initial velocity field and solid position. We will denote by h(t) the position of
the center of mass of the solid at time t. We can always assume that h(0) = 0. Let (v, q) a strong
solution on (0, T ) such that δ(t) > δ0 for all t < T .



16 David Gérard-Varet, Matthieu Hillairet

We consider the same change of variables as in [31, paragraph 4.1, p1504]: as δ(t) > δ0, a
solenoidal velocity field Λ(x, t) is defined such that

Λ(t, x) = 0, for x in an δ0/4 neighborhood of ∂Ω,

Λ(t, x) = ḣ(t) + ω(t)(x− h(t))⊥, for x in an δ0/4 neighborhood of S(t).

Then, one considers the flow

X(t, ·) : Ω → Ω,
∂

∂t
X(y, t) = Λ(t,X(t, y)), X(0, y) = y.

which maps S(0) to S(t) and F (0) to F (t). More precisely, in a neighborhood of S(0),

X(t, y) = ḣ(t) + Rα(t) y, α(t) =
∫ t

0

ω(s) ds, Rα =
(

cos α − sin α
sin α cos α

)
.

and near ∂Ω, X(t, y) = y. Note that, as (v, q) is a strong solution, h, α ∈ H2(0, T ). The mapping
X inherits the regularity estimate

‖∂i
tX(t, ·)‖Hs(Ω) ≤ Cs (|h(i)(t)|+ |α(i)(t)|), ∀ i = 0, 1, 2, ∀ s ∈ N.

We then introduce the new functions

u(t, y) := (∇Y )t(t,X(t, y)) v(t,X(t, y)), p(t, y) := q(t,X(t, y)).

where Y := X−1 denotes the inverse of X with respect to the space variable, and as usual
(∇Y )ij = ∂xiYj .

Following [31, paragraph 4.2, p1507], equations (1.1)-(1.5) turn into




∂tu+Mu+Nu− µLu+Gp = 0, y ∈ F (0),
div u = 0, y ∈ F (0),

u(y, t) = R−α(t)ḣ(t) + ω(t)y⊥, y ∈ S(0),

mḧ(t) = Rα(t)

∫

∂S(0)

(µ∇u− p)ndy,

Jω̇(t) =
∫

∂S(0)

(µ∇u− p)n · y⊥ dy,

plus the initial condition
u|t=0 = u0(t, y) := v0(t,X(t, y)).

We refer to [31] for the exact expression of the various operators. In short, (∂t +M)u corresponds
to the original time derivative ∂tv, Nu corresponds to v · ∇v, Lu corresponds to ∆v, and Gp
corresponds to ∇p. An important point is that

Nu = u · ∇u, Lu = ∆u, Gp = ∇p near ∂Ω and S(0). (3.8)

Indeed, we have X(t, y) = y near ∂Ω, so that the change of variables is trivial near the boundary
of the cavity. Similarly, ∇X(t, y) = Rα(t) near S(0). As Navier-Stokes equations are rotationally
invariant, we get (3.8).

Step 2: Stokes like formulation. The operators above involve the flow X(t, ·), which depends on
the solution u itself: hence, they are nonlinear. But X(0, y) = y, which means that for small time,
nonlinearities are expected to be small. We shall therefore treat these nonlinear perturbations as
source terms. We introduce

H(t) :=
∫ t

0

R−α(s)ḣ(s) ds
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and write the system as:




∂tu− µ∆u+∇p = f −Mu− u · ∇u, y ∈ F (0),
div u = 0, y ∈ F (0),

u(y, t) = Ḣ(t) + ω(t)y⊥, y ∈ S(0),

mḦ(t) =
∫

∂S(0)

(µ∇u− p)ndy + w(t),

Jω̇(t) =
∫

∂S(0)

(µ∇u− p)n · y⊥ dy.

(3.9)

where
f := − (Nu− u · ∇u) + µ(L−∆)u− (G−∇)p,

and
w(t) = mω(t)Rα(t)Ḣ(t)⊥.

Step 3: Uniqueness. The uniqueness of the strong solution will be established thanks to the
formulation (3.9). Let (v1, q1), (v2, q2) two strong solutions on (0, T ), T > 0, corresponding to the
same initial velocity field v0 ∈ H1(Ω) and same initial configuration S(0), F (0) = Ω \ S(0). We
remind that for the sake of brevity, we consider the force-free case. We assume that the boundaries
∂Ω and ∂S(0) are C1,α, and that

δ1(t) > δ0, δ2(t) > δ0, ∀ t ∈ [0, T ).

We can associate to vi the change of variable Xi, the new functions ui, pi and so on. We shall
prove that u1 = u2 on (0, T )×Ω. The differences

u := u1 − u2, H := H1 −H2, ω := ω1 − ω2

satisfy with obvious notations




∂tu− µ∆u+∇p = f1 − f2 + M2u2 −M1u1 + u2 · ∇u2 − u1 · ∇u1, y ∈ F (0),
div u = 0, y ∈ F (0),

u(y, t) = Ḣ(t) + ω(t)y⊥, y ∈ S(0),

mḢ(t) =
∫

∂S(0)

(µ∇u− p)ndy + w1(t)− w2(t),

Jω̇(t) =
∫

∂S(0)

(µ∇u− p)n · y⊥ dy.

(3.10)

with initial condition u|t=0 = 0. Now, we can perform the exact same estimates as those performed
earlier to show existence of strong solutions. In particular, we get (see estimate (3.5))

∫ T

0

(
‖∂tu(t)‖2L2(Ω) + ‖∇u(t)‖2Lr(Ω) + ‖∇u(t)‖2H1(Fε(0)) + ‖∇u(t)‖2BMO(F (0))

+ ‖p(t)‖2H1(K)

)
dt + ‖∇u‖L∞(0,T ; L2(Ω))

≤ RHS := C(T )
(
‖f1 − f2‖2L2((0,T )×Ω) + ‖u1 · ∇u1 − u2 · ∇u2‖2L2((0,T )×Ω)

+ ‖M1u1 −M2u2‖2L2((0,T )×Ω) + ‖w1 − w2‖L2(0,T )

)

(3.11)

where ε is any constant lower than δ0/4, and C(T ) an increasing function of T . As usual, the
pressure p is normalized so that

∫
F (0)

p = 0. It remains to estimate the right-hand side.

By the remark (3.8), f1 − f2 has a support Fε which is compact in F (0). The L2(H1) bound
on (∇u, p), which was true up to the boundary for C1,1 domains, holds in Fε. Moreover, the
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L2((0, T ) × Ω) estimate on ∂tu and the L∞(0, T ; L2(Ω)) estimate on ∇u also hold. Hence, the
same bounds as those derived in [31, Corollary 6.16, p1523] apply:

‖f1 − f2‖L2(0,T×Ω) ≤ C T 1/10
(
‖(∇u, p)‖L2(0,T ;H1(K))

+ ‖∂tu‖L2((0,T )×Ω) + ‖∇u‖L∞(0,T ;L2(Ω))

)

where C denotes here and in the sequel an increasing function of T and ‖v0‖H1(Ω).

As the L2 bound on ∂tu is still available, we deduce as in [31, corollary 6.16], that

‖w1 − w2‖L2(H2) ≤ C T 1/2 ‖∂tu‖L2((0,T )×Ω).

We remind that Mu = ω(t)u⊥ + ∂tY · ∇u, . Therefore,

‖M1u1 −M2u2‖L2((0,T )×Ω) ≤ ‖M1u‖L2((0,T )×Ω) + ‖Mu2‖L2((0,T )×Ω)

≤ C

(
‖(ω1,H1)‖L2(0,T )‖u‖L2(0,T ;H1) + ‖(ω,H)‖L2(0,T )‖u2‖L2(0,T ;H1)

)

≤ C T 1/2 ‖∇u‖L∞(0,T ;H1(Ω)).

Finally, we must control the quadratic term

u1 · ∇u1 − u2 · ∇u2 = u · ∇u1 − u2 · ∇u.
Like in previous computations, we get

‖u · ∇u1‖2L2((0,T )×F (0))

≤ C‖u‖2L∞(0,T ; L4(Ω))‖∇u1‖L∞(L2(Ω))

∫ T

0

(‖∇u1(t)‖BMO(F (0)) + ‖∇u1(t)‖L2(F (0))

)

≤ C
√
T ‖∇u‖2L∞(0,T ;H1(Ω)),

using the L2(BMO) ∩ L2(H1) bound on ∇u1. Similarly,

‖u2 · ∇u‖2L2((0,T )×F (0))

≤ C‖u2‖2L∞(L4(Ω))‖∇u‖L∞(L2(Ω))

∫ T

0

(‖∇u(t)‖BMO(F (0)) + ‖∇u‖L2(F (0))

)

≤ C
√
T

(
‖u‖2L∞(H1(Ω)) + ‖∇u‖2L2(BMO(F (0)))

)
.

The L2 bound in S(0) is straightforward, and we end up with

‖u1 · ∇u1 − u2 · ∇u2‖L2(0,T×Ω) ≤ C T 1/4
(
‖u‖2L∞(H1(Ω)) + ‖∇u‖L2(BMO(F (0)))

)

Eventually, these inequalities lead to

RHS ≤ C T 1/10
(
‖u‖L∞(H1(Ω)) + ‖∂tu‖L2(L2(Ω))

+ ‖∇u‖L2(BMO(F (0))) + ‖(∇u, p)‖L2(H1(Fε))

)

with C an increasing function of T and ‖v0‖H1(Ω). By reporting this bound in (3.11), we deduce
that there exists a small T0 such that u1 = u2 on [0, T0]. Moreover, T0 depends only on ‖v0‖H1(Ω)

(decreasing as ‖v0‖H1(Ω) increases).

Global uniqueness follows. Indeed, we know that u1 and u2 are in L∞([0, T ],H1(Ω)) for all
times T such that ∀ t ≤ T, δ1(t), δ2(t) ≥ δ0. Hence, up to consider a smaller T0, we can apply
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the above local uniqueness result on [T0, 2T0], then [2T0, 3T0] and so on up to reach time T . This
concludes the uniqueness part.

So far, we have shown existence and uniqueness of strong solutions at least up to the first
collision. Theorem 1 asserts more, namely that no strong solution can exist beyond the first
collision time. This result is essentially due to Starovoitov, see [30], Theorems 3.1 and 3.2b. Indeed,
Starovoitov has shown the following: suppose that two C1,α solids Si1(t) and Si2(t), resp. a C1,α

solid Si(t) and the C1,α cavity Ω, collide for the first time at t = T . Denote for t ≤ T ,

h(t) := dist
(
Si1(t), Si2(t)

)
) resp. h(t) := dist

(
Si(t), Ω

)

and assume that
u ∈ L∞(0, T ; L2(Ω)) ∩ L1(0, T ; W 1,p(Ω)). (3.12)

Then, h is lipschitz continuous on [0, T ] and moreover,
∣∣∣∣
dh

dt
(t)

∣∣∣∣ ≤ C h(t)β ‖u(t)‖W 1,p(Ω), β = 2− 1
1 + α

p+ 1
p

− 1
p
,

for almost all t ≤ T .

In particular, if T is the first collision time, and the strong solution exists beyond it, the
regularity assumption (3.12) is satisfied for arbitrary p. Taking p large enough, one can assume
that β ≥ 1. We note also that, by hypothesis (1.11), h(0) 6= 0. Then, by integration of the previous
differential inequality, we obtain h(T ) 6= 0, which yields a contradiction.

We emphasize that for strong solutions, 3.12 holds a priori only for T < T∗. Thus, the argument
of Starovoitov does not allow to conclude on the occurence of collision. In the next section, we will
exhibit configurations for which collision occurs. For such examples, we have:

∫ T∗

0

‖u‖W 1,p(Ω) = ∞.

4. The collision/no-collision result

This section is devoted to the proof of Theorem 2. We consider the simplified configuration
described at the end of the introduction, assumptions 1-6. In this framework, the position of the
solid is characterized by h(t) := dist ((0, x−(t)), ∂Ω) . Later on, it will be convenient to use a
parametrization by h, i.e. the translated domains

Sh := S(0) + (h− h(0))e2, h ∈ R.
Of course, Sh(t) = S(t). By assumption 5, the boundary of S(t) is C1,1 near its ”upper tip”
(0, x+(t)), so that contact is impossible at this point, cf. [20]. We can even assume that

inf
t∈(0,T∗)

dist ((0, x+(t)), ∂Ω) > 0. (4.1)

Indeed, to study finite time collision, it is enough to study collision on every finite interval of
[0, T∗]. On such finite interval, this assumption is clearly satisfied since h is continuous.

Thus, collision can occur if and only if limt→T∗ h(t) = 0. We will show that it is equivalent to
α < 1/2. The proof is based on the use of a quasistationary velocity field w and quasistationary
pressure field q. By quasistationary, we mean that for all t < T∗,

w(t, x) = wh(t)(x), q(t, x) = qh(t)(x)

for some stationary fields wh(·), ph(·) defined on Ω and parametrized by h > 0.Moreover, they
will satisfy

w ∈ C1([0, T∗); H1(Ω)), ∆w(t, ·) ∈ Lp(F (t)), p small enough, t ∈ (0, T∗), (4.2)
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div w = 0 in Ω, w|S(t) = e2, w|∂Ω = 0. (4.3)

as well as

q ∈ C1([0, T∗), L2(Ω)), ∇q(t, ·) ∈ Lp(F (t)), p small enough, t ∈ (0, T∗). (4.4)

In particular, we can use w as a test function in the variational formulation to get
∫ t

0

∫

Ω

(ρv · ∂tw + ρv ⊗ v : D(w)− 2µD(v) : D(w)− ρge2 · w)

=
∫

Ω

ρ(t)v(t) · w(t)−
∫

Ω

ρ(0)v0 · w(0)

Note that by (4.3)
∫

Ω

ρge2 · w =
∫

S(t)

ρge2 · e2 +
∫

F (t)

ρg∇(x 7→ x2) · w

= ρS g |S(0)| + ρF g

∫

∂F (t)

x2 e2 · n = (ρS − ρF ) g|S(0)|

where ρS := ρ|S(t), ρF := ρ|F (t). We also write

2µ
∫

Ω

D(v)(t) ·D(w)(t) = ḣ(t)
∫

∂F (t)

(
2µ
∂w

∂n
− qn

)
−

∫

F (t)

(∆w −∇q)v

:= ḣ(t)n(h) −
∫

F (t)

(∆w −∇q)v.

Thus, the variational formulation yields

−N(h(t)) + (ρS − ρF ) g|S(0)| t = R(t) (4.5)

where N is the antiderivative of n that vanishes at h(0), and the remainder is

R(t) :=
∫ t

0

∫

Ω

(ρv · ∂tw + ρv ⊗ v : D(w)) +
∫

Ω

ρ(0)v0 · w(0)−
∫

Ω

ρ(t)v(t) · w(t)

−
∫ t

0

∫

F (s)

∆w(s, ·)−∇q(s, ·), ·v(s, ·).

Theorem 2 will be deduced from the following proposition:

Proposition 5. One can find wh : Ω 7→ R2, qh : Ω 7→ R, such that w, q satisfy (4.2), (4.4), (4.3),
and such that

i) For h > 0 small enough

−c ≤ n(h) ≤ C hβ , β =
3α

1 + α
, c, C > 0. (4.6)

ii) For all t < T∗,
|R(t)| ≤ C(‖u0‖L2)

(
1 +

√
t
)
. (4.7)

Before tackling the proof of this proposition, let us show how it implies Theorem 2.

If α ≥ 1/2, then β ≥ 1. We get from (4.5) and point ii) of the proposition:

−N(h(t)) ≤ C (1 +
√
t)

By point i), we also get for h small enough

N(h) ≤ −C| ln(h)|



Regularity issues in the problem of fluid structure interaction 21

In fact, one can take hβ−1 instead of | ln(h)| when β > 1, i.e. α > 1/2. Combining those inequalities,
we deduce

C| lnh(t)| ≤ C(1 +
√
t) < +∞, ∀ t < T∗

which means that h does not go to zero in finite time. Hence, T∗ = +∞ and there is no collision

If α < 1/2, then β < 1, and n ∈ L1. Thus, N is continuous. As h(t) is bounded, we deduce
from (4.5): ∀ t < T∗ ≤ +∞,

−∞ < inf
t∈(0,T∗)

N(h(t)) ≤ (ρF − ρS)|S(0)|t + C(1 +
√
t).

If T∗ = +∞, and ρS > ρF , one can let t → +∞ in the previous inequality. As the r.h.s. goes to
−∞ in this limit, it yields a contradiction. Thus, T∗ < +∞. This ends the proof.

The rest of the paper will be devoted to the proof of Proposition 5.

4.1. Construction of the test function

We mimic the construction presented in article [20] for C1,1 boundaries. We want a function
wh(x) such that

div wh = 0 in Ω, wh|Sh
= e2, wh|∂Ω = 0. (4.8)

We always consider 0 < h < hM := sup0<t<T∗ h(t), as no other value of h is involved in our
problem.

By a change of coordinates, we can assume (0, 0) ∈ ∂Ω, i.e. x−(t) = h(t). By assumption 5,
there exists δ > 0, such that

∀x ∈ ∂Sh ∩D((0, h), 2δ), x2 = γh(x1) := h+ |x1|1+α,

where as usual D(x, r) is the disk of center x and radius r. Moreover, by assumption 3 and (4.1),

δmin := inf
0,h<hM

dist (∂Sh ∩D((0, h), δ)c, ∂Ω) > 0.

To describe wh away from the origin, we introduce a smooth function ϕ = ϕ(x), x ∈ R2 such that

ϕ = 1 in a δmin/2-neighborhood of Sh(0), ϕ = 0 outside a δmin-neighborhood of Sh(0),

We introduce another smooth function χ = χ(x), x ∈ R2, such that

χ = 1 in (−δ, δ)2, χ = 0 outside (−2δ, 2δ)2.

Finally, we set wh = ∇⊥(x1ϕh), with

ϕh = 1 in Sh,

ϕh = (1− χ(x))ϕ(x1, x2 − h+ h(0)) + χ(x)
x2

2

γh(x1)2

(
3− 2x2

γh(x1)

)
in Ω \ Sh.

See figure 4.1 to clarify the main notations. Note that ϕh and therefore wh are regular up to h = 0
outside

Ωh,δ := Ω ∩ {|x1| < δ} ∩ {x2 < γh(x1)}.
Singularities at h = 0 correspond to the second term in the definition of ϕh.

It is straightforward that wh satisfies (4.8). As ϕh involves the boundary function γh, the
streamfunction x1ϕh has regularity C2,α in the fluid domain. Moreover, wh is continuous across
the solid boundary, so that it belongs to C∞((0, hM ); W 1,∞(ω)). In the fluid domain, its most
singular second order derivatives behave like xα−1

1 . We deduce that w(t, x) = wh(t)(x) satisfies
(4.2). We postpone to the appendix the proof of the following estimates:
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Ωh,δ
1

2δ

h

Sh

2x = 1γ
h

x =0

(x )

Fig. 2. Geometry of the possible contact zone

Proposition 6. There exists 0 < c < C such that

‖wh‖L2(Ω) ≤ C,

c ≤ h
3α

2(1+α) ‖∇wh‖L2(Ω) ≤ C,

‖∇wh‖L∞(Ω\Ωh,δ) ≤ C,

(4.9)

and

sup
x1∈(−δ,δ)

|γh(x1)|3/2

(∫ γh(x1)

0

|∇wh(x1, x2)|2dx2

)1/2

≤ C,

∫ δ

−δ

∫ γh(x1)

0

γh(x1)2 |∂hwh(x)|2 dx ≤ C.

(4.10)

Besides these estimates on wh, the control of n(h) and R(t) shall involve quantities of the type
∫

F (t)

(∆wh −∇qh)w̃

where w̃ ∈ H1
0 (Ω) is divergence free and satisfies w|∂Sh

= e2. We prove in the appendix the
following estimate

Proposition 7. There exists a pressure field h 7→ qh ∈ C∞(0, hM ;C1(Ω)) such that for all diver-
gence free w̃ ∈ H1

0 (Ω) satisfying w|∂Sh
= e2,

∣∣∣∣∣
∫

F (t)

(∆wh −∇qh)w̃

∣∣∣∣∣ ≤ C ‖w̃‖H1
0 (Ω).

4.2. Proof of Proposition 5

Thanks to the estimates of the previous section, we are able to control the functions n(h) and
the remainder term R(t).

By integration by parts,

n(h) := 2µ
∫

Ω

D(wh) : D(wh) +
∫

Fh

(∆wh −∇qh)wh.

By estimate (4.9)b, we have

ch−
3α

2(1+α) ≤ ‖∇wh‖L2(Ω) ≤ Ch−
3α

2(1+α) ,
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and Proposition 7 leads to
∣∣∣∣∣
∫

F (t)

(∆wh −∇qh)wh

∣∣∣∣∣ ≤ C ‖∇wh‖L2(Ω) ≤ Cε + ε‖∇wh‖2L2(Ω).

Combining these last two inequalities yields point i) of Proposition 5.

To establish point ii), we need to control each term in the remainder. Still using bound (4.9),
we have ∣∣∣∣∣

∫

Fh(t)

(∆wh(t) −∇qh(t)) v

∣∣∣∣∣ ≤ C‖v(t)‖H1
0 (Ω).

Integration from 0 to t and Cauchy-Schwarz inequality lead to
∫ t

0

∣∣∣∣∣
∫

F (s)

(∆w(s, ·)−∇q(s, ·)) v(s, ·)
∣∣∣∣∣ ≤ C ‖v‖L2(0,t;H1(Ω))

√
t ≤ C(‖u0‖L2(Ω))

√
t. (4.11)

We also get
∣∣∣∣
∫

Ω

ρ(0)v0 · w(0)−
∫

Ω

ρ(t)v(t) · w(t)
∣∣∣∣ ≤ C ‖v‖L∞(0,t;L2(Ω)) sup

h∈(0,hM )

‖wh(t)‖L2(Ω)

≤ C(‖u0‖L2(Ω)) (4.12)

We stress that the quantities ‖u‖L∞(0,t; L2(Ω)) and ‖∇u‖L2(0,T ; L2(Ω)) are uniformly bounded with
respect to t, as gravity is a conservative force (cf [10]).

To deal with the term involving ∂tw, we shall use the following general bound: For any h ∈
(0, hM ) and any (ρ, v) ∈ L∞(Ω)×H1

0 (Ω) we have, for any w̃ ∈ H1
0 (Ω) :

∣∣∣∣
∫

Ω

ρv · w̃
∣∣∣∣ 6 C‖ρ‖L∞(Ω) ‖∇v‖L2(Ω)

(
‖w̃‖L2(Ω\Ωh,δ)

+
(∫ δ

−δ

∫ γh(x1)

0

|γh(x1)|2|w̃(x)|2dx
)1/2)

,

This is a simple consequence of Cauchy-Schwarz and Hardy inequalities, and its proof is therefore
left to the reader. Note that ∂tw = ḣ(t)∂hwh(t). The previous formula yields

∣∣∣∣
∫ t

0

∫

Ω

ρv · ∂tw

∣∣∣∣ ≤ C sup
[0,T∗)

|ḣ|
∫ t

0

‖∇v(s)‖L2(Ω)

(
‖∂hwh(s)‖L2(Ω\Ωh(s),δ)

+
(∫ δ

−δ

∫ γh(s)(x1)

0

|γh(s)(x1)|2|∂hwh(s)|2dx
)1/2)

ds ≤ C(‖u0‖L2(Ω))
√
t, (4.13)

where the last inequality involves (4.10)b. Finally, to deal with the nonlinear term, we use another
general formula, namely: For any h ∈ (0, hM ) and any (ρ, v) ∈ L∞(Ω)×H1

0 (Ω) we have, for any
w̃ ∈ H1

0 (Ω) :
∣∣∣∣
∫

Ω

ρv ⊗ v : D(w̃)
∣∣∣∣ 6C‖ρ‖L∞(Ω) ‖∇v‖2L2(Ω)

(
‖D(w̃)‖L∞(Ω\Ωh,δ)

+ sup
x1∈(−δ,δ)

(
|γh(x1)| 32

(∫ γh(x1)

0

|∇w̃(x)|2dx1

) 1
2
))

.

This formula follows from Cauchy-Schwarz inequality together with a refined Poincaré’s inequality:
we refer to lemma 12 in [20] for all necessary details. We infer from this bound and (4.10) that

∫ t

0

∫

Ω

ρv ⊗ v : D(w) ≤ C(‖u0‖L2(Ω)). (4.14)

Gathering (4.11) to (4.14) gives the bound on R(t).
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Appendix : Proofs of propositions 6 and 7

In this section, we estimate the rate of divergence of various Sobolev norms of wh as h goes to
0. As explained in section 4, wh is regular up to h = 0 in Sh and Ω \ (Sh ∪ Ωh,δ). Hence, there
holds:

‖∇wh‖L∞(Ω\Ωh,δ) 6 C,

and the rate of divergence of wh is the one of its restriction to Ωh,δ i.e. the one of ∇⊥(x1ϕh) where

ϕh(x) =
x2

2

γh(x1)

(
3− 2

x2

γh(x1)

)
, ∀x ∈ Ωh,δ.

Proposition 6 is then a straightforward consequence of:

Lemma 1. Given (α, p, q) ∈ (0,∞)3, the quantity:

∫ δ

−δ

|x1|pdx1

(h+ |x1|1+α)q

behaves like

(i) ch
(p+1)
1+α −q, if p+ 1 < q(1 + α),

(ii) c ln(h), if p+ 1 = q(1 + α),
(iii) c, if p+ 1 > q(1 + α).

when h goes to 0, with c a constant depending only on (α, p, q).

The proof of this lemma as well as the induced bounds on wh are direct adaptation of [20, Lemma
13].

It remains to build the pressure field qh in order to prove proposition 7. For simplicity, we
assume now µ = 1. With the same notations as in section 4, we set:

qh(x) = ∂21(x1ϕh(x)) + 12
∫ x1

0

t

γh(x1)2
dt, ∀x ∈ Ω.

We stress that

qh(x) = ∂21(x1ϕh(x)) −
∫ x1

0

∂222(t ϕh(t, x2))dt, ∀x ∈ Ωh,δ.



26 David Gérard-Varet, Matthieu Hillairet

As for wh, this pressure field is smooth up to h = 0 in the fluid domain outside Ωh,δ. Consequently,
the rate of divergence of ∆wh −∇qh is the one of its restriction to this latter domain. Standard
computations lead to :

∆wh(x)−∇qh(x) =
(−2∂112(x1 ϕh(x))

∂111(x1ϕh(x))

)
∀x ∈ Ωh,δ.

We recall that ∇2wh ∈ Lp(Ωh,δ) for p sufficiently small. As H1(Ωh,δ) ⊂ Lr(Ωh,δ0) for arbitrary
r < ∞, the integral to be estimated in proposition 7 is well-defined. Up to a truncation (which
leaves aside a term that is regular with respect to h), we can assume w̃ = 0 in (Ω \ Sh) \Ωh,δ. A
fortiori: ∫

Ω\Sh

(∆wh −∇qh) · w̃ =
∫

Ωh,δ

(∆wh −∇qh) · w̃.

After an integration by parts, accounting for w̃|∂Sh
= (0, w̃2):

∫

Ωh,δ

(∆wh −∇qh) · w̃ = −
∫

∂Sh

∂11(x1 ϕh)w̃2n1dσ −
∫

Ωh,δ

∂11(x1 ϕh)(2∂2w̃1 − ∂1w̃2).

Thanks to Lemma 1, one can check that ∂11(x1 ϕh) is bounded uniformly in h in L2(Ωh,δ). then
shows ‖∂11ϕh‖L2(Ωh,δ). Moreover, the boundary term reads

∣∣∣∣
∫

∂Sh

∂11(x1 ϕh) w̃2n1dσ
∣∣∣∣ ≤ ‖w̃2‖L∞(∂Ωh,δ)

∫ δ

0

∣∣∣∣
6x1(γ′h(x1))2

(γh(x1))2
γ′h(x1)

1 + (γ′h(x1))2

∣∣∣∣ dx1

where |γ′h(x1)| 6 c|x1|α. So, this boundary term is again uniformly bounded by Lemma 1. This
ends the proof of proposition 7.


