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REGULARITY LEMMAS FOR STABLE GRAPHS

M. MALLIARIS AND S. SHELAH

Abstract. We develop a framework in which Szemerédi’s celebrated Regu-
larity Lemma for graphs interacts with core model-theoretic ideas and tech-

niques. Our work relies on a coincidence of ideas from model theory and graph
theory: arbitrarily large half-graphs coincide with model-theoretic instability,
so in their absence, structure theorems and technology from stability theory
apply. In one direction, we address a problem from the classical Szemerédi the-
ory. It was known that the “irregular pairs” in the statement of Szemerédi’s
Regularity Lemma cannot be eliminated, due to the counterexample of half-
graphs (i.e., the order property, corresponding to model-theoretic instability).
We show that half-graphs are the only essential difficulty, by giving a much
stronger version of Szemerédi’s Regularity Lemma for models of stable the-
ories of graphs (i.e. graphs with the non-k∗-order property), in which there
are no irregular pairs, the bounds are significantly improved, and each com-
ponent satisfies an indivisibility condition. In the other direction, we take a
more model-theoretic approach, and give several new Szemerédi-type parti-
tion theorems for models of stable theories of graphs. The first theorem gives
a partition of any such graph into indiscernible components, meaning here that
each component is either a complete or an empty graph, whose interaction is
strongly uniform. This relies on a finitary version of the classic model-theoretic
fact that stable theories admit large sets of indiscernibles, by showing that in
models of stable theories of graphs one can extract much larger indiscernible
sets than expected by Ramsey’s theorem. The second and third theorems al-
low for a much smaller number of components at the cost of weakening the
“indivisibility” condition on the components. We also discuss some extensions
to graphs without the independence property. All graphs are finite and all

partitions are equitable, i.e. the sizes of the components differ by at most 1.
In the last three theorems, the number of components depends on the size of
the graph; in the first theorem quoted, this number is a function of ε only as
in the usual Szemerédi Regularity Lemma.

1. Introduction

1.1. Half-graphs and the order property. The starting point for this paper was
the question of irregular pairs in Szemerédi’s celebrated Regularity Lemma. The
Regularity Lemma has been a major tool in graph theory and related fields since its
invention in [19] to prove that sets of positive upper density in N contain arbitrarily
long arithmetic progressions. For more on the history and wide applicability of this
lemma, see the excellent survey [8].
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1552 M. MALLIARIS AND S. SHELAH

We first state Szemerédi’s lemma. Recall that if G is a graph with edge rela-
tion R, and A,B ⊆ G are finite subgraphs with disjoint vertex sets, the density

d(A,B) = |R∩(A×B)|
|A||B| , and we say that (A,B) is ε-regular if for all A′ ⊆ A,B′ ⊆ B

with |A′| ≥ ε|A|, |B′| ≥ ε|B|, we have that |d(A,B)− d(A′, B′)| < ε.

Theorem A (Szemerédi’s Regularity Lemma). For every ε,m there exist N =
N(ε,m), m′ = m(ε,m) such that given any finite graph X, of size at least N , there
is � with m ≤ � ≤ m′ and a partition X = X1 ∪ · · · ∪X� satisfying:

(1) ||Xi| − |Xj || ≤ 1 for all i, j ≤ �,
(2) all but at most ε�2 of the pairs (Xi, Xj) are ε-regular.

As explained in §1.8 of [8], “Are there exceptional pairs?”, it was not known
for some time whether the ε�2 irregular pairs allowed in clause (2) were necessary.
Several researchers (Lovasz, Seymour, Trotter, as well as Alon, Duke, Leffman,
Rödl, and Yuster in [1]) then independently observed that the half-graph, i.e. the
bipartite graph with vertex sets {ai : i < n} ∪ {bi : i < n} (for arbitrarily large n)
such that aiRbj iff i < j, shows that exceptional pairs are necessary.

We may therefore ask whether “half-graphs” are the main difficulty. [This ap-
pears to be a new question, but it is a very natural one.]

Question 1.1. Consider the class of graphs which admit a uniform finite bound
on the size of an induced sub-half-graph. Is it possible to give a stronger regularity
lemma for such graphs in which there are no irregular pairs?

This is a particularly suggestive question for a model theorist, who will recognize
the half-graph as an instance of the order property; see Definition 2.3. One result
of this paper, Conclusion 5.19, shows that half-graphs are indeed the only essen-
tial difficulty: for graphs with the non-k∗-order property, it eliminates irregular
pairs and also significantly improves the tower-of-exponential bounds of the usual
Szemerédi lemma, necessary by work of Gowers [4].

Conclusion 5.19. For every k∗ ∈ N and ε ∈ (0, 1
2 ) there are N = N(ε, k∗),m =

m(ε, k∗) such that for every finite graph G with the non-k∗-order property (Definition
2.3) and every A ⊆ G with |A| ≥ N , there is � ≤ m and a partition A = 〈Ai : i < �〉
such that each Ai is ε-excellent, and for every 0 ≤ i < j < �,

• ||Ai| − |Aj || ≤ 1,

• (Ai, Aj) is ε-regular, and moreover if Bi ∈ [Ai]
≥ε|Ai| and Bj ∈ [Aj ]

≥ε|Aj |,
then (

d(Bi, Bj) < ε
)
∨
(
d(Bi, Bj) ≥ 1− ε

)
,

• if ε < 1
2k∗∗ , then m ≤ (3 + ε2

2 )
(
4
ε

)2k∗∗
.

Conclusion 5.19 follows directly from a stronger structural result, Theorem 5.18,
which we now quote and briefly explain. The notion of uniformity is generally more
informative than regularity in our context. Note that the proof of Theorem 5.18
does not use the Szemerédi lemma.

Theorem 5.18. Let k∗ and therefore a bound for k∗∗ (Definition 2.11) be given.
Then for all ε > 0 there exists m = m(ε, k∗) and N = N(ε, k∗) such that for every
finite graph G with the non-k∗-order property and every A ⊆ G with |A| ≥ N , there
is a partition 〈Ai : i < i(∗) ≤ m〉 of A into at most m pieces, where each of the
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REGULARITY LEMMAS FOR STABLE GRAPHS 1553

pieces is ε-excellent (Definition 5.2), all of the pairs are (ε, ε)-uniform (Claim 5.6),

and if ε < 1
2k∗∗ , then m ≤ (3 + ε)

(
8
ε

)k∗∗ .

The proof of Theorem 5.18, contained in §5, has two main features. First, bounds
on the size of certain induced subgraphs (orders and binary trees), familiar from sta-
bility, allow for the partition of the graph into relatively large “indivisible” pieces.
However, the size of these pieces may vary along a fixed rapidly decreasing se-
quence. We then use the absence of the independence property to show that one
can refine the given partition by randomly partitioning each piece to obtain equally
sized components while preserving “indivisibility”. This is an instance of another
classic connection between model theory and graph theory, the link of NIP to the
Vapnik-Chervonenkis theory first noticed by Laskowski [10]. Finally, we verify that
the number of pieces can be bounded by a function of ε, due to the definition of
“indivisibility”, ε-excellence. This settles Question 1.1 and thus characterizes the
class of graphs admitting ε-regular partitions with no irregular pairs.

The bulk of the paper is devoted to a more general model-theoretic analysis of
stable theories of graphs, which we now describe.

1.2. The phenomenon of regularity in stable theories of graphs. Recall
that theories in which no formula has the order property are called stable. Such
theories have been fundamental to model theory since the second author’s work in
[15]; see e.g. the “Unstable Formula Theorem” II.2.2, p. 30. Generally speaking,
one contribution of such model-theoretic analysis is to characterize global structural
properties, such as the number of models, existence of indiscernible sets, number
of types, and so on, in terms of local combinatorial properties, such as the order
property in some formulas. What does the phenomenon of regularity mean for
stable theories of graphs, and what are its essential parameters?

The usual regularity lemma and its associated tools (the Key Lemma on ex-
tracting configurations which appear in the reduced graph) are able to give uniform
approximations to any sufficiently large graph thanks to two degrees of freedom: in
the Szemerédi partition, (1) some pairs of components can fail to be ε-regular, and
(2) the structure within each component can be quite chaotic. Having characterized
the class of graphs admitting a regular partition with no irregular components, we
show more generally throughout the paper that not only (1) but also (2) fails in
a strong sense for this class: our regularity lemmas work from the inside out by
extracting large “indivisible” pieces from the given graph, and then obtaining the
uniform interaction essentially for free.

The order of the results was chosen to illustrate a spectrum of tradeoffs between
the structure of the components of the partition on one hand and the size of the
partition on the other.

The first partition theorem, Theorem 3.8, gives a partition in which structure of
the components is optimized: all of the pieces are either complete graphs or empty
graphs. This uses a Ramsey-type result, Theorem 3.5, of independent interest which
applies the R(x = x,Δ, 2) (stability) rank to show that in finite models of a stable
theory of graphs one can extract much larger indiscernible sets than predicted by
Ramsey’s theorem.

Theorem 3.8. Let k∗, n2 be given with n2>(2k∗)
2. Then there is N=N(n2, k∗, k2)

such that any finite graph G, |G| > N , with the non-k∗-order property, and with Δk∗

from 2.9 below satisfying the hypotheses of 3.5(a)-(b) for k2, admits an equitable
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1554 M. MALLIARIS AND S. SHELAH

partition G = 〈Gi〉 into disjoint pieces Gi which, after possibly omitting one element
from each Gi, satisfies: each Gi is either a complete graph or an empty graph, of
size n2, and for all pairs Gi, Gj ∈ G there exists a truth value t(Gi, Gj) ∈ {0, 1}
such that for all but ≤ 2k∗ a ∈ Gi, for all but ≤ 2k∗ b ∈ Gj, aRb ≡ t(Gi, Gj).

Moreover, N = n1n2 suffices if n1 > (cn2)
(2tr)k∗

for constants c, t, r depending
on k∗ and Δk∗ , see Theorem 3.5(3).

Due to the strength of the indiscernibility requirement, the number of compo-
nents is forced to grow with the size of the graph (this is relaxed only in §5). §4
then builds a more general theory: in this section “indivisibility” of the components
is defined in terms of an arbitrary non-decreasing function f (at times specialized
to f(x) = xε) which specifies the allowed number of exceptions. With no further
assumptions on f the number of components must still grow with |G|. The main
results of §4 are Theorem 4.16 and Theorem 4.23. The first relies on a probabilistic
argument to extract an equitable partition, at the cost of irregular pairs:

Theorem 4.16. Let ε = 1
r ∈ (0, 12 ), k∗ and therefore a bound for k∗∗ be given, and

suppose G is a finite graph with the non-k∗-order property. Let A ⊂ G, |A| = n

with nεk∗∗
> k∗∗. Then there is ζ < εk∗∗ and a partition 〈Ai : i < i(∗)〉 of A such

that:

(1) for all i, either |Ai| =
⌊
nζ

⌋
or |Ai| = 1, with |{i : |Ai| = 1}| ≤ nε,

(2) 2

nεk∗∗ ≥ 1

(i(∗)2 )
|{(i, j) : |Ai| = 1, |Aj | = 1, or {(a, b) ∈ Ai ×Aj : aRb} /∈

{Ai ×Aj , ∅}}|.
Moreover, the total number of pieces is at most nc, where c = c(ε) = 1 − εk∗∗+1 −
2ε2k∗∗+1.

Note, however, the entirely uniform interaction of the regular pairs. After prov-
ing a combinatorial lemma, in Theorem 4.23 we show how to solve this instance of
irregular pairs at the cost of a larger remainder.

Finally, §5 gives the theorem quoted above, obtaining a partition whose size
depends only on ε at the cost of weakening the “indivisibility” condition to allow
for a linear number of exceptions.

Though the results of the paper form a natural sequence, each section is self-
contained and can be read independently. The authors are working on improving
the bounds in Claim 3.2 and Theorem 3.8 and in Discussion 4.11 and on the parallel
to §5 for k∗-dependent graphs (necessarily with exceptional pairs).

2. Preliminaries

Notation 2.1 (Graphs). We consider graphs model-theoretically, that is, as struc-
tures G in a language with equality and a symmetric irreflexive binary relation R,
whose domain consists of a set of vertices, and where the interpretation RG con-
sists of all pairs of vertices (a, b) connected by an edge. We will often write aRb to
indicate that (a, b) ∈ RG, and write G for the domain of G. In particular, |G|, the
cardinality of G, is the cardinality of the set of vertices.

Remark 2.2. In model theory, a formula ϕ(x; y) is said to have the order property
relative to a theory T if there exist a model M |= T and sequence 〈ai, bi : i < ω〉
of tuples from M such that M |= ϕ(ai; bj) iff i < j. A theory T is called stable
if no formula has the order property relative to T . In what follows we will focus
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REGULARITY LEMMAS FOR STABLE GRAPHS 1555

on the order property for the graph edge relation R. That is, we only require that
the formula xRy be stable, not the full theory of G. The exception is §3, which
occasionally asks that the R-rank be defined for certain sets of formulas Δ.

Definition 2.3 (The non-k-order property). A graph G has the non-k-order prop-
erty when there are no ai, bi ∈ G for i < k such that i < j < k =⇒ (aiRGbj) ∧
¬(ajRGbi). If such a configuration does exist, G has the k-order property.

G has the order property if it has the k-order property for all k. Cf. Remark 2.2.

Definition 2.4 (Stable theory of graphs). We say that T is a stable theory of
graphs if T contains the axioms of graph theory and the formula xRy is stable
for T . (For the model-theoretic reader, we emphasize that we are only requiring
stability of the formula xRy; see Remark 2.2 above.) Note that T is a stable theory
of graphs if and only if for some k∗ ∈ N, T implies the non-k∗-order property.

Remark 2.5. By the symmetry of R, it is enough to rule out the order in one
direction (i.e. the non-k-order propery also implies that for no such sequence does
i < j =⇒ ¬(aiRGbj) ∧ (ajRGbi)).

Claim 2.6. Suppose G is a graph with the non-k-order property. Then for any finite

A ⊆ G, |{{a ∈ A : aRGb} : b ∈ G}| ≤ |A|k, more precisely ≤ Σi≤k

(|A|
i

)
.

Proof. See [15], Theorem II.4.10(4), p. 72 and Theorem 1.7(2), p. 657. �
Definition 2.7 (Indiscernibility). Let M be a model, let Γ be a set of formulas in
the language of M and α an ordinal. Recall that a sequence 〈ai : i < α〉 of elements
of M is said to be a Γ-indiscernible sequence if for any n < min(α, ω), any formula
γ = γ(x0, . . . , xn−1) ∈ Γ and any two increasing sequences i0 < · · · < in−1, j0 <
· · · < jn−1 from α, we have that M |= γ(ai0 , . . . , ain−1

) iff M |= γ(aj0 , . . . , ajn−1
).

Notation 2.8. Let ϕ be a formula. Then we identify ϕ0 = ¬ϕ, ϕ1 = ϕ. We
also identify “true” with 1 and “false” with 0, so that in particular the intended
interpretation of ϕX , where X is an expression which evaluates to either true or
false, is simply ϕ or ¬ϕ, as appropriate. Likewise, the intended interpretation of
expressions like “xRa ≡ t”, where t ∈ {0, 1} or is an expression which evaluates to
true or false, is “xRa if and only if t = 1”, or equivalently, iff t is true.

Definition 2.9 (The set Δk). Let Δk be the set of formulas {x0Rx1} ∪ {ϕi
k,m :

m ≤ k, i ∈ {1, 2}} where

ϕi
k,m = ϕi

k,m(x0, . . . , xk−1) = (∃y)

⎛
⎝ ∧

�<m

(x�Ry)if (i=1) ∧
∧

m≤�<k

(x�Ry)if (i=2)

⎞
⎠ .

Observation 2.10. Let H be a finite graph, and let A = 〈ai : i < α〉 be a Δk-
indiscernible sequence of elements of H where α ≥ 2k. Suppose that for some
increasing sequence of indices i0 < · · · < i2k−1 < α and for some element b ∈ H
the following holds:

• for all � such that 0 ≤ � ≤ k − 1, bRHai� and
• for all � such that k ≤ � < 2k, ¬bRHai� .

Then H has the k-order property.

Proof. For each m with 0 ≤ m ≤ k − 1, consider the sequence 〈cj : 0 ≤ j ≤ k − 1〉
given by cj := am+i. Then b witnesses that ϕ1

k,m(c0, . . . , ck−1) is true in H. As any
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1556 M. MALLIARIS AND S. SHELAH

two increasing subsequences of A of length k satisfy the same Δk-formulas, this
easily gives the k-order property.

Note that if we had assumed the inverse, i.e. for all � such that 0 ≤ � ≤ k − 1,
¬bRHai� , and for all � such that k ≤ � < 2k, bRHai� , we again get the k-order
property (the same proof works with ϕ2 replacing ϕ1 in the notation of Definition
2.9). �

Below, we will consider graphs with the non-k∗-order property (and reserve the
symbol k∗ for this bound). We define an associated bound k∗∗ on tree height:

Definition 2.11 (The tree bound k∗∗). Suppose G does not have the k∗-order
property. Let k∗∗ = k∗∗(G) < ω be minimal so that there do not exist sequences
a = 〈aη : η ∈ k∗∗2〉 and b = 〈bρ : ρ ∈ k∗∗>2〉 of elements of G such that if
ρ�〈�〉 � η ∈ k∗∗2, then (aηRbρ) ≡ (� = 1).

Remark 2.12. In general, given a formula ϕ(x; y), we may define k∗∗ = k∗∗(ϕ) as in
Definition 2.11 with ϕ in place of R. Then (i) if ϕ has the non-k∗-order property,
k∗∗ exists and k∗∗ < 2k∗+2 − 2. Conversely (ii) if k∗∗ = k∗∗(ϕ) exists, then ϕ has
the non-(2k∗∗+1)-order property. See Hodges [6], Lemma 6.7.9, p. 313.

It will also be useful to speak about the average interaction of sets.

Definition 2.13 (Truth values t). By a truth value t = t(X,Y ) for X,Y ⊂ G,
we mean an element of {0, 1}, where these are identified with “false” and “true”
respectively. When X = {x}, write t = t(x, Y ). The criteria for assigning this
value will be given below.

Definition 2.14 (Equitable partitions). We will call a partition of A ⊆ G into
disjoint pieces 〈Ai : i < m〉 equitable if for all i < j < m, ||Ai| − |Aj || ≤ 1.

Notation 2.15 (Distinguished symbols). Throughout this article, ε, ζ, ξ are real num-
bers in (0, 1). We use ρ, η for zero-one valued sequences n2, usually in the context
of trees. (Following logical convention, a given natural number n is often identified
with {0, . . . , n− 1}.) The letters x, y, z are variables, and i, j, k, �,m, n denote nat-
ural numbers, with the occasional exception of the standard logical notation �(x),
i.e. the length of the tuple x. T is a first-order theory, unless otherwise specified
the theory of the graph G under consideration in the language (=vocabulary) with
equality and a binary relation symbol R.

The symbols k∗, k∗∗, m∗, m∗∗ are distinguished. When relevant (the conventions
are given at the beginning of each section), k∗ is such that the graph G under
consideration has the non-k∗-order property, Definition 2.3, and k∗∗ is the associated
tree bound, Definition 2.11. (The one exception is §3.2, in which k∗ is such that
the graph under consideration is k∗-dependent.) The relevant sections all compute
bounds based on k∗, so it is useful, but not necessary, to assume k∗ is minimal for
this property. Likewise, various arguments in the paper involve construction of a
rapidly decreasing sequence 〈m� : � < k∗∗〉 of natural numbers. In context, we use
m∗ and m∗∗ to refer to the first and last elements of the relevant sequence, i.e., m0

and mk∗∗−1 respectively.
G is a large graph, usually finite; A,B,X, Y, ... are finite subgraphs of the ambient

G. Alternately, one could let G be infinite, while restricting consideration to its
finite subgraphs.
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3. A partition into indiscernible pieces

Classically, the hypothesis of stability implies that in infinite models, one can
extract large indiscernible sequences (Definition 2.7 above). More precisely, given
λ an infinite cardinal, M a model whose theory is stable in λ and A, I ⊆ M with
|A| ≤ λ < |I|, there is J ⊆ I, |J | > λ such that J is an A-indiscernible sequence
(in fact, an A-indiscernible set); see [15], Theorem 2.8, p. 14.

In this section, we begin by proving a finite analogue of this result, Theorem
3.5, which shows that a finite stable graph will have relatively large indiscernible
subsequences (in fact, subsets) compared to what one could expect from Ramsey’s
theorem. We apply this to give an equitable partition of any stable graph in which
the number of pieces is much larger than the size of those pieces. The gain, however,
is that the pieces in the partition are themselves indiscernible sets, there are no
irregular pairs, and the condition of “regularity” is very strong. Namely, to each
pair of pieces (A,B) we may associate a truth value tA,B such that there are at most
a constant number of exceptional edges (aRb �≡ tA,B). This is not superceded in
later sections. Moreover we can extend some results to unstable dependent theories
T ; see §3.2.

Hypothesis 3.1. Throughout §3 G is a finite graph with edge relation R which has
the non-k∗-order property.

The next claim will be applied to prove Crucial Observation 3.6 below.

Claim 3.2. If m ≥ 4k∗ and 〈ai : i < m〉 is a Δk∗ -indiscernible sequence in G, and
b ∈ G, then either |{i : aiRb}| < 2k∗ or |{i : ¬(aiRb)}| < 2k∗.

Proof. Suppose for a contradiction that both Y = {i : aiRb} and X = {i : ¬(aiRb)}
have at least 2k∗ elements. Let i1 be the k∗th element of X and let i2 be the k∗th
element of Y . Clearly i1 �= i2.

Case 1: i1 < i2. By assumption, we can find a subsequence aj1 < · · · < ajk∗
<

ajk∗+1
< · · · < aj2k∗

≤ am such that {j1 < · · · < jk∗ = i1} ⊆ X and {i2 = jk+1 <
· · · < j2k∗} ⊂ Y . Observation 2.10 gives the k∗-order property, a contradiction.

Case 2: i2 < i1. A similar argument, replacing R by ¬R (since R is symmetric, it
is equivalent). �

Definition 3.3 (The notation is from [7]). Let Γ be a set of formulas, n1 a cardinal
and n2 an ordinal (for our purposes these will both be finite). Then n1 → (n2)T,Γ,1

means: for every sequence 〈ai : i < n1〉 of elements of G, there is a non-constant
sub-sequence 〈aij : j < n2〉 which is a Γ-indiscernible sequence, Definition 2.7.
Replacing 1 by � means that the tuples ai in the sequence have length �. Usually
we suppress the mention of T = Th(G) and assume �(ai) = 1, and therefore simply
write n1 → (n2)Γ.

Claim 3.4. If n1 =⇒ (n2)
k∗
2|Δk∗ | in the usual arrow notation, then

n1 → (n2)Δk∗
.

Proof. Given an increasing sequence of elements of n1 of length k∗, we may color
it according to which subset of the formulas of Δk∗ hold on the sequence, and so
extract a homogeneous subsequence of order type n2. �
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As explained in this section’s introduction, the advantage of the next theorem is
not in showing the existence of indiscernible subsequences, which could be obtained
by Ramsey’s theorem since Δ is finite, but rather in showing that in our context
they are much larger than expected: a priori, in Claim 3.4 the minimal n1 is
essentially �k∗(n2 + 2|Δ|), compared to (2)-(3) in the theorem below. It is possible
that versions of this result exist (for infinitary versions see [15]). The statement and
proof make use of some model-theoretic notions not needed elsewhere in the paper,
i.e. types (consistent sets of formulas in the given free variables with parameters
from a specified set) and R-rank (used in the “by definition” clause in Step 2A of
the proof; see [15], p. 21, p. 31).

Theorem 3.5. Assume that k, k2,Δ are such that:

(a) Δ is a finite set of formulas, each with ≤ k free variables, and closed under
cycling the variables.

(b) For each formula ϕ(x0, . . . , xk−1) ∈Δ and any partition {x0, . . . , x�}, {x�+1,
. . . , xk−1} of the free variables of ϕ into object and parameter variables, the
formula ϕ(x0, . . . , x�;x�+1, . . . , xk−1) has the non-k2-order property.

Then:

(1) There exists a natural number r such that for any A ⊂ G, |A| ≥ 2, we have
that |SΔ(A)| ≤ |A|r

(2) For each A = 〈ai : i < n〉 there exists u ⊆ n such that:

• |u| ≥ fk(n), where f(x) =
∣∣x
t

∣∣ 1
tr+t+1 − k and r, t, k are constants de-

pending only on Δ: r is from (1) of the theorem, t is a stability constant
(the R-rank of Δ), and k is the number of free variables.

• 〈ai : i ∈ u〉 is Δ-indiscernible.
(3) In particular, for Δk∗ from Definition 2.9, we have that n1 → (n2)T,Δk∗ ,1

for any n1 > (cn2)
(2tr)k∗

, for a constant c depending on k∗, i.e. c =
c(Δk∗) = c(r, t, k∗), where r, t are computed for Δk∗ .

Proof. (1) See [15], Theorem II.4.10(4) and II.4.11(4), p. 74.
(2) Adding dummy variables if necessary, we may suppose that each ϕ ∈ Δ has

the free variables x0, . . . , xk−1. (We may then have to omit k elements at the end.)
We prove by induction on m ≤ k that there is um ⊆ n such that:

(I) |um+1| ≥ f(n) for f(x) =
∣∣x
t

∣∣ 1
tr+t+1 − k, where r is from clause (1) of the

theorem and t is a constant defined below,
(II) if i0 < · · · < ik−1, j0 < · · · < jk−1 are from um,

∧
�(� < k−m =⇒ i� = j�),

and ϕ ∈ Δ, then

|= ϕ(ai0 , . . . , aik−1
) = ϕ(aj0 , . . . , ajk−1

).

The case m = 0. Trivial: u = n.

The case m+1. Let um be given, and suppose |um|=�m. Let Δm={ϕ(x0, . . . , xm−1,
a�m−m, . . . , a�m−1) : ϕ ∈ Δ}. This case will be broken up into several steps.

Step 0: Arranging the elements of um into a type tree. The natural partial order
on ω>ω is given by ν ≤ ρ if ν is an initial segment of ρ. A tree order on a finite
set of vertices is a partial order which is order-isomorphic to some downward closed
subset of ω>ω under the natural partial order.
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By induction on � < �m choose sets W� ⊆ um \
⋃

j<� Wj and a tree order <� on

W≤� =
⋃

j≤� Wj such that

• if i <� j, then aj , ai realize the same Δm-type over{ai : i <� i},
• if ¬(i <� j) and ¬(j <� i), then aj , ai realize different Δm-types over
{as : s <� i, s <� j}.

Call any such tree a type tree. That is, a type tree W∗ is given by a tree ordering
<∗:=

⋃
� <� on um which satisfies the above conditions.

Step 1: Choosing a branch through the tree suffices, i.e. (II) of the induction. In
this step, we verify that any branch through a type tree, i.e. any maximal subset
linearly ordered by <∗, will satisfy the inductive hypothesis on indiscernibility.
(Step 2 will show it satisfies the inductive hypotheses on size.) The key is that in
every branch, the type does not depend on the last element.

More precisely, suppose i0 < · · · < ik−1, j0 < · · · < jk−1 are from um+1,∧
�(� < k − m − 1 =⇒ i� = j�), and ϕ ∈ Δ. (As we had built the tree W∗ by

induction, <∗ implies < in the sense of the order of the original sequence.) Without
loss of generality, suppose im−1 < jm−1. Then, recalling the parameters used in
the definition of Δm,

ϕ(ai0 , . . . , aik−1
) ⇐⇒ ϕ(ai0 , . . . , aim−1

, a�m−m, . . . , a�m−1)

by inductive hypothesis, since the first m indices agree.

ϕ(ai0 , . . . , aim−1
, a�m−m, . . . , a�m−1)⇐⇒ϕ(ai0 , . . . , aim−2

, ajm−1
, a�m−m, . . . , a�m−1)

since by construction aim−1
, ajm−1

realize the same Δm-type over ai0 , . . . , aim−2

(again, recall the parameters used), and finally

ϕ(ai0 , . . . , ajm−1
, a�m−m, . . . , a�m−1) ⇐⇒ ϕ(aj0 , . . . , ajk−1

)

by inductive hypothesis. We have verified that

ϕ(ai0 , . . . , aik−1
) ⇐⇒ ϕ(aj0 , . . . , ajk−1

)

based only on the assumption that the first m−1 indices coincide, which completes
the inductive step. Having established that a branch through the tree W∗ will give
condition (II) for the inductive step, we turn to computing a lower bound on the
size of a branch.

Step 2: Lower bounds on the length of a branch through W∗, i.e. (I) of the induction.
As we have established that any branch through a type tree W∗ would suffice for
the inductive hypothesis (II), we now calculate how long a branch is expected to
be. That is, we establish a lower bound on the length of a branch by showing that
a maximally branching type tree with |um| nodes must attain a certain height h.

This step will be split up into several parts. The key constraints are the decreas-
ing rank of Step 2A and the bound on branching in Step 2B. The remaining parts
are computational.

Step 2A: Partitioning the nodes of the tree using stability rank. Let t = R(x =
x,Δm, 2), where R is the stability rank; then by definition of this rank, we cannot
embed t+12 in W∗. For s ≤ t let Ss = {i ∈ W∗ : above i in the tree we can embed
s2 but no more}. W∗ will be the disjoint union of {Ss : s ≤ t}, and if i1 ∈ S1∧i2 ∈
S2 ∧ ii ≤∗ i2, then s1 ≥ s2.

Thus every node in the type tree is assigned a “rank”, i.e. a value in {0, . . . t}.
A rank is non-increasing with order, i.e. if the rank of i is s, then all nodes in the
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tree above i have rank ≤ s. Moreover, by definition, each node i has at most one
immediate successor of the same rank.

Step 2B: A bound on branching. By condition (1) of the theorem, if i is a node in
some type tree and i has height h, then the number of immediate successors of i is
at most (h+m)r. This is because by the definition of type tree, any two distinct
immediate successors must satisfy distinct types over their common initial segment,
which includes all elements j with j ≤∗ i as well as the m constants named as part
of Δm.

Note that the shortest tree is attained when branching is maximal, i.e. when
for each node i of rank s, (a) i has exactly one immediate successor of rank s and
(b) all of its other immediate successors have rank s− 1. This is because any two
distinct successors of i each of rank s must lie along the same branch, and the rank
assignment is non-increasing with ≤∗.

For the remainder of Step 2 we will assume maximal branching. This will simplify
notation.

Step 2C: Counting nodes of a given rank and height assuming maximal branching.
Let Ns

� denote the number of nodes in the tree of rank s and height �, i.e. Ns
� =

|{i : i ∈ Ss, ht(i) = �}|. We can further write Ns
� = Xs

� + Y s
� , where Xs

� counts
the nodes in Ns

� whose immediate predecessor also has rank s, and Y s
� counts the

nodes in Ns
� whose immediate predecessor has rank s + 1. By Step 2B, assuming

maximal branching, these values satisfy the following inequalities:

(i) For all s ≤ t and all �, Xs
�+1 ≤ Ns

� .

(ii) For all s < t and all �, Y s
�+1 ≤ Ns+1

� · (�+m)r.

(iii) Thus for all s < t and all �, Ns
�+1 ≤ Ns

� +Ns+1
� · (�+m)r.

(iv) For all 1 ≤ s ≤ t, N t−s
0 = 0.

(v) For all �, N t
� ≤ 1.

Step 2D: An inductive bound. We now observe by induction on s that N t−s
�+1 ≤

(�+m)s(r+1).
For the base case s = 1, by a nested induction on �, N t−1

�+1 ≤
∑

j≤�(j + m)r ≤
(�+m)r+1 using (iii) and (v) of Step 2C. Then for s+ 1, by a nested induction on
� using (iii) and (iv) of Step 2C,

N
t−(s+1)
� +N t−s

� · (�+m)r ≤
∑
j≤�

(�+m)s(r+1) · (j +m)r ≤ (�+m)(s+1)(r+1),

and since the left hand side bounds N
t−(s+1)
�+1 by (iii), this completes the inductive

step s+ 1.
We may now bound the total number N�+1 of nodes of height �+ 1:

N�+1 ≤
∑
s≤t

N t−s
�+1 ≤

∑
s≤t

(�+m)s(r+1) ≤ t(�+m)t(r+1).

Note N0 = 1, so the total number of nodes in a tree of height h is thus at most

N = 1 +
∑
�<h

N�+1 ≤ 1 +
∑
�<h

t(�+m)t(r+1) < t(h+m)tr+t+1.
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Step 2E: Concluding that (II) holds. Since r, t are fixed as a function of Δ and
m ≤ k, the bound from Step 2C shows that whenever h is such that

t(h+m)tr+t+1 < |um|,
then no type tree of height h can exhaust the nodes of um, and thus any such type
tree must have a branch of length at least h+ 1. In particular, this inequality will
hold when h < f(|um|), where

f(x) =
∣∣∣x
t

∣∣∣
1

tr+t+1 − k.

For uniformity, we subtract k instead of m. This completes the inductive step.

Thus in k steps we extract a sequence of indices u for an indiscernible sequence.

The size of u will be at least fk(n), where f(x) =
∣∣x
t

∣∣ 1
tr+t+1 − k. Recall that r, t, k

depend only on the set of formulas Δ: r is from (1) of the theorem, t is the R-rank
of Δ and k is the number of free variables.

(3) The “in particular” clause gives a simpler, though less accurate, bound,
assuming without loss of generality that r ≥ 2. That is, when x is sufficiently
large relative to t, r, k, say x > α = α(r, t, k), the function fk(x) ≥ gk(x), where

g(x) = x
1

2tr . Specialized to the set of formulas Δk∗ from Definition 2.9, this implies
there is a constant c = c(Δk∗) = c(r, t, k∗) ≤ α(r, t, k∗) such that we can extract

from any set of size n1 > (cn2)
(2tr)k∗

a Δk∗ -indiscernible subsequence of size at
least n2.

This completes the proof of the theorem. �
We now return to building a regularity lemma. From Claim 3.2 we know how

individual elements interact with indiscernible sequences. The next observation
shows a uniformity to the individual decisions made by elements in an indiscernible
sequence.

Observation 3.6 (Crucial observation). Suppose that A = 〈ai : i < s1〉, B = 〈bj :
j < s2〉 are Δk∗ -indiscernible sequences. Suppose that s1 ≥ 2k∗ and s2 > (2k∗)

2.
Let U = {i < s1 : ∃≥2k∗j < s2)(ajRbi)}. Then either |U| ≤ 2k∗ or |U| ≥ s1−2k∗.

Proof. Suppose the conclusion fails. Let i1 be the k∗th member of U , and let i2 be
the k∗th member of {0, . . . , s1 − 1} \ U . Clearly i1 �= i2.

Case 1: i1 < i2. Choose elements j0 < · · · < jk∗−1 from U and elements jk∗ <
· · · < jk∗+k∗−1 < s1 from {0, . . . , s1−1}\U satisfying jk∗−1 ≤ i1 < i2 ≤ jk∗ . Recall
by Claim 3.2 that each aj� partitions B into a small and large set; for each � < 2k∗,
let the “small set” be

W� = {i < s2 : aj�Rbi ↔
(
(∃≥2k∗i < s2)¬(aj�Rbi)

)
}.

By Claim 3.2 and the definition of U , each |W�| < 2k∗. Thus∣∣∣∣∣
⋃

�<2k∗

W�

∣∣∣∣∣ ≤ (2k∗)
2 < |B|.

Choose n ∈ {0, . . . s2 − 1} \
⋃

�<2k∗
W�. Then for all � such that 0 ≤ � ≤ k∗ − 1,

bnRa� and for all � such that k∗ ≤ � < 2k∗, ¬bnRa�. By Observation 2.10, G has
the k∗-order property, a contradiction.

Case 2: i2 < i1. Similar, interchanging R and ¬R. �
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Conclusion 3.7. Recall the hypotheses of this section: G is a finite graph with
the non-k∗-order property.

If (A), then (B):

(A) (1) n1 → (n2)T,Δk∗ ,1
.

(2) n > n1n2 and n2 ≥ (2k∗)
2.

(B) If A ⊆ G, |A| = n, then we can find A, m1,m2 such that:
(a) A = 〈Ai : i < m1〉.
(b) A is a partition of A.
(c) n = n2m1 +m2, m2 < n1 ≤ m1.
(d) For each i, |Ai| ∈ {n2, n2 + 1}.
(e) Each Ai is either a complete graph or an empty graph (after possibly

omitting one element).
(f) If i �= j < m1, then (after possibly omitting one element of Ai and/or

Aj), for some truth value t(AiAj) ∈ {0, 1}, we have that for all but
≤ 2k∗ a ∈ Ai, for all but ≤ 2k∗ b ∈ Aj , aRb ≡ t(Ai, Aj).

Proof. First, choose m1 satisfying n2m1 ≤ n < n2m1 + n1 (so m1 ≥ n1 by (A)(2)),
and let <∗ be a linear order on A. Second, we choose A′

� by induction on � < m1

to satisfy:

• A′
� ⊆ A \ {A′

j : j < �},
• |A′

�| = n2,
• if we list the elements of A in <∗-increasing order as 〈a�,i : i < n2〉, this is
a Δk∗ -indiscernible sequence.

The existence of such A′
� is guaranteed by the hypothesis (A)(1). Since Δk∗

includes {xRy}, we will have (e) by the symmetry of R.
Third, let 〈a∗i : i < m2〉 list the remaining elements, i.e. those of A \

⋃
{A′

� : � <
m1}. Let A� := A′

� ∪ {a∗�} if a∗� is well defined and A� := A′
� otherwise. Condition

(c) ensures there is enough room. This takes care of (a)-(e).
In condition (f), we may want to delete the extra vertex added in the previous

paragraph. Then the Crucial Observation 3.6 applied to any pair (Ai, Aj) gives our
condition, i.e. it shows that if we choose an element a ∈ Ai (provided we did not
choose one of the at most 2k∗ exceptional points) and then subsequently choose an
element b ∈ Aj (all but at most 2k∗ of them are good choices), we find that a, b
will relate in the expected way. This completes the proof. �
Theorem 3.8. Let k∗, n2 be given with n2>(2k∗)

2. Then there is N=N(n2, k∗, k2)
such that any finite graph G, |G| > N , with the non-k∗-order property and with
Δk∗ satisfying the hypotheses of 3.5(a)-(b) for k2, admits a partition G = 〈Gi〉
into disjoint pieces Gi which satisfies:

(1) for each Gi ∈ G, |Gi| ∈ {n2, n2 + 1},
(2) (after possibly omitting one element) each Gi is either a complete graph or

an empty graph,
(3) for all pairs Gi, Gj ∈ G (after possibly omitting one element from each)

there exists a truth value t(Gi, Gj) ∈ {0, 1} such that for all but ≤ 2k∗
a ∈ Gi, for all but ≤ 2k∗ b ∈ Gj, aRb ≡ t(Gi, Gj).

Moreover, N = n1n2 suffices for any n1 > (cn2)
(2tr)k∗

, as computed in Theorem
3.5 in the case where Δ = Δk∗ (for a constant c depending only on Δk∗).

Proof. By Conclusion 3.7 and Theorem 3.5. �
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Remark 3.9. (1) Note that clause (f) of Conclusion 3.7 is stronger than the
condition of ε-regularity in the following senses.

• It is clearly hereditary for Ci ⊆ Ai, |Ci| ≥ |2k∗|2.
• The density of exception is small:

|{(a, b) ∈ Ai ×Aj : (aRb) ≡ ¬ti,j}|
|Ai||Aj |

≤ 2k∗
|Ai|

+
2k∗
|Aj |

.

• If |Ai|, |Aj | are not too small, ti,j = tj,i.
• If we weaken the condition that

⋃
i Ai = A to the condition that

|A \
⋃

i Ai| ≤ m2, we can omit the exceptional points. It may be
better to have |Ai| ∈ {n2, 1} with |{i : |Ai| = 1} < n1.

(2) As for the hypotheses (A)(1)-(2) of the theorem: although Theorem 3.5
will not apply outside the stable case, some extensions to the wider class
of dependent theories are discussed in §3.2, e.g. Claim 3.18.

3.1. Generalizations. Some natural directions for generalizing these results would
be the following. First, as stated, the Szemerédi condition is not a priori meaningful
for infinite sets, while the condition (f) from Conclusion 3.7 is meaningful, and we
can generalize the results of this section replacing n, n1, n2, k by infinite λ0, λ1, λ2, κ.
Second, we can allow G to be a directed graph and replace {xRy} with a set Φ of
binary relations satisfying the non-k∗-order property. Third, we can replace 2-place
by n(∗)-place where n(∗) ≤ ω, so Φ is a set of formulas of the form ϕ(x0, . . . xn−1),
n < n(∗). In this case, the assumption (A)(1) of Conclusion 3.7 becomes

λ+
1 →T,Δ (λ2)1,

which can be justified by appeal to one of the following:

(1) by Ramsey: λ1 → (λ2)
<n(∗)
2|Δ| ,

(2) by Erdös-Rado, similarly,
(3) using Erdös cardinals

or
(4) use stability: [15], Chapter II, or better (in one model) [18], §5.
Finally, it would be natural to consider extending the results above to hyper-

graphs.

3.2. Remarks on dependent theories. In this brief interlude we discuss some
extensions of §3 to the more general class of theories of dependent graphs, Definition
3.10. In subsequent sections, we return to stable theories of graphs. Although, as
discussed in the introduction, the order property is enough to cause irregularity,
many of the properties considered in this paper are applicable to dependent graphs,
e.g. Claim 2.6 and Fact 5.10.

Dependent theories (theories without the independence property; see below) are
a rich class extending the stable theories (theories without the order property), and
have been the subject of recent research; see e.g. [17] and [5]. From the point
of view of graph theory and combinatorics, the Vapnik-Chervonenkis connection
[10] makes this a particularly interesting class. Below, we indicate how bounds on
alternation can be used to easily deduce a weaker analogue of Theorem 3.8.

Definition 3.10. Let k∗ < ω be given. We say that G is k∗-dependent when there
are no a� ∈ G (for � < k∗) and bu ∈ G (for u ⊆ k∗) such that a�Rbu iff � ∈ u.
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Hypothesis 3.11. G is an ordered graph (or a graph) meaning that it is given by
an underlying vertex set on which there is a linear order <G, along with a symmetric
binary edge relation R. We assume that G is k∗-dependent.

Remark 3.12. Stable implies dependent, i.e. if xRy does not have the order property
it will not have the independence property; but the reverse is not true. More
precisely, the formula xRy has the order property if, for every n < ω, there exist
elements a0, . . . an such that for all i ≤ n,

|= (∃x)

⎛
⎝∧

j≤i

¬(xRaj) ∧
∧
j>i

xRaj

⎞
⎠

(note this definition remains agnostic about the existence of an x connected to some
partition out of order), whereas the formula xRy has the independence property (=is
not dependent) if, for every n < ω, there exist elements a0, . . . , an such that for all
u ⊆ n,

|= (∃x)

⎛
⎝∧

j∈u

¬(xRaj) ∧
∧
j /∈u

xRaj

⎞
⎠ .

We first discuss the results of §3. On the infinite partition theorem for dependent
T (existence of indiscernibles), see [7] for negative results and [16] for positive
results.

Notation 3.13. (1) If A ⊆ G, then let memA(�) be the �th member of A
under <G, for � < |A| (for infinite A such that <G |A is well ordered,
� < (otp(A), <G |A), an ordinal).

(2) If A ⊆ G, <G is a well-ordering of A, then memA(�) is defined similarly.

Definition 3.14 (Compare Observation 3.6). (1) We say a pair (A,B) of sub-
sets of G is semi-f-nice (for f = (f1, f2)) when:
for all but < f1(|A|) members of A,
for all but < f2(|B|) numbers � < |B| (or otp(B)), we have that
aRmemB(�) ≡ aRmemB(�+ 1).

(2) (restated for clarity:) If f = (c1, c2) where c1, c2 are constants, then in (1)
replace the condition “all but ≤ fi(|A|) members of A” with “all but ≤ ci
members of A” for i = 1, 2.

(3) We say a pair (A,B) of subsets of G is f-nice when (A,B) and (B,A) are
both semi-f-nice.

(4) If G is just a graph, then the above A,B should be replaced by (A,<A),
(B,<B).

Definition 3.15. Let Δk∗ = {ϕη(x0, . . . , xk∗−1) : η ∈ k∗2}, where

ϕη(x0, . . . , xk∗−1) = (∃y)
∧
�<k∗

(x�Ry)if η(�)=1.

Claim 3.16. Suppose A,B ⊂ G are disjoint, both A,B are Δk∗-indiscernible se-
quences, and |A| ≥ 2k∗, |B| ≥ 2k∗. Then (A,B) is (1, k∗)-nice.

Proof. Suppose not, so without loss of generality (A,B) is not semi-(1, k∗)-nice.
So there is a ∈ A which “alternates” k∗ times on B. That is, we may choose a
<G-increasing sequence of elements bi0 , . . . , bi2k∗=1

⊆ B such that aRbj (for j even)
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and ¬aRbj (for j odd). Let us verify that this means G is k∗-dependent. Let
J = 〈j0, . . . , jk∗−1〉 be any set of indices of elements of B, of size k∗. Then for any
σ ⊆ J , by indiscernibility, we have that

|= ∃x

⎛
⎝∧

�∈σ

xRaj� ∧
∧

�∈J\σ
¬xRaj�

⎞
⎠

since this is true when the appropriate increasing sequence of k∗-many indices (cor-
responding to the pattern of membership in σ) is chosen from among i0, . . . , i2k∗−1.

�

Definition 3.17. Let A = 〈Ai : i < i(∗)〉 be a set of subsets of A ⊂ G (usually
pairwise disjoint).

(1) We say that A is semi-f-nice when i < j < i(∗) implies (Ai, Aj) is semi-f-
nice.

(2) We say that A is f-nice when i < j < i(∗) implies (Ai, Aj) is f-nice.

Claim 3.18. Assume that

(1) G is an ordered graph and is k∗-dependent,

(2) m1 → (m2)
≤k∗

2|Δk∗ | in the sense of Ramsey’s theorem,

(3) A ⊂ G, |A| = n.

Then we can find 〈Ai : i < i(∗)〉 such that:

(1) |Ai| = m2 for all i,
(2) the Ais are pairwise disjoint,
(3) each Ai ⊆ A and is either complete or edge free,
(4) B = A \

⋃
{Ai : i < i(∗)} has < m1 members,

(5) each Ai is Δk∗-indiscernible,
(6) A is (1, k∗)-nice.

Proof. Straightforward. �

Conclusion 3.19. Continuing with the notation of Claim 3.18, let 〈Ai : i < i(∗)〉
be the partition of A ⊂ G, |A| = n into pieces of size m2 obtained there. Suppose
that m3|m2, and suppose that we divide each Ai into convex intervals Ai,j each of
length m3. If m2 > (m3)

2, then we obtain an equitable partition into n
m3

pieces in

which, moreover, for any i1 �= i2 < i(∗),
(1) {(ji, j2) : (Ai1ji , Ai2j2) is neither full nor empty} has cardinality ≤ m2

m3
×

m3 × k∗ = k∗m2 (in each pair, each element’s alternations can be seen in
at most k∗ other pairs),

(2) |{(ji, j2) : j1, j2 < m2

m3
}| =

(
m2

m3

)2

,

(3) so the density of bad pairs is ≤ k∗m
2
3

m2
.

On the other hand, the density of pairs with i1 = i2 is ≤ m2
2

n2 .

Remark 3.20. Here we obtain quite small pieces (coming from Ramsey’s theorem)
and there are exceptional pairs; but for the regular pairs there are no exceptions.
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4. On the bounds

In this section, we take a different approach, aimed at improving the bounds
on the number of components. First, in a series of claims, we give conditions for
partitioning a given graph with the non-k∗-order property into disjoint ε-indivisible
sets (Definition 4.2), and show when such sets interact uniformly. However, the
procedure for extracting such sets does not ensure uniform size (Discussion 4.11).
We solve this in two different ways. The first (probabilistic) approach, resulting in
Theorem 4.16, gives a partition in which there are irregular pairs, but the “regular”
pairs have no exceptional edges. The second, resulting in Theorem 4.23, proceeds
by first proving a combinatorial Lemma 4.19 which allows us to strengthen the
“indivisibility” condition to one in which the number of exceptions is constant;
thus in Theorem 4.23, there are no irregular pairs, at the cost of a somewhat larger
remainder.

As mentioned in the introduction, one recurrent strategy in this paper is parti-
tioning a given graph into “indivisible” components; compare Definition 4.2 with
Definition 5.2. Reflecting the strength of Definition 4.2, the number of pieces in
each of the two partition theorems of this section grows with the size of the graph,
as in Theorem 3.8. In §5, under the weaker Definition 5.2, the number of pieces in
the partition will be a constant c = c(ε) as in the classical Szemerédi result.

Hypothesis 4.1. Throughout §4, we assume: (1) G is a finite graph. (2) G has
the non-k∗-order property, and so k∗∗ is the corresponding tree-height bound from
Definition 2.11. (3) By convention f, g are non-decreasing functions from N to
N \ {0}.

Definition 4.2 (ε- and f -indivisible). (1) Let ε ∈ (0, 1)R. We say that A ⊆ G
is ε-indivisible if for every b ∈ G, for some truth value t, the set {a ∈ A :
aRb ≡ t} has < |A|ε members.

(2) In general, we say that A is f -indivisible (where f : ω → ω) if for any
b ∈ G, there exists a truth value t such that |{a ∈ A : aRb �≡ t}| < f(|A|).
By convention in this section, we assume that f is non-decreasing.

Claim 4.3. Assume thatm0 > · · · > mk∗∗ is a sequence of non-zero natural numbers
and for all � < k∗∗, f(m�) ≥ m�+1 (e.g. f(n) = nε). If A ⊆ G, |A| = m0, then for
some � < k∗∗ there is an f -indivisible B ∈ [A]m� .

Proof. Suppose not. So we will choose, by induction on k ≤ k∗∗, elements 〈bη : η ∈
k>2〉 and 〈Aη : η ∈ k≤2〉 such that:

(1) A〈〉 = A,
(2) Aη�〈i〉 ⊂ Aη,
(3) Aη�〈0〉 ∩ Aη�〈1〉 = ∅,
(4) |Aη| = mlg(η),
(5) bη ∈ G,
(6) Aη�〈i〉 = {a ∈ Aη : aRbη ≡ (i = 1)}.
There is no problem at k = 0, but let us verify that the induction cannot continue

past k∗∗. For each η ∈ k2, Aη �= ∅ by (4), so choose aη ∈ Aη. If for all η ∈ k∗∗>2
there exists bη such that Aη�〈1〉, Aη�〈2〉 are defined and satisfy the conditions, then

the sequences 〈aη : η ∈ k∗∗2〉 and 〈bη : η ∈ k∗∗>2〉 contradict the choice of k∗∗,
Definition 2.11. So for at least one η, it must be that no such bη can be found in
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G, i.e. that for any b ∈ G, either |{a ∈ Aη : aRb}| or |{a ∈ Aη : ¬aRb}| is less than
m�+1, for � = lg(η). Let B = Aη, so |B| = m� and B is f(|B|)-indivisible, which
completes the proof. �

Claim 4.4. Assume f, 〈m� : � ≤ k∗∗〉 are as in Claim 4.3. For any A ⊆ G, we can
find a sequence 〈Aj : j < m〉 such that:

(a) For each j, Aj is f -indivisible.
(b) For each j, |Aj | ∈ {m� : � ≤ k∗∗}.
(c) Aj ⊆ A \

⋃
{Ai : i < j}.

(d) A \
⋃
{Aj : j < m} has < m0 members.

Proof. We choose Aj by induction on j to satisfy (a)+(b)+(c). If |A| < m0 we are
trivially in case (d). By Claim 4.3, we can continue as long as there are at least m0

elements remaining. �

Claim 4.5. Assume ε ∈ (0, 12 )R, n
εk∗∗

> k∗∗. Let 〈m� : 0 ≤ � ≤ k∗∗〉 be a sequence
of integers satisfying n ≥ m0, mk∗∗ > k∗∗ and for all � s.t. 0 ≤ � ≤ k∗∗, m�+1 =
�(m�)

ε�.
If A ⊆ G, |A| = n, then we can find A such that:

(1) A = 〈Ai : i < i(∗)〉 is a sequence of pairwise disjoint sets,
(2) 〈|Ai| : i < i(∗)〉 is ≤-increasing,
(3) for each i < i(∗) for some � = �(i) < k∗∗, |A�| = m� and A� is ε-indivisible,
(4) A \ {Ai : i < i(∗)} has < m0 elements.

Proof. By Claim 4.4, using f(n) = nε and renaming the sets Ai so that clause (3)
holds. �

The next claim says that for all sufficiently indivisible pairs of sets, averages
exist (notice there is a potential asymmetry in the demand that B be large).

Claim 4.6. Suppose A is f -indivisible, B is g-indivisible and f(|A|) · g(|B|) < 1
2 |B|.

Then for some truth value t = t(A,B) for all but < f(|A|) of the a ∈ A for all but
< g(|B|) of the b ∈ B, we have that aRb ≡ t.

Proof. Similar to the proof of Observation 3.6 above. For each a ∈ A there is, by
g-indivisibility of B, a truth value ta = ta(a,B) such that |{b ∈ B : aRb ≡ ta}| <
g(|B|). For i ∈ {0, 1}, let Ui = {a ∈ A : ta = i}. If |Ui| < f(|A|) for either i, we
are done, so assume this fails. Choose Wi ⊂ Ui so that |Wi| = f(|A|) for i ∈ {0, 1}.
Again we gather the exceptions: let V = {b ∈ B : (∃a ∈ W1)(¬aRb) ∨ (∃a ∈
W0)(aRb)}. Then |V | ≤ (|W1| + |W0|)g(|B|) < |B| by hypothesis, so we may
choose b∗ ∈ B \ V . But then a ∈ W1 =⇒ b∗Ra and a ∈ W0 =⇒ ¬b∗Ra,
contradicting the f -indivisibility of A. �

Remark 4.7. When f(n) = nε, g(n) = nζ the translated condition is: if |A|ε|B|ζ <
1
2 |B|.

Claim 4.8. Let A be ζ-indivisible and B be ε-indivisible. Suppose that the hypothe-
ses of Claim 4.6 are satisfied, so averages exist. Then for all ζ1 ∈ (0, 1 − ζ), ε1 ∈
(0, 1− ε), we have: if A′ ⊂ A,B′ ⊂ B, |A′| ≥ |A|ζ+ζ1 , |B′| ≥ |B|ε+ε1 , then∣∣∣∣{(a, b) ∈ (A′, B′) : aRb ≡ ¬t(A,B)}

|A′||B′|

∣∣∣∣ ≤ 1

|A|ζ1 +
1

|B|ε1 .
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Proof. To bound the number of exceptional edges, recall that in A, hence also in A′,
there are at most |A|ζ elements which do not have the expected average behavior
over B. Likewise, for each non-exceptional a ∈ A′ there are no more than |B|ζ
corresponding exceptional points b ∈ B′. Thus we compute:

|A|ζ · |B′|+ (|A′| − |A|ζ)|B|ε
|A′||B′| =

|A|ζ
|A′| +

(
|A′| − |A|ζ |

|A′|

)
|B|ε
|B′|

≤ |A|ζ
|A′| +

|B|ε
|B′| ≤

|A|ζ
|A|ζ+ζ1

+
|B|ε

|B|ε+ε1
=

1

|A|ζ1 +
1

|B|ε1 .

A similar result holds for f -indivisible replacing ε-indivisible. �
We single out the following special case for Theorem 4.23 below.

Corollary 4.9. Let A,B be f -indivisible where f(n) = c is a constant function.
Suppose that the hypotheses of Claim 4.6 are satisfied, so averages exist. Then for
all ζ1 ∈ (0, 1 − c

|A| ), ε1 ∈ (0, 1 − c
|B| ), we have: if A′ ⊂ A,B′ ⊂ B, |A′| ≥ c|A|ζ1 ,

|B′| ≥ c|B|ε1 , then∣∣∣∣{(a, b) ∈ (A′, B′) : aRb ≡ ¬t(A,B)}
|A′||B′|

∣∣∣∣ ≤ 1

|A|ζ1 +
1

|B|ε1 .

Returning to the general argument, choosing ε1 (here called ζ) small enough
means we can apply Claim 4.8 to any pair of elements from the partition in Claim
4.5:

Claim 4.10. In Claim 4.5, if ζ ∈ (0, εk∗∗), we have in addition that for every i <
j < i(∗), if A ⊂ Ai, |A| ≥ |Ai|ε+ζ , B ⊂ Aj , |B| ≥ |Aj |ε+ζ and ti,j = t(Ai, Aj) is the
associated truth value, then∣∣∣∣{(a, b) ∈ (A,B) : aRb ≡ ¬ti,j}

|A||B||

∣∣∣∣ ≤ 1

|Ai|ζ
+

1

|Aj |ζ
≤ 1

|A|ζ +
1

|B|ζ .

Proof. By Claim 4.8. Note that the enumeration along with clause (2) of Claim 4.5
(i.e. |Ai| ≤ |Aj |) ensures ti,j is defined. �
Discussion 4.11. In some respects Claim 4.10, applied to the partition of Claim
4.5, is quite strong: (a) There are no irregular pairs. (b) For each pair the number of
exceptional edges is very low. On the other hand: (c) There is a remainder A\

⋃
i Ai,

not serious, as we can distribute the remaining elements among the existing Ai

without much loss, as was done in §3. (d) There is an inherent asymmetry: the
result assumes i < j < i(∗), we have not discussed j < i < i(∗), but this is also
not serious. (e) The cardinalities of the Ai are not essentially constant: this seems
more serious.

We give two different resolutions of (e) in the remainder of this section. In
Theorem 4.16, we obtain an equitable partition at the price of allowing for irregular
pairs. In Theorem 4.23, we obtain much stronger indivisibility conditions on the
components and no irregular pairs, at the price of a somewhat larger remainder,
Theorem 4.23.

4.1. Towards a proof of Theorem 4.16.

Definition 4.12. Assume that A,B are f -indivisible (usually: ε-indivisible), dis-
joint (for notational simplicity), and that f(A) × f(B) < 1

2 |B| (so t(A,B) is well
defined). Let m divide |A| and |B|.
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We define a probability space: divide A into |A|/m pieces each of size m 〈Ai :
i < iA〉 and likewise divide B into |B|/m parts each of size m, 〈Bj : j < jB〉. Call
this partition an equivalence relation E on A ∪B.

For each i < iA, j < jB , let E+
Ai,Aj ,m

be the event: for all a ∈ Ai, for all b ∈ Bj ,

aRb ≡ t(A,B).

Claim 4.13. Let Ai, Aj be two sets from the conclusion of Claim 4.5. So ε ∈ (0, 12 ),
f(x) = �xε�. Ignoring a minor error due to rounding to natural numbers, suppose

that |Ai| = m�a = nε�a+1

, |Aj | = m�b = nε�b+1

and |Ai| ≤ |Aj |. Let m be an integer
such that m divides both |Ai| and |Aj |, and m = nζ for some ζ < εk∗∗ . Choose a
random partition of Ai and Aj into pieces of size m. Let As

i , A
t
j be pieces from Ai

and Aj , respectively, under this partition.
Then Prob(E+

As
i ,A

t
j ,m

) ≥ 1− 2

nεk∗∗ .

Proof. By choice of Ai, Aj we have that t = t(Ai, Aj) is well defined. Let U1 =
{a ∈ Ai : |{b ∈ Aj : aRb ≡ ¬t}| ≥ |Aj |ε}, and for each a ∈ Ai \ U1, let U2,a =
{b ∈ Aj : aRb ≡ ¬t}. By definition of t, |U1| ≤ |Ai|ε, and for each relevant a,
|U2,a| ≤ |Aj |ε.

We first consider As
i . The probability P1 that As

i ∩ U1 �= ∅ is bounded by the
following:

P1 <
m|U1|

|Ai| −m
≤ nζ |Ai|ε

|Ai| −m
<

n2ζ
(
nε�a+2

)
nε�a+1

≤ 1

nε�a+1−ε�a+2−2ζ
=

1

nε�a+1(1−ε)−2ζ
<

1

nε�a+1 ≤ 1

nεk∗∗ .

Now if As
i ∩ U1 = ∅, then |

⋃
a∈As

i
U2,a| ≤ m|Aj |ε. So the probability P2 that we

have At
j ∩

⋃
a∈As

i
U2,a �= ∅ is bounded by

P2 <
m|

⋃
a∈As

i
U2,a|

|Aj | −m
≤ m ·m · |Aj |ε

|Aj | −m
≤ n2ζ |Aj |ε

|Aj | − nζ
≤ 1

nεk∗∗

by the analogous calculation. So Prob(E+
As

i ,A
t
j ,m

) ≥ (1− 1

nεk∗∗ )
2 ≥ 1− 2

nεk∗∗ . �

Claim 4.14. Let 〈m� : � < k∗∗〉 be a sequence which satisfies the hypotheses of
Claim 4.5 and suppose that m∗∗ divides m� for � < k∗∗. Let n be sufficiently large
relative to m∗: it suffices that m∗ < n

n2εk∗∗ (see Remark 4.15).

Let A ⊂ G, |A| = n and let 〈Ai : i < i(∗)〉 be the partition of A given by Claim
4.5 with respect to the sequence 〈m� : � < k∗∗〉 (we will temporarily ignore the
remainder of size ≤ m∗). Recall that t(Ai, Aj) is well defined for i < j by Claim
4.6.

Then there exists a partition 〈Ci : i < r〉 of
⋃

i<i(∗) Ai such that:

(1) 〈Ci : i < r〉 refines the partition 〈Ai : i < i(∗)〉.
(2) |Ci| = m∗∗ for each i < r.
(3) For all but at most 2

nεk∗∗ r
2 of the pairs (Ci, Cj), there are no exceptional

edges: that is, if i < j, Ci ⊆ Ai, and Cj ⊆ Aj , then {(a, b) ∈ Ci × Cj :
aRb �≡ t(Ai, Aj)} = ∅.

Proof. The potential irregularity in a pair (Ci, Cj) comes from two sources.
(a) The case where Ci ⊂ Ai, Cj ⊂ Aj, i �= j and (Ci, Cj) contains some excep-

tional edges. By Claim 4.13 and linearity of expectation, there exists a partition
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satisfying (1) and (2), in which (3) holds when computed on pieces Ci, Cj which
came originally from distinct components Ai, Aj . In fact, this will be true for all
but at most (1 − 1

nεk∗∗ )
2 of such pairs by the calculation in the last line of Claim

4.13.
(b) The case where Ci, Cj are both from the same original component Ai. Here

we have no guarantee of uniformity. Let us compute a bound on the fraction of
such pairs Ci, Cj . The maximum is attained when all of the original components
were of maximal size m0 = m∗; in this case the number of ways of choosing a pair
Ci, Cj from the same original component is at most( m∗

m∗∗

2

)
n

m∗
out of a possible

( n
m∗∗

2

)
,

so the ratio is approximately

( m∗
m∗∗ )

2

2
n
m∗

( n
m∗∗ )

2

2

=
m∗
n

.

Recall that by hypothesis, m∗
n < 1

n2εk∗∗ .

Combining (a) and (b), the total fraction of irregular pairs does not exceed
2

nεk∗∗ . �

Remark 4.15. In Claim 4.14, the hypothesis on m∗ could obviously be weakened,
or dropped at the expense of increasing the fraction of irregular pairs by m∗

n , as the
calculation in part (b) of the above proof shows.

Theorem 4.16. Let ε = 1
r ∈ (0, 12 ), k∗ and therefore a bound for k∗∗ be given, and

suppose G is a finite graph with the non-k∗-order property. Let A ⊂ G, |A| = n

with nεk∗∗
> k∗∗. Then there is ζ < εk∗∗ and a partition 〈Ai : i < i(∗)〉 of A such

that:

(1) for all i, either |Ai| =
⌊
nζ

⌋
or |Ai| = 1,

(2) |{i : |Ai| = 1}| ≤ nε,
(3) 2

nεk∗∗ ≥ 1

(i(∗)2 )
|{(i, j) : |Ai| = 1, |Aj | = 1 or {(a, b) ∈ Ai ×Aj : aRb} /∈

{Ai ×Aj , ∅}}|.
Moreover, we may choose ζ ≥ (1− 2εk∗∗)εk∗∗+1 so the total number of pieces n1−ζ

is at most nc, where c = c(ε) = 1− εk∗∗+1 − 2ε2k∗∗+1.

Proof. Recall that ε = 1
r . (This hypothesis is just to ensure divisibility, and could

be modified or dropped in favor of allowing for slight rounding errors.) Choose m∗∗
maximal so that (m∗∗)

rk∗∗ ≤ n, and subject to the constraint that m∗
n < 1

n2εk∗∗ .

(One can drop this constraint, by Remark 4.15, at the cost of increasing the fraction
in item (3) by m∗

n .) By hypothesis m∗∗ > k∗∗. Then the sequence 〈m� : � < k∗∗〉
satisfies the hypotheses of Claims 4.3 and 4.5, and furthermore m∗∗ divides m� for
� < k∗∗. Apply Claim 4.5 to obtain a decomposition into ε-indivisible pieces A′

i

such that for each i and some �, |A′
i| = m�. Claim 4.14 gives a further partition

into pieces 〈Ai : i < i(∗)〉 each of size m∗∗; additionally, we partition the remainder
from Claim 4.5 into pieces of size 1. Let ζ be such that m∗∗ = nζ . This gives clause

(1), and clause (2) holds by Claim 4.5(4) since m0 = (m∗∗)
rk∗∗−1

. Condition (3)
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holds by Claim 4.13. Finally,

nζ = m∗∗ ≈ (m∗)
εk∗∗ ≈

( n

n2εk∗∗

)εk∗∗

.

�

Remark 4.17. Though the number of components grows (solved only in §5) and
this regularity lemma admits irregular pairs, the regular pairs have no exceptional
edges.

4.2. Towards a proof of Theorem 4.23. In this subsection we take a different
approach, and obtain a regularity lemma in which there are no irregular pairs, at
the price of a somewhat larger remainder. The strategy will be to base the partition
on a sequence of c-indivisible sets, i.e. sets which are f -indivisible for a particular
constant function f(x) = c; such sets will then interact in a strongly uniform way.
[Recall from Definition 4.2 that ε-indivisible for ε ∈ (0, 1)R was shorthand for f -
indivisible when f(x) = xε; this was the only exception to standard notation, and
in particular, c-indivisible for c ∈ N means f(x) = c.] The proof that such sets
exist relies on a combinatorial lemma, Lemma 4.19. To motivate the combinatorial
lemma, the reader may wish to first look through the proof of the existence claim,
Claim 4.21.

Definition 4.18. For n, c ∈ N, ε, ζ, ξ ∈ R let
⊕

[n, ε, ζ, ξ, c] be the statement:
For any set A and a family P of subsets of A, we have
If (1) |A| = n,

(2) |P| ≤ n
1
ζ ,P ⊆ P(A),

(3) (∀B ∈ P)(|B| ≤ nε),

then there exists U ⊆ A, |U| =
⌊
nξ

⌋
such that (∀B ∈ P) (|U ∩B| ≤ c).

Lemma 4.19. If the reals ε, ζ, ξ and the natural numbers n, c satisfy:

(a) ε ∈ (0, 1), ζ > 0,
(b) 0 < ξ < min(1− ε, 1

2 ),
(c) n sufficiently large, i.e. n > n(ε, ζ, ξ, c) from Remark 4.20,
(d) c > 1

ζ(1−ξ−ε) ,

then
⊕

[n, ε, ζ, ξ, c] holds.

We delay the proof until after the next claim. Note that in clause (d) we have
that c > 0 by (b).

Remark 4.20. In the statement of Lemma 4.19, for “n sufficiently large”, it suffices
to choose n such that

1

n1−2ξ
+

1

n(1−ξ−ε)c−1/ζ
< 1.

See the last displayed equation in the proof of Lemma 4.19. As explained there, the
hypotheses of Lemma 4.19 imply that the two exponents are positive constants, so
it is well defined to let n(ε, ζ, ξ, c) be the minimal n ∈ N for which the displayed
equation is true.

Claim 4.21. Suppose that we are given constants k∗, k, c ∈ N and ε, ξ, ζ ∈ R such
that:

(1) G is a graph with the non-k∗-order property, thus k∗∗ exists by Definition
2.11,
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(2) A ⊆ G implies |{{a ∈ A : aRb} : b ∈ G}| ≤ |A|k,
(3) ε ∈ (0, 1

2 ),

(4) ξ ∈ (0, εk∗∗/2),
(5) the constant c satisfies

c >
1

ζ(1− ξ
εk∗∗ − ε)

.

Then for every sufficiently large n ∈ N (meaning n > n(ε, ζ, ξ, c) in the sense of
Remark 4.20), if A ⊆ G with |A| = n, then there is Z ⊆ A such that

(a) |Z| = �nε�,
(b) Z is c-indivisible in G, i.e. for any b ∈ G there is t ∈ {0, 1} such that for

all but c elements a ∈ Z, aRb ≡ t.

Remark 4.22. Since G has the non-k∗-order property, k = k∗ will satisfy condition
(2) by Claim 2.6, and recall that k∗∗ is the associated tree bound from Definition
2.11. For lower bounds on the size of n, see Remark 4.20.

Proof of Claim 4.21. Let A ⊆ G, |A| = n be given. For transparency of notation

suppose that for each natural number � ≤ k∗∗, n
ε� ∈ N, and that nξ ∈ N. We

choose m� by induction on � < k∗∗ so that m�+1 = �(m�)
ε�. By Claim 4.3 there is

� < k∗∗ and A1 ⊆ A such that |A1| = m� and A1 is ε-indivisible. Let P1 = {{a ∈
A1 : aRb} : b ∈ G}. So |P1| ≤ |A|k = (m�)

k, by choice of k.

We would like to apply Lemma 4.19 to conclude that
⊕

[ε, 1
k ,

ξ
ε�
, c] holds for

A = A1, P = P1. Let us verify that the hypotheses of Definition 4.18 and Lemma
4.19 hold:

• (1), (2) hold as |A1| = m�, and |P1| = (m�)
k = (m�)

1
1
k ,

• (3) holds by definition of P1, as A1 is ε-indivisible,
• (a) clear,
• (b), (d) by choice of ξ and c in this claim,
• (c) by choice of n “sufficiently large”.

We conclude that there is Z ⊆ A1 (i.e. the U guaranteed by Lemma 4.19), which
is c-indivisible and satisfies

|Z| =
⌊
(m�)

ξ

ε�

⌋
=

⌊
(nε�)

ξ

ε�

⌋
=

⌊
nξ

⌋
,

which completes the proof. �

We now prove Lemma 4.19.

Proof of Lemma 4.19. Let m =
⌊
nξ

⌋
; this is the size of the set U we hope to build.

Let F∗ = mA be the set of sequences of length m from A, so |F∗| = nm. We will
use η for such a sequence and write η[�] for the value at the �th place.

Define a probability distribution μ on F ⊆ F∗ by μ(F) = |F|
|F∗| .

We will show that for n > n(ε, ζ, ξ, c) in the sense of Remark 4.20, there is
non-zero probability that a sequence η ∈ F∗ satisfies (1) all the elements of η are
distinct, i.e. as a set it has cardinality m and (2) for any B ∈ P there are fewer
than k integers t < m such that η[t] ∈ B. This will prove the lemma.

We calculate the relevant probabilities in four steps.
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�1 Verifying some inequalities. By assumption (b) of the lemma, 1 − 2ξ > 0 and
1− ξ− ε > 0. So by assumption (d) (1− ξ − ε)c− 1

ζ > 0 and c is a natural number.

We proceed to compute several probabilities.

�2 The probability that η is not a sequence of distinct elements. (This is bounded
by the sum over s < t of the probability that η[s] = η[t]; note we don’t mind if this
happens for more than one pair.)

Prob ((∃s < t < m)(η[s] = η[t])) ≤
(
m

2

)
n

n2
≤ m2

2n
≤ n2ξ

2n
≤ 1

2n1−2ξ
<

1

n1−2ξ
.

�3 The probability that η intersects a given B ∈ P in more than c places. (For
the bound, choose c indices, then choose c values for those places from B, over all
possible choices of those values.)

Let B ∈ P be given. Then

Prob
(
(∃≥ct < m)(η[t] ∈ B)

)
≤

(
m

c

)
|B|c
nc

≤ mc|B|c
nc

≤ nξcnεc

nc
=

1

n(1−ξ−ε)c
.

�4 The probability that η intersects some B ∈ P in more than c places. By �3,

Prob
(
(∃B ∈ P)(∃≥ct < m)(η[t] ∈ B)

)
≤ |P| ·

(
max{Prob

(
(∃≥ct < m)(η[t] ∈ B)

)
: B ∈ P}

)
≤ n

1
ζ · 1

n(1−ξ−ε)c
=

1

n(1−ξ−ε)c− 1
ζ

.

As remarked above, it suffices for the lemma to show that the sum of the probabil-
ities �2 +�4 < 1, i.e. that

1

n1−2ξ
+

1

n(1−ξ−ε)c− 1
ζ

< 1.

By �1, both exponents are non-zero, and moreover they are constant, so the sum
will clearly eventually be smaller than 1. �

Theorem 4.23. There is a function N : N×R3×(0, 1) → N such that the following
holds. Let k∗ and therefore a bound for k∗∗ be given. Let G be a graph with the
non-k∗-order property, and let k = k∗ as in the proof of Claim 4.21.

Then for any c ∈ N and ε, ζ, ξ ∈ R which, along with k, satisfy the hypotheses
of Claim 4.21, any θ ∈ R, 0 < θ < 1, and any A ⊆ G, |A| = n > N(c, ε, ζ, ξ, θ),
there is i(∗) ∈ N and a partition 〈Ai : i < i(∗)〉 of A into disjoint pieces (plus a
remainder) satisfying:

(1) |Ai| =
⌊
nθζ

⌋
for each i < i(∗),

(2) each Ai is c-indivisible, i.e. indivisible with respect to the constant function
f(x) = c,

(3) |A \
⋃

i<i(∗)Ai| ≤
⌊
n

θ

εk∗∗−1

⌋
.

Remark 4.24. Recall that the interaction of any two distinct Ai, Aj given by this
theorem will be highly uniform. Assuming nθ > 2c, average types exist in the sense
of Claim 4.6, and in particular the calculations of Corollary 4.9 apply.

Proof of Theorem 4.23. Assume that n is large enough so that nθ > n(ε, ζ, ξ, c)+1,
where n(...) is the lower bound from Lemma 4.19 and Remark 4.20. Note that by
the choice of k, k satisfies Claim 2.6.
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We are aiming for pieces of uniform size nθζ . First, given θ, define by induction a
decreasing sequence 〈m� : � ≤ k∗∗〉 by mk∗∗−1 =

⌊
nθ

⌋
, mk∗∗ = �(mk∗∗−1)

ε� and for

each 1 < j ≤ k∗∗, mk∗∗−j =
⌈
(mk∗∗−j+1)

1
ε

⌉
. This sequence, fixed for the remainder

of the proof, satisfies the hypotheses of Claim 4.3.
Second, choose a sequence of disjoint c-indivisible sets Ai by induction on i, as

follows. Let Ri denote the remainder A \
⋃

j<iAj at stage i. Apply Claim 4.3

to Ri, using the decreasing sequence 〈m� : � ≤ k∗∗〉 just defined, to obtain an ε-
indivisible Bi ⊆ Ri. By construction, for some 1 ≤ � ≤ k∗∗ this set Bi will have

cardinality mk∗∗−� =
⌊
(nθ)

1

ε�−1

⌋
. (Note that ε-indivisibility need not be preserved

under taking subsets.)
By the first line of the proof (recall mk∗∗−1 =

⌊
nθ

⌋
), we have |Bi| > n(ε, ζ, ξ, c).

Apply Claim 4.21 to Bi, using c, k, ε, ζ, ξ as given, to extract a c-indivisible subset

Zi of size |Bi|ζ . That is, |Zi| = |Bi|ζ =
⌊
nθ· 1

ε�−1 ·ζ
⌋
for some 1 ≤ � ≤ k∗∗. Since the

property of being c-indivisible is preserved under taking subsets, choose Ai to be
any subset of Zi of cardinality exactly

⌊
nθζ

⌋
. This completes the construction at

stage i.
This construction can continue as long as the remainder Ri has size at least

m0 =
⌈
n

θ

εk∗∗−1

⌉
, as required by Claim 4.3; the final remainder will be strictly

smaller, which completes the proof. �

5. Regularity for stable theories of graphs

Thus far, we have given several regularity lemmas for stable (or, in §3.2, de-
pendent) theories of graphs which in some senses improved the classic Szemerédi
result, particularly in the “indivisibility” of the components; however, in each case
the size of the partition given depended on |A|. In this section, we obtain a par-
tition theorem for any graph G with the non-k∗-order property which unilaterally
improves the usual result, Theorem 5.18: for each ε, there is m = m(ε, k∗) such
that all sufficiently large G with the non-k∗-order property admit an equitable dis-
tribution such that (1) there are no irregular pairs, (2) each component satisfies
a strong indivisibility condition, called ε-excellence, and (3) the bounds are much
improved. For most of the construction, “regularity” of pairs means ε-uniformity,
Claim 5.6 below; this is useful in our context as the density will be close to 0 or 1.
A translation is given in Claim 5.17 and Conclusion 5.19.

This section relies on §2 (Preliminaries) for notation and definitions; nonetheless,
definitions will be referenced the first time they are used. Although this section
naturally extends the results and strategies of previous sections, it is self-contained
and can be read independently.

Hypothesis 5.1. Throughout §5, we assume: (a) G is a finite graph, (b) for
some k∗ fixed throughout this section, G has the non-k∗-order property, Definition
2.3, and (c) k∗∗ is the corresponding bound on the height of a 2-branching tree,
Definition 2.11. Throughout this section ε, ζ, ξ are reals ∈ (0, 12 ).

Definition 5.2 (Good, excellent). (1) We say that A ⊆ G is ε-good when for
every b ∈ G for some truth value t = t(b, A) ∈ {0, 1} we have |{a ∈ A :
(aRb) �≡ t}| < ε|A|. As ε < 1

2 , this is meaningful.
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(2) We say that A ⊆ G is (ε, ζ)-excellent when
(a) A is ε-good and moreover,
(b) if B ⊆ G is ζ-good, then for some truth value t = t(B,A),

|{a ∈ A : t(a,B) �= t(B,A)}| < ε|A|.
Again, as ε < 1

2 the average is meaningful. When ε = ζ, we will just write
ε-excellent.

Remark 5.3. We think of t(b, A), t(B,A) as average truth values. Note that any
set A ⊂ G satisfying condition (b) for ε-excellence must also be ε-good, since any
singleton set {b} is clearly ε-good (in fact, ε-excellent). Any B which satisfies
(∀a ∈ G)

∨
t∈{0,1}(∀b ∈ B)(aRb ≡ t) will also be excellent.

The next claim, which will be used repeatedly, gives a way to extract ε-excellent
subsets of any given A by inductively building a tree whose (full) branching must
eventually stop. In the statement of the claim, case (II) abstracts from case (I) by
assigning cardinalities m� to the levels of the tree.

Claim 5.4 (Crucial claim). Assume ε < 1
2k∗∗ .

(I) For every A ⊆ G, |A| ≥ 1
εk∗∗ , there is A′ such that:

(a) A′ ⊆ A,
(b) |A′| ≥ εk∗∗−1|A|,
(c) A′ is ε-excellent.

(II) Alternately, suppose we are given a decreasing sequence of natural numbers
〈m� : � < k∗∗〉 such that εm� ≥ m�+1 for � < k∗∗ − 1, and mk∗∗−1 > k∗∗.
Then for every A ⊆ G, |A| ≥ 1

εk∗∗ , there is A′ such that (a), (b)′, (c)′ hold,
where:
(b)′ |A′| = m� for some � < k∗∗,
(c)′ A′ is m�+1

m�
-excellent (so in particular, ε-excellent).

Proof. The strategy is as follows. Since the proof is essentially the same for cases
(I) and (II), we prove both simultaneously by giving the proof for case (I), and
pointing out when the cases differ. We will try to choose (Ak, Bk) by induction on
k ≤ k∗∗ such that:

(1) Ak = 〈Aη : η ∈ k2〉.
(2) Ak is a partition of A, or of a subset of A.
(3) A〈〉 = A.
(4) If k = m+ 1, ν ∈ m2, then Aν is the disjoint union of Aν�〈0〉, Aν�〈1〉.

(5) |Aη| ≥ εk|A| for η ∈ k2
or In case (II): |Aη| ≥ mk, with equality if desired.

(6) Bk = 〈Bν : ν ∈ k>2〉 (note that Bk is defined at stage k + 1).
(7) Each Bν ⊆ G is ε-good

or In case (II): Bν is mk+1

mk
-good.

(8) For all η ∈ k−12, a ∈ Aη�〈0〉 implies t(a,Bη) = 0 and a ∈ Aη�〈1〉 implies
t(a,Bη) = 1.

Note that t(a,Bη) is well defined in (8) as Bη is good. When k = 0, define
A〈〉 = A. Now suppose k = m+1. In case (I), suppose that for all η ∈ m2, Aη fails
to be ε-excellent. By definition, for each such η, there is some set Bη ⊂ G which is
ε-good and such that

|{a ∈ Aη : t(a,B) �= 1}| ≥ ε|Aη| and |{a ∈ Aη : t(a,B) �= 0}| ≥ ε|Aη|,
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again noting that these two sets partition Aη by goodness of Bη. So we can define
Aη�〈i〉 := {a ∈ Aη : t(a,Bη) = i} for i ∈ {0, 1}.

Meanwhile, in case (II), we are interested in whether Aη is mk+1

mk
-excellent rather

than ε-excellent; if not, there is an mk+1

mk
-good set Bη such that the displayed

equation holds with “≥ mk+1

mk
|Aη|” in place of “≥ ε|Aη|”. In this case, choose

Aη�〈i〉 to be a subset of {a ∈ Aη : t(a,Bη) �= i} of cardinality mk+1, for i = 0, 1.
This completes the inductive step, and satisfies conditions (1)-(8).
We now show that the induction cannot continue indefinitely for all k < k∗∗.

Suppose we have defined Aη for η ∈ k∗∗2 and Bν for ν ∈ k∗∗>2 satisfying (1)-(8).
For each η, since we assumed either (I) εk∗∗ |A| > 0 or (II) that |Aη| = m� ≥
mk∗∗−1 > k∗∗, we have that Aη �= ∅ so we may choose aη ∈ Aη. Furthermore, for
each ν ∈ k∗∗>2 and η ∈ k∗∗2 such that ν � η, we may define

Uν,η = {b ∈ Bν : (aηRb) �≡ t(aη, Bν)},
i.e. the set of elements in Bη which do not relate to aη in the expected way. By
assumption mk+1

mk
≤ ε, so in both cases (I) and (II), |Uν,η| < ε|Bν | by the goodness

of Bν . Hence for any such ν,∣∣∣⋃{Uν,η : ν � η ∈ k∗∗2}
∣∣∣ < 2k∗∗ε|Bν | < |Bν |

by the hypothesis on the size of ε. In particular, for each ν ∈ k∗∗>2 we may choose
an element bν ∈ Bν \

⋃
{Uν,η : ν � η ∈ k∗∗2}. Now the sequences 〈aη : η ∈ k∗∗2〉 and

〈bν : ν ∈ k∗∗>2〉 contradict Definition 2.11, i.e. the choice of k∗∗.
We have shown that for some k < k∗∗ the induction must stop. Hence for some

ν ∈ k2, Aν is ε-excellent [if in case (II), Aν is mk+1

mk
-excellent, so in particular

ε-excellent] and satisfies condition (5), which completes the proof. �
Remark 5.5. Note that the tree construction just given naturally tends away from
uniform size since we do not know when or where the induction will stop.

By definition, if A is ε-excellent and B is ζ-good, they will interact in a strongly
uniform way, namely, most of the elements of A will have the same average t(a,B) ∈
{0, 1} over B. Let us give this a name:

Claim 5.6. If A is ε-excellent and B is ζ-good, then the pair (A,B) is (ε, ζ)-uniform,
where we say that (A,B) is (ε, ζ)-uniform if for some truth value t = t(A,B) ∈
{0, 1} we have: for all but < ε|A| of the elements of A, t(A,B) = t(a,B).

In other words, for all but < ε|A| of the elements of |A|, for all but < ζ|B| of the
elements of B, (aRb) ≡ (t(A,B) = 1). When ε = ζ, we will just write ε-uniform.

Proof. By the definition of excellent. �
Remark 5.7. So in some ways “(A,B) is (ε, ε)-uniform” is stronger than being ε-
regular; see also Claim 5.17 below.

Discussion 5.8. At this point, we have a way to obtain ε-excellent subsets of any
given graph whose sizes vary along a fixed sequence. Below, we will extract a col-
lection of such sets as the first stage in obtaining a regularity lemma. However,
the goal is a partition into pieces of approximately equal size, which will require
an appropriate further division of the first-stage collection of ε-excellent sets. In
preparation, then, we now apply several facts from probability to prove that suf-
ficiently large ε-excellent sets can be equitably partitioned into a small number of
pieces all of which are ε′-excellent for ε′ close to ε.
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Fact 5.9. Assume p, q > 0. If |A| = n, B ⊂ A = p, m ≤ n, m
n ≥ q, A′ is a random

subset of A with exactly m elements, then

Prob

(
|A′ ∩B|
|A′| ∈

(
|B|
|A| − ζ,

|B|
|A| + ζ

))

can be modeled by a random variable which is asymptotically normally distributed.

Proof. That is, our hypergeometric distribution (sampling m elements from a set of
size n without replacement) will be asymptotically approximated by the binomial
distribution (sampling with replacement), and therefore by the normal distribution.
See Erdös and Rényi [2], p. 52, Feller [3], p. 172, Nicholson [14]. Note that in our
case m will remain relatively large as a fraction of n. �

Fact 5.10 (Vapnik and Chervonenkis, [20]). Let X be a set of events on which
a probability measure PX is defined. Let S be a collection of random events,
i.e. subsets of X, measurable w.r.t. PX . Each sample x1, . . . , x� and event A ∈ S

determines a relative frequency v
(�)
A of A in this sample. Let P (A) be the probability

of A and let π(�) = sup{|v(�)A − P (A)| : A ∈ S}.
For each A ∈ S and finite sample Xr = x1, . . . , xr of elements of X, A is said

to induce the subset of {x1, . . . , xr} consisting of those elements xi which belong
to A. The number of different subsamples of Xr induced by sets of S is denoted
ΔS(x1, . . . , xr). Define mS(r) = max{ΔS(x1, . . . , xr)}, where the maximum is
taken over all samples of size r.

Then a sufficient condition for the relative frequencies of events in S to converge
uniformly over S (in probability) to their corresponding probabilities, i.e. for it to
be true that for any ε, lim�→∞ Prob(π(�) > ε) = 0, is that there exists a finite k
such that mS(�) ≤ �k + 1 for all �.

Remark 5.11. The connection between the condition of Vapnik-Chervonenkis and
the independence property, defined in Remark 3.12 above, was observed and devel-
oped by Laskowski [10].

Fact 5.12 (Rate of the almost sure convergence). (1) ([20], p. 272) Given k
from the last paragraph of Fact 5.10, if � satisfies

� ≥ 16

ζ2

(
k log

16k

ζ2
− log

η

4

)
,

then in any sample of size at least �, with probability at least (1 − η),
the relative frequencies differ from their corresponding probabilities by an
amount less than ζ, simultaneously over the entire class of events.

(2) Bounds on the error of the normal approximation to the hypergeometric
distribution may be found in Nicholson [14], p. 474, Theorem 2.

Claim 5.13 (Random partitions of excellent sets). (1) For every ε, ζ there isN1

such that for all n > N1 = N1(ε, ζ), if A ⊂ G, |A| = n, A is ε-good,
and n ≥ m ≥ log log(n), if we randomly choose an m-element subset A′

from A, then almost surely A′ is (ε + ζ)-good. Moreover, we have that
b ∈ G =⇒ t(b, A′) = t(b, A).

(1A) That is, in part (1), for each ξ ∈ (0, 1) there is N2 = N2(ε, ζ, ξ) such that
the probability of failure is ≤ ξ.

(2) Similarly for “excellent” replacing “good”.
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(3) In particular, for all ε′ > ε and r ≥ 1 there exists N = N(ε, ε′, r) such that
if |A| = n > N , r divides n and A is ε-excellent, there exists a partition of
A into r disjoint pieces of equal size each of which is ε′-excellent. Note that
N(ε, ε′, r) increases with r.

Proof. (1) Call B ⊂ A an exceptional set if there is b ∈ G such that B = {a ∈ A :
aRb �≡ t(b, A)} and |B| ≥ εm. It suffices to show that almost surely A′ satisfies:
for all exceptional sets B

|A′ ∩B|
|A′| ∈

(
|B|
|A| − ζ,

|B|
|A| + ζ

)
.

By Fact 5.9, for n,m sufficiently large, we may approximate drawing a set of size
m by the sum of m independent, identically and normally distributed random
variables, where the probability of x ∈ B is just |B|/|A|. Since G has the non-
k∗-order property, Claim 2.6 in the case where G = A, A = A′ shows that the
Vapnik-Chervonenkis sufficient conditions (Fact 5.10) are satisfied. (Recall the
definition of an exceptional set from the first line of the proof.)

(1A) By Fact 5.9 and Fact 5.12.
(2) Follows by the “moreover” in the previous clause.
(3) Let ε be as given, ζ = ε′ − ε, and ξ = 1

r+1 . Let us verify that N = N2(ε, ζ, ξ)

suffices. First, randomly choose a function h : A → {0, . . . , r − 1} such that for all
s < r, |{a ∈ A : h(a) = s}| = n

r . Then each s < r induces a random choice of a

subset of A, since for each s < r we have h−1(s) ∈ [A]
n
r . Since h was random, for

each given s, each B ∈ [A]
n
r is equally probable. By part (1), for each s < t

1− ξ ≤ Prob{h−1(s) is (ε+ ζ)-excellent}

and therefore

1− rξ ≤ Prob{
∧
s<r

h−1(s) is (ε+ ζ)-excellent}.

But since 1 − rξ = 1 − r
r+1 > 0, there exists an h which works, i.e. an h such

that for each s < t, h−1(s) is (ε + ζ)-excellent. Since ε + ζ = ε′, this finishes the
proof. �

The next claim forms the core of the proof of Theorem 5.18. The statement
is laid out so as to make the strategy of construction clear (based on the claims
established so far). A less transparent, but more compact, list of the requirements in
this claim is summarized in Corollary 5.15. For the theorem, it remains to construct
an appropriate sequence 〈mi : i < k∗∗〉 which respects the various bounds collected
here, and to show that this can be done while keeping m∗∗ sufficiently large relative
to |A|.

Claim 5.14. Assume that ε < ε′ < 2−k∗∗ . Suppose that A ⊆ G, |A| = n.

(1) Let 〈mi : i < k∗∗〉 be a sequence of natural numbers such that mi+1 ≤ εmi

for i < k∗∗, and let m∗ := m0, m∗∗ := mk∗∗−1 ≥ k∗∗. Then there is A such
that:
(a) A = 〈Ai : i < j(∗)〉, for some j(∗) ≤ n

m∗∗
,

(b) for each i, Ai ⊆ A and |Ai| ∈ {m� : � < k∗∗},
(c) i �= j =⇒ Ai ∩ Aj = ∅,
(d) each Ai is ε-excellent,
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(e) hence if i �= j < j(∗), then the pair (Ai, Aj) is (ε, ε)-uniform,
(f) B := A \

⋃
{Ai : i < i(∗)} has < m∗ members.

(1A) Suppose further that:
(i) m∗∗|mk for each k < k∗∗,
(ii) mk∗∗−2 > N = N(ε, ε′, m∗

m∗∗
) (as in Claim 5.13),

(iii) log logm∗ ≤ m∗∗.
Then for some i(∗) with j(∗) ≤ i(∗) ≤ n

m∗∗
there is a further refinement of

the partition from (1) into i(∗) disjoint pieces (in slight abuse of notation
we will now use 〈Ai : i < i(∗)〉 to refer to this new partition) such that
for each i < i(∗), |Ai| = m∗∗. Furthermore, each of these new pieces Ai is
ε′-excellent.

(2) Let 〈Ai : i < i(∗)〉 be the partition into equally sized ε′-excellent pieces
from (1A). Then there exists a partition 〈Bi : i < i(∗)〉 of the remainder B,

allowing Bi = ∅ for some i (i.e.
⌊

|B|
i(∗)

⌋
may be 0) such that

|Bi| ∈
{⌊

|B|
i(∗)

⌋
,

⌊
|B|
i(∗)

⌋
+ 1

}
.

Let A′
i = Ai ∪Bi for i < i(∗). Then:

(a) 〈A′
i : i < i(∗)〉 is a partition of A,

(b) the sizes of the A′
i are almost equal, i.e. ||A′

i| − |A′
j || ≤ 1,

(c) if we let

ζ = max

{
ε′|Ai|+ |Bi|
|Ai|+ |Bi|

: i < i(∗)}
}

≤
ε′m∗∗ +

⌈
m∗
i(∗)

⌉

m∗∗ +
⌈

m∗
i(∗)

⌉ ,

then i �= j < i(∗) implies (A′
i, A

′
j) is (ζ, ζ)-uniform.

(3) If, moreover, m∗∗ > 1
ε′ and m∗ ≤ ε′n+1

1+ε′ , then ζ < 3ε′, where ζ is as in

(2)(c).

Proof. (1) Applying Claim 5.4 we try to choose a sequence of ε-excellent sets Ai,
each of size m� for some � < k∗∗, by induction on i from Ci := A\

⋃
j<iAj . We can

continue as long as |Ci| ≥ m∗. Note that condition (e) is immediate, for all pairs
(Ai, Aj) without exceptions, by Claim 5.6.

(1A) By Claim 5.13(3). Note that in the application below, we will build all
relevant sequences of ms to satisfy m∗∗ ≈ εk∗∗m∗ so that N = N(ε, ε′, ε−k∗∗) can
be computed, if desired, before the sequence is chosen.

(2) Immediate: the partition remains equitable because the Ai all have size m∗∗,
and ζ bounds the relative size of a “bad” subset of any given Ai.

(3) Given the assumption of an equitable partition from (2)(b), it would suffice
to show that for every i, |Bi| ≤ 2ε′|Ai|, as then we would have

ε′|Ai|+ |Bi|
|Ai|+ |Bi|

≤ ε′|Ai|+ 2ε′|Ai|
|Ai|

= 3ε′.

We verify that the assumption on m∗ is enough to give this bound. By definition,
as the Bis arise from an equitable partition of the remainder B, |Bi| ≤ m∗−1

i(∗) + 1,

where i(∗) is the number of components from the partition (1A), by (2) above.
Since the components Ai from (1A) all have size m∗∗, and |B| ≤ m∗ − 1, we can
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bound i(∗) by n
m∗∗

≥ i(∗) ≥ n−m∗+1
m∗∗

> n−m∗
m∗∗

. Thus

|Bi| − 1 ≤ m∗ − 1

i(∗) < (m∗ − 1)

(
n−m∗
m∗∗

)−1

and so
|Bi| − 1

|Ai|
<

(
m∗ − 1

m∗∗

)(
n−m∗
m∗∗

)−1

=
m∗ − 1

n−m∗
.

We had assumed that m∗ ≤ ε′n+1
1+ε′ , and so:

m∗(1 + ε′) ≤ ε′n+ 1,

m∗ − 1 ≤ (n−m∗)ε
′,

m∗ − 1

n−m∗
≤ ε′.

We had also assumed that 1
ε′ < m∗∗, i.e.

1
m∗∗

< ε′. Since |Ai| = m∗∗ (so |Bi|−1
|Ai| =

|Bi|
|Ai| −

1
m∗∗

), we conclude that

|Bi|
|Ai|

<
m∗ − 1

n−m∗
+

1

m∗∗
< ε′ + ε′ = 2ε′,

which completes the proof. �

Corollary 5.15. To summarize the requirements of Claim 5.14, suppose that k∗
and therefore a bound for k∗∗ are fixed in advance, G is a graph with the non-k∗-
order property, and that we are given:

(1) ε1, ε3 ∈ R such that 0 < ε3 < ε2 := ε1
3 < ε1 < 2−k∗∗ .

(2) A sequence of positive integers 〈m� : � < k∗∗〉 such that:
(a) m�+1 < ε3m� for each � < k∗∗,
(b) m∗∗|m� for each � < k∗∗,
(c) log logm0 ≤ m∗∗,
(d) m∗∗ := mk∗∗−1 ≥ max(k∗∗,

1
ε2
),

(e) mk∗∗−2 > N(ε3, ε2,
m0

m∗∗
), from Claim 5.13(3).

(3) A ⊆ G, |A| = n, where n satisfies m0 ≤ ε2n+1
1+ε2

.

Then there exists i(∗) ≤ n
m∗∗

and a partition of A into disjoint pieces 〈Ai : i < i(∗)〉
such that:

• for all i < j < i(∗), ||Ai| − |Aj || ≤ 1,
• each Ai is ε1-excellent,
• each pair (Ai, Aj) is ε1-uniform.

Proof. By Claim 5.14, using ε = ε3, ε
′ = ε2 and 3ε′ = ε1; note that the partition

we obtain was called 〈A′
i : i < i(∗)〉 in Claim 5.14. �

Discussion 5.16. In practice, we are given ε = ε1, and then choose ε3 to run the
proof of Corollary 5.15. The role of the respective εs appears in conditions (2)(a)
and (2)(e) of this corollary. On one hand, ε3 determines the rate of decrease of the
sequence of ms, thus the size of m∗∗, and ultimately the number of components in
the partition; so one would usually want to choose ε3 close to ε1 = ε. On the other
hand as ε3 approaches ε1, the lower bound on the size of the graph A may rise, via
the N from (2)(e), which comes from Claim 5.13(3).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



REGULARITY LEMMAS FOR STABLE GRAPHS 1581

Before stating the main result of this section, Theorem 5.18, we consider more
explicitly the relation of ε-uniformity to ε-regularity. As the following calculation
shows, η-uniform pairs will be ρ-regular when ρ (the parameter for a lower bound
on the size of a subset chosen) is sufficiently large relative to η (the parameter
for an upper bound on the number of non-uniform edges). As mentioned above,
uniformity is somewhat more precise in our context for large enough graphs, as the
densities of sufficiently large ε-regular pairs will be near 0 or 1.

Claim 5.17. Suppose that ε, ζ, ξ ∈ (0, 1
2 ), and the pair (A,B) is (ε, ζ)-uniform. By

uniformity, there is a truth value t(A,B) ∈ {0, 1}. Let Z := {(a, b) ∈ (A × B) :
aRb �≡ t} and likewise let Z ′ := {(a, b) ∈ (A′ × B′) : aRb �≡ t}. Suppose also that

A′ ⊆ A, |A′| ≥ ξ|A|, B′ ⊆ B, |B′| ≥ ξ|B|, and ε+ζ
ξ < 1

2 . Then:

(1) |Z|
|A||B| < ε+ ζ,

(2) |Z′|
|A′||B′| <

ε+ζ
ξ .

In particular, if the pair (A,B) is ε0-uniform for ε0 ≤ ε2

2 , then:

(a) (A,B) is ε-regular, and

(b) if A′∈ [A]≥ε|A| and B′∈ [B]≥ε|B|, then
(
d(A′, B′) < ε

)
∨
(
d(A′, B′) ≥ 1− ε

)
.

Proof. Let A′, B′ be given. For a ∈ A, let Wa = {b ∈ B : aRb �≡ t(A,B)}, and let
U = {a ∈ A : |Wa| > ε|A|}. So |U| < ε|A|, and a ∈ A \ U =⇒ |Wa| < ζ|B|. Since

Z ⊆ U ×B ∪
⋃

{(a, b) ∈ A×B : b ∈ Wa, a /∈ U},

Z ′ ⊆ U ×B′ ∪
⋃

{(a, b) ∈ A′ ×B : b ∈ Wa, a /∈ U},

we can bound the cardinalities as follows:

|Z| ≤ |U| · |B|+ |A| ·max{|Wa| : a ∈ U},
|Z|

|A×B| <
ε|A|
|A| +

ζ|B|
|B| = ε+ ζ

and likewise

|Z|′
|A′ ×B′| =

|U||B′|+ |A′| ·max{|Wa| : a ∈ U}
|A′||B′|

<
ε|A|ξ|B|+ ξ|A|ζ|B|

|A′||B′| · |A||B|
|A||B|

= (εξ + ξζ) · |A||B|
|A′||B′| =

ξ(ε+ ζ)

ξ2
=

ε+ ζ

ξ

by the assumption on the size of A′, B′. This completes the proof of (1) and (2).

For the “in particular” clause, let d(X,Y ) = |R∩(X×Y )|
|X||Y | be the usual edge density.

We have shown that if t(A,B) = 1, d(A,B) > 1− (ε+ ζ) while d(A′, B′) > 1− ε+ζ
ξ ,

and likewise if d(A,B) = 0, d(A,B) < (ε + ζ) while d(A′, B′) < ε+ζ
ξ . Thus the

difference in density |d(A,B) − d(A′, B′)| is bounded by ε+ζ
ξ < 1

2 , and moreover

d(A′, B′) differs from either 0 or 1 by at most ε+ζ
ξ .
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Now if ε, ζ are equal and ≤ ξ2

2 , then the hypothesis ξ ∈ (0, 1
2 ) guarantees that

ε+ζ
ξ < 1

2 is satisfied. Thus when (A,B) is (ε0, ε0)-uniform and ε is such that

|A′| ≥ ε|A|, |B′| ≥ ε|B| where ε0 ≤ ε2

2 and ε < 1
2 , then

ε0+ε0
ε is bounded by ε2

ε = ε,
which completes the proof. �

We now give the main result of this section. Recall the definitions of non-k∗-
order property (Definition 2.3), k∗∗ (Definition 2.11), ε-excellent (Definition 5.2),
and ε-uniform (Claim 5.6).

Theorem 5.18. Let k∗ and therefore a bound for k∗∗ be given. Then for all ε > 0
there exists m = m(ε, k∗) and N = N(ε, k∗) such that for every finite graph G
with the non-k∗-order property and every A ⊆ G with |A| ≥ N , there is a partition
〈Ai : i < i(∗) ≤ m〉 of A into at most m pieces, where:

(1) for all i, j < i(∗), ||Ai| − |Aj || ≤ 1,
(2) each of the pieces Ai is ε-excellent,
(3) all of the pairs (Ai, Aj) are (ε, ε)-uniform,

(4) if ε < 1
2k∗∗ , then m ≤ (3 + ε)

(
8
ε

)k∗∗ .

Proof. Without loss of generality, assume ε < 1
2k∗∗ . (This is necessary for Claim

5.15, which uses Claim 5.4.)
We proceed in stages. Let n = |A|. When hypotheses are made about the

minimum size of n, these will be labeled (Hx) and collected in Step 5.

Step 0: Fixing epsilons. When applying Corollary 5.15 we will use: ε3 = ε
4 , ε2 = ε

3 ,
and ε1 = ε.

Step 1: Fixing q. Given ε3, let q =
⌈

1
ε3

⌉
∈ N. It follows that 2

ε3
≥ q ≥ 1

ε3
and thus

ε3
2 ≤ 1

q ≤ ε3. In particular, any sequence 〈m� : � < k∗∗〉 such that m∗∗ := mk∗∗−1 ∈
N and m� = qm�+1 for all � < k∗∗ will satisfy m�+1 = 1

qm� ≤ ε3m�, m� ∈ N for

each � < k∗∗, and m∗∗|m� for all � < k∗∗.

Step 2: Choosing m∗∗. In this step, the aim is to build a sequence 〈m� : � < k∗∗〉
whose elements are as large as possible subject to the constraints (2)(a),(b),(d) and
(3) of Corollary 5.15. In keeping with prior notation, let m∗ := m0. Recalling
ε2 = ε

3 from Step 0, Condition 5.15(3) asks that

m∗ ≤
ε
3n+ 1

1 + ε
3

, so it suffices to choose m∗ ≤
ε
3n

1 + ε
3

=
εn

3 + ε
.

Let (H1) be the assumption that n is not too small (see Step 5). Then there exists
c ∈ N, c > k∗∗ such that

qk∗∗−1c ∈
(

εn

3 + ε
− qk∗∗−1,

εn

3 + ε

]
.

Thus setting m∗∗ := max{c ∈ N : c > k∗∗, c > 1
ε2
, qk∗∗−1c ≤ εn

3+ε} is well
defined, and m∗∗ will belong to the half-open interval just given. Having defined
m∗∗, for each � < k∗∗ let m� := qk∗∗−�−1m∗∗. By Step 1, the m� are integer
valued and satisfy the required conditions on divisibility and size. By choice of c,
m∗ = qk∗∗−1m∗∗ satisfies the inequality Corollary 5.15(3).
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We have defined a sequence 〈m� : � < k∗∗〉 of positive integers which satisfies
conditions (2)(a),(b),(d) and (3) of Corollary 5.15. We fix this sequence for the
remainder of the proof, and proceed to calculate various bounds in terms of it.

Step 3: Bounding m∗∗. By the definition of m∗∗ in Step 2, εn
3+ε − qk∗∗−1 <

qk∗∗−1m∗∗, so assuming n is not too small [again (H1) in Step 5],

εn

3 + ε
(qk∗∗−1)−1 − 1 < m∗∗ =⇒ 1

2
· εn

3 + ε
(qk∗∗−1)−1 ≤ m∗∗.

Step 4: Bounding n
m∗∗

. Applying Step 3, an inequality from Step 1, and the defi-
nition of ε3,

n

m∗∗
≤ n

1
2

(
εn
3+ε

)(
1

qk∗∗−1

) =
2(3 + ε)qk∗∗−1

ε
≤ 2(3 + ε)

ε

(
2

ε3

)k∗∗−1

= (3 + ε)

(
2

ε

)(
2
ε
4

)k∗∗−1

≤ (3 + ε)

(
8

ε

)k∗∗

.

Note that a choice of ε3 closer to ε2 would slightly improve this bound, at the cost
of increasing the threshold size of n in (H3) of Step 5.

Step 5: Requirements for the lower bound on n = |A|. We collect the necessary
hypotheses on the size of the graph:

(H1) n is large enough to allow for the choice of m∗ in the interval from Step 2
while preserving m∗∗ > k∗∗, m∗∗ > 1

ε2
:

it suffices that n > (k∗∗ + 1)qk∗∗−1
(
3+ε
ε

)
, which ensures εn

3+ε − qk∗∗−1 >

k∗∗q
k∗∗−1

and also ensures that n > 2qk∗∗−1
(
3+ε
ε

)
, for the calculation in Step 3,

(H2) n is large enough for the sequence 〈m� : � < k∗∗〉 to satisfy log logm∗ ≤ m∗∗:
it suffices that n ≥ (log log qk∗∗−1)(qk∗∗−1)

(
3+ε
ε

)
,

(H3) n is large enough for mk∗∗−2 to satisfy condition (2)(e) of Corollary 5.15:
it suffices that n ≥ N( ε3 ,

ε
2 , q

k∗∗−1) ·
(
3+ε
ε

)
· qk∗∗−2, where N(·, ·, ·) is from

Claim 5.13 and incorporates the bounds from Fact 5.12.

Under these assumptions the sequence constructed in Step 2 will also satisfy
conditions (2)(c),(e) of Corollary 5.15. By Step 0 and Step 2, all the hypotheses of
that corollary are satisfied.

Step 6: Obtaining the partition. Assuming n is sufficiently large, as described in
Step 5, we have constructed a sequence 〈m� : � < k∗∗〉 so that the graph A and
the constructed sequence satisfy the hypotheses of Corollary 5.15. Thus we obtain
a partition of A satisfying (1),(2),(3) of the theorem. Condition (4) follows from
Step 4, which completes the proof. �

Conclusion 5.19. For every k∗ ∈ N and ε ∈ (0, 12 ) there are N,m such that for
every finite graph G with the non-k∗-order property and every A ⊆ G with |A| ≥ N ,
there is � ≤ m and a partition A = 〈Ai : i < �〉 such that each Ai is ε-excellent,
and for every 0 ≤ i < j < �,

• ||Ai| − |Aj || ≤ 1,
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• (Ai, Aj) is ε-regular, and moreover if Bi ∈ [Ai]
≥ε|Ai| and Bj ∈ [Aj ]

≥ε|Aj |,
then (

d(Bi, Bj) < ε
)
∨
(
d(Bi, Bj) ≥ 1− ε

)
,

• if ε < 1
2k∗∗ , then m ≤ (3 + ε2

2 )
(
16
ε2

)k∗∗
.

Proof. This is a slight weakening of Theorem 5.18: by applying that Theorem to ε2

2 ,
we may replace “ε-uniform”, as defined in Claim 5.6, by the more familiar ε-regular
via Claim 5.17. For ε-excellent, see Definition 5.2. �
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[8] J. Komlós and M. Simonovits, Szemerédi’s regularity lemma and its applications in graph
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