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1. Introduction 

Let (f~, Z, P) denote a complete probability space, that will remain fixed throughout the 

paper. A (centered) Gaussian random variable X is a real valued measurable function 

on f~ such that for each real number t, 

Eexp itX = exp ( - 0  2 t2/2) 

or that, equivalently, the law of X has a density (2x02)-1/2 exp (-x2/202). The law of X is 

thus determined by a=(EXZ) 1/2. If o= 1, X is called standard normal. 

A (centered) Gaussian process is a family (Xt)te r of random variables, indexed by 

some index set T, and such that each finite linear combination EatX t is Gaussian. The 

covariance function F(u, v)=E(XuXo) on T• determines E(EatXt) 2, so it determines 

the law of the variables (Xt)te r. Gaussian processes are thus a very rigid structure. One 

should expect, at least on philosophical grounds, that they have very nice properties. 

As of today, this expectation has been entirely fulfilled. 

Historically, Gaussian processes, of which Brownian motion is the most important 

example, first occured as a model of evolution in time of a physical phenomenon. They 

were then naturally indexed by the real line, or by a subinterval of it. For such a 

process, the question of continuity arises immediately. We are dealing with an uncount- 

able family of random variables, each of them being defined only a.e., so the very 

definition of continuity of the process already raises technical problems. These prob- 

lems are taken care of by the use of a standard tool, the notion of "separable process". 

We are here hardly concerned with these technicalities, since the prime objective of 

this paper is to prove quantitative estimates, for which there is no loss of strength to 



100 M. TALAGRAND 

assume T finite. For simplicity, when T is a topological space, let us define here the 

process (Xt)te r to be continuous if there exists a process (Yt)ter, with Xt= Yt a.s. for 

each t (the exceptional set depending on t) and such that for almost each to in [2, the 

function t ~  Yt(to) is continuous on T. (When dealing with a continuous process (Xt)te r, 

we will always assume that t,--->X,(to) is continuous for almost each to.) Uniform 

continuity can be defined in a similar way. The key to the study of continuity is the 

study of boundedness. We define here the process (St)te T to be bounded if there is a 

process (Yt)tET with X t = Y  t a.s. for each t and such that for almost each to in f~, 

suPterl Yt(to)l <oo. This is known to be equivalent to the fact that sup o IX,(to)l <oo a.s. for 

each countable subset D of T. 

For simplicity we write 

E sup Xt = sup { E sup D countable subset ofT} 

and we adopt a similar convention for E SUPr[Xtl. To formulate quantitative estimates, 

we need a measure of the boundedness of a process (Xt)t~ r. Such a measure could be a 

median of suPrX t. A more convenient (but equivalent) measure of boundedness is 

provided by the important result of H. Landau, L. A. Shepp and X. Fernique ([19], [7]). 

This result asserts that (Xt)t~ r~is bounded if and only if E SUPrlXtl<oo; so E sup rlXtl will 

be a convenient measure of the boundedness of (Xt),e r. Another closely related 

measure of boundedness is the quantity E s u P r X  t, which offers the extra advantage that 

EsuPr(Xt+ Y ) = E s u P r X  t for any Gaussian random variable Y. It is easily seen that for 

any t o in T, we have 

e sup X, <- E sup IX, l-< E IX,01+ 2E sup X t . (1) 
T T T 

The early results on Gaussian processes dealt with processes indexed by a subset 

of R n, and tried to take advantage of the special structure of the index set. For example, 

an important early theorem of X. Feruique [6] was proved using a chaining argument on 

carefully chosen dyadic partitions of the unit interval. As we first noted, a Gaussian 

process is determined by its covariance structure, which has no reason to be closely 

related to the structure of the index set as a subset of R n. It should then be expected 

that a more intrinsic point of view would yield better results. This was achieved in the 

landmark paper of R. M. Dudley [3]. On the index set T, consider the pseudo-distance d 

given by 
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d(u, o) = o ( X . - X v )  = (E(Xu-Xo)2)  ~/2 (2) 

(d will keep this meaning throughout the paper). Denote by N~ the smallest number of 

closed d-balls of radius e that can cover T. We define the metric entropy condition as 

the finiteness of the entropy integral So(log N)l/2de. Note that when e is larger than the 

diameter of T, N =  1, so the integrand is zero. Also, since N, is a decreasing function of 

e, the issue for the finiteness of the integral is at zero. One major result of R. M. Dudley 

is that the metric entropy condition implies the boundedness of the process. More 

precisely 

E su p X  t ~< K (log Ne)l/2dE (3) 
T 

for some universal constant K. We should note here that when T contains one point 

only, the entropy integral vanishes, so we cannot use E SUPrlXtl instead of E suPrX t in 

(3). 

The inequality (3) is in some sense sharp. V. N. Sudakov [25], used a lemma of 

D. Slepian [24], that is now a cornerstone of the theory, to show that 

sup e(log N) v2 <~ KE supX t (4) 
e>0 T 

for some universal constant K. (For simplicity, K will always denote a universal 

constant, not necessarily the same at each line.) 

At this point, we must discuss a simple, well known, but most instructive example. 

Consider a Gaussian process indexed by T={n;n~l}, or, in other words, a jointly 

Gaussian sequence ( Y , ) ~ .  (We do not assume that the Y, are independent.) Assume 

that o(Y,)=(Ey2)l/2<~(l+logn)-V2. Then the sequence (Y~) is bounded a.s. and in fact 

E supl Y,I~ K (5) 
n 

for some universal constant K. The proof is .elementary. We note that for a Gaussian 

r.v. X, with o=o(X)=(EX2) u2, we have, for a~o 

P((X>~ a}) = (2fro2) -ta exp (-t2/202)dt 
J a  
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( ~ o2 ) ~< (2aro2a2) -1/2 exp (-t2/2 dt 
J a  

o exp - ~< exp - . 
~< a V  2----~ 

So, for a~>2, 

(02 ) 
P((an 1> 1, I Y, I ~ a}) ~< 2 E exp --~- (1 +log n) 

n ~ l  

<~ 2 exp ( - - ~ )  ~1 n-~2/2 ~ K exp ( - - ~ )  

and this implies (5). 

Let us assume now that the sequence (Yn) is independent, and that 

o(Yn)=(l+ log n) -1/2. Let e>0. Then for n<n,=exp ( - 1 +  I/2e2), we have o(Y~)>eX/-2-, 

so if m, n<n, se have d(n, m)=cr(Y~- Ym)>2e. This shows that n, m cannot belong to 

the same d-ball of radius e. It follows that N>.n , - l ,  so inf~>0e(logN,)l/2>0, and the 

metric entropy condition fails. This example shows that the boundedness of a Gaussian 

process is not characterized by the metric entropy condition. A closer inspection will 

give a clue about the reason of this failure. Each n for n<n, needs a d-ball of radius e to 

cover itself alone; on the other hand, the points n for n>n, can be covered by one single 

d-ball of radius e. This can be expressed by saying that the numbers N, can give 

exaggerated importance to parts of the space (T, d) that are actually rather thin. They 

do not take well in account the possible lack of homogeneity of the space (T, d). 

One should then try to understand the case where (T, d) has some homogeneity. A 

typical situation is the case of stationary processes. If G is a locally compact abelian 

group, a Gaussian process (St)rE G is called stationary if the translations are isometries 

of (G, d), where d is as usual given by (2). In other words, for t, u, v in G, d(u, v) 

=d(u+t, o+t). In that case, any two d-balls of G are isometric. Let now T be a compact 

subset of G, of nonempty interior, and suppose that the covariance of the stationary 

process (Xt)ts c is continuous on GxG. In 1974, X. Fernique established (in the case 

G=R ~) the fundamental fact that the metric entropy condition is necessary and suffi- 

cient for the continuity of (gt)tE T. This result had a considerable influence. For 

example, it is the main tool used by M. Marcus and G. Pisier in the definitive treatment 

of random Fourier series [21]. The proof of this result is outlined at the beginning of 

section 2. The proof of our main result will follow the same general scheme. 
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For general processes, we need a substitute to the metric entropy condition. The 

stationary case can give a hint. If G is compact, (Xt)t~ ~ is stationary, and m denotes the 

normalized Haar measure of G, it is easily seen that the metric entropy condition is 

equivalent to 

f 0 ( (  ' 
sup log - - de<oo 
x ~ c m(B(x ,  e)) 

(6) 

where B(x,  e) denotes the d-ball, and where the integral is actually independent of x. 

Condition (6) will prepare the reader to the introduction of majorizing measures. For 

the simplicity of notations, let us set once and for all g(t)=(log(1/ t ) )  1/2 for 0<t~<l. We 

say that a probability measure m on (T, d) is a majorizing measure if 

~0 ~176 
sup g(m(B(x ,  e)))de < oo. 
x E T  

We note that the integrand is zero when e is larger than the diameter of T. X. Fernique 

proved that for a Gaussian process (Xt)te r, and any probability measure m on (T, d), we 

have 

fO ~ 
E sup X t <~ K sup g(m(B(x ,  e)))de. 

T x 

(7) 

It is not hard to show that this contains Dudley's result "(3). It should be noted that (7) 

follows from an earlier work of C. Preston ([23], Lemma 4). However, in his main 

statements, C. Preston unnecessarily restricts his hypothesis. He was apparently not 

aware of the power of the present formulation. C. Preston's work itself follows a 

seminal paper by A. M. Garsia, E. Rodemich, H. R. Rumsey [15]. 

X. Fernique apparently conjectured as early as 1974 that the existence of majoriz- 

ing measures might characterize the boundedness of Gaussian processes. (See [10] p. 

69). Other researchers however considered these measures as exotic; so Fernique 

remained very isolated in his efforts; he nevertheless proved a number of important 

partial results, and his determination eventually motivated the author to attack the 

problem. 

The central result of this paper is the validity of Fernique's conjecture. It will be 

proved in section 2. 
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THEOREM I. For each bounded Gaussian process (Xt)te r there exists a probability 

measure m on (T, d) such that 

fo 
sup g(m(B(x, e)))dt ~< K E  sup X t. 

x do T 

In section 3, we will explore some of the consequences. We will prove a compari- 

son theorem between Gaussian and subgaussian processes. We will relate the uniform 

modulus of continuity of (X t) over (T, d) and the existence of special types of majoriz- 

ing measures on (T, dL Another consequence of (the proof of) Theorem 1 is the 

following, that is so unexpected that it does not seem to have been even conjectured 

earlier. 

THEOREM 2. Let  (Xt)te r be a bounded Gaussian process. Let  a=E suPrlXtl, and let 

b be the d-diameter o f  T. Then there exists a (not necessarily independent) Gaussian 

sequence (Y.)n>>.l such that o(Y~)<..Ka(logn+a2/b2) -Vz and that for  each t in T, we can 

write 

X, = X an(t) Yn (S) 

where a.(t)>~O, E~a~(t)~<l, and the series converges a.s. and in L z. Moreover, each Y~ 

is a linear combination o f  at most  two variables o f  the type X v 

The point of this theorem is that this representation of the process implies its 

boundedness. Actually, (8) implies that 

IX,(~o) I ~< sup I Y~(co)l 
n 

so the boundedness of (Xt) follows from (4) and the easy fa/ct that b<~aV~. Actually, 

(8) implies that EsuPrlXtl<~Ka. An easy consequence of Theorem 2 is the following 

solution to the problem of continuity of Gaussian processes. 

THEOREM 3. Let  T be a compact metric space. Then a Gaussian process (Xt)te r is 

continuous i f  and only i f  its cooariance is continuous and there exists a Gaussian 

sequence (Yn).~l such that lim. (log n) la o(Y~)=0 and that for  each t in T, one can write 

Xt=E.a , ( t )  Y., where the series converges in L 2, an(t)~O, Ena~(t)~<l. 
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As a corollary o f  Theorem 3, we will be able to describe all Gaussian measures on 

all separable Banach spaces (Theorem 19). 

A natural question raised by Theorem 1 is to better understand the nature of the 

majorizing measure m. Our proof is not constructive; the existence of m is proved 

indirectly. The constructions make use of the structure of the metric space (T, d), but 

they don't relate well this structure to the properties of the process. Consider the case 

where T is finite and separated by d. Then there is a.s. a unique point r(w) of T such 

that X~o,)(co)=SuPrXt(co ). Denote by/z  the law of r. The intuition of X. Fernique was 

that the majorizing measure should be closely related to/~. We will prove the following 

result (the left-hand inequality is due to X. Fernique). 

THEOREM 4. Let T,g be as above, and D be the diameter ofT. Then 

�9 :, fo K-I EsupXt<~D+ dlt(x) g(Iz(B(x,e)))de<~KEsupX,. 
T 

(9) 

To interpret this theorem, let 

l :0" T ' =  xE g(u(B(x, e))) de <~ 2KE supXt).  

Then :t(T')~>l/2, and/~ behaves like a majorizing measure on T', with the unessential 

restriction that it is not supported by T'. The set T' can be much smaller than T; 

however, as far as the process SUPrX t is concerned, T' contains a lot of information 

since P(supr, Xt=SUPrXt)>~l/2. Actually it can be shown that if U c T  is such that 

P(supvXt=suPrXt)>~ 1/2, then E suPrXt<~KEsupuX r So, roughly speaking, Theorem 4 

means that/~ is a majorizing measure on a subset of T large enough to control SUPrX/. 

As we have seen, E suPrX t =EX~, and the law .S~ of r is/~. Given now any 

probability measure v on T, it is natural to consider the functional (introduced by 

X. Fernique) 

F(~,  v) = sup x~ 
Lffrl)=v 

where ~=(Xt)ter, and the sup is taken over all measurable maps r/from fl to T, of law 

v. (So we have EsuPrXt=F(~,g). ) In section 4, we prove Theorem 4, and we show 

how to evaluate the functional F(~, v). 
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2. Existence of majorizing measures 

One essential ingredient of the proof is a very specific property of Gaussian processes, 

that was discovered by D. Slepian [24]. Close to Slepian's result, but more convenient 

to use, is the following comparison theorem. 

PROPOSITION 5. Let (Xt)t~ r, (Yt)ter be two Gaussian processes indexed by the 

same set. Assume that for  each u,v  in T, we have tr(Yu-Yo)<-tr(X~-Xo). Then 

E SUPT Yt<~E SUPrX r 

As stated, this theorem was announced by V. N. Sudakov [26]. X. Fernique 

mentions in [9] that credit is also due to S. Chevet. (We did not have access to Chevet's 

paper.) The weaker inequality EsuPr Yt<~2EsuprXt would be sufficient for our pur- 

pose. It can be derived easily from Slepian's lemma, as is implicitly proved in an early 

paper of M. Marcus and L. A. Shepp [20]. A proof of Theorem 5 can be found in [10]. 

The best way to illustrate the power of Theorem 5 is to prove Sudakov's minora- 

tion (4). Let e>0, and let U be a maximal subset of Twith d(t, u)>e for t, u in U, t4:u, so 

N~<cardU. Let (Zt)t~t~ be an independent standard normal sequence; and let Yt 

=(e/X/--2-)Zt; For t, u in U, t4=u, we have o(Y t -  Y,)=e<~a(Xt-Xu); so Proposition 5 gives 

Esup Yt<~EsupXt<~EsupXr 
U U T 

An easy estimate shows that Esupv .Y  t is of order e(log (card U)) 1/2, and this implies (4). 

We now outline the proof of Fernique's theorem that in the stationary case, the 

continuity of a Gaussian process implies the metric entropy condition. To avoid 

unessential technicalities, we consider the case where G is compact, T=G. 

For two subsets A, B of a metric space (T, d), let 

d(A, B) = inf {d(a, b); a EA, b EB}. 
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Assuming that the metric entropy condition fails, Fernique's method allows to con- 

struct for n~>l numbers Am, and families ~ of d-balls with the following properties: 

E 9-i(l~ ) 1/2 = cO. (10) 
i~l  

(11) Each B in ~ has radius 9-n; ifB, B' belong to ~ ,  B4=B', then d(B,B')>~9-L 

(12) Each B in ~ contains N n balls of ~+1.  

(The choice of the number 9 is fairly arbitrary.) 

Let Sn be the set of the centers of the balls of ~3~. The all-important condition (11) 

allows to use Theorem 5 to compare (Xt)tesn, with a suitable process to get 

K-1E 9-i(1og Ni )1/2 ~ E sup Xt <~ E sup Xt 
i<~n S n T 

and this is impossible for n large enough. 

One stricking feature of the construction is condition (12). It means that all the 

balls in ~3 i play essentially the same role. This is made possible by the great homogene- 

ity of T, and in particular by the fact that all the d-balls of T of a given radius are 

isometric. This specific feature cannot carry on in the general case. 

Recall that for a metric space T, the diameter of T is the quantity 

diam T= sup {d(x, y);x, y E T}. 

The main construction of our proof, by induction over n, is the construction of a 

family ~n of subsets of T (that are no longer d-balls), that satisfy the following 

conditions: 

(13) Each B in ~n has diameter ~<6-"; 

(14) IfB, B' belong to ~n, B:#B', then d(B,B')>~6-~-I, 

as well as appropriate substitutes for conditions (10) and (12), that we will describe 

later. 

After ~ has been obtained, we will continue the construction by trying to build 

inside each set B of ~ ,  as many sets of ~,+1 as possible. To succeed, we must ensure 

that B is big enough in some sense. So we need an appropriate measure of the size of a 

metric space. 

Given a probability measure m on the metric space (T, d), let 
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Ym(T) = sup g(m(B(x, e)))de 
x E T  

y(T) = infym(T) 

where the infimum is taken over all probability measures m on T. For  a subspace A of 

T, y(A) refers to the quantity associated to the metric space (A,d);  that is, 

~,(A)=infym(A), where the inf is taken over the probability measures supported by A. 

From now on, we assume until further notice that all the metric spaces are finite. 

Recall that a metric space (U, 6) is called ultrametric if for u, o, w in U, we have 

6(u, w) <~ max(6(u, v), 6(v, w)). 

A nice feature of  ultrametric spaces is that two balls of  the same radius are either 

identical or disjoint. Say that a map f from U onto T is a contraction if d(f(u),f(v))<~ 
6(u, v) for u, v in U. For a metric space (T, d), consider the quantity 

a(T) = inf {~,(U); U is ultrametric and T is image of U by a contraction}. 

Although ~,(T) comes first to the mind as a way to measure the size of  T, the 

quantity a(T) is easier to manipulate, and yields stronger results. We first collect some 

simple facts. 

LEMbtA 6. (a) y(T)<~a(T). 

(b) if AcT, y(A)~<2y(T). 

(c) if U is ultrametric, AcU, then y(A)<.y(U). 
(d) if AcT, then a(A)<.a(T). 
(e) a(T)=inf  {y(U); U ultrametric, card U~<card T, diam U~<diam T, T is image of 

U by a contraction} and this inf is attained. 
(f) diam T<~Ky(T). 

Proof. (a) Le t  f be a contraction from U into T, m a probability measure on U, 
l~=f(m). For u in U, e>O, we have f - ' (B(f (u) ,  e))=B(u, e) since f is a contraction, so 

Iz(B(f(u), e))>~m(B(u, e)) since/a=f(m). (Here and throughout the paper, when no ambi- 

guity arises, we adopt the convention that B(x, e) denotes the ball for the distance on 

the space that contains x.) Since g is decreasing we get 

fo| g(la(B(J(u), e)))de<~ fo| e)))de. 
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S i n c e f i s  onto, we get y~(T)<~Ym(U) , s o  y(T)<.y(U) since m is arbitrary, so y(T)<~a(T) 

since U , f  are arbitrary. 

(b) For  t in T, take q0(t) in A with 

d(t, qg(t)) = d(t, A) = inf {d(t, y); y EA }. 

Let m be a probability measure on T, and/z=tp(m), so/~ is supported by A. Fix x in A. 

For t in T, we have d(t,A)<~d(t,x), so d(t, q~(t))<~d(t, x), so d(x, rp(t))<.2d(x, t). Since 

/z=qffm), it follows that Iz(B(x, 2e))>~m(B(x, e)), so 

f0" f0 ~ g(u(B(x, e)))dtz <. g(m(B(x, e/2)))de 

= 2 g(m(B(x, e)))de. 

This shows that yF,(A)~<2ym(T), so y(A)~<2y(T). 

(c) With the notations of  the above proof, the ultrametricity gives 

d(x, q0(t)) ~< max (d(x, t), d(t, rp(t)) <~ d(x, t) 

so/z(B(x, e))>~m(B(x, e)) and ~(A)<.~,(U) as above. 

(d) Let  U be ultrametric, and l e t f b e  a contraction from U onto T. By (c), we get 

a(A) <. y(f-i (it)) <. y(U) 

s o  a(A)<~a(T). 

(e) If  (U, 6) is ultrametric, and f is a contraction from U onto T, consider the 

distance 6 ! on U given by 

61(u, v) = inf(6(u, v), diam T). 

Then (U, 61) is ultrametric, f is still a contraction from (U, 6 0 onto T, and 

~((U, 6t))<~((U, 6)) by the argument of (a). Also, if A=f-I(T),  y(A)<~(U) by (c). The 

last assertion follows by a standard compactness argument. 

(f) Take two points u, v in T. Let  6=d(u, v). The balls B(u, 6/3), B(v, 6/3) are 

disjoint. For  a probability measure m on T, one of these balls (say the first) has a 

measure ~<�89 so 
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f 613 

~,(T) >I I g(B(u, e)) de I> 613(Iog 2) ~/2 
30 

so d(u, v)<.KT(T). The proof  is complete.  

The next lemma exhibits a behavior of  a that resembles a strong form of  subadditi- 

vity. 

LEMMA 7. Let  T be a finite metric space o f  diameter D. Suppose that we have a 

finite covering A l . . . . .  A n o fT .  Then there is a nonempty subset I o f{1  . . . . .  n} such that 

for  i in I we have 

a(Ai) ~ a (T ) -D(2  log (1 +card  I))1/2. 

Proof. From Lemma  6(e), for i<.n there exists an ultrametric space (U i, 6 i) of  

diameter ~<D, a contract ion f / f r o m  U,. onto A;, and a probability measure m i on U i 

such that a(Ai)=Tmi(Ui). Let  U be the disjoint sum of  the spaces (U;);~<,. Define the 

distance 6 on U by 6(u, v)=6i(u, v) whenever  u, v belong to the same U i, and 6(u, v)=D 

otherwise. Then (U, 6) is ultrametric. The m a p f f r o m  U onto T given by f(u)=f,.(u) for  u 

in U; is a contraction.  

There is no loss of  generality to assume that a(Ai)>~a(A j) for l<<.i<~j<<.n. 

Let  r / i=(i+l)  -2, so 

~ 1  n~2  

Consider the positive measure m' on U given by m'=Ei_~ n ~imi. We have IIm'll~l, 
so there is a probability m on U with m'<~m. Take x in U, and let i with x E U~. Since for 

O<a, b<~l, we have g(ab)~g(a)+g(b), we have 

It follows that 

g(m(B(x, e))) <~ g(m'(B(x, e))) <~ g(r]i mi(B(x, e))) 

<~ g(rli)+g(mi(B(x, e))). 

L ~ g(m(B(x, e)))de = fo ~ g(m(B(x, e))) de 
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fO ~ 
<~ Dg(r]i ) + g(mi(B(x, e))) de 

<~ Dg(rli ) + a(Ai). 

a(U) <~ Vm(U) <<. sup (Dg(rli)+a(Ai)), 
i~n 

So there exists l<~i<.n such that 

a(Ai) >I a(U)-Dg(rli) = ct(U)-D(2 log (1 + i)) 1/2. 

Taking I =  { 1 . . . . .  i), this concludes the proof. 

COROLLARY 8. I f  T= TILl T 2, a(T) ~<max (a(T 0, a(T2))+2 diam T. 

Proof. Take n=2  in Lemma 7, and note that (21og3)1/2~<2. 

I l l  

At this point, we should mention that we never attempt to find sharp numerical 

constants, but always use crude, but simple, bounds. 

The main obstacle to the construction is the separation condition (14). It implies, in 

particular, that we cannot in general cover an element B of ~n by elements of ~n+~. 

Thus, we have to take great care that the piece of B we will disregard is not too big. This 

seems to be difficult to achieve by using the functional a alone, so we will introduce an 

auxiliary functional that somehow measures the rate of decrease of a. 

For  i in N, A c T ,  let 

fli(A) = a(A)-sup a(A n B(x, 6-i-1)). 
xEA 

The next lemma starts to address the problem of condition (14). 

LEMMA 9. Let (T, d) be a metric space, iEN. Then we can find non-empty subsets 

B c A c T  satisfying the following conditions 

(15) diamA~<6-i; 

(16) d(B, T\A)~>6-i-1; 

(17) One of  the following holds: 
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(a) a(B)+a(T)~2a(A); 

(b) a(B)+fli(B)>~a(T). 

M. TALAGRAND 

Proof. First case. There exists x in T such that 

a(B(x, 6-i-l))+a(T)/> 2a(B(x, 2.6-i-1)). 

Then we set 

B = B(x, 6-i-1), 

and (a) of condition (17) holds. 

A = B(x, 2-6-i-I). 

Second case. For each t in T, we have 

a(B(t, 6-i-l))+a(T) <~ 2a(B(t, 2-6-H)).  

Let x be such that a(B(x, 2.6-i-1)) is maximal. Set 

B = B ( x ,  2.6-i-l),  A = B(x, 3.6 -i-)) 

so (15) and (16) hold. For any t in T, we have 

a(B(t, 6-i-1))+a(T) ~< 2a(B) 

SO 

Since 

a(B)+(a(B)-a(B(t ,  6-H)))~  > a(T). 

a(B(t, 6-i-I)) t> a(B) NB(t, 6-i-~)) 

this shows that a(B)+fli(B)>~a(T ). The proof is complete. 

We now have the tools to perform the essential step. 

PROPOSITION 10. Let (T, d) be a metric space o f  diameter <~6 -i. Then we can f ind 

a non-empty index set I, and for  k in I, a set B k c T  such that the following conditions 

hold: 

(18) each set B k has a diameter ~6-i-I;  

(19) i lk ,  IEl, k*l,  then d(Bk, Bt)>~6-i-2; 



REGULARITY OF GAUSSIAN PROCESSES 113 

(20) for k in I, 

a(Bk) +fli+ 1 (B,) >>- a(T) +fl,( T)-  6 -i+ !(2 + (log (card I))1/2). 

Condition (20) will be easily used when successive applications of the proposition 

are made. It is to obtain a relation of this type that we introduced the quantities fli. 

Proof. By induction over k, we construct subsets A,, B,, T, of T that satisfy the 

foliowing conditions: 

(21) T,= T~Up<kAp; diamA, ~< 6-i-1; BkcAkc Tk; d(B,, T, NA,)~>6-i-2; 

(22) For each k, one of the following holds: 

(a) a(B,)+a(Tk) >t 2a(A,); 

(b) a(Bk)+fli+l (B,) ~ a(T,). 

The construction starts with T~ =T. It is straightforward by applying Lemma 9 to the 

space T k at step k. We stop the construction at the first integer m for which 

a(Tm)<a(T)-2.6 -i, so in particular a(Tk)~a(T)-2.6 -i for k<m. 

Let T'=tJp<mA p, so T=T'UT m. It follows from Corollary 8 that a(T')>~ 

a (T) -  2 �9 6 -i. 

We now apply Lemma 7 to the covering of T' by the sets (Ak)k< m. We get a non- 

empty subset I of { 1 ... . .  m -  1 } such that for each k in I, we have 

a(A k) I> a(T')-6-i(2 log (1 +card i))1/2. 

Using the easy inequality (log(l+n))l/2~<l+(log n) v2, we get 

a(Ak) >- a(T)-2.6-i(2+1og (card I)) In. (23) 

Since A k is of diameter ~<6 - '-l ,  we have 

fli( T) <~ a( T ) -a (A  k) ~< 2.6-i(2+1og (card I)) In. (24) 

For a given k in J, suppose first that (a) holds in (22). Then from (24) 

a(B k) ~ 2a(Ak)-a(T k) >I 2a(ai)-a(T) 

a (T) -2(a(T) -  a(Ak)) 

>~ a(T)+fli(T)-3(a(T)-a(Ak)) 

a(T)+fli(T)-6-i+l(2+(log (card I))1/2). 

so (20) holds since fli+t (B,)~O. 

8-878282 Acta Mathematica 159. Imprim~ le 25 aoOt 1987 
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Suppose now that (b) holds in (21). Then from (24), we get 

a(Bk)+fli+l(Bk) ~ a(T k) ~ a ( T ) - 2 . 6  -i-I 

>I a(T)+fli(T)-4.6-i(2 + (log (card I))1/2). 

It remains only to prove (19). For l<~k<l<m, we have Bt~TicTk+lCTk\Ak, so (21) 

implies that d(B k, Bt)>~6 -~-2. The proof is complete. 

Let U be an ultrametric space. For x in U, i in N, let Ni(x) be the number of disjoint 

balls of radius 6 -i-1 that are contained in B(x, 6-"). Define 

~(U) = ~ 6-i-l(log Ni(x))l/2; 
iEZ  

(25) 

~(U) = inf ~x (U). (26) 
xEU 

We note that if diam U~<6 -J, and B(x, 6-k) = {x}, we have 

~x (U)= E 6-i-l(l~ (x))lr2" 
j~i<k 

We can now perform the main construction. 

THEOREM 11. There exists a universal constant K with the following property. For 

each (finite) metric space (T, d), there exists a ultrametric space (U, r and a map q~: 

U--.T such that the following conditions hold: 

a(T) <~ K~(U); (27) 

6(u, v) <. d(r cp(v)) <. 366(u, v), Vu, v E U. (28) 

Proof. L e t j  be the largest integer with 6-J~>diam T. 

Consider two points u, v of T with d(u, v)=diam T. The space U--({u, v}, d) is 

ultrametric, and the canonical injection tp from U in T satisfies (28). The balls B(u, 6 -j-i) 

and B(v, 6 -j-l) are disjoint; so we have 

~(U) i> ~,(U) 1> 6-J-l(log 2) It2 ~> (log 2) 1/2 diam T/6. 

We can assume that K>~64 (log2) -~j2. Then (27) holds unless a(T)>~63diamT, so it 

remains to prove the theorem in that case only. By induction over i>-j, we construct 

families ~i of subsets of T that satisfy the following conditions. 
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(29) for B in ~i, diamB~<6-~; 

(30) for B,B' in ~i, B*B', we have d(B,B')>>-6-i-l; 

(31) for B in ~i, i>j, there is B' in ~i-i with B=B'; 

(32) for B in ~i, if 

N =  card {B' E ~i+l,B'cB}, 

we have N~>I, and for each B' in ~i+1 with B'cB, we have 

a(B') + fli+ l(B' ) >~ a(B) + fli(B)-6-i+ l(2 + (log N)I/2). 

The construction starts with ~j=(T}. Each step is performed by application of 

Proposition 10 to each element of ~i. We stop the construction at some k large enough 

that any two different points of T are at distance >6 -k, so each B of ~k consists exactly 

of one point. Let U=LI {B; B E ~k)"  For u, v in U, let 6(u, v)=6 -i-2, where/=sup {l; 3 B 

in ~l, u, vEB}. Since u, vEB for some B in ~i, we have d(u,v)<~6-ifrom (29). Also, 

there exist two different elements BI,B 2 of ~i+l such that uEB l, o~B 2, so (30) shows 

that d(u, 0)~>6 -i-2. Denote by q0 the canonical injection from U into T. We have proved 

(28). 

Fix now x in U, and forj<~i<~k denote B,(x) the element of ~,. that contains x. Let 

Ni(x) be the number of elements of ~i+t that are contained in Bi(x). From condition (32) 

we have, for j<~i<<.k 

~(ei+l(X))+fli+l(ei+l(X)) ~ a(Bi(x))+flz(Bz(x))-6-i+l(2+(log Ni(x))ll2). (33) 

We note that a(Bj(x))=a(T), flj(Bj(x))>~O. Also, since Bk(x)={x }, we have a(Bk(x))=O, 

flk(Bk(X))=O. Summation of the inequalities (33) forj<~i<k gives 

a(T) <~ X 6~i+t(2+(l~ (x))trz)" 
j<~i<k 

Since 6-J<~6 diam T, we have 

X 2.6-i+l <~ ~6-J+l  <~163 diam T <~ a(T)/2 ' 
j<~i 

SO 

a(T) ~< 2.64 X 6-~-3(1~ Ni (x))lr2" (34) 
j<.i<k 
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We note now that for each element B of @~, B n U is a 6-ball of radius 6 - i -2 ,  SO (34) 

means that a(T)~<2.6 4 ~x(U), so a(T)~<2.64 ~(U). The proof is complete. 

We can now prove the existence of majorizing measures when T is finite. 

THEOREM 12. Let (Xt)tr r be a Gaussian process indexed by a finite set T, and 

provide T with the canonical distance d. Then a(T)<~KE suprX . where K is a universal 

constant. 

Proof. Let U, 9 be as given by the application of Theorem 11 to the space (T, d). It 

is enough to show that ~(U)<~KE sup~e vX,(~). A first approach would be to show that 

~(U)<.Ky(U), and to use a theorem of X. Fernique ([11] Throrrme 3-3) which in the 

present case gives y(U)<<.KEsupuEvX,<~). It will, however, be simpler to give a direct 

proof. We note that for u, v in U, o(X~),X~v))=d(9(u), cp(v))>~d(u, v) so the theorem is 

a consequence of the following result, that we single out for future reference. 

PROPOSITION 13. Let (U, 6) be a finite ultrametric space. Then for each Gaussian 

process (X~)~e v such that a(X~, Xv)>-6(u, v) whenever u, v E U, we have 

~(U)<~KEsuPvX ~, where K is a universal constant. 

Proof. L e t j  in N be the largest with diam U~<6-J. For i>j, let ~i be the collection of 

the balls of U of radius 6 -i. Let ~ =  t3,>j ~i. Consider an independent family (YB)Be~ of 

standard normal r.v. For u in U, i>j, we write for simplicity Yu, i= YB(u. 6_5. For u in U, 

let Zu = X,>j. 6-i Yu, r 

Let u, v in U, and let k be the largest such that 6(u, v)<.6 -k. Then B(u, 6-9=B(v, 6 -i) 

for i<.k, so 

- i  zu-z = 6 (ru,,- to,,). 
i>k 

It follows that 

~ )<~ 2 6-i<~6"6-k-'  <~6 6tu v) 
,>k 5 5 "" 

< 6  ..  X" T~ - o). 
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Proposition 5 shows that it is enough to show that ~(U)<~.A E supuZ  . for some constant  

A. Let  A be a number such that for a finite independent family (Yi)g~u of standard 

normal r.v. we have (log N)u2<-~A E sup/~N Yi. By induction over n, we prove the follow- 

ing statement: 

(H,) If  U has a diameter <~6 -j, if for each x in U, B(x, 6-k) = {X} and if k-j<~n, then 

~( U)<-~A E supuZ u. 

For n=O, U contains only one point, so ~(U)=O and (H 0) holds. L e t u s  assume now 

that (Hn) holds, and let us prove (Hn+ O. We enumerate ~j+l as {B l . . . . .  Bq}. Forp~<q, let 

For u in U, define 

f~p = {Vi<~q, i:#p, Ysp > Ys,}" 

Z" = E 6-i Yu, i--" Z~ -6-j- '  Y~j+," 
i>j+ 1 

' -  Z'  (For For k<<.q, consider a measurable map r k from f~ to B k that satisfies Z~k--supuesk , .  

a measurable map r from Q to U, we define Z~ by Z,(~o)=Z~(o,)(w).) Define now a 

measurable map r from s to U by r(w)=rk(w) for w in f~k. We have 

E s u p Z  u >~ EZ, = E E(IQ Z,) 
U k<~q 

I> E E(l~k(6-J-' YBk+Z'Q ) 
k<~q 

= 6-J-I E E(luk Y s ) + E  E(lukZ;)" 
k<~q k<~q 

Now 

~<q E( lu  k YB) = E sup Ys~ ~ A-'( log q)l/2. 
k<~q 

The independence of  the variables (Ys)ne ~ shows that lu~ and Z'~k are independent, so 

E(I u~ Z') = P(~) E Z'~, = 1 EZ, w 
q 
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so we get 

A EZ'~, = A E sup Z' u ~ ~(Bk). 
nk 

The definition of ~ makes it clear that for each k, 

~(Bk)+6-j-,(log q)l/2 I> ~(U) 

so the proof is complete. 

In the case where T is finite, Theorem 1 follows from Theorem 12 and from the 

fact, proved in Lemma 6, that y(T)<.a(T). There is, however, a definite loss of 

information when using y(T) instead of a(T). The following result is more precise than 

Theorem 1, and essentially contains all the strength of Theorem 12. (Metric spaces are 

no longer always finite.) 

THEOREM 14. Consider a bounded Gaussian process (Xt)te r. Then there exists a 

probability measure m on (T, d) such that for  each t in T 

f0 diamrg(sup {m({u}); d(t, u) <<. e} )de <<. K E supX v (35) 
T 

Proof. Theorem 12 shows that for each finite subset V of T, 

a(V) <~ K E  supX t ~< K E  supX c 
V T 

It is hence enough to show that if we set a=sup{a(V);  V e T ,  Vfinite} there is a 

probability measure m on T such that for each t in T, 

f0 diam r g(sup {m({u}); d( t, u) <~ e}) de <<. K a . 

We start by an elementary observation, that we will use routinely in the rest of the 

paper. If h(t) is a positive decreasing function, we have 

2- ' - '  h(2-') ~< h(e) de <~ E 2-' h(2-/). (36) 
i E Z  i E Z  

Denote by j the largest integer with 2-J~>diam T. 
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Suppose now that the process (Xt)te r is bounded,  and for i>.j let T i be a finite 

subset of  T such that each point of  T is at distance ~<2 -i of  a point of  T;. Consider a 

map q0g from T to T i, such that d(t, q0~(t))~<2 -/. For each k, we know that a(T,)<.a. So 

there exists an ultrametric space (U,, 6,), a contraction f ,  from U, onto T,, and a 

probability m, on U, such that for each u in U,, 

fo e))) de <~ g(m,(B(u, 12 

so from (36) we have 

2-ig(mk(B(u, 2-/))) ~< 2a. (37) 
i>j 

To each ball B of  U, we associate a point v(B) in B. Let  ~i  be the family of  balls of  

radius 2 -~ of  U,. Denote  by Pi* the probability measure on T that, for each B in ~i, gives 

mass ink(B) to the point cPi(fk(v(B))). We note that p,.* is supported by T i. Fix t in T. 

Choose t' in T, with d(t,t')<.2 -k. Take u in U t such that f , (u )= t ' .  For  each i, 

we have ~,(u, v(B(u, 2-/)))<~2 -/, so d(t',f ,(v(B(u, 2-/)))~<2/, so 

We set 

d(t, q~iff,(v(B(u, 2-i)))))  ~< 2 -i+ I +  2-*. 

= cpi(f,(v(B(u, 2-i)))) 

so d(t, tik)<---2-/+l+2 -*, and/~/k ({~})>Im,(B(u, 2-')). If  follows from (37) that we have 

2 -i g(u/*({ ~})) ~< 2a.  (38) 
i>y 

Let ~ be an ultratilter on N. Since ~ belongs to the finite set T i, the limit ti=lim,_~ ~ 

exists, and d(t, t~)<~2 -~+l . Since/z~ is supported by the finite set T~, the limit/~=limk_~u/~ ~ 

exists, and (38) implies that for each t in U we have 

2-i gQ.ti({ti})) ~ 2a. (39) 
i>j 

Let m=E;>j.2/-;/~i, so m is a probability on T. 
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We note that 

so from (39) we get 

Now 

g(m( { ti} ) ) <~ g(2]-i kti( { ti} ) ) 

<~ g(2/-i) + g(bti( { gj} ) ) 

Z 2-ig(m({ti} ))<" Z 2-ig(2J-i)+2a" 
i>j i>j 

2.~ 2-ig(2i-i) --- ~,~ 2-i ((i-J~ log 2) I/2 ~ K 2  -J ~< K d i a m  T. 
i>j i>j 

From lemma 6(f), diam T<~Ka, so we get 

Z 2-ig(m({ti})) <~ Ka. 
i>j 

For e>2 -i+1 we have sup{m({u}); d(u, t)<.e}>~m({ti}) and the result follows from (36) 

again. 

3. Applications 

Our first application is a comparison theorem between processes. 

THEOREM 15. Let (gt)t~ r be a Gaussian process, and (Yt) be any other centered 

process indexed by the same set. Assume that for each 0 in R, we have 

E exp 0(Y, - go) ~ E exp O(X, - X  v) = exp d2(u, v) . (40) 

Then we have EsuPr  Yt~KEsuPrXt  where K is a universal constant. 

When (Yt) is also Gaussian, E exp O( Y . -  Yo) = exp (020( Yu- Yv) 2]2) so (40) reduces to 

the inequality 0(Yu-Yo)<~0(Xu-Xo) �9 In that case, Theorem 15 reduces to Proposition 5 

(but with an unspecified constant). 
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Proof. Theorem 1 shows that there is a probability measure m on (T, d) such that 

sup g(m(B(x, e))) de < K E sup X t. 
x E T  T 

It follows from (40) that for each t~>0, each 0, we have 

exp ( tO) P { Yu- Yv > td(u, v)} ~< exp (02/2). 

Taking O=t, 

P{ Yu- Yv > td(u, v)} ~< exp(-t2/2). 

AS is well known to specialists, (and is shown e.g. by the proof given in [10]), this 

inequality implies that (It) satisfies the majorizing measure bound (7). This completes 

the proof. 

Remarks. (1) The above proof is very indirect; it would be desirable to have a more 

direct argument. 

(2) M. Marcus pointed out that, by standard techniques, one can deduce from 

Theorem 15 the fact that if (Xt)t~ r is continuous on (T, d), then the process (Yt)ter 

satisfies the central limit theorem. 

We now prove a version of Theorem 1 that is adapted to the study of continuity. 

For completeness, we prove the following simple and well known fact. 

PROPOSITION 16. Consider a bounded Gaussian process (Xt)te r. Consider a metric 

r on T such that the canonical metric d is r-uniformly continuous. Then the process 

(Xt)te r is r-uniformly continuous if  and only if lim,~_,0cp~(r/)=0, where q9 is given by 

q~(r/) = E sup  (Xu-Xo). (41) 
r(u, v)<~/ 

Proof. We prove necessity. For each ~o we have 

lim sup = 0  
~ 0  r(u, o ) ~  

so the fact that lim~_,0 q~(~/)=0 follows from dominated convergence. 

Conversely, since d is r-uniformly continuous, we can find a sequence 
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(7/.) with tp~ (r/.)<~2-", and r(u, v)<r/. ~ d(u, v)<2-". We borrow from Proposition 18 (to 

be proved later) the fact that E. p(A.)<oo, where 

It follows 

A. = I. (,(,,supv)~<q. ]X"(to)-X~ > K2-~/2}" 

that almost all to belong to at most finitely many sets A~; so (Xt)te r is 

uniformly continuous for ~. This completes the proof. 

For a probability measure m on (T, d), we write 

fO q 
~m(/~) = sup g(m(B(x, e))) de (42) 

xET 

f0 t/ am(rl) = sup g(sup {m({u}); d(u, x) ~ e}) de. 
xET 

(43) 

Recall that for a given metric space (T, d), we denote by N~ the smallest number of 

e-balls that can cover T. 

THEOREM 17. Consider a bounded Gaussian process (Xt)te r. Then 

(a) For any probability measure m on T, we have Cpd(rl)<-K Ym(~), where Cpd is given 

by (41). 

(b) Define 

fl(r/) = supE ( sup [X,-Xxl). (44) 
x E T d(x, u)<r/ 

Then there exists a probability measure m on (T, d) such that for  each rl>O, 

am(r 1) <~ Kfl(rl ) + r/(log(2N~ log~ (2D/r/)))v2. (45) 

In particular, the process  (Xt)te r is bounded and uniformly continuous on (T, d)  i f  and 

only o f (T ,  d)  is totally bounded and there exists a probability measure m on (T, d) such 

that lim,r_,0 ym(r/)=0. 

Proof. (a) (Due to X. Fernique.) Let 

U = ((x, y) E T x  T; d(x, y)<r/). 
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We provide Tx T and its subspace U with the distance d' given by 

d'((x, y), (x', y')) = e (Xx-Xy- (X  x, -Xy,)). 

For (x, y) in Tx T, we have 

B((x, y), e) = B(x, el2)xB(y, e/2) 

where the first ball is a d'-ball. It follows that 

g(m | y), e))) de ~ 2sup g(m(B(z, el2))) de 
zET  

~ 4sup (m(B(z, e))) de = 4),m(~). 
z ~ T  JO 

The method of  Lemma 6(b) shows that for any finite subset V of U we have 

7(V)~<8~m(~/). The conclusion follows then from (7) and an easy limit argument. 

(b) Let  D=d iam T. For n>0,  let an=2-nD. For each n>0  we consider a family 

Bn, 1 . . . . .  Bn, p~n) of d-balls of  radius a n that covers T, where p(n)=Nan. So, for i<~p(n), if 

we denote by u(n, i) the center of Bn, i, we have 

E s u p X  t = E sup Xt-Xuo,, 0 <~E sup ]Xt-X,,o,.i)l <~fl(a,,). 
Bn,i tEBn,i tEBn,i 

Denote by dn, i the diameter of  Bn, i (that can be smaller than 2an). Theorem 14 shows 

that there is a probability measure mn, i on Bn,~ such that for each x in Bn,; we have 

0dn"g(sup {mn, i({U}); d(x, u) <~ e } )de <<- Kfl( an). (46) 

Let  m'n,i=~(6u<n,o+mn, i), and let 

m= E n-2p(n)-tm' n, i ~ 
n>0 

i<~p(n) 

so Ilmll~<l. Fix x in T, O<~I<~D. Let  n be the smallest integer >~1 with an<~ 1, so ~/<~2a n. 

We note that if x E Bn, i 

d(x, u) <~ e} >! 1 n_2 p(n)_t sup {mn, i ({u)); d(x, u) <<. e) ). {m({u)); s u p  
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Also, for e~ > inf(di, n, an), 

sup {m({u}); d(x, u) <~ e} >1 1 n - 2 p ( n )  - 1  , 

z 

So we have from (46) that 

~ dn, i 

am(~) ~ g(sup {m,. i({u}); d(x, u) <~ ~) de+~g(n-2p(n)-l/2).  
JO 

Since an<~rt<~2an, we obtain (45). 

We now prove the last assertion of the theorem. If (Xt)tr r is uniformly continuous, 

lim~__,0fl(r/)=0, by dominated convergence. Let m be a probability measure on T such 

that (45) holds. To prove that lim,t__,| it is enough to show that 

lira,__,0 e(log N,)V2=0. This is known [25], but we give the simple proof for completeness. 

Let a>0.  Let r /be small enough that fl(r/)<a. Fix a finite subset A of T such that each 

element of T is within distance ~/of an element ofA. Let e>0. For each x in A, it follows 

from (3) that there is a subset A x of T such that card Ax~<exp (K 2 a2/e2), and that for t in 

T, with d(x, t)<rl, there is y in A x with 

d(t, y) = o'(X,-Xx-(Xy-Xx))<~e. 

Let B=LlxeAA x. Each point of T is within distance e of an element of B, and cardB 

<~cardAexp(K2a2/e2). This shows that limsupe(log N,)l/2<~Ka for each a>0,  and fin- 

ishes the proof. 

We now prove the converse. Consider r/>0 such that y,,(r/)<oo. Then (7) shows 

that (Xt) is bounded on each ball of radius r/. Since T is totally bounded, T can be 

covered by finitely many such balls; so (St)le T is bounded. We complete the proof by 

using (a) and Proposition 16 with r=d.  

We now prove Theorem 2. We will prove at the same time that if we assume 

lim~0 q0a(r/)=0, where q0a(r/) is given by (41), we can force the sequence (Y,) to have the 

additional property that lim,~_.| (log n) u2 o(Yn)=0. 

L e t j  be the largest integer with 2-J~>diam T. It follows from Theorem 14 and (36) 

that there is a probability measure m on T such that for each t on T, we have 

Z 2-ig(sup {m({u}); d(t, u) <~ 2-i}) ~< Ka. 
i ~ j  

(47) 
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ff lim~_, o q0d(r/)=0, we can moreover  assume from Theorem 17 that 

lim sup ~ 2-ig(sup {m({u}); d(t, u) ~ 2-i}) = 0. (48) 
k---~ t~.T 

For t in T, i>>-j, we pick t i such that d(t i, t)~<2 -i and 

m({ti}) = sup {m({u}); d(t, u) <<- 2-i}. 

We can assume that t i t~oes not depend on t. 

From (47), we see that  2-ig(m({ti)))<.Ka. This shows that for each t in T, t/belongs 

to the finite set 

A i = (u E T; m({u}) ~< e x p ( - 2  2i (Ka)2)}. 

Let  a i =2 -i+~-~ exp (-(a/b)2).  Using the fact that diam T<-b<.(:d2)~/2a we find from (47) 

that we have 

Z 2-ig(aim({t i}  )) <~ Kl a (49) 

for some universal constant K~. If  l im~0 q0d(r/)=0, we moreover have 

lira sup Z 2-i g(ai m({ ti})) = 0 (50) 
k---~oo tET  i;~k 

For each t in T, i~ j ,  we define 

a,, i = 2-i(g(aim({ti}))+g(ai+l m({ti+l}))). 

From (49), we get 

~ a t ,  i<~ 3K 1 a. (51) 
i>~j 

Moreover, if lira,r_,0 q0d(r/)=0, we have from (50) 

Define, for i>>.j, 

lim 0 (52) sup 2.~ at.i = 
k---~ lET i~k 

zt, i = 6K1 a(a,, i)-l (Xt,+ l -X, ) .  (53) 
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Let Z i be the set of all zt,~ for t in T. Since t i, t,.+~ belong to the finite set A~+~, Zi is 

finite. 

Let Z be the union of the sets Z~ for i>j. Fix e>0. We note that 

a(Xti+ -Xt~ ) ~< d(t, ti+O+d(t, t i) <~ 3.2 -i-l 

so if o(zt,,.)~>e, we have at, i<~9. 2 -~ K l a/e, so 

g(ot i m( ( ti} ) )+ g(ai+ 1 m( { ti+ l} )) <~ 9K I a/e. 

This implies 

m({tl}),m({ti+l}) ~ 2i-Y+t exp ( - ( ~ - ~ - )  2+(b)2).  

Since m is a probability, this shows that there are at most 

2_i+j_l f [9K, a~ 2 a2~ 
exp 

possible choices for either t~ or t~+~; so 

[ [[9Kla\  2 a2"~'~ 
card {zEZ: o(z)~> e} ~ 2 -2i+2J-2 exp [ 2 [  ). \ \  

It follows that 

( ( 1 8 K l a ~  2 a2~ 
card {z E Z; o(z) ~> e} ~< exp \ \ ~ ]  -~-i]" 

We can index Z as a sequence (Y.).m such that o(Y.) does not increase. For each n, 

{(18Kta'~ 2 a2~ 
n <~ card {z EZ; o(z) ~> o(Y.)} ~< exp \ \ ~ ]  - ~ 5 ]  

This implies that o(Y.)<~K 2 a(a2/b2+ log n) -v2. .For t in T, we have 

X,-X,i = ~ X,,+,-X,. 

From (53), we have 

Xt-X5 = Z (6Kl a)-Iat, iZt, i �9 
i~j 
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From (51), this implies that Xt-Xtj=En~ 1 an(t) Yn where E an(t)<~l/2. Since the sequence 

Yn is bounded a.s., it is clear that this series converges a.s. And we have 

Xt=Xtj+ En~I an(t) Yn" Since a(a2/b2 +log n)-li2<~Ka(aZ/b2 +log(n+ l )) -1/2 for n~>l, and 

o(X,)<.b, this completes the proof of Theorem 2. When (52) holds, there is a sequence 

bi---->oo s u c h  t h a t  

sup ~ at, i bi <~ 4KI a 
tET i~j 

so we get 

X t-Xtj = ~ (6K, a)-1at, i b,(z,.i b7 l). (54) 

For each n, let i(n) such that Yn E Zi(n). Since each Z i is finite we have limn_~| i(n) = ~ so 

limn__.~ bi(n)=~. From (51) and (53) we get 

x , - x , - -  an(t) r'n 

where E an(t)<~2/3, and ' -  -1 Y'~- Yn bi(n), so lim n (log n)U2a(Y'n)=O. The proof is complete. 

To prove Theorem 3, we first need the following result of R. M. Dudley and J. 

Feldman [3], [5]: If (T, r) is metric compact, a Gaussian process (Xt)te ris continuous on 

(T, r) if and only if the convariance of (X t) is r-continuous and the process is continuous 

on (T, d). We give the simple argument for completeness. Suppose, first, that (Xt)te r is 

r-continuous. Then the convariance is r-continuous by dominated convergence. For 

)7>10, let 

A~ = {(x, y) E Tx T; d(x, y) <~ rl}. 

This is a r-closed subset of  TxT, and t'l~>0A,=A 0. Fix e>0. By compactness, there is 

17>0 and a finite set BoA  o such that whenever (x,y)EA,,  there is (x' ,y ')EB with 

r(x, x'), r(y, y')<~e. We have 

IXx- X,I 

Since (x ' ,y ')EA 0, we have Xx,=Xy, a.s., so EIXx,-Xy,[=0. It follows that (pa(~/)~<2(p~(e), 
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where 9~,tpd are given by (35). Proposition 16 implies that lim,__,0tP~(e)=0, so 

lin~__,0q0d(r/)=0, so (X,),e r is uniformly continuous on (T, d). The converse is obvious 

since the identity map (X, z)-*(X, d) is continuous when the covariance is continuous. 

We now prove Theorem 3. Only sufficiency remains to prove. By Proposition 16, it 

is enough to show that limq__,0q~(q)=0. Fix e>0. Let k>0 be such that 

o(Y,)~<e(1 +log n) -~/2 for n>~k. Let H (resp. G) be the closed linear span in L2(p) of the 

sequence (Yn) (resp. (Y,),<-k)" Since G is finite-dimensional, there exists a > 0  such that 

E suPxeA X<~e, where 

A = {XEG;o(X)<~a}. 

Let ~ be small enough that d(u, v)<a for z(u, v)<~. Denote by P the orthogonal 

projection of H onto G. Since o(Y-PY.)<<.o(Y.), (4) implies that 

E sup (Y,-PYn)<Ke. 
n>k  

For u, v in T with d(u, v)<a, we have P(X.-X~) E A. Also 

X,,-Xo = Z a, Y, 

where Zn~ 1 la,l~<2, sO, since Y,=PY, for n<~k, we get 

Xu-Xo-P(Xu-Xo) = Z a.(Y.-PY.).  
n>k 

This shows that 

E sup ~Esup[X]+2EsupIY.-PY.[<Ke, 
r(u, v )<a A n 

and finishes the proof. 

It might be interesting to point out that Theorem 2 can be interpreted as a theorem 

of geometry in the finite dimensional Hilbert space. Consider such a space H of 

dimension n. Denote by o the normalized measure on the unit ball. For a subset A of H, 

consider 

V(A) = f sup I(x, y)ldo(x). 
O YeA 
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This quantity has been studied in geometry under the name mixed volume, and plays an 

increasing role in the local theory of Banach spaces. Fix an orthonormal basis 

(ei)i<~ of H. For t in H, let Xt=Ei<~n (t, ei)gi, where (gi)i~ is an independent sequence of 

standard normal random variables. 

The distribution of the sequence (g;)i~<, is rotation invariant; the central limit 

theorem implies that Zi<<ng ~ is concentrated around n; this implies that 

K-tnU2V(A) <~ E sup [Xt] ~< KnlrZV(A ). 
tEA  

Define now 

C(A) = inf {a>0; 3(y~)n~> 1 in H, IIY,II ~< a(1 +log n) -'/2, A=conv {y~} }. 

Then Theorem 2 can be reformulated as follows: 

K-ln-lrZC(A) <~ V(A) <<. Kn-lCzC(A). 

A version of the following concentration result with sharp constants is a well 

known consequence of Borell's inequality [2]. The present version is, however, a 

simple consequence of Theorem 2, and is sufficient for many purposes. 

PROPOSITION 18. Consider a bounded process (Xt)te r. Let a=EsuPr(Xt) , b= 

SUPrO(X/). Then for each u>~l, 

P({ suplXtl I> K(a+ub)}) <~ Kexp (-u2). 
T 

(55) 

In particular for Act2 ,  O=P(A ), 

E(1 A suplXtl) <~ K(Oa+Obg(O)). (56) 
T 

Proof. As mentioned after the statement of Theorem 2, this theorem implies that 

sup Ix, I <~ sup I Y~I. 
T n 

where (Y~)n~>t is Gaussian and o(Yn)~Ka(a2/b2+logn)-l/2<.Kb. We have, for s>~b 

9-878282 Acta  Mathematica 159. Imprimd le 25 aofit 1987 



130 M. TALAGRAND 

a 2 

P ( { s u p [ Y n [ > K s } ) < ~ 2 e x p ( - S ~ z ( - ~ + l o g n ) )  

~< X 2n-S%2 exp (-s2/b2). 
n~ l  

Taking s=2a+ub, we get (55), since E ~  z 2n-4~<3. To prove (56), we write 

E(IASUplXtl)= P(An{suplXt l>s})ds=II+I2,  
r 

where 11 is the integral over {s<~K(a+bg(O))}, and 12 the integral over {s>~K(a+bg(O))}. 

We have Ii<~OK(a+bg(O)). We have 

I 2 <~ Kb P({sup IXt[ > K(a+bu)}) du 
(o) T 

<~ K2b exp ( -  u 2 du) <~ K I bO 
(o) 

for some universal constant KI. This completes the proof. 

As a consequence of Theorem 3, we can give a description of all Gaussian 

measures on separable Banach spaces. Consider a separable Banach space E. A Borel 

probability ~ on E is called a (centered) Gaussian measure if the law of each continuous 

linear functional on E is Gaussian. Let c0=c0(N). 

THEOREM 19. l f  lt is a Gaussian measure on a separable Banach space E, there 

exists a Gaussian sequence (Yn) such that lim._.~o o(Yn)(logn)l/2=O, a closed linear 

subspace Z o f  c o such that (Yn) E Z a.s., and a bounded linear operator U: Z---~E such 

that I~ is the law o f  U((Y.)). 

Proof. Since E is separable, the unit ball E~ of its dual is metrizable for the weak* 

topology or(E*, E). Denote by (zk) a weak* dense sequence in E~. For x in E, we have 

Ilxll=supkzk(x). Consider each y in E] as a Gaussian random variable on (E,/~). This 

defines a weak* continuous Gaussian process, since for each x in E, the map y~y(x )  is 

weak* continuous. Denote by H the closed linear span of E* in L2(a). From Theorem 3, 

there is a sequence Y. in E* such that lim._.=e(Y.)(logn)l/2=O, such that for each k, 

Zk=~ak, n Yn, where ak, n~>0, E ak, n~<l, and the series converges a.s. Denote by G the 
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set of x in E for which all these series converges and for which lim. Y.(x)=0. It is a 

Borel linear subspace of E, and/~(G)= 1. Consider the operator V: G--*c 0 given by 

G(x)=(Y.(x)). For x in G, we have 

Ilxll ~ sup zk(x)~ sup Y~(x) 
k n 

so IlxU<.llV(x)ll. F o r  x in V(G), denote  O(x)=V-l(x). It follows that IIv(x)ll~llxll. I f  z 

denotes the closure of V(G), then U extends by continuity to an operator from Z to E, 

denoted U again, and (Yn(x))ff.Z a.~s.For x in G, we have UV(x)=x, so/z is the law of 

U((Yn)). The proof is complete. 

A linear operator A between two Banach spaces E, F is called of type 2 if for some 

constant C, and for each sequence (xi)i~ . of E we have 

E Z giAfxi) <~ C IIx,II 2 (56') 
i<~n \ i<<.n 

where (gi) is an independent sequence of standard normal random variables. The type 2 

constant T2(A) of A is the smallest C that satisfies (56'). 

Consider any metric space (T, r). Denote by Lip (T) the space of lipschitz functions 

on T, provided with the norm 

I I~lLip= (diamT)-lll3ql=+,,uersup r-~, u-) " 

tabu 

It has been proved by B. Heinkel [16], who adapted a result of C. Jain and M. 

Marcus [18] that the canonical injection A:Lip(T)--,C(T) satisfies T2(A)<<.Ky(T) 

(where y(T) is the functional considered in section 2). We can now prove the converse. 

THEOREM 20. For some universal constant K, we have 

K-Iv(T) ~< T2(A) ~< Kv(T). 

Proof. We denote by D the diameter of T. We first prove Heinkel's result that 

T2(A)<~Ky(T). Consider x I . . . . .  x, in Lip(T). For t in T, let Xt=Ei<.ngix,(t). Since 

gl . . . . .  gn are independent, we have 

/'~ 
o(Xt)= x~(t) <<. ZI]xil l2)  <<.D(ZllxiH2Lip (57) 

X i<~n / i<~n / \ i<~n 
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and for t, u in T, we have 

o'(X,-Xu) = (x,<t)-x,<u)) ~ <- r(t, u) IIx/ll~.ip �9 
\ i<~n 

To avoid confusion between the r metric and the metric associated to X t, we write 

Bx(x, e) = {y G T; o(Xy-Xx) 6 e} 

B(x, e) = (y E T; r(y, x) ~< e} 

so we have 

B,Ax, ~) = B x, ~ ~, llx, llLo �9 
\ \ i<~n 

For a probability m on T, we have 

f: r (  g(m(Bx(x, e))) de <<. g m B , ~ llxillLo de 
dO \ \ \ \ i<.n 

<~ ( , ~  HX,,[~.p) 1/2 fo | g(m(B(x,e)))de 

so (7) implies 

EsuPr Xt<~K( E;~ Ilxjl2iP) v2~T)" 

(58) 

This shows that T2(B)<~Te(A ). In the proof of Theorem 14 we have shown that 

Heinkel's result follows from Lemma 6(f) and (57), (1). 

We now prove the converse. Consider a subspace U of T, and the canonical 

injection B from Lip(U) into C(U). We first show that T2(B)<~T2(A). Let (xi)i.~ n be a 

sequence in Lip(U). As well known there is a sequence (yi)~.<n in Lip(T) such that x i is 

the restriction of Yi to x i and ItyiHLip<~llxilLip. So we have 
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y(T) ~ Ksup {a(V); VcT, V finite} 

so it is enough to prove that when T is finite, we have a(T)~KT2(A). In that case, 

Theorem 11 shows that it is enough to prove that when T is ultrametric and finite, we 

have ~(T)~KT2(A ). (Here again, a(T) and ~(T) are the functionals defined in section 2.) 

For j>0 ,  denote by ~j the family of balls of T of diameter 4-JD. Since T is finite, 

there exists m such that B(x, D4-m)={x} for x in T. Let ~=Uj~m ~lj. For 

we define 

t = ( tB)a~E ~ =  {0, l} ~, 

f~= E E D 4 - J t s l s  �9 
I <j~m B E ~j 

We note that Ilfel{| Consider now u, v in T, and let k be the largest 

integer with D4-k~r(u, v). If BE ~l for some l<<.k, we have ls(u)=ls(v). It follows that 

[f~(u)-f~(v)l <~ E D4-Y <~ 4-kD/3 <~ 4r(u, 0)/3. 
j>k 

This shows that Hf~[lLip~<5/3~<2. The definition of k shows that the two balls 

B l = B(u ,  D4-k-I); B 2 = B(v, D4 -k-l) 

are different. Since they belong to ~k+l, we have 

lY (u)-f (v)l I> D4-J 
j>k+ ! 

>~ D4-k-J[eS~ (U)-- ts2(v)[--D4-k-I/3. 

Since I is zero or one, we have 

2.4 - t -  IDleB,(u)--es,(v)l/3. (59) 

Set N=2 ~d~. It follows from (59) that 

( E  1 I/2 N-~lf~(u)-f~(v)[ 2 >~ 2 ~r2. 4-k-lD/3 >>- r(u, 0)/12. (60) 
\eE ~ / 
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( ~  Ilh~l[~ip) 1/2 ~< 24. 

Denote by (g~)~r an independent family of standard normal r.v. 

Xt=E,e~g,h~(t). It follows from (60) that for t, u in T, we have 

/ \ i/2 

\ e E ~  / 

Proposition 13 shows that K-I~(U)<~EsuPTXr On the other hand, 

EsupXt<.Esup[X,l= E ~ g~h~ 
T T ~ 

~< T2(A ) Hh,ll2ip ~< 24T2(A ) 

from (61). The proof is complete. 

(61) 

For t in T, let 

4. Evaluation of Fernique's functional 

The very definition of F(~, /0  when the process ~=(Xt)te r is indexed by an infinite set 

raises non-trivial technical problems [14]. To avoid these problems, we will from now 

on assume T to be finite. Since our results will be quantitative estimates, this is an 

unimportant restriction. 

Theorem 12 will be one of our tools. We first illustrate how it will be used, by 

proving the right-hand inequality of Theorem 4. 

LEMMA 21. Let ~=(2e) -In. Then for O<a, b~<l, we have 

ag(a) <<. ag(b)+ ~b. 

Proof. Take t,u~O with a=exp(- t2) ,  b=exp(-u2). We have to prove that 

t exp (-t2)~<u exp (- t2)+ ~ exp (-u2), or equivalently that t<.u+ ~ exp (fl-u2). This is true 

for t<.u. For t>~u, let v=t-u; we want to show that v~<~ exp (2uod-o2). But exp(2uv)~>l 

and ~=supo o exp(-o2). The proof is complete. 
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LEMMA 22. (a) Let U be a finite ultrametric space. Then for each probability v on 

U, we have 

:. Jo dr(x) g(v(B(x, e))) dE <~ K~,(U). 

(b) Let T be a fnite metric space and # a probability on T. Then 

Proof. (a) Let m be a probability measure on U such that ym(U)=y(U), so for each 

x in U, we have 

fo ~ g(m(B(x, e))) ~ y(U). (62) de 

Let D=diam U. 

From (36) and (62) follows that for x in U, we have 

E 2-i-lDg(m(B(x' D2-i))) ~< 7 (U)' 
i>~O 

and hence 

fu E 2 -i- ' Dg(m(B(x, D2-i))) dv(x) <~ y( U). 
i>~j 

Denote by ~i the family of balls of U of radius D2 -i. For any i~>0, we have 

fu g(m(B(x, o2-i))) dr(x) = E g(m(B)) v(B). 
BE ~i 

It follows from (63) that 

E E 2-i-lDg(m(B)) v(B) <~ y(U). 
i>~O B E ~i 

From Lemma 21, we see that 

E E 2-i-'Dv(B) g(v(B)) <~ y(U)+ E ~2-i-'D 
i>~O B E ~i i>~O 

<~y(U)+r 

(63) 
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This means that 

f v  E 2-i-iDg(v(B(x ' D2-i))) dr(x) <- y(U) + ~D. 
i>~O 

The result follows from this inequality, (36) and Lemma 6(f). 

(b) Let U be an ultrametric space, a n d f b e  a contraction from U onto T. Let v be a 

probability measure on U such that jffv)=kt. S incef i s  a contraction, for u in U we have 

g(Iz(B(f(u), e))) de <~ g(~B(u, e))) de. 

By (a) we get 

f:.,x, fo f. ,fo g(g(B(x, e))) de <~ dv(u g(v(B(u, e))) de 

<~ Ky( U ) 

and the result follows from the definition of a(T). 

The right hand inequality of Theorem 4 follows by combining (b) of Lemma 22 with 

Theorem 12. X. Fernique has found good upper bounds for F(~,g) .  It is somehow 

surprising that we will be able to find good lower bounds by combining Lemma 22 with 

a fairly crude minoration result for F(~,/~) (Proposition 26 below). The arguments are 

easy, but somewhat lengthy. The following is a consequence of the integrability result 

of H. Landau, L. A. Shepp and X. Fernique ([7], [19]). 

LEMMA 23. There exists r Kl<ao such that for each Gaussian process (Xt)te r 

and each a>0  we have 

P({sup~(.t[>~a})<~2 r => EsuplXt l<Kla.  
T r 

We need the following immediate consequence: 

LEMMA 24. For any Gaussian process (Xt)te r, we have 

P({supXt>~a})<~ ~ =~ Esup~( t l<Kla .  
T T 

Proof. By symmetry, s u p r - X t = - i n f r X  t has the same law as SUPrX r It follows that 
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P ( { - s u p X  t >~ a}) ~< P ( { - i n f X  t >I a}) = P({supX t >~ a}) 
T T T 

SO 

P({sup [Xt[ >1 a}) ~< 2P({sup X t ~> a}) 
T T 

and the result follows from Lemma 23. 

Consider a Gaussian process ~=(Xt)te r, and Y a Gaussian random variable. Let 

X[=Xt+ Y. Since EY=O, we see that F(~, /z )=F(~ ' ,#)  for any probability/~ on T. In the 

study of F(~,/z), it is natural to single out the variable Et~rlZ({t})X t that we will denote 

fXtd/~(t). The preceding remark shows that to study F(~,g),  there is no loss of 

generality to assume SX, d/~(t)=O. From now on, all maps and sets are understood to be 

measurable, even when we do not mention it explicitly. 

LEMMA 25. Consider a Gaussian process (gt)tE T. Let A be a (measurable) subset 

o f  f~, (at)te r be positive numbers such that Eterat=P(A). Assume Etr a.s. 

Then there exists a measurable map r from A to T such that E(X~IA)>~O 

and that at=P({r-l(t)}) for each t in T. 

Proof. Consider the set C of families f=(ft)te r Of measurable functions such that 

v t  T, 0 -<f ,  1A, Ef, = a,; = 1A. 
tET  

This is a weak* compact convex set of L| r. For f i n  C, we define 

This defines a weak* continuous affine functional on C. Define g=(gt)tsr, where 

a t 

gt = P(A) 1A' 

so g E C. We have 

\ t e r  P(A) / 

10-878282 Acta Mathematica 159. Imprim~ le 25 aotlt 1987 
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since •rtZtXt=O a . s .  This shows that SUPcg~>O. It follows that there is an extreme point 

of C at which 9 is I>0. It is routine to show that, since P has no atom, each ext reme 

point of  C is of  the type (1A)t~ r for  Ate-A, P(At)=a r The proof  is complete.  

We can now prove the essential minoration result. 

PROPOSITION 26. Consider a Gaussian process Sg=(Xt)te r and a probability meas- 

ure kt on T. Assume that S Xt dlt(t)=O. Then we can f ind a partition (Zi)i>~o o f T  such that 

Vi I> 0, E sup ]Xtl ~< 2'F($g, kt), (64) 
Zi 

Z 2"/z(Zi) ~< KF(~,Iz). (65) 
i>~0 

Proof. By homogenei ty ,  we can assume that F(ff',kt)= I. We can assume that the 

constant ~ of  Lemma  24 is small enough that for each Gaussian r.v. Y we have 

P(A) <~ ~ =~ IE(Y1A)[ <<. ~ EIy[, (66) 

where K 1 is the constant  of  L e m m a  24. 

By induction over k, we construct  t I . . . . .  t k in T, disjoint subsets B~ . . . . .  B k of  g2 such 

that if we write 

T i = T \ { t  I . . . . .  ti_l} , d i = E s u p  IX, I 
r, 

Vi<~k, P(Bi)=lz({ti}); Z P ( B i ) < ~  (67) 
i<~k 

Vi<~ k, la, Xti>1 d i 18. (68) 

We proceed to the first step. We have TI=T, dl=EsuPr~Xt[. Let  

A I = {supX t ~> dl/KI}, 
T 

so P(A'O>~ ~ f rom L e m m a  24. Consider A I c A  ~ such that P(AI)=r Consider a measur- 

able map z I from A l to T such that on A l we have Xrl>~dl/K I. 

the following conditions hold 
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First case. For  some t 1 in T, we have P({rz=tl})>It({tl} ). We choose Blc-{r t=t l}  

such that P(Bl)=l~({q}), so P ( B 0 <  ~. The induction continues. 

Second case. For  each t in T, P({zt=t})<~lz({t}). The induction stops. 

We now proceed  to the kth step. We have T k = T \ { t  I . . . . .  tk_l}, dk=EsuprktX,}. Let  

A~ = {supX,/> d~/K,}, 
rk 

so P(A'k)~.~ from L e m m a  24. Consider A k Ak~Ui<kB i such that P(Ak)=~-Ej<kP(Bi). 

Consider a measurable map Tk from A k to T k such that on A k we have X~>~dk/K~. 

First case. For  some t k in T k, we have P({rk=tk})>#({tk}). We choose Bk={Zk=tk} 

such that P(Bk)=lz({tk}), sO Ei<_kP(Bi)<~. The induction continues.  

Second case. For  each t in T k, P({rk=t})<~l~({t}). The  induction stops. 

This completes the induction. Since T is finite, the induction stops at some step k. 

With the notations above, for  tE T k, let C,={~k=t }. Let  B=Ui<kB ~ U Ll,~r C ,. We have 

P(B)=r Define the map r f rom B to T by r =  t~ on B i for  i<k, and z=z  k on C= Llte rk Cr 

We have X,~di lK 1 on B i for i<k, and X~dk lK  l on C. Define 

u = Z dda({ti})+dke(c)" (69) 
i<k 

We have E(X~ ls)>~ulK t. For  t in T, let fl,=P((z=t}), so for i<k, we have flti=iz({t~}) and 

for tE T k we have fl,=P(Ct). For  t in T i, we have E~Xtl<~EsuPrJXtl=dr It follows f rom 

(69) that EIE,erfl,Xtl<~u. For  t in T, define a,=/z({t})-fl,, so Emra t=l -~ .  Define 

Y=XterctrX r Since S Xtd/u(t)=O , we have Y=-Eterf l tXt ,  so EIYI<~u. Let  A = ~ \ B ,  so 

P(A)= I - ~ .  F rom (66) we get 

E I Y1A[ <~ U(1- ~)/2K 1. (70) 

Since X,Era,=l-~,  we have Et~zat(Xt-(1-~)-lY)=O. It follows from L e m m a  25 

that there is a map r '  f rom A to T such that 

VtE T, P({~'=t})=ctt; E((X~,-(1-~)-tY) 1a)~>0. 

It follows from (70) that 

E(X~, 1 A) I> -u /2K 1 . (71) 
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Define the map r" from Q to T by r"=r  on B and r"=r '  on A. Then &fir")=/*. We have 

u u I> u E(X:) = E(X r ln)+E(X r, 1a) ~> K----~ 2K----~ 2K----~" 

Since E(Xe,)<<.F(~,lz)=l , we have u<~2Kj. The sequence (di)i<k decreases; so (69) 

implies that u>>-r k. Let I be the smallest integer for which 2t~>dk. For i<l, we set Z;=~. 

We set Zt=T k. For j>/ ,  we set ZF{ti;  i<k, 2J-I<di~<2/}. We have 

Z / z ( Z )  U ~< 2 Z ~t({ti}) di+Zd k <. 2u+2d k 
j>~l i<k 

<<. 4K I +4KI/~. 

The proof is complete. 

For simplicity, we now set o(t)=a(Xt). 

COROLLARY 27. Under the hypothesis o f  Proposition 26, we have 

S rO( t) dlz( t)<-KF( ~, ~ ). 

The following result, with a better constant, is due to X. Fernique ([14], Proposi- 

tion 2-3-3). X. Fernique obtains this result as a consequence of a difficult comparison 

theorem. We shall give here a simple direct argument. 

PROPOSITION 28. Let ~= (Xt)tE T be a Gaussian process, I~ be a probability measure 

on T. Let J=S o(t)dl~(t). Then we have 

fre( t )  (log ( o ( t ) / J ) )  dl~(t) F(Y~,It) (72) 1 1/2 + + KJ. 

Proof. We first note that if X is standard normal, a crude estimate yields 

limu_~| }) exp(u2) =oo, so there is a constant b>0 such that for u>-b, we have 

P({X I> (log (1 + u)) v2})/> 1/u. (73) 

By homogeneity, we can assume J =  ~rO(t)d/z(t)= 1. We enumerate T as {t t . . . . .  t,} 

in such a way that o(tt)>>-...~tr(tn). There is nothing to prove if tr(tO~b. Otherwise, let q 

be the largest integer ~<n for which O(tq)>~b. For i<.q, we have 

Z/ t ({ t J  })~< Z ~ )<~ ( ~ 1 o(ti) 
j~i  j~i  Jr 



SO 

REGULARITY OF GAUSSIAN PROCESSES 141 

Z/z({t j})  ~< l/o(ti). (74) 
j<~i 

On the other hand, from (73) we have 

P({Xt, I> a(ti) (log (1 +a(ti)))v2}) >I 1/a(ti). (75) 

From (74) and (75), we see by a straightforward induction argument on i<.q that we can 

construct disjoint sets (Bi)i<q such that P(Bi)=/~({ti} ) and 

Xti >>- a(t i) (log (1 +a(ti))) 1/2 

on B r Let  B=l.Ji<~qB i. Let  r '  be the map from B to T such that for i~q, r ' =  t i on Bi. So 

we have 

E(Xe ln) I> Z ~ (log (1 + cr(ti)))'a/a({ti}). (76) 
i<.q 

For q<i<~n, let a/=/z({t;}). Let  

y = a i o~iX i 
\ q < i ~ n  / \q<i<~n / 

so tr(Y)~<b and Eq<i<,ai(Xt-Y)=0. Let A = ~ \ B .  From Lemma 25, there is a map r 

from A to T such that for q<i~n ,  we have P({r=ti})=a i and E((X~- Y) 1A)~>0, SO 

E(X~ 1a) ~> E( Y1A) >t - E  I YI >>- - b( 2/:~) 1/2. 

Consider the map r" from f~ to T given by r "=r '  on B and r "= r  on A. We have &~ 

so E(Xe,)<.F(~,Iu ). Now, 

E(Xe,) = E(X,, 1B)+E(X ~ 1A) 

so from (76) 

F(~,/u) ~ Z It({ti}) ~ (log (1 +a(ti)))V2-b(2/~z) u2. 
i~q  
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The result follows, since 

Z /u({ti}) ~ (log (I +~r(ti))) u2 <<- b(log (1 +b)) v2. 
q<i<~n 

The proof is complete. 

We are now ready to prove our first minoration result. 

THEOREM 29. Let  ~=(Xt)te r be a Gaussian process,  where T is f inite,  and lz be a 

probability on T. Then there exists an ultrametric space U, a contraction f f rom  U onto 

T, a probability v on U with f(v)=lz, such that i f  for  x in U we set 

a(x) = inf{e>0; v(B(x, e))~ > I/2} 

we have 

fu  f a(x) dr(x) Jo g(v(B(x, t))) de ~< KF(~C,/~). (77) 

Proof. We already noted that there is no loss of generality to assume J'X t d/z(t)=0. 

By homogeneity, we can assume that J=So(t)dl~(t)=l .  Let F=F(~ , / 0 .  Corollary 27 

shows that I=J<~KF. Proposition 26 shows that one can write T=Ui~>0Zi, where 

E SUpz ' IXtl<.2iF and Ei>~o2ikt(Zi)~KF. Let 

Do={ t ;  o ( t ) < l }  and D~={t;2~-l~<o(t)<2"}, forn~>l .  

Proposition 28 shows that E.>~o2"nU21z(D.)<<-K+F, and since KF>.I,  this is <~KF (for a 

new constant K). For i, n~>0, we set T~,.=ZinD ~, ai,.=l~(Ti,.). We note that 

X 2ia~, ~ <~ K F  (78) 
i, n>~O 

Z 2"nlrZai,. <~ KF.  (79) 
i, n >~0 

From Theorem 12, for each i,n>-O, there is an ultrametric space (Ui,.,6i, ~) of 

diameter <~diam T~,.~<2 "+1 such that 

),( Ui, .) <<. K E  sup Xt<~2iKF 
r,.. 
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and a contraction f//, n from Ui, n onto Ti, ~. Denote by vi,. a probability on Ui, ~ such that 

for A c T, we have ai, ~fi, n(vi, ~)(A)=Iz(A fl Ti, ~). From Lemma 22 (a) we have 

/. f0 . dvi, ~(x) g(vi, ~(B(x, e))) de ~ 2iKF. (80) 

Let  U b e  the disjoint sum of the spaces Ui, ~. Forx,  y in Ui,~, we set 6(x,y)=di,~(x,y). If  

xE Ui, ~, yE Uj, m, ( i ,n)~U,m) ,  we set 6(x,y)=21§ The space U is ultrametric. 

The map f given by f(u)=fi, n(u) for u in Ui, ~ is a contraction from U onto T. Define 

v=Ei, ~0  ai. ~ vi, ~. Then f(v)=~.  

We are going to evaluate the integral 

l=fvdV(x)foa(X)g(v(B(x,e)))de 

= E ai, n dvi,,(x) g(v(B(x,e)))de. 
i,n>~O J U  JO 

Since fa(t)dl~(t)=l,  we have p(D 0 UD0~>I/2. For x in Ui, ~, e>2 ~+a, for j~>0 we have 

Uj, mCB(x, e) whenever m=0 ,  1. This shows that 

v(B(x, ~)) >>- 

so a(x)~<2~+2. It follows that 

E ~(UJ', m)= E 
m=O, l  m=O,I  

j>~O j>~O 

Since 

we have I<~I~ +S, where 

a j ,  m = #(D o UD~) 1> 1/2, 

f 
f2n+ 2 

I<~ E ai, n dvi.n(x) g(v(B(x, e)))de. 
i,n>~O J U  JO 

g(v(B(x, e))) <~ g(ai. ,)+ g(vi.,(B(x, e))), 

fU f2n+2 
It = E ai, n dvi" n(X) JO g(vi, n(B(x, e.))) de, 

i, n>~O 

S ~ n+2 ( 
= 2 ai, ng ai. n)" 

i, n ~ 0  
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From (79) and (80) we see that II<-KF. We note the almost obvious fact that 

(i+n)l/2<.2nV2+2 i-~ for i, n~>0. From Lemma 21, we get 

ai, n g(ai, n) ~ ai, n(i + n)l/2 + ~e -i-n 

2ai, nnl/2 q-ai, n 2i-n + ~e -i-n.  

It then follows from (79) and (80) that S<~KF so I<.KF. The proof is complete. 

We are now going to state the main result of this section. To simplify the 

statement, we say that a quantity Q~ dominates a quantity Q2 if for some universal 

constant K we have Q2<~KQ~. We say that Q~ and Q2 are equivalent if each dominates 

the other. 

THEOREM 30. Consider a Gaussian process X=(Xt)te r where T is finite, and a 

probability measure I ~ on T. Assume f Xtdlt(t)=O. We set o(t)=tr(Xt), J=frO(t)dl~(t), 

I = f r  o'(t) (1 + (log (1 + o(T)/I ))1/2) dla(t)" 

Then the following quantities are equivalent: 

(1) F(~,fl); 

(2) Ol =1+ inf { J" q0(t) d/~(t); Xt= r Z t, E sup r ]Zt[ ~< 1 }; 

(3) o~,) Q2=l+inf {frd/~(t) fo g(v(B(t, e))) de} 

where the inf is taken over all probability measures v on T; 

(4) Q3=I+ f rdl~(t) ~o ~') g~(B(t, e))) de; 

(5) Q4 =I+inf  (j 'v dr(x) fg~x)g(v(B(x, e))) de} 

where a(x)=inf(e>O; v(B(x, e))~>l/2}, and the infimum is taken over all ultrametric 

spaces U, all contractions f from U to T, all probabilities v on U such that f(v)=/t. 

The fact that Q2 dominates F(~,p)  is due to X. Fernique (with a slightly different 

formulation). Since the diameter D of T dominates I, it implies the left-hand side 

inequality of Theorem 4. 

Proof. We set J=j" o(t)dl~(t). We prove that F(~,/~) dominates Q4. From Corollary 

27, F(~g,/~) dominates J,  so Proposition 28 implies that F(~,/~) dominates I. The rest 

follows from Theorem 29. We prove that Q4 dominates Q3" Consider an ultrametric 

space U, a contraction f f r o m  U onto T, a probability v on U with f(v)=/~ and 
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f f.(x) 
t+j dv(x) J0 g(v(B(x,e))) de <~ 2Q4, 

where a(x)=inf {e>0, v(B(x, e)) I> 1/2}. Since f is a contraction, and/z=f(v), for x in U 

we have 

/u(B(f(x), e)) >I v(B(x, e)). (81) 

If t=f(x), for e>a(x), we have #(B(f(x), e))~>l/2, so we get from (81) 

lo(t) ~Oa(x) 
g(u(B(t, e))) de <<. g(v(B(x, e))) de+o(t) g(I/2) 

dO 

and this implies 

frd/u(t)fo ~ g(iz(B(t, e))) de <<. fudv(X)foa(X)g(v(B(x,e)))de+g(1/2)J, 

and the result follows since I dominates J. It is obvious that 03 dominates Q2. We now 

prove that Q2 dominates Q~. Fix a probability measure v on T with 

I+ dl~( t )  g(v(B(t, e))) de ~ 2Q2. 
dO 

Set 

Do= {tE T;a(t)<~2J} and D , =  {t;2"J<cr(t)<-2"+lJ}, for n~>l. (82) 

Since tr(t)~2nJ on D n for n~>l, we have 

J(log 2) 1/2 Z 2"nl/2tz(D, ) <- I. (83) 
n~>l 

For i~>1, n~>0, let 

For n~>0, let 

[ o(t) 
Vi, n = {tED,;  J2 i-I<< . g(v(B(t,e)))de<2iJ}. 

.tO 

( o(t) 
Vo. n = {tEDn; | g(v(B(t,e)))de<J}. 

.Io 
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We have 

f U f o(t) d/z(t) g(v(B(t, e))) de >~ E J2i- I/H(Vi, n)" 
dO i>~l 

n>~O 

Since I dominates J, we see that Q2 dominates 

J ~ 2~(Vi, n). 
i~>O 

n>~O 

Let ci,,=Jsup (2 i, 2~nV2). Then from (83), Q2 dominates 

E Ci, n/A(Vi, n)" 
i~O 
n~O 

For t in Vi, ., we set  ~d(t)=ci,  . .  It follows that Q2 dominates 

fT . ( t )  dp(t)= Ci, n/A(Vi, E n )o 
i>~O 
.>~0 

Let Yt = Xt ~(t) -l. To finish the proof, it is enough to show that E suPTIYtl<~K for some 

universal constant K. (We then set q~=K~,Zt=K-IYr) Since a(t)~<2n+lJ on Dn, we 

have a(Yt)~<2 for each t. The proof of Lemma 6(b) shows that for each n, i~>0, there 

is a probability ~/i,. 0171 Vi,. such that for t in Vi, n 

I2o(t) g(ri, ~(B(t, e))) de <<- 2/+ ij. (84) 

dO 

We denote by A the set {0} U { Yt; t E T}. We provide A with the distance induced by L 2. 

We write, for a in A, B(a, e)={bEA; [[a-bH<<-e}. We denote by r/i, . the image on A of 

/zi, . under the map t ~ Y  r We consider the probability r /on A given by 

' z 
n, i~>0 

Given a in A, we estimate 

f0 f0 g(r/(B(a, e))) de = g(r/(B(a, e))) de. 
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a =  Yt for some t 
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have rl(B(a,e))>l/2, so fl~ollg(q(B(a,e)))de<.4g(1/2). If ]}alJ=~0, let 

in Vi n, n, i>.O. For t in Vi, n, we have _ -1 , Yt-X~ ci, n, so we have 

rl(B(a, e)) >~ 2-1-"-3rli,.(B(a, e)) >I 2-i-"-3vi,.(B(t, ci, n c)). 

Since I la l l=c~ o~t), we have, from (84) 

f0Hall / ' c~  oft) 
g(v(B(a, e))) de ~< IlaJlg(2-i-"-3)+ J0 ' g(vi, n(B(t, c..i E)) de 

_<: -1 n+l �9 I/2 -1 i+l ~Ci, nJ2 (n+t+3)  +ci, n2 J. 

Using the fact that (n+i)v2<~2nl/2+2 i-n, we find that fo  g(rl(B(a, t)))de<~K. It follows 

from (7) that E s u P r  Yt<.K, so from (1) we have EsuPrlYtl<<.K since o(Y,)~<2 for each t. 

This completes the proof. 

We finally prove that Qt dominates F(~,/z). Let  tp be" such that Xt=cp(t)Zt, where 

EsuprlZ,[<~l. Let  D 0, D n be given by (82). Let  

Vi, n = D n n {t; J2 ~-I ~< q0(t) < J2;} for i I> 1, 

Vo,. = O n n {t; q~(t) < J )  

so EsuPvt, Xt<~2iJK and diam Vi,~<~2n+2J. We note that I dominates J~i,n~o2nnV21z(Vi,.) 

and that fq~(t)d/u(O dominates JZi~l,n>~o2-i-Jl~(Vi,.). Consider now a map r from fl  to T 

such that A~(r)=/z. Let  f~i,n=(rE V~,n}, so P(t)~,n)=/z(V~,.). From Proposition 18, we get 

E(X~ lf~, ) ~< E supra,. (X t la, ,)  

~< KJ(2i/~(Vi, n) + 2n/t( Vi, n) g~.d( Vi, n))), 

The argument of  the last few lines of  Theorem 29 shows that Q~ dominates 

Ei, n~,oE(X ~ Io,,.)=E(X~). The proof  is complete.  
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