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Abstract The influence of attention on the dynamical

structure of postural sway was examined in 30 healthy

young adults by manipulating the focus of attention. In line

with the proposed direct relation between the amount of

attention invested in postural control and regularity of

center-of-pressure (COP) time series, we hypothesized that:

(1) increasing cognitive involvement in postural control

(i.e., creating an internal focus by increasing task difficulty

through visual deprivation) increases COP regularity, and

(2) withdrawing attention from postural control (i.e., cre-

ating an external focus by performing a cognitive dual task)

decreases COP regularity. We quantified COP dynamics in

terms of sample entropy (regularity), standard deviation

(variability), sway-path length of the normalized posturo-

gram (curviness), largest Lyapunov exponent (local stabil-

ity), correlation dimension (dimensionality) and scaling

exponent (scaling behavior). Consistent with hypothesis 1,

standing with eyes closed significantly increased COP

regularity. Furthermore, variability increased and local

stability decreased, implying ineffective postural control.

Conversely, and in line with hypothesis 2, performing a

cognitive dual task while standing with eyes closed led to

greater irregularity and smaller variability, suggesting an

increase in the ‘‘efficiency, or ‘‘automaticity’’ of postural

control’’. In conclusion, these findings not only indicate that

regularity of COP trajectories is positively related to the

amount of attention invested in postural control, but also

substantiate that in certain situations an increased internal

focus may in fact be detrimental to postural control.
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Introduction

By now, it is well established that maintaining and con-

trolling an upright posture requires a certain amount of

attention (for a review see Woollacott and Shumway-Cook

2002). The relation between attentional resources and the

processing of information from somatosensory, visual, and

vestibular systems is readily apparent in cases of reduced

or conflicting sensory information (e.g., Redfern et al.

2001, 2004; Shumway-Cook and Woollacott 2000; Teas-

dale and Simoneau 2001). On the one hand, the degree of

attention, or cognitive involvement, required for control-

ling posture increases with task difficulty. This has been

(indirectly) illustrated by, for example, Lajoie et al. (1993)

and Vuillerme and Nougier (2004), who both found that the

reaction time of a verbal response to an auditory stimulus

increased with the difficulty of the postural task. On the

other hand, the amount of attention required to perform a

secondary suprapostural task is known to influence posture

(e.g., Balasubramaniam et al. 2000; Huxhold et al. 2006;

Pellecchia 2003; Riley et al. 2003). The dependency of

posture on attention is even more prominent in the presence

of pathology or aging, when both peripheral and central

changes occur that decrease the (physical) capability nee-

ded to maintain balance during standing or walking (e.g.,

Brown et al. 1999; Lindenberger et al. 2000; Marchese
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et al. 2003; Rankin et al. 2000; Redfern et al. 2004). In

balance-impaired elderly individuals, for example, the

performance of a secondary cognitive task (i.e., dual-task

paradigm) may promote postural instability and even falls

(Barra et al. 2006; Brauer et al. 2001). Hence, the amount

of attention required for maintaining and controlling up-

right posture is indicative of the degree of ‘‘automaticity’’

of postural control and, for that reason, has been advocated

and used as an important tool in clinically oriented studies

(cf., Geurts et al. 1991; Melzer et al. 2001).

Center-of-pressure (COP) fluctuations measured while

standing on a force platform provide a complex output

signal of the postural control system in which various

pertinent cognitive, perceptual, and motor processes are

reflected. Recently, COP measures pertaining to the

dynamical structure of COP fluctuations have helped to

understand the inherent complexity of the postural control

system and its constituent processes (e.g., Baratto et al.

2002; Collins and De Luca 1993; Newell et al. 1993;

Pascolo et al. 2005; Peterka 2000; Yamada 1995a; cf.,

Riley and Turvey 2002 for a review). Inspired by this

development in modern posturography, Roerdink et al.

(2006)—in a study on the functional recovery of posture in

stroke patients—proposed a direct relation between the

amount of attention invested in postural control and the

regularity of COP fluctuations. COP trajectories were more

regular (as indexed by reduced sample entropy) in stroke

patients than in healthy elderly and became less regular

when performing a secondary cognitive task while stand-

ing. These results were interpreted to imply that postural

sway regularity is positively correlated with the degree of

cognitive involvement in postural control. Interestingly, the

regularity of the COP fluctuations decreased with rehabil-

itation, whereas postural stability (as indexed by the largest

Lyapunov exponent) increased, suggesting that the re-

quired degree of cognitive involvement in postural control

decreased during the course of rehabilitation. Hence, these

progressively more irregular COP fluctuations (as indexed

by an increase in sample entropy) may be interpreted as an

increase in the efficiency or ‘‘automaticity’’ of postural

control. This interpretation is in line with physiological

studies showing that a decrease in ‘‘complexity’’ or

‘‘irregularity’’ of a physiological time-series is indicative

of a decrease in healthiness or effectiveness of the physi-

ological control system (cf., Goldberger et al. 2002), a

phenomenon known as ‘‘dynamical diseases’’ (cf. Belair

et al. 1995). In other words, increased COP regularity may

be explained as an indication of an increasingly ineffective

postural control strategy.

The aim of the present study was to examine the role of

attention in the regulation of posture. To this end, the

amount of attention invested in postural control was

manipulated experimentally in a large group of young

healthy adults. In particular, we increased the difficulty of

the postural task through visual deprivation under the

assumption that an increase in task difficulty is associated

with an increase in cognitive involvement in postural

control, creating a so-called internal attentional focus (cf.,

Andersson et al. 1998; Teasdale et al. 1993; Teasdale and

Simoneau 2001). In contrast, we used a concurrent atten-

tion demanding cognitive task in order to withdraw atten-

tion from postural control, creating an external focus of

attention (cf., Huxhold et al. 2006). These manipulations of

attention allowed us to examine the proposed direct rela-

tion between COP regularity and the amount of attention

invested in postural control (Roerdink et al. 2006). In line

with this relation, we hypothesized that: (1) increasing

postural task difficulty (i.e., by standing with eyes closed,

creating an internal focus) increases the cognitive

involvement in postural control and hence the regularity of

COP fluctuations, and (2) reduced attention to postural

control (i.e., by performing a cognitive dual task, creating

an external focus) decreases the regularity of COP fluctu-

ations. In addition, based on the suggestion that posture is

mainly controlled in the direction of the largest postural

sway (Roerdink et al. 2006) and the common finding that in

healthy young adults postural sway is largest in the sagittal

plane relative to the frontal plane (e.g., Gatev et al. 1999;

Winter et al. 1998), we expected COP regularity to be

largest in the sagittal plane.

Regularity of COP trajectories was quantified by the

sample entropy (Richman and Moorman 2000; Roerdink

et al. 2006). In order to examine the structure of COP

fluctuations in more detail, we further used a combination

of more traditional (i.e., based on summary statistics) and

dynamical measures that are all defined operationally in

terms of readily interpretable features of motor control (see

also Table 1): standard deviation of COP time-series

(indexing variability or the amount of postural sway),

sway-path length of the normalized posturogram (indexing

the amount of twisting and turning of the COP trajectory),

largest Lyapunov exponent (Rosenstein et al. 1993;

indexing local stability), correlation dimension (Grassber-

ger and Procaccia 1983; indexing the number of active,

dynamical degrees of freedom involved in postural control

and hence its dimensionality, e.g., Kay 1988) and the

scaling exponent (e.g., Peng et al. 1995; indexing long-

range correlations in COP time-series). Based on previous

research, we expected visual deprivation to decrease local

stability and to increase variability of COP time-series (cf.,

Roerdink et al. 2006; Woollacott and Shumway-Cook

2002; Yardley et al. 1999a). Moreover, we anticipated the

attention manipulations to induce adjustments in the

dynamical structure of postural control leading to changes

in scaling exponent, sway-path length and dimensionality

of COP fluctuations.
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Methods

Participants and procedures

A total of 30 healthy young adults (10 males, 20 females;

mean age = 24 years, range = 19–30 years), without

known motor impairments or movement-related disorders,

volunteered to participate in the experiment. Participants

stood barefoot on a 1 · 1 m custom-made strain gauge

force plate1 with their arms hanging relaxed alongside their

body. The medial sides of the heels were separated by

about 8 cm and each foot was placed with the toes outward

at a 10� angle from the sagittal midline (i.e., standard

Romberg position). In order to examine the role of atten-

tion in the regulation of posture we carried out two

manipulations. On the one hand, we increased the postural

task difficulty by inviting participants to stand with eyes

closed, while on the other hand, we withdrew attention

from postural control by inviting them to perform a cog-

nitive dual task. In particular, the participants were invited

to stand upright with (1) eyes open (EO-ST), (2) eyes

closed (EC-ST), (3) eyes open while performing a dual task

(EO-DT) and (4) eyes closed while performing a dual task

(EC-DT). The dual task consisted of uttering backwards

names read out aloud by the investigator (e.g., ‘‘Simon’’

had to be repeated as ‘‘nomis’’). The sole aim of this

cognitive dual task was to withdraw attention from the

postural task. Therefore, the participants were instructed to

perform the task to the best of their ability. No feedback on

the accuracy with which they performed this task was

provided. Each participant performed the four task condi-

tions in random order and once in reverse order, resulting

in a total of eight recordings. COP trajectories were col-

lected for 35 s at a sampling rate of 100 Hz.

After the local ethics committee had approved the study,

all participants gave their informed consent prior to their

participation.

Data analysis

In order to examine whether posture is actively controlled in

the direction of largest postural sway (Roerdink et al. 2006),

we analyzed both the registered x (mediolateral ML) and y

(anterioposterior AP) COP time-series. After omitting the

first 5 s of each recording, leaving 30 s of data for further

analyses (i.e., 3,000 samples), the time-series were bi-

directionally filtered (second-order low-pass Butterworth

filter, cut-off frequency of 12.5 Hz) to eliminate low

amplitude measurement noise.2 First, we calculated the

conventional standard deviation r of x and y COP trajectories

to quantify the variability, or amount, of postural sway.

Subsequently, we normalized the x and y trajectories to unit

variance (i.e., by dividing the time-series in question by their

respective standard deviation) and calculated the sway path

defined as the length of the COP trajectory traveled per

second. The applied normalization procedure enabled us to

determine the sway path in the normalized posturogram,

abbreviated as SPn, providing a scale-independent measure

of the amount of twisting and turning of the COP trajectory.

Apart from these summary statistics of postural sway

(i.e., SPn and r), which by definition ignore the temporal

structure of the COP time-series, we assessed COP

dynamics by means of sample entropy, largest Lyapunov

exponent, correlation dimension and scaling exponent,

which will be briefly explained in the following (for a more

Table 1 Abbreviations and

meaning of interest of the

calculated COP measures

Variable Meaning of interest

Sample entropy, SEn Negatively related with the regularity of COP trajectory

Standard deviation, r (mm) Positively related with the variability of COP trajectory

Sway-path length, SPn (s–1) Positively related with the curviness of COP trajectory

Largest Lyapunov exponent, kmax Negatively related with the local stability of COP trajectory

Dimensionality, D2 Positively related with the number of active control variables

Scaling exponent, a Long-range correlations:

a = 0.5 for uncorrelated data (i.e., white noise),

a = 1.5 for ‘‘Brown noise’’, the integration of white noise

1 The measuring range of the amplifier was –10 V to +10 V, and the

signals from the amplifiers were digitized into a 12-bit signal by an

AD converter (NI PCi 60405, National Instruments, Austin, TX,

USA). The resolution was 0.28 N/bit. Calibration tests performed on

the custom-made force plate showed a maximal systematic error of

3 mm along both x and y axis and a resonance frequency along the z
axis of 30 Hz. In addition, experimental noise introduced variations

that were less than 0.08 kg in magnitude in the measured test mass

(i.e., 25 kg recorded for 5 s on eight different days). The random error

was smaller than 0.3 mm along both x and y axis, as determined by

calculating and averaging the standard deviation of all recordings of

each participant after high-pass filtering (cut-off frequency of

12.5 Hz).

2 Though filtering may affect subtle nuances of a nonlinear structure,

an area of concern that is in general lacking throughout the literature,

it must be emphasized that the potential effect of filtering will be

limited given that 95% of the power of COP time-series is located

well below 5 Hz (e.g., Dozza et al. 2005; Maurer and Peterka 2005;

Rocchi et al. 2002).
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extensive description we refer to Roerdink et al. (2006) and

references therein). Table 1 presents the six different

measures and their interpretation.

Sample entropy, SEn

Healthy physiological systems are often characterized by

an irregular and complex type of variability, whereas dis-

ease or aging is often associated with greater regularity and

less complexity (cf., Goldberger 1996; Goldberger et al.

2002; Pincus et al. 1991). A method to quantify the regu-

larity of time-series is the sample entropy analysis (Lake

et al. 2002; Richman and Moorman 2000). Sample entropy

indexes the regularity of a given time-series, and is used to

analyze complex stochastic systems that (by definition)

include both deterministic and random processes (Pincus

1991). Specifically, sample entropy calculates the proba-

bility that a sequence of data points, having repeated itself

within a tolerance r for a window length M, will also repeat

itself for M + 1 points, without allowing self-matches (see

Lake et al. 2002; Richman and Moorman 2000).3 Smaller

sample entropy values are associated with greater regu-

larity. In the present study, a decrease in sample entropy

(i.e., more regular sway fluctuations) was interpreted as a

decrease in the effectiveness of postural control.

Largest Lyapunov exponent, kmax

The largest Lyapunov exponent4 provides a measure of the

local stability of a dynamical system (e.g., Abarbanel et al.

1996), i.e., the system’s sensitivity to initial conditions or

its resistance to small internal perturbations, such as

the natural fluctuations that occur while maintaining an

upright stance. It quantifies the exponential divergence or

convergence of initially nearby trajectories in state space as

time progresses (e.g., Rosenstein et al. 1993). If nearby

points diverge, they produce instability. The exponent kmax

indexes this instability: positive values of kmax indicate

either the presence of deterministic chaos (i.e., a form of

variability that is brought about by an underlying lawful

nonlinear dynamical structure) or complete randomness

(i.e., noise), implying that nearby points diverge rapidly,

reflecting local instability and lack of predictability. In

order to distinguish a deterministic component from gen-

uine randomness, it is necessary to validate results against

surrogate data (cf., Theiler et al. 1992).

Dimensionality, D2

The dimensionality of all COP time-series was calculated

using the correlation dimension algorithm of Grassberger

and Procaccia (1983).5 The correlation dimension provides

an index of the number of independent degrees of freedom

(equations of motion) that are required to reproduce the

time evolutionary properties of the COP time-series. Note

that this analysis of the dynamical degrees of freedom is

different from the analysis of the (mechanical) degrees of

freedom of the joints as commonly applied in the study of

motor control, and that no straightforward or uniform

relation exists between the number of component degrees

of freedom in motion and the dimension of the organiza-

tional dynamic in controlling those components (Newell

and Vaillancourt 2001).

Scaling exponent, a

In order to determine whether the measured COP time-series

were characterized by the presence of long-range correla-

tions, we applied a fractal analysis method for biological

time-series called detrended fluctuation (DFA) analysis

(Peng et al. 1995).6 The scaling exponent a as determined by3 We selected window length M to be 3 (Pincus and Goldberger

1994). An optimal value for r was calculated according to a procedure

described by Lake et al. (2002). In line with, e.g., Lake et al. (2002),

the time-series were first normalized to unit variance. We performed

these calculations using software from PhysioNet (Goldberger et al.

2000).
4 The largest Lyapunov exponent kmax was defined as the average

exponential divergence d(t) at time t of initially close state-space

trajectories, dðtÞ / Cekmax t; where C is a constant that normalizes the

initial separation (e.g., Rosenstein et al. 1993). To calculate the

largest Lyapunov exponent, the embedding dimension m, as deter-

mined for the calculation of D2 (i.e., m > 2dm + 1) was used. Dis-

tances between neighboring trajectories in state space were calculated

as a function of time, i.e., j · Dt = 3 s, and then averaged over all

original pairs of nearest neighbors i. Finally, using a least-squares fit

to the ‘‘average’’ line defined by yðjÞ ¼ 1
Dt

1
N

PN

i¼1

ln diðjÞ (where Dt is

the sampling period, and di(j) is the distance between the i-th pair of

nearest neighbors after j discrete time steps, i.e., j · Dt = 3 s), kmax

was estimated from its slope after fitting a range from j · Dt = 0 to

0.75 s (Rosenstein et al. 1993).

5 Note that after plotting the modified correlation sum against r (i.e., a

distance on a log scale) on a logarithmic scale, its linear slopes dm

were estimated over a certain interval covering the most linear seg-

ments of the logarithmic plot of the modified correlation sum (i.e.,

between the distance r capturing 0.5% of the pairs of points and the

distance r capturing 75% of the pairs of points). Moreover, the

dimension D2 was estimated when the slopes dm saturated with

increasing embedding dimension m, satisfying the condition

m > 2dm + 1. If this condition was fulfilled, then D2 was considered a

reliable estimate for a given embedding dimension. See also Roerdink

et al. (2006).
6 For the calculation of the scaling exponent a we followed the

procedure described in Roerdink et al. (2006) without transforming

the calculated a values to Hurst exponents HDFA. Note that in

Roerdink et al. (2006) this transformation was based on an incorrect

transformation rule. Fortunately, however, as the applied transfor-

mation was linear, it only affected the mean values of the reported

scaling exponents and not the statistical results over experimental

conditions.
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this method indicates the presence or absence of (long-

range) correlations in the COP trajectories, as defined by

Peng et al. (1995). For uncorrelated data, (e.g. white noise) a
= 0.5. An a greater than 0.5 and less than or equal to 1.0

indicates persistent long-range power-law correlations. In

contrast, 0 < a < 0.5 indicates a different type of power-law

correlation such that large and small values of the time series

are likely to alternate. For a > 1 correlations exist but cease

to be of a power-law form; a = 1.5 indicates Brown noise,

i.e., integrated white noise. The scaling exponent a can also

be viewed as an indicator that describes the roughness of the

time series: the larger the value of a, the ‘‘smoother’’ the

time series (Peng et al. 1995).

Surrogate analysis

To test for spurious effects and to distinguish between

deterministic features and randomness, the scaling expo-

nents, dimension estimates, Lyapunov exponents and en-

tropy values were also computed for surrogate data (Theiler

et al. 1992). In particular, we generated both time- and

phase-randomized surrogate data of the filtered COP time-

series (Fig. 1). In time-randomized surrogate data, the dis-

tribution of the original data is being preserved (i.e., mean,

variance, etc. are unaltered), whereas the temporal corre-

lations in the COP time-series are destroyed. The absence of

temporal correlations will result in a scaling exponent a
close to 0.5 and very large values for dimension and sample

entropy. Phase-randomized surrogate data are obtained by

randomizing the data’s Fourier phases. In contrast to time-

randomization, this procedure does not alter the spectral

power distribution and preserves the data’s auto-correlation

function. Consequently, scaling exponents of phase-ran-

domized and original data should match, whereas estimates

of correlation dimension and sample entropy should be

largely increased in the surrogate data.

Statistical analysis

For all dependent variables, the first and second trials were

averaged. To test for differences between AP and ML COP

measures and to examine the effect of the different

experimental tasks, we used a repeated measures analysis

of variance (ANOVA) design with within-subject factors

vision (2 levels: standing with eyes open EO, and standing

with eyes closed EC), dual task (2 levels: standing without

cognitive dual task performance, i.e., single task, ST, and

standing with cognitive dual task performance, DT), and

plane (2 levels: sagittal and frontal plane).7 Subsequently,

we tested for differences between surrogate and original

data using a design involving a within-subject factor sur-

rogate (3 levels: original data and time- and phase-ran-

domized surrogate data). To assess the strength of the

(main and interaction) effects, we determined the eta

squared (g2), a commonly used measure of effect size in

AVOVAs, reflecting the proportion of variance in the

dependent variable that is attributable to each effect. Sub-

sequently, g2 was converted into Cohen’s f according to:

f ¼
ffiffiffiffiffiffiffiffi
g2

1�g2

q
: An effect size (f) of > 0.4 was considered to

reflect a strong effect (Cohen 1988). The analyses were

performed using SPSS (SPSS, Inc., Chicago, IL, USA).

Results

The result section is organized as follows. We first report

possible differences in the dependent variables between the

eyes open and eyes closed conditions (i.e., main effect of

vision, hypothesis 1). Second, we describe the effect of

experimentally withdrawing attention from postural control

by comparing single task and dual task conditions (i.e.,

main effect of dual task, hypothesis 2). Third, we report

whether significant vision · dual task interaction effects

were present. Finally, we present the effects of plane,

which may reveal possible directional differences in con-

trol. In this context, we also report the effects of random-

ization on the dependent variables to ensure that the

observed changes in the dynamics of COP trajectories were

genuine effects.

Fig. 1 An example of the surrogate analysis, as applied to all time-

series. Surrogate data of a measured COP trajectory (upper panel)
were constructed by randomizing the Fourier phase (middle panel)
and the temporal order (lower panel)

7 Note that for the dependent variable sway path-length the within-

subject factor plane was redundant and, accordingly, left out of the

design.
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Table 2 presents the results of the vision · dual task

ANOVA for the six dependent posturographic measures

(i.e., interindividual means corresponding to the main ef-

fects of vision and dual task, collapsed over x and y time-

series, as well as F, P and f values for main and interaction

effects). Significant vision · dual task interaction effects

are presented in Fig. 2.

Increased postural task difficulty (EO vs. EC)

As is apparent from the significant main effects of vision in

Table 2, standing with eyes closed resulted in more regular

sway fluctuations, as indexed by a decrease in SEn. In

addition, sway variability (r), dimensionality (D2) and

sway-path length (SPn) were increased, whereas a and local

stability (as indexed by an increase in kmax) decreased.

Decreased attention to posture (ST vs. DT)

Collapsed over x and y time-series and visual conditions,

no significant main effects involving dual task were found

for r, SEn or local stability. In contrast, a main effect of

dual task was found for both SPn and D2 in that performing

a cognitive dual task brought about an increase in both

variables as compared to the single task condition (Ta-

ble 2). Moreover, as shown in Table 2, performing a dual

task resulted in a significant decrease of a indicating that

dual task performance brought about changes in the time-

varying structure of sway fluctuations.

Vision · dual task interaction effects

Significant dual task · vision interaction effects (Table 2)

revealed that the effects of visual deprivation on SEn, r and

SPn were different for single and dual task conditions (see

Fig. 2). In particular, the observed effect of visual depri-

vation on r and SEn was significant only for the single task

condition, whereas the observed increase in SPn only ex-

isted for dual task performance (see Fig. 2). On the other

hand, as can be appreciated from both Table 2 and Fig. 2,

the effects of introducing a cognitive dual task on SEn, r
and SPn depended on eye closure. Although no significant

main effect of dual task was found for SEn, there was a

significant dual task · vision interaction. This effect oc-

curred because SEn increased significantly from 0.68 to

0.72 through the introduction of a dual task when standing

with eyes closed, whereas such an increase was absent

when standing with eyes open (0.72 for both single and

dual task conditions). Similarly, when standing with eyes

open, dual task performance had no significant effect on r,

whereas dual task performance resulted in a decrease in r
when standing with eyes closed (see Fig. 2).

The observed significant dual task · vision interaction

effects for kmax were brought about by the fact that the

increase (i.e., decrease in local stability) when standing

with eyes closed was stronger for the single task condition

than for the dual task condition. A similar asymmetric ef-

fect was found for D2, in that the increase when standing

with eyes closed was stronger for the dual task condition

Table 2 Main and interaction effects of vision and dual task (i.e.,

collapsed over x and y time-series) of sample entropy (SEn), standard

deviation (r), sway-path length of the normalized (by the standard

deviation) posturogram (SPn), largest Lyapunov exponent (kmax) and

scaling exponent (a) of COP time-series for 30 healthy individuals

Condition Mean Vision (EO vs. EC) Condition Mean Dual task (ST vs. DT) Vision · dual taska

F(1, 29) P ƒ F(1, 29) P ƒ F(1, 29) P ƒ

SEn EO 0.72 3.83 =0.060* 0.36 ST 0.70 1.45 ns 0.25 6.72 <0.05 0.48

EC 0.70 DT 0.72

r EO 3.52 11.82 <0.005 0.64 ST 3.89 2.45 ns 0.29 3.18 =0.085 0.33

EC 4.01 DT 3.64

SPn EO 4.27 5.28 <0.05 0.43 ST 4.13 13.57 <0.005 0.68 6.98 <0.05 0.49

EC 4.52 DT 4.66

kmax EO 1.56 36.23 <0.001 1.12 ST 1.71 0.10 ns 0.06 4.26 <0.05 0.38

EC 1.88 DT 1.73

D2 EO 2.23 23.58 <0.001 0.90 ST 2.20 45.70 <0.001 1.26 6.15 <0.05 0.46

EC 2.48 DT 2.51

a EO 1.39 13.70 <0.001 0.69 ST 1.39 24.57 <0.001 0.92 1.80 ns 0.25

EC 1.34 DT 1.35

* Significant vision · plane interaction (F(1, 29) = 5.48, P < 0.05, ƒ = 0.44), which was caused by the fact that, in contrast to that in the frontal

plane, the effect of vision was significant in the sagittal plane (F(1, 29) = 6.47, P < 0.05, ƒ = 0.47)
a See Fig. 2 for mean values of the conditions EO-ST, EC-ST, EO-DT and EC-DT
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than for the single task condition. Moreover, as can be

observed in Fig. 2, the effect of performing a dual task

(i.e., increase in D2) was larger when standing with eyes

closed than with eyes open.

Effects of plane and randomization

Collapsed over conditions, significant differences between

sagittal and frontal plane were found for all variables, ex-

cept a. In particular, sway variability, r, and local stability,

kmax, were significantly larger in the sagittal than in the

frontal plane (F(1, 29) = 20.94, P < 0.001, f = 0.82 and

F(1, 29) = 15.19, P < 0.005, f = 0.72, respectively). In

contrast, sample entropy, SEn, and dimensionality, D2,

were significantly lower in the sagittal than in the frontal

plane (F(1, 29) = 145.38, P < 0.001, f = 2.31 and F(1,

29) = 16.01, P < 0.001, f = 0.74, respectively). A signifi-

cant vision · plane interaction was found for SEn (F(1,

29) = 5.48, P < 0.05, f = 0.44), which was caused by the

fact that SEn was smaller when standing with eyes closed

(EC-ST, see Fig. 2) for COP fluctuations in the sagittal

plane, whereas this was not the case for COP fluctuations in

the frontal plane.

Figure 3 shows the results of the interindividual means

of the surrogate analyses. Sample entropy measures of both

phase- and time-randomized surrogate data were signifi-

cantly higher compared to the original COP time-series

(F(2, 58) = 10985.1, P < 0.001, f = 22.34). Whereas scal-

ing exponents of phase-randomized surrogate data and

original COP time-series did not differ, correlations were

completely absent when the data were time-randomized as

evidenced by a values around 0.5 (F(2, 58) = 5436.7,

P < 0.001, f = 14.12). As a result of very high-dimensional

noise in the time-randomized data, no embedding dimen-

sion could be estimated and hence no dimensionality esti-

mates and Lyapunov exponents could be determined for the

time-randomized surrogate data.8 Randomizing the phases

of original COP data significantly increased the dimen-

sionality (F(1, 29) = 50.07, P < 0.001, f = 1.31). In addi-

tion, the Lyapunov exponent of the phase-randomized

surrogate data was significantly higher than that of the

original time-series (F(1, 29) = 53.44, P < 0.001, f = 1.36).

Discussion

The present experiment was conducted to investigate the

role of attention in the regulation of posture. Specifically,

we examined whether an increase in postural sway regu-

larity (i.e., as indexed by a decrease in SEn) is represen-

tative of an increase in cognitive investment in postural

control. We hypothesized that COP trajectories become

more regular (i.e., SEn decreases) when task difficulty is

increased (EC vs. EO) and, conversely, become less regular

(i.e., SEn increases) when an attention-demanding cogni-

tive dual task is introduced (DT vs. ST). We further ex-

pected that these changes in regularity of COP fluctuations

would be accompanied by changes in variability, local

Fig. 2 Interindividual averages, collapsed over x and y time-series, of

sample entropy (SEn), standard deviation (r), sway-path length of the

normalized (by the standard deviation) posturogram (SPn), local

stability (kmax) and dimensionality (D2) for the four experimental

conditions: standing with eyes open (EO-ST), eyes closed (EC-ST),

eyes open while performing a cognitive dual task (EO-DT) and eyes

closed while performing a cognitive dual task (EC-DT). The asterisks
indicate significant (P < 0.05) differences between conditions

8 To determine the largest Lyapunov exponent, the embedding

dimension m, as determined for the calculation of D2 was required.

However, the constraint m > 2dm + 1 was never met in the time-

randomized surrogate data due to the high-dimensional noise.
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stability, sway-path length, dimensionality and scaling

exponent reflecting functional modifications of postural

control. For the proper interpretation of the present find-

ings, however, it was necessary to ascertain that the ob-

served structure (and changes herein) of the COP

fluctuations did not result from noise, but was indeed

brought about by deterministic processes. Therefore, we

will first discuss the results of the surrogate analyses before

discussing the respective effects of vision, dual task and

plane on the dynamical structure of postural sway.

Surrogate analyses

Although nonlinear estimates of dynamical structure are

not readily interpretable in an absolute sense, they can be

meaningfully interpreted by comparing them across con-

ditions, (see e.g., Newell et al. 1993), as well as with

surrogate data. For example, entirely random data are

characterized by large (theoretically infinite) dimensional-

ity and large kmax values, whereas chaotic/deterministic

data have smaller dimensionality and smaller kmax values.

In the present analysis, the surrogate data had greater

dimensionality and larger kmax values than the original

data, implying that the latter had considerable deterministic

structure (cf., Theiler et al. 1992). Moreover, both phase-

and time-randomized surrogate data showed increased

sample entropy values. Hence, the original COP fluctua-

tions clearly had a deterministic component, which was

evidenced further by the fact that the scaling exponents

became 0.5 after time-randomization (resulting from a loss

of temporal correlations in the shuffled time-series), but

remained unaffected by phase-randomization (i.e., pre-

serving temporal correlations). These findings are consis-

tent with those of previous studies suggesting that COP

fluctuations are (largely) of deterministic origin (e.g.,

Doyle et al. 2004; Riley et al. 1999; Yamada 1995b), and

testify to the relevance and need of including dynamical

measures in posturography.

Increasing postural task difficulty (EO vs. EC)

In the present study, standing with eyes closed brought

about an increase of sway variability, which was accom-

panied by an increase in dimensionality and kmax, implying

that local stability decreased. Possibly, the observed in-

crease in dimensionality may serve as a mechanism to

enrich information so as to facilitate the control of standing

and to cope with the reduced (local) stability (cf., Riley and

Clark 2003; van Emmerik and van Wegen 2002). These

observations are in line with the common notion that visual

deprivation increases the task difficulty of postural control,

and, consequently, requires cognitive monitoring of pos-

tural control. We expected that this increase in cognitive

investment would be accompanied by a decrease in SEn

(i.e., an increase in regularity), which was indeed the case

(see Fig. 2, compare EO-ST with EC-ST), thus confirming

hypothesis 1. These findings are consistent with the results

of other studies showing that COP variability tends to in-

crease as experimental task conditions become increasingly

difficult, whereas the temporal structure of postural sway

tends to become increasingly regular (Riley and Clark

2003; Roerdink et al. 2006; Thurner et al. 2002).

In the present study, visual deprivation resulted in

qualitatively similar changes in the structure of COP tra-

jectories as reported in the study of Roerdink et al. (2006)

for stroke patients (i.e., increased r, kmax, D2, and de-

creased SEn and a with respect to healthy elderly adults).

In healthy young adults, the qualitatively similar changes

in COP dynamics with visual deprivation as compared to

standing with eyes open may, likewise, be interpreted to

indicate that postural control is performed less automati-

cally and effectively. Whereas in stroke patients such

modifications in postural control may be due to a defect or

slowing down of the central processing of sensory infor-

mation (cf., Teasdale et al. 1991; Woollacott et al. 1986), in

young healthy adults a more regular sway, resulting from

standing with eyes closed, implies increased ‘‘active’’

monitoring of postural control with increasing task diffi-

culty (cf., Andersson et al. 1998; Nashner and McCollum

1985; Redfern et al. 2001; Teasdale et al. 1993; Teasdale

and Simoneau 2001). If the proposed relation between

cognitive investment in postural control and postural sway

regularity does indeed exist, then the performance of a

Fig. 3 Grand means, collapsed over all conditions, planes and

participants, of sample entropy, scaling exponent, dimensionality

and local stability for the original (OR) COP time-series and their

phase-randomized (PHASE) and time-randomized (TIME) surrogate

counterparts. The error bars represent the interindividual standard

deviations. The asterisks represent significant (P < 0.05) differences

between the surrogate data and the original time-series

8 Exp Brain Res (2007) 181:1–11
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cognitive dual task should result in less regular COP tra-

jectories. That this was indeed the case will be discussed in

the next two subsections.

Withdrawing attention from posture

The performance of a concurrent dual task led to changes

in scaling exponents and an increase in dimensionality,

reflecting cognition-invoked adjustments of postural con-

trol. These changes under dual task performance may have

served to enrich the information captured in sway fluctu-

ations without increasing the amount of sway (i.e., vari-

ability remained unaltered). This interpretation is amplified

by the observation that the sway-path length of the nor-

malized posturogram increased, indicating more twisting

and turning in the COP trajectories. Interestingly, despite

the fact that attention was withdrawn experimentally from

postural control, local stability remained unaltered. In

contrast to what we expected, no main effect of dual task

was found for SEn. However, this finding does not neces-

sarily militate against the proposed relation between the

regularity of COP fluctuations and the amount of attention

directed to postural control, as will be argued in the fol-

lowing subsection.

Vision · dual task interaction

Especially noteworthy in this context and in view of our

expectations is that while standing with eyes closed pos-

tural sway regularity decreased (i.e., sample entropy in-

creased) when performing a cognitive dual task (compare

EC-DT and EC-ST in Table 2 and Fig. 2). This finding is

consistent with hypothesis 2 and supports the proposed

positive correlation between COP regularity and the degree

of attention involved in postural control. Apparently, the

fact that regularity remained unaltered (i.e., 0.72) when

performing a dual task while standing with eyes open (EO-

DT) implies that, for young healthy adults, standing with

eyes open is not very attention demanding. Conversely,

during the more challenging task of standing with eyes

closed (EC-ST) COP fluctuations became more regular

(i.e., 0.68; Fig. 2). However, the finding that sample en-

tropy again increased to its ‘‘normal’’ (EO-ST) level when

withdrawing the focus of attention from the postural task

(EC-DT) indicates that the increased cognitive monitoring

of posture during EC-ST had a detrimental effect. Visual

deprivation increased the awareness of the postural task

(i.e., creating an internal focus), resulting in efforts to ac-

tively (consciously) control posture and, as such, prevent-

ing the postural control system to work in a relatively

automatic and efficient manner (viz., Andersson et al.

2002; Hunter and Hoffman 2001; McNevin and Wulf 2002;

Milton et al. 2004).

Similarly, when standing with eyes open the attention-

demanding dual task had no significant effect on r,

whereas when standing with eyes closed the dual task did

result in a decrease in r (see Fig. 2), corroborating the

findings of e.g., Andersson et al. (2002), McNevin and

Wulf (2002) and Morioka et al. (2005). In contrast, many

authors have found an increase in postural sway vari-

ability when performing a cognitive dual task (see

Shumway-Cook and Woollacott 2000). It has been sug-

gested that this effect of dual task on the amount of sway

may, in part, result from articulation (Dault et al. 2003;

Yardley et al. 1999b). In this context, it is important to

note that the present finding that variability actually de-

creased with the introduction of a cognitive dual task

indicates that articulation played no significant role in the

present study.

Sagittal versus frontal plane

The increased variability of the COP trajectories in the

sagittal plane (as compared to the frontal plane) was

accompanied by reduced local stability and greater regu-

larity (i.e., a decrease in sample entropy). These observa-

tions are consistent with the findings of Roerdink et al.

(2006), which showed that in healthy elderly adults local

stability was reduced in the sagittal plane, whereas regu-

larity and variability were elevated in this plane. Based on

these results, they suggested that posture is mainly con-

trolled in the direction of largest postural sway (i.e., sagittal

plane), which required a certain amount of attention as

reflected by the regularity findings. The present observation

that during standing with eyes closed (EC-ST) regularity

increased significantly in the sagittal plane, whereas no

effect was found for the frontal plane, is in line with this

suggestion: young healthy adults mainly control posture in

the sagittal plane, which becomes particularly attention

demanding when task difficulty is increased (see also

Pellecchia 2003; Riley et al. 2003).

Conclusion

The present study showed that the amount of attention

invested in postural control is positively correlated with

sway regularity. Specifically, the present study showed that

increasing postural task difficulty by means of visual

deprivation (EC-ST) not only resulted in an increase of

COP variability and a decrease in local stability, but also in

more regular COP trajectories. These findings could be

taken to imply that the participants actively monitored their

posture in order to cope with the increased postural task

difficulty. However, when the amount of attention invested

in postural control was experimentally reduced by intro-

Exp Brain Res (2007) 181:1–11 9
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ducing a cognitive dual task (EC-DT), both regularity and

variability of sway fluctuations returned to values observed

when standing with eyes open (EO-ST). This finding sug-

gests that during standing with eyes closed (EC-ST) the

increase in monitoring posture was due to an increase in

awareness of the postural task (i.e., internal attentional

focus), preventing postural control from working in an

automatic and efficient manner (e.g., Hunter and Hoffman

2001). All in all, it is fair to conclude that the methodo-

logical and analytical approach adopted in the present

study allows for disentangling whether or not there is an

increase in cognitive involvement and to what extent an

increase in cognitive involvement has a detrimental or

beneficial effect.
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