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1 Introduction
The notion of convergence spaces (refer to [1] for convergence spaces) is introduced by extending the theory
of convergence in general topological spaces. For a set X, we denote the power set (resp., the set of �lters) on
X as P(X) (resp., F(X)). Then a convergence space is de�ned as a pair (X, Q), where Q ⊆ F(X)×X is a binary
relation satisfying:

(C1) (ẋ, x) ∈ Q for any x ∈ X, where ẋ = {A ∈ P(X)∣x ∈ A} is the principal �lter generated by x;
(C2) ∀F,G ∈ F(X), F ⊆ G and (F, x) ∈ Q imply (G, x) ∈ Q.

If (F, x) ∈ Q then we say that F converges to x, and denote it as F QÐ→ x.
A convergence space (X, Q) is called topological whenever F QÐ→ x if and only if F converges to x

w.r.t some topological space. A convergence space (X, Q) is topological if and only if it satis�es the Fischer
diagonal condition.

Let J be any set, Φ ∶ J Ð→ F(X) and F ∈ F(J), where Φ is called a choice function of �lters. Then the
Kowalsky compression operator on Φ⇒(F) ∈ F(F(X)) is de�ned as KΦF ∶= ⋃

A∈F
⋂
y∈A

Φ(y).

Given a convergence space (X, Q), using Kowalsky compression operator, the Fischer diagonal condition
is given as follows.

(F) Let J be any set, ψ ∶ J Ð→ X, Φ ∶ J Ð→ F(X) such that Φ(j) QÐ→ ψ(j) for each j ∈ J. If F ∈ F(X) satis�es
ψ⇒(F) QÐ→ x, then KΦF QÐ→ x.

If we take J = X and ψ = idX in (F) then we get the Kowalsky diagonal condition (K).
A convergence space (X, Q) is called regular if it satis�es the following dual Fischer diagonal condition.

(DF) Let J be any set, ψ ∶ J Ð→ X, Φ ∶ J Ð→ F(X) such that Φ(j) QÐ→ ψ(j) for each j ∈ J. If F ∈ F(X) satis�es
KΦF QÐ→ x, then ψ⇒(F) QÐ→ x.
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For a convergence space generated by a topological space, the convergence space is regular if and only if
the corresponding topological space is regular.

In recent years, many kinds of fuzzy convergence spaces, such as strati�ed L-generalized convergence
spaces [2], strati�ed L-convergence spaces [3], L-ordered convergence spaces [4, 5] and ⊺-convergence spaces
[6, 7], were de�ned and discussed [8–25]. In particular, the regularities of fuzzy convergence spaces were
discussed by di�erent kinds of extending dual Fischer diagonal conditions [6, 8, 9, 13, 16–18]. In this paper,
we introduce a regularity for ⊺-convergence spaces by an extending dual Fischer diagonal condition.

The contents are arranged as follows. In Section 2, we recall some basic notions. In Section 3, we present
themain results: the notion of⊺-regular⊺-convergence spaces, and their relationships to regular convergence
spaces, and an extension theorem of continuous function. In Section 4, we conclude with a summary.

2 Preliminaries
A commutative quantale is a pair (L, ∗), where L is a complete lattice with respect to a partial order ≤ on it,
with the top (resp., bottom) element ⊺ (resp., �), and ∗ is a commutative semigroup operation on L such that
a ∗⋁j∈J bj = ⋁j∈J(a ∗ bj) for all a ∈ L and {bj}j∈J ⊆ L. (L, ∗) is said to be integral if the top element ⊺ is the
unique unit in the sense of ⊺∗ a = a for all a ∈ L. (L, ∗) is said to be meet continuous if the underlying lattice
(L, ≤) is a meet continuous lattice, that is, the binary meet operation ∧ distributes over directed joins [26]. In
this paper, if not otherwise speci�ed, L = (L, ∗) is always assumed to be an integral, commutative, and meet
continuous quantale.

Since the binary operation ∗ distributes over arbitrary joins, the function a ∗ (−) ∶ L Ð→ L has a right
adjoint a → (−) ∶ L Ð→ L given by a → b = ⋁{c ∈ L ∶ a ∗ c ≤ b}. We collect here some basic properties of the
binary operations ∗ and→ [27, 28]:

(1) a → b = ⊺⇔ a ≤ b; (2) a ∗ b ≤ c⇔ b ≤ a → c; (3) a ∗ (a → b) ≤ b; (4) a → (b → c) = (a ∗ b)→ c;
(5) (⋁j∈J aj)→ b = ⋀j∈J(aj → b); (6) a → (⋀j∈J bj) = ⋀j∈J(a → bj).
We call a function µ ∶ X → L an L-fuzzy subset in X. We use LX to denote the set of all L-fuzzy subsets

in X. For any A ⊆ X, let ⊺A denote the characteristic function of A. The operators ⋁, ⋀, ∗ and→ on L can be
translated onto LX in a pointwise way. That is, for all µt(t ∈ T) ∈ LX,

(⋁
t∈T
µt)(x) =⋁

t∈T
µt(x), (⋀

t∈T
µt)(x) =⋀

t∈T
µt(x),

(µ ∗ ν)(x) = µ(x) ∗ ν(x), (µ→ ν)(x) = µ(x)→ ν(x).

Let f ∶ X Ð→ Y be a function. We de�ne f→ ∶ LX Ð→ LY and f← ∶ LY Ð→ LX, [27], by f→(µ)(y) = ⋁f(x)=y µ(x)
for µ ∈ LX and y ∈ Y, and f←(ν)(x) = ν(f(x)) for ν ∈ LY and x ∈ X.

Let µ, ν be L-fuzzy subsets in X. The subsethood degree [29–33] of µ, ν, denoted as SX(µ, ν), is de�ned
by SX(µ, ν) = ⋀

x∈X
(µ(x)→ ν(x)).

Lemma 2.1 ([6, 29, 34–38]). Let f ∶ X Ð→ Y be a function and µ1, µ2 ∈ LX, λ1, λ2 ∈ LY . Then
(1) SX(µ1, µ2) ≤ SY(f→(µ1), f→(µ2)),
(2) SY(λ1, λ2) ≤ SX(f←(λ1), f←(λ2)).

De�nition 2.2 ([27, 39]). A nonempty subset F ⊆ LX is called a ⊺-�lter on the set X whenever:
(TF1) ⋁

x∈X
λ(x) = ⊺ for all λ ∈ F;

(TF2) λ ∧ µ ∈ F for all λ, µ ∈ F;
(TF3) if λ ∈ LX such that ⋁

µ∈F
SX(µ, λ) = ⊺, then λ ∈ F.

It is easily seen that the condition (TF3) implies a weaker condition (TF3′) µ ∈ F and µ ≤ λÔ⇒ λ ∈ F.
The set of all ⊺-�lters on X is denoted by F⊺L(X).



Regularity of fuzzy convergence spaces | 1457

De�nition 2.3 ([27]). A nonempty subset B ⊆ LX is called a ⊺-�lter base on the set X provided:
(TB1) ⋁

x∈X
λ(x) = ⊺ for all λ ∈ B;

(TB2) if λ, µ ∈ B, then ⋁
ν∈B

SX(ν, λ ∧ µ) = ⊺.

Each ⊺-�lter base B on X generates a ⊺-�lter FB de�ned by FB ∶= {λ ∈ LX ∣⋁µ∈B SX(µ, λ) = ⊺}. And for any
λ ∈ LX, we have the following equality [23]: ⋁

µ∈B
SX(µ, λ) = ⋁

µ∈FB

SX(µ, λ).

We list some fundamental facts about ⊺-�lters in the following proposition.

Proposition 2.4 ([6, 27]).
(1) For any x ∈ X, the family [x]⊺ =∶ {λ ∈ LX ∣λ(x) = ⊺} is a ⊺-�lter on X, called the principal ⊺-�lter on X
generated by x.
(2) For any {Fi}i∈I ⊆ F⊺L(X),⋂i∈I Fi is also a ⊺-�lter.
(3) Let f ∶ X Ð→ Y be a function. For any F ∈ F⊺L(X), the family {f→(λ)∣λ ∈ F} forms a ⊺-�lter base on Y, and
the ⊺-�lter f⇒(F) generated by it is called the image of F under f . For anyG ∈ F⊺L(Y), the family {f←(µ)∣µ ∈ G}
forms a ⊺-�lter base on X if and only if ⋁x∈X µ(f(x)) = ⊺ holds for all µ ∈ G, and the ⊺-�lter f⇐(G) (if exists)
generated by it is called the inverse image ofG under f .

Lemma 2.5.
(1) Let F,G ∈ F⊺L(X) and B be a ⊺-�lter base of F. Then B ⊆ G implies that F ⊆ G.
(2) Let f ∶ X Ð→ Y be a function and F ∈ F⊺L(X). Then λ ∈ f⇒(F) if and only if f←(λ) ∈ F.

Proof. (1) For any λ ∈ F, we have
⊺ = ⋁

µ∈B
SX(µ, λ) ≤ ⋁

µ∈G
SX(µ, λ),

which means λ ∈ G, as desired.
(2) Let λ ∈ f⇒(F). Then

⊺ = ⋁
µ∈F

SY(f→(µ), λ) ≤ ⋁
µ∈F

SX(f←f→(µ), f←(λ)) ≤ ⋁
µ∈F

SX(µ, f←(λ)).

It follows that f←(λ) ∈ F. Conversely, let f←(λ) ∈ F. Then λ ≥ f→f←(λ) ∈ f⇒(F), and so λ ∈ f⇒(F).

Let F ∈ F⊺L(X), it is easily seen that the set ι(F) = {A ⊆ X∣⊺A ∈ F} is a �lter on X. Conversely, let F ∈ F(X),
then the set {⊺A ∣A ∈ F} forms a ⊺-�lter base on X and the ⊺-�lter generated by it is denoted as ω(F).

Lemma 2.6. Let f ∶ X Ð→ Y, F ∈ F(X), F ∈ F⊺L(X) and x ∈ X. Then:
(1) ιω(F) = F,
(2) ωι(F) ⊆ F,
(3) ω(ẋ) = [x]⊺,
(4) ι([x]⊺) = ẋ,
(5) ι(f⇒(F)) = f⇒(ι(F)).

Proof. We prove only (5) and others are easily observed. Indeed,

A ∈ ι(f⇒(F))⇔ f←(⊺A) ∈ F⇔ ⊺f←(A) ∈ F⇔ f←(A) ∈ ι(F)⇔ A ∈ f⇒(ι(F)).

De�nition 2.7 ([6]). A ⊺-convergence space is a pair (X, q), where q ⊆ F⊺L(X)×X is a binary relation satisfying
(TC1) ([x]⊺, x) ∈ q for every x ∈ X; (TC2) if (F, x) ∈ q and F ⊆ G, then (G, x) ∈ q.

If (F, x) ∈ q, then we say that F converges to x, and denote it as F qÐ→ x.

It is easily seen that a ⊺-convergence space is precisely a convergence space when L = {�, ⊺}.
For the categorical theory, we refer to the monograph [40].
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3 A regularity for ⊺-convergence spaces
In this section, we shall discuss a regularity for ⊺-convergence spaces by an extending dual Fischer diagonal
condition.

Let J be any set, φ ∶ J Ð→ F⊺L(X) and F ∈ F⊺L(J), where φ is called a choice function of ⊺-�lters. Then the
extending Kowalsky compression operator on φ⇒(F) ∈ F⊺L(F⊺L(X)) is de�ned as

kφF ∶= ⋃
A∈ι(F)

⋂
y∈A

φ(y).

We prove that kφF satis�es (TF1)-(TF3).
(TF1): Let λ ∈ kφF. Then there exists an A ∈ ι(F) such that for any y ∈ A, λ ∈ φ(y). It follows by φ(y) ∈

F⊺L(X) that ⋁
x∈X

λ(x) = ⊺. Thus the condition (TF1) is satis�ed.

(TF2): Let λ, µ ∈ kφF. Then there exist A, B ∈ ι(F) such that

λ ∈ ⋂
y∈A

φ(y) and µ ∈ ⋂
z∈B

φ(z).

It follows that A∩B ∈ ι(F) and λ∧µ ∈ ⋂
w∈A∩B

φ(w), and then λ∧µ ∈ kφF. Thus the condition (TF2) is satis�ed.

(TF3): Let λ ∈ LX satisfy ⋁
µ∈kφF

SX(µ, λ) = ⊺. Then for any µ ∈ kφF, there exists an A ∈ ι(F) such that for

any y ∈ A, µ ∈ φ(y). By µ ∈ φ(y) we have ⋁
ν∈φ(y)

SX(ν, µ) = ⊺. Then it follows that for any y ∈ A,

⊺ = ⋁
µ∈kφF

(SX(µ, λ) ∗ ⋁
ν∈φ(y)

SX(ν, µ)) ≤ ⋁
ν∈φ(y)

SX(ν, λ).

That means λ ∈ φ(y), and so λ ∈ kφF. Thus the condition (TF3) is satis�ed.
Using Kowalsky compression operator, an extension of the (dual) diagonal condition (F) ((DF)) is given

as follows:

(TF) Let J be any set, ψ ∶ J Ð→ X, φ ∶ J Ð→ F⊺L(X) such that φ(j) qÐ→ ψ(j) for each j ∈ J. If F ∈ F⊺L(X) satis�es
ψ⇒(F) qÐ→ x, then kφF qÐ→ x.
(TDF) Let J be any set, ψ ∶ J Ð→ X, φ ∶ J Ð→ F⊺L(X) such that φ(j) qÐ→ ψ(j) for each j ∈ J. If F ∈ F⊺L(X) satis�es
kφF qÐ→ x, then ψ⇒(F) qÐ→ x.

If we take J = X and ψ = idX in (TF) then we get the Kowalsky diagonal condition (TK).

De�nition 3.1. A ⊺-convergence space is called ⊺-regular if it satis�es the condition (TDF).

3.1 ⊺-regularity is a good extension of regularity

Let (X, Q) be a convergence space. We de�ne δ(X, Q) = (X, δ(Q)) as

∀F ∈ F⊺L(X),∀x ∈ X,F
δ(Q)Ð→ x⇔ ι(F) QÐ→ x.

Then it is easily seen that (X, δ(Q)) is a⊺-convergence space. In this subsection,we shall prove that (X, δ(Q))
is ⊺-regular if and only if (X, Q) is regular. In this sense, we say that ⊺-regularity is a good extension of
regularity.

Lemma 3.2. Let f ∶ X Ð→ Y, φ ∶ J Ð→ F⊺L(X) and Φ ∶ J Ð→ F(X). Then for any F ∈ F⊺L(J) and F ∈ F(J), we
have:
(1) f⇒(kφF) = k(f⇒ ○ φ)F,
(2) Take Φ1 = ι ○ φ, then ι(kφF) = KΦ1ι(F),
(3) Take φ1 = ω ○ Φ, then ι(kφ1ω(F)) = KΦF,
(4) If σ ∶ J Ð→ F⊺L(X) satis�es σ(j) ⊆ φ(j) for any j ∈ J, then kσF ⊆ kφF.
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Proof. (1) For any λ ∈ LY , we have

λ ∈ f⇒(kφF)⇔ f←(λ) ∈ kφF⇔ ∃A ∈ ι(F), s.t f←(λ) ∈ ⋂
y∈A

φ(y)

⇔ ∃A ∈ ι(F), s.t λ ∈ ⋂
y∈A

(f⇒ ○ φ)(y)⇔ λ ∈ k(f⇒ ○ φ)F.

(2) It follows by

A ∈ ι(kφF)⇔ ⊺A ∈ kφF⇔ ∃B ∈ ι(F), s.t ⊺A ∈ ⋂
y∈B

φ(y)

⇔ ∃B ∈ ι(F), s.t A ∈ ⋂
y∈B

(ι ○ φ)(y) = ⋂
y∈B

Φ1(y)

⇔ A ∈ KΦ1ι(F).

(3) It follows by

A ∈ ι(kφ1ω(F))⇔ ⊺A ∈ kφ1ω(F)⇔ ∃B ∈ ι ○ ω(F), s.t ⊺A ∈ ⋂
y∈B

φ1(y) = ⋂
y∈B

(ω ○ Φ)(y)

⇔ ∃B ∈ F, s.t A ∈ ⋂
y∈B

Φ(y)

⇔ A ∈ KΦF.

(4) It is obvious.

Theorem 3.3. (X, Q) satis�es (DF) if and only if (X, δ(Q)) satis�es (TDF).

Proof. Let (X, Q) satisfy (DF). Assume that ψ ∶ J Ð→ X, φ ∶ J Ð→ F⊺L(X) such that φ(j) δ(Q)Ð→ ψ(j) for each j ∈ J.
Take Φ = ι ○ φ, it follows by φ(j) δ(Q)Ð→ ψ(j) that

Φ(j) = ι(φ(j)) QÐ→ ψ(j),∀j ∈ J.

Assume that kφF
δ(Q)Ð→ x, then by Lemma 3.2 (2) we have KΦι(F) = ι(kφF) QÐ→ x. It follows by (DF) and Lemma

2.6 (5) we get
ι(ψ⇒(F)) = ψ⇒(ι(F)) QÐ→ x,

i.e., ψ⇒(F) δ(Q)Ð→ x. Thus the condition (TDF) is satis�ed.
Let (X, δ(Q)) satisfy (TDF). Assume that ψ ∶ J Ð→ X,Φ ∶ J Ð→ F(X) such thatΦ(j) QÐ→ ψ(j) for each j ∈ J.

Take φ = ω ○ Φ, it follows by Lemma 2.6 (1) that

ι ○ φ(j) = ι ○ ω ○ Φ(j) = Φ(j) QÐ→ ψ(j),

i.e., φ(j) δ(Q)Ð→ ψ(j) for any j ∈ J.
Let KΦF QÐ→ x. Then by Lemma 3.2 (3) we get ι(kφω(F)) = KΦF QÐ→ x, i.e., kφω(F) δ(Q)Ð→ x. It follows by

(TDF) that ψ⇒(ω(F)) δ(Q)Ð→ x, and then by Lemma 2.6 (5), (1) we have

ψ
⇒(F) = ψ⇒((ι ○ ω)(F)) = ιψ⇒(ω(F)) QÐ→ x.

Thus the condition (DF) is satis�ed.

3.2 The category of ⊺-regular ⊺-convergence spaces is a reflective subcategory of
⊺-convergence spaces

In this subsection, we shall prove that the category of ⊺-regular convergence spaces is a re�ective subcategory
of ⊺-convergence spaces.
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A function f ∶ X Ð→ Y between two⊺-convergence spaces (X, q), (Y , p) is called continuous if f⇒(F) pÐ→
f(x) whenever F qÐ→ x. The category T-CS has as objects all ⊺-convergence spaces and as morphisms the
continuous functions.

It is proved in [6] that the category T-CS is topological over SET in the sense of [40]. Indeed, for a given
source (X fiÐ→ (Xi , qi))i∈I, the initial structure, q on X is de�ned by F qÐ→ x⇔ ∀i ∈ I, f⇒i (F) qiÐ→ fi(x).

Let (X, q) be a ⊺-convergence space, A a subset of X and iA ∶ A Ð→ X the inclusion function. Then the
initial ⊺-convergence structure on A w.r.t. the source iA ∶ A Ð→ (X, q) is called the substructure of (X, q) on
A, denoted by qA, where

∀x ∈ A,F ∈ F⊺L(A),F
qAÐ→ x⇔ i⇒A (F) qÐ→ x.

The pair (X, qA) is called a subspace of (X, q).
Let X be a nonempty set and let ⊺(X) denote the set of all ⊺-convergence structures on X. If the identity

idX ∶ (X, q)Ð→ (X, p) is continuous then we say q is �ner than p or p is coarser than q, and denote p ≤ q.

Proposition 3.4. (⊺(X), ≤) forms a complete lattice.

Proof. For any {qi}i∈I ⊆ ⊺(X), the supremum q of {qi}i∈I exists and is denoted as sup{qi}. Indeed, sup{qi}
is precisely the initial structures q w.r.t. the source (X idXÐ→ (X, qi))i∈I, i.e., q = ∩{qi}i∈I .

In the following, we denote the full subcategory of T-CS consisting of all objects obeying (TDF) as TDF-CS.

Theorem 3.5. The category TDF-CS is a topological category over SET.

Proof. We need only check that TDF-CS has initial structure. Assume that (X fiÐ→ (Xi , qi))i∈I is a source in
T-CS such that each (Xi , qi) ∈ TDF-CS. Let q be the initial structure of the above in TF-CS, that is

F
qÐ→ x⇔ ∀i ∈ I, f⇒i (F) qiÐ→ fi(x).

We prove below that (X, q) ∈TDF-CS. Assume that ψ ∶ J Ð→ X, φ ∶ J Ð→ F⊺L(X) such that φ(j) qÐ→ ψ(j) for
each j ∈ J. It follows that for any i ∈ I, f⇒i (φ(j)) qiÐ→ fi(ψ(j)). Take φi = f⇒i ○ φ and ψi = fi ○ ψ, then

φi(j)
qiÐ→ ψi(j),∀j ∈ J.

Let kφF qÐ→ x. Then by Lemma 3.2 (2) we have ∀i ∈ I,

kφiF = k(f⇒i ○ φ)F = f⇒i (kφF) qiÐ→ fi(x).

By (X, qi) satis�es (TDF) we have

ψ
⇒

i (F) = (fi ○ ψ)⇒(F) = f⇒i ψ
⇒(F) qiÐ→ fi(x).

It follows that ψ⇒(F) qÐ→ x. Thus (X, q) satis�es the condition (TDF).

Let⊺DF(X)denote the set of all⊺-convergence structures on X satisfying (TDF). Then it follows from the above
theorem and Proposition 3.4 we get the following corollary.

Corollary 3.6. (⊺DF(X), ≤) forms a complete lattice.

Theorem 3.7. TDF-CS is a re�ective subcategory of T-CS.

Proof. Let (X, q) ∈T-CS. From Corollary 3.6, the supremum in (⊺(X), ≤) of all s ≤ q with s ∈ ⊺DF(X), denoted
as (X, rq), is also in ⊺DF(X). Indeed, rq is the �nest structure coarser than q satisfying (X, rq) ∈ TDF-CS.
Hence idX ∶ (X, q) Ð→ (X, rq) is continuous. Assume that f(X, q) Ð→ (Y , p) is continuous, where (X, p) ∈
TDF-CS. Let s denote the initial structure w.r.t. f ∶ X Ð→ (Y , p). Then (X, s) ∈ TDF-CS and s is the coarsest
structure such that f ∶ (X, s) Ð→ (Y , p) is continuous. It follows that s ≤ q and so s ≤ rq. Therefore, f ∶
(X, rq)Ð→ (Y , p) is continuous and thus TDF-CS is re�ective in T-CS.
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3.3 Extension of continuous function

In this subsection, based on ⊺-regularity, we shall present an extension theorem of continuous function in
the framework of ⊺-convergence space.

Lemma 3.8. Let (A, qA) be a subspace of a ⊺-convergence space (X, q). If (X, q) ful�ls (TK) then (A, qA) also
ful�ls this condition.

Proof. Assume that φ ∶ A Ð→ F⊺L(A) satis�es φ(y) qAÐ→ y for each y ∈ A. Take φ ∶ X Ð→ F⊺L(X) as

φ(y) = i⇒A (φ(y)) if y ∈ A and φ(y) = [y]⊺ if y /∈ A.

It is easily seen that φ(y) qÐ→ y,∀y ∈ X.
Let F qAÐ→ x, then i⇒A (F) qÐ→ x. By (X, q) satis�es (TK) we have kφi⇒A (F) qÐ→ x. We prove below

i⇒A (kφF) ⊇ kφi⇒A (F). Indeed,

λ ∈ kφi⇒A (F) Ô⇒ ∃B ∈ ι(i⇒A (F)) s.t. ∀y ∈ B, λ ∈ φ(y)
by Lemma2.6 (5) Ô⇒ ∃B ∈ i⇒A (ι(F)) s.t. ∀y ∈ B, λ ∈ φ(y)

Ô⇒ A ∩ B ∈ ι(F) s.t. ∀y ∈ A ∩ B, λ ∈ φ(y)
Ô⇒ ∃C ∈ ι(F) s.t. ∀y ∈ C, λ ∈ i⇒A (φ(y))
Ô⇒ ∃C ∈ ι(F) s.t. ∀y ∈ C, i←A (λ) ∈ φ(y)
Ô⇒ i←A (λ) ∈ kφF
Ô⇒ λ ∈ i⇒A (kφF).

By kφi⇒A (F) qÐ→ x we have i⇒A (kφF) qÐ→ x, i.e., kφF qAÐ→ x, as desired. Thus (X, qA) satis�es the condition
(TK).

Proposition 3.9. Let (X, q) be a ⊺-convergence space satisfying (TK) and (Y , p) be ⊺-regularity. If A is a
nonempty subset of X such that a function ϕ ∶ (A, qA) Ð→ (Y , p) is continuous, then ϕ has a continuous
extension ϕ ∶ (B, qB)Ð→ (Y , p), where

B = {x ∈ X∣C⊺L(x) ≠ ∅, {y∣∀F ∈ C⊺L(x),ϕ⇒(i⇐A (F)) pÐ→ y} ≠ ∅},

C⊺L(x) = {F ∈ F⊺L(X)∣i⇐A (F) exists and F
qÐ→ x}.

Proof. (1) we prove that A ⊆ B.
For z ∈ A, note that [z]⊺

qÐ→ z and i⇐A ([z]⊺) exists, thus [z]⊺ ∈ C⊺L(z), whichmeans C⊺L(z) ≠ ∅. Moreover,
for any F ∈ C⊺L(z), we have i⇐A (F) exists and F

qÐ→ z, then it follows that

i⇒A i⇐A (F) ⊇ F
qÐ→ zÔ⇒ i⇐A (F) qAÐ→ z.

By the continuity of ϕ we get that ϕ⇒(i⇐A (F)) pÐ→ ϕ(z). Thus z ∈ B, and so A ⊆ B.
(2) We extend ϕ ∶ A Ð→ Y to ϕ ∶ B Ð→ Y by ϕ(z) = ϕ(z) if z ∈ A and ϕ(z) = yz, if z ∈ B − A, where yz

is some �xed element in {y∣∀F ∈ C⊺L(z),ϕ⇒(i⇐A (F)) pÐ→ y}. Next, we prove that ϕ ∶ (B, qB) Ð→ (Y , p) is
continuous.We need to check that for anyG ∈ F⊺L(B) and any z0 ∈ B, thatG

qBÐ→ z0 impliesϕ⇒(G) pÐ→ ϕ(z0).
We complete it by several steps as follows.

(I) We de�ne a function φB ∶ B Ð→ F⊺L(B) as φB(z) = i⇐B (Hz) for any z ∈ B, whereHz ∈ C⊺L(z). Indeed, by
i⇐A (Hz) exists and A ⊆ B we get that i⇐B (Hz) exists. Thus φB is well-de�ned. Note that (X, q) satis�es (TK), it
follows by Lemma 3.8 that (X, qB) also satis�es (TK). Thus byG qBÐ→ z0 and

i⇒B i⇐B (Hz) ⊇ Hz
qÐ→ zÔ⇒ φB(z) = i⇐B (Hz)

qBÐ→ z,

we get that kφBG
qBÐ→ z0, i.e., i⇒B (kφBG) qÐ→ z0.
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(II) i⇐A (kφBG) exists. We need only check that ⋁z∈A λ(z) = ⊺ for any λ ∈ kφBG. Indeed, it follows by
λ ∈ kφBG that there exists an E ∈ ι(G) such that λ ∈ φB(e) = i⇐B (He) for any e ∈ E. Then

⊺ = ⋁
µ∈He

SB(i←B (µ), λ) ≤ ⋁
µ∈He

SA(i←A i←B (µ), i←A (λ)) ≤ ⋁
µ∈He

((⋁
z∈A

µ(z))→ (⋁
z∈A

λ(z))).

Note that⋁z∈A µ(z) = ⊺ sinceµ ∈ He and i⇐A (He) exists. It follows that⋁z∈A λ(z) = ⊺, and so i⇐A (kφBG) exists.
(III) i⇐A i⇒B (kφBG) = i⇐A (kφBG). It follows by

λ ∈ i⇐A i⇒B (kφBG)⇔ ⋁
µ∈kφBG

SA(i←A i→B (µ), λ) = ⊺⇔ ⋁
µ∈kφBG

SA(i←A (µ), λ) = ⊺⇔ λ ∈ i⇐A (kφBG).

A combination of (I)-(III) we have i⇒B (kφBG) qÐ→ z0 and i⇐A i⇒B (kφBG) = i⇐A (kφBG) exists. It follows that
i⇒B (kφBG) ∈ C⊺L(z0).

(IV) ϕ⇒i⇐A (kφBG) = ϕ⇒i⇐A i⇒B (kφBG) pÐ→ ϕ(z0). Indeed, if z0 ∈ A, then

i⇒A i⇐A i⇒B (kφBG) ⊇ i⇒B (kφBG) qÐ→ z0,

whichmeans i⇐A i⇒B (kφBG) qAÐ→ z0, then by the continuity of ϕ ∶ A Ð→ Y we get ϕ⇒i⇐A i⇒B (kφBG) pÐ→ ϕ(z0) =
ϕ(z0).

If z0 ∈ B − A, then
ϕ(z0) = yz0 ∈ {y∣∀F ∈ C⊺L(z0),ϕ⇒(i⇐A (F)) pÐ→ y},

and by i⇒B (kφBG) ∈ C⊺L(z0), we conclude that ϕ⇒i⇐A i⇒B (kφBG) pÐ→ yz0 .
(V) Let φY ∶ B Ð→ F⊺L(Y) be the composition of the following three functions

B φBÐ→ F⊺L(B)
i⇐AÐ→ F⊺L(A)

ϕ⇒Ð→ F⊺L(Y).

Note that for any z ∈ B, (i⇐A ○ φB)(z) = i⇐A i⇐B (Hz) exists since λ ∈ Hz implies⋁w∈A λ(w) = ⊺. Therefore, φY is
well-de�ned. Next, we check that kφYG

pÐ→ ϕ(z0) and φY(z)
pÐ→ ϕ(z) for any z ∈ B.

(i) kφYG
pÐ→ ϕ(z0). At �rst, we prove that i⇐A (kφBG) ⊆ k(i⇐A ○ φB)G. Let λ ∈ i⇐A (kφBG). Then

⋁µ∈kφBG SA(i
←

A (µ), λ) = ⊺. Note that

µ ∈ kφBG Ô⇒ ∃E ∈ ι(G)s.t.∀e ∈ E, µ ∈ φB(e)
Ô⇒ ∃E ∈ ι(G)s.t.∀e ∈ E, i←A (µ) ∈ (i⇐A ○ φB)(e)
Ô⇒ i←A (µ) ∈ k(i⇐A ○ φB)G.

It follows that

⊺ = ⋁
µ∈kφBG

SA(i←A (µ), λ) ≤ ⋁
i←A (µ)∈k(i

⇐
A ○φB)G

SA(i←A (µ), λ) ≤ ⋁
ν∈k(i⇐A ○φB)G

SA(ν, λ),

which means λ ∈ k(i⇐A ○ φB)G. Thus i⇐A (kφBG) ⊆ k(i⇐A ○ φB)G. Then by Lemma 3.2 (1) we have

ϕ
⇒(i⇐A (kφBG)) ⊆ ϕ⇒(k(i⇐A ○ φB)G) = k(ϕ⇒ ○ i⇐A ○ φB)G = kφYG,

and by ϕ⇒i⇐A (kφBG) pÐ→ ϕ(z0), it holds that kφYG
pÐ→ ϕ(z0).

(ii) φY(z)
pÐ→ ϕ(z) for any z ∈ B. Note that i⇐A (i⇒B (φB(z))) exists since

i⇐A (i⇒B (φB(z))) = i⇐A (i⇒B (i⇐B (Hz))) = i⇐A (Hz).

Then by i⇒B (φB(z)) = i⇒B (i⇐B (Hz)) ⊇ Hz
qÐ→ z we obtain i⇒B (φB(z)) ∈ C⊺L(z).

If z ∈ A, then
i⇒A i⇐A (φB(y)) = i⇒A i⇐A (i⇒B (i⇐B (Hz))) ⊇ Hz

qÐ→ z,

which means i⇐A (φB(y))
qAÐ→ z and so φY(y) = ϕ⇒i⇐A (φB(y))

pÐ→ ϕ(z) = ϕ(z) by the continuity of
ϕ ∶ A Ð→ Y.
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If z ∈ B − A, then
ϕ(z) ∈ {y∣∀F ∈ C⊺L(z),ϕ⇒(i⇐A (F)) pÐ→ y},

and by i⇒B (φB(z)) ∈ C⊺L(z), we conclude that ϕ⇒i⇐A i⇒B (φB(z))
pÐ→ ϕ(z). Note that

i⇐A (i⇒B (φB(z))) = i⇐A (Hz) = i⇐A i⇐B (Hz) = i⇐A (φB(z)).

Thus φY(z) = ϕ⇒i⇐A (φB(z))
pÐ→ ϕ(z).

It follows from (i), (ii) and that (Y , p) satis�es (TDF) we get that ϕ⇒(G) pÐ→ ϕ(z0) for anyG
qBÐ→ z0. This

means that ϕ ∶ (B, qB)Ð→ (Y , p) is continuous.

A subset B of a ⊺-convergence space (X, q) is said to be dense [6] if for each x ∈ X, there exists a ⊺-�lter F
such that i⇐B (F) exists and F converges to x. (X, q) is called ⊺-Hausdor� if for each ⊺-�lter F, there exists at
most one x ∈ X such that F converges to x.

Theorem 3.10 (continuous extension theorem). Let (X, q) be a ⊺-convergence space satisfying Kowalsky ⊺-
diagonal condition (TK), and let (Y , p) be regular and ⊺-Hausdor�. Then for each dense subset A in (X, q), a
continuous function ϕ ∶ (A, qA)Ð→ (Y , p) has a unique continuous extension ϕ ∶ (X, q)Ð→ (Y , p) if and only
if {y∣∀F ∈ C⊺L(x),ϕ⇒(i⇐A (F)) pÐ→ y} ≠ ∅ for any x ∈ X.

Proof. Su�ciency. For any x ∈ X, since A is dense in (X, q) then C⊺L(x) ≠ ∅, it follows by {y∣∀F ∈
C⊺L(x),ϕ⇒(i⇐A (F)) pÐ→ y} ≠ ∅ and we have that

{x ∈ X∣C⊺L(x) ≠ ∅, {y∣∀F ∈ C⊺L(x),ϕ⇒(i⇐A (F)) pÐ→ y} ≠ ∅} = X.

From Proposition 3.9, we conclude that there exists a continuous extension of ϕ, de�ned as ϕ ∶ X Ð→ Y:
∀x ∈ X, ϕ(x) = ϕ(x) if x ∈ A and ϕ(x) = yx, if x ∈ X − A, where yx is some �xed element in {y∣∀F ∈
C⊺L(x),ϕ⇒(i⇐A (F)) pÐ→ y}. Note that the set {y∣∀F ∈ C⊺L(x),ϕ⇒(i⇐A (F)) pÐ→ y} has only one element since
(Y , p) is ⊺-Hausdor�. This means that ϕ is de�ned uniquely.

Necessity.Assume thatϕ has a continuous extensionϕ ∶ (X, q)Ð→ (Y , p). Thenwe have thatϕ⇒(F) pÐ→
ϕ(x) for any F

qÐ→ x. Next we check that ϕ⇒(F) ⊆ ϕ⇒(i⇐A (F)) whenever i⇐A (F) exists. Indeed, for any
λ ∈ F, it is easily seen that ϕ→(i←A (λ)) ≤ ϕ→(λ) and so ϕ→(λ) ∈ ϕ⇒(i⇐A (F)). It follows by Lemma 2.5 (1) that
ϕ⇒(F) ⊆ ϕ⇒(i⇐A (F)).

For any F ∈ C⊺L(x), which means F qÐ→ x and i⇐A (F) exists. From the above statement we observe easily
that ϕ⇒(i⇐A (F)) pÐ→ ϕ(x). Therefore, {y∣∀F ∈ C⊺L(x),ϕ⇒(i⇐A (F)) pÐ→ y} ≠ ∅.

4 Conclusions
In this paper, we de�ned a notion of ⊺-regularity for ⊺-convergence spaces with the use of an extending dual
Fischer diagonal condition, which is based on extending Kowalsky compression operator. It is proved that
⊺-regularity is a good extension of regularity, and the category of ⊺-regular ⊺-convergence space is a re�ective
category of ⊺-convergence spaces. In addition, based on ⊺-regularity, we explored an extension theorem of
continuous function.
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