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REGULARITY OF LAWS AND ERGODICITY OF HYPOELLIPTIC
SDES DRIVEN BY ROUGH PATHS

BY MARTIN HAIRER1 AND NATESH S. PILLAI2

University of Warwick and Harvard University

We consider differential equations driven by rough paths and study the
regularity of the laws and their long time behavior. In particular, we focus on
the case when the driving noise is a rough path valued fractional Brownian
motion with Hurst parameter H ∈ ( 1

3 , 1
2 ]. Our contribution in this work is

twofold.
First, when the driving vector fields satisfy Hörmander’s celebrated “Lie

bracket condition,” we derive explicit quantitative bounds on the inverse of
the Malliavin matrix. En route to this, we provide a novel “deterministic”
version of Norris’s lemma for differential equations driven by rough paths.
This result, with the added assumption that the linearized equation has mo-
ments, will then yield that the transition laws have a smooth density with
respect to Lebesgue measure.

Our second main result states that under Hörmander’s condition, the so-
lutions to rough differential equations driven by fractional Brownian motion
with H ∈ ( 1

3 , 1
2 ] enjoy a suitable version of the strong Feller property. Un-

der a standard controllability condition, this implies that they admit a unique
stationary solution that is physical in the sense that it does not “look into the
future.”

1. Introduction. In this article, we consider stochastic differential equations
of the form

dZt = V0(Zt ) dt +
d∑

i=1

Vi(Zt ) dXi
t , Z0 = z ∈R

n,(1.1)

where Xt is a d-dimensional random rough path [16, 33, 34] and V0,Vi ∈ R
n

are smooth vector fields. While a large part of our work is deterministic and ap-
plies to a large class of rough differential equations driven by rough paths that
are Hölder continuous with index greater than 1

3 , our probabilistic results focus on
the case when Xt is a two-sided d-dimensional fractional Brownian motion with
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Hurst parameter H ∈ (1
3 , 1

2 ]. Recall that the fractional Brownian motion with Hurst
parameter H is the centered Gaussian process such that X0 = 0 and

E|Xt −Xs |2 = |t − s|2H .

Differential equations driven by rough paths have been studied intensely in the
past decade, and this theory has now reached a certain level of maturity; we refer
to the monographs [16, 32, 34] for an overview of the theory. For driving signals
that are rougher than Brownian motion, the theory of rough paths has provided a
systematic way of constructing solutions to differential equations of the type (1.1)
in a way that is “natural,” in the sense that solutions are limits of approximate
solutions where X is replaced by a smoothened version.

When the noise Xt is a replaced by a standard Brownian motion Bt , it has
been well known since the groundbreaking work of Hörmander [24] that, for the
laws of the Markov process Zt to have a smooth transition density, it is sufficient
that the Lie algebra formed by {∂t + V0,V1, . . . , Vd} spans R

n+1 at every point;
see Assumption 2 for a precise formulation. The formalism of Malliavin calculus
was invented to give a probabilistic proof of this result [28–30, 35, 36, 39]. The
smoothness of transition densities coupled with some mild controllability assump-
tions will then yield that the system (1.1) has a unique invariant measure.

When the driving noise X is a fractional Brownian motion with H �= 1
2 , solu-

tions to (1.1) are neither a Markov process nor a semimartingale, so standard tools
from stochastic calculus break down. Inspired by the results in the case of Brow-
nian motion, two natural questions in this context are to identify conditions under
which:

(1) the “transition densities” of (1.1) are smooth;
(2) the system (1.1) has a “unique invariant measure.”

Since Z is not Markov in general, it does not really make sense to speak of tran-
sition probabilities, but the first question still makes sense by, for example, con-
sidering the law of the solution at some time t > 0, given an initial condition Z0,
conditional on the realization of {Xs : s ≤ 0}. Similarly, the notion of an “invari-
ant measure” does not make immediate sense for non-Markovian processes. This
problem has been discussed extensively in [18, 19], where a notion of an invariant
measure adapted to systems of the type (1.1) is introduced. Essentially, these are
stationary solutions to (1.1) that are “physical” in the sense that they are indepen-
dent of the innovation of X.

In recent years, the SDE (1.1) was studied when the driving noise X is a frac-
tional Brownian motion with Hurst parameter H > 1

2 . In this case, the answers
to both of the above questions are completely settled in a series of papers [3, 18,
22, 23, 40]. In particular, it was shown in [3, 23] that the solutions to (1.1) have
smooth “transition densities” when the vector fields satisfy Hörmander’s condi-
tion. It was also shown that if furthermore the control system associated to (1.1)
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is approximately controllable then, under suitable dissipativity and boundedness
conditions on the vector fields Vi , (1.1) also admits a unique invariant measure.
However, the question of smoothness of laws in the case of the driving noise X

being a fractional Brownian motion with Hurst parameter H < 1
2 was completely

open until now, despite substantial recent progress in particular cases [10, 25]. The
only general result in the context of rough paths theory was obtained in [6], where
the authors obtained the existence of densities with respect to Lebesgue measure
under Hörmander’s condition for a large class of driving noises.

In this paper we largely settle the above two questions when X is a fractional
Brownian motion with H ∈ (1

3 , 1
2 ]. An important component underlying the prob-

abilistic proofs of the smoothness of transition densities is Norris’s lemma [29,
38], which roughly speaking states that if a semimartingale is small and if one
has a priori bounds on the regularity of its components, then its bounded variation
part and the local martingale part are also small. In this regard this lemma can be
considered as a quantitative version of the classical Doob–Meyer decomposition
theorem. A version of Norris’s lemma for fractional Brownian motion with H > 1

2
was proved in [3]. The recent work [25], which appeared as the present article was
nearing completion, contains a version of Norris’s lemma for H ∈ (1

3 , 1
2) that is

similar in spirit to the one in [3].
Our contribution in this work is twofold. First, we prove a deterministic ver-

sion of Norris’s lemma for general integrals against rough paths. This may sound
strange at first since Norris’s seems to be the prototype of a probabilistic statement,
and the whole point of rough path theory is to get rid of stochastic calculus and
replace it by a deterministic theory. We reconcile these conflicting perspectives by
first showing an estimate strongly resembling that of Norris’s lemma for processes
of the form Zt = ∫ t

0 As dXs + ∫ t
0 Bs ds, where X is a rough path, and A is a rough

path “controlled by X;” see Section 2 below for precise definitions. This estimate
makes use of a quantity that we call the “modulus of Hölder roughness” of X,
Lθ(X). See Definition 3 below for the precise definition of Lθ . In a second step,
we then show that if X is fractional Brownian motion with H ≤ 1

2 , then Lθ(X) is
almost surely positive for θ > H and has inverse moments of all orders. A loose
formulation of our main result is as follows (see Theorem 3.1 and Lemma 3 below
for precise formulations that include the exact dependency of M on X, A and B):

THEOREM 1.1. Let X be a γ -Hölder continuous rough path in R
n with γ > 1

3 ,
let A be a rough path in R

n controlled by X, let B be a γ -Hölder continuous
function and set

Zt =
∫ t

0
As dXs +

∫ t

0
Bs ds.(1.2)

Then if X is θ -Hölder rough for some θ < 2γ , there exist constants r > 0 and
q > 0 such that one has the bound

‖A‖∞ + ‖B‖∞ ≤MLθ(X)−q‖Z‖r∞
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for a constant M depending polynomially on the γ -Hölder “norms” of X, A

and B . Here, ‖ · ‖∞ denotes the supremum norm over the interval [0,1].
Furthermore, if X is the rough path canonically associated to fractional Brow-

nian motion with H ≤ 1
2 , then EL

−p
θ (X) <∞ for every θ > H and every p > 0.

REMARK 1. Note that this immediately tells us that if X is Hölder rough, then
it admits a kind of Doob–Meyer decomposition in the sense that the processes A

and B in (1.2) are uniquely determined by Z. An interesting fact is that Hölder
roughness is a deterministic property. In principle, one could imagine being able
to check that this property holds almost surely for a number of driving noises, not
even necessarily Gaussian ones.

Combined with standard arguments, this result yields quantitative bounds on the
inverse of the Malliavin matrix, thus obtaining a quantitative version of the result
obtained in [6], where the authors showed via a 0–1 law argument that the Malli-
avin matrix is almost surely invertible. If we use the additional assumption that
the linearization of the RDE (1.1) has moments of all orders, our results also yield
that (1.1) has smooth densities thus extending the work pioneered by Malliavin to
the case in which the driving noise is a rough path. In fact the very recent work [8]
obtains such moment bounds for the linearization of (1.1) under certain bounded-
ness conditions, and thus our result immediately yields smoothness of densities for
a large class of RDEs of the form (1.1). Even in the case H = 1

2 , we believe that
the bounds derived in this work are new and pave the way for more quantitative
versions of Hörmander’s theorem.

When this work was nearing completion, we were notified of an independent
work [25] showing smoothness of densities to solutions to (1.1) in the case when
the driving vector fields exhibit a “nilpotent” structure, which allows one to obtain
a priori bounds on the Malliavin derivatives of the solutions. The work [25] also
contains a version of Norris’s lemma in the context of SDEs driven by fractional
Brownian motion with Hurst parameter H ∈ (1

3 , 1
2).

In the second half of the paper, we show that under an additional controllability
assumption, the SDE (1.1) has a unique invariant measure, which follows from the
strong Feller property defined in [22]. Note that, thanks to a cutoff argument, we
do not need to require that the linearized equation has bounded moments to obtain
this uniqueness result. If we denote by At,z the closure of the set of all points that
are accessible at time t for solutions to the control problem associated to (1.1)
starting at z, the second major result of this paper is the following:

THEOREM 1.2. Assume that the vector fields {Vi} have derivatives with at
most polynomial growth, and that (1.1) has global solutions. Then, if Hörmander’s
bracket condition holds at every point, (1.1) is strong Feller.

In particular, if there exists t > 0 such that
⋂

z∈Rn At,z �= ∅, then (1.1) admits
at most one invariant measure in the sense of [18].
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The above result gives us the uniqueness of the invariant measure for sys-
tem (1.1). Theorem 1.2, combined with the assumption of the existence of an
invariant measure, will yield that system (1.1) is ergodic.

The remainder of the article is structured as follows. In Section 2 we review the
framework of controlled rough paths from [17] and set up the notation and derive
some preliminary estimates. In Section 3, we then prove a general deterministic
version of Norris’s lemma for SDEs driven by rough paths. Furthermore we show
that our assumptions are almost surely satisfied by the sample paths of fractional
Brownian motion. Section 4 is a rather technical section in which we show that
solutions to (1.1) are smooth in the sense of Malliavin calculus and obtain a priori
bounds on their Malliavin derivatives. We then obtain quantitative bounds on the
lowest eigenvalue of the Malliavin matrix in Section 5. Using the results in that
section, we show that the existence of moments of the derivative of the flow implies
the smoothness of the transition densities. In Section 6, we show the ergodicity of
SDEs driven by fractional Brownian motion under Hörmander’s condition and a
standard controllability assumption. In Section 7, we finally give a few examples
where our results are applicable.

2. Preliminaries.

2.1. Notation. Throughout this article, we will make use of the following no-
tation. For quantities E and R, we write E ≤ K(R) as a shorthand to mean that
there exists a continuous increasing function b : R+ �→ R+ such that the bound
E ≤ b(R) holds. Note that the function b in question is unspecified and may
change from one line to the next. We also use the letter M to denote an arbitrary
(possibly problem-dependent) constant whose precise value might vary from one
line to the next.

2.2. Introduction to the theory of rough paths. In this work, we adopt the
framework of [17] which offers a slightly different perspective on the pioneering
work of Terry Lyons [33].

Denote by �C the set of continuous functions from R
2 to R which are 0 on the

diagonal and define the “increment” operator δ : C �→�C by

δAst
def= At −As.(2.1)

For a fixed final time T > 0 and a continuous function f : [0, T ] �→R
n, set

‖f ‖∞ = sup
t∈[0,T ]

∣∣f (t)
∣∣, ‖f ‖γ = sup

s,t∈[0,T ]
|δfst |
|t − s|γ .(2.2)

We also define the norm

‖f ‖Cγ = ‖f ‖∞ + ‖f ‖γ .



REGULARITY OF LAWS 2549

With these notation, a rough path on the interval [0, T ] consists of two
parts, a continuous function X : [0, T ] �→ R

d and a continuous “area process”
X : [0, T ]2 �→R

d×d,X ∈�C satisfying the algebraic identity

X
ij
st −X

ij
ut −X

ij
su = δXi

suδX
j
ut(2.3)

for all {s, u, t} ∈ [0, T ] and 1≤ i, j ≤ d . For X ∈�C , define

‖X‖2γ
def= sup

s,t∈[0,T ]
s �=t

|Xst |
|t − s|2γ

.(2.4)

For γ ∈ (1
3 , 1

2 ], we denote by Dγ ([0, T ],R
d) the space of rough paths, consist-

ing of those pairs (X,X) satisfying (2.3) and such that∥∥(X,X)
∥∥
γ

def= ‖X‖γ + ‖X‖2γ <∞.

Notice that ‖(X,X)‖γ is only a semi-norm and that Dγ actually is not a vector
space, due to the nonlinear constraint (2.3).

For every smooth function X: [0, T ]→R
d , there exists a canonical representa-

tive in Dγ by choosing

Xs,t =
∫ t

s
δXsr ⊗ dXr.

We then denote by Dγ
g the closure of the set of smooth functions in Dγ . (Here,

g stands for “geometric.”) The space Dγ
g has the nice feature of being a Polish

space [16], Proposition 8.27, which will be useful in the sequel.

2.3. Controlled rough paths. For defining integrals with respect to rough
paths, a useful notion introduced first in [17] is that of “controlled” paths:

DEFINITION 1. Let (X,X) ∈ Dγ ([0, T ],R
d) for some γ ∈ (1

3 , 1
2 ]. A pair

(Z,Z′) is said to be controlled by X if Z ∈ Cγ ([0, T ],R
n), Z′ ∈ Cγ ([0, T ],R

n×d),
and the “remainder” term RZ ∈�C implicitly defined by

δZst = Z′sδXst +RZ
st ,(2.5)

satisfies ‖RZ‖2γ <∞.

Denoting by Cγ
X the set of paths controlled by X, we endow it with the norm∥∥(

Z,Z′
)∥∥

X,γ =
∣∣Z(0)

∣∣+ ∥∥Z′∥∥Cγ + ∥∥RZ
∥∥

2γ .

As noticed in [17], now we may define the integral of a weakly controlled path
(Z,Z′) ∈ Cγ

X with respect to a rough path (X,X) by taking a limit of modified
Riemann sums:∫ T

0
Zt ⊗ dXt = lim|P|→0

∑
[s,t]∈P

(
Zs ⊗ δXst +Z′sXst

)
,(2.6)
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where P is a finite partition of the interval [0, T ] into subintervals and |P| de-
notes the length of the largest subinterval. The following result, adapted from [17],
Proposition 1, gives the continuity of the integral with respect to its integrand:

THEOREM 2.1. Let (X,X) ∈ Dγ ([0, T ],R
d) for some γ > 1

3 and (Y,Y ′) ∈
Cγ

X be a weakly controlled rough path. Then the map

(
Y,Y ′

) �→ (
Z,Z′

) def=
(∫ ·

0
Yt ⊗ dXt , Y ⊗ I

)
,

where the integral is as defined in (2.6), is continuous from Cγ
X to Cγ

X , and further-
more we have the bound∥∥RZ

∥∥
2γ ≤M

(‖X‖γ ∥∥RY
∥∥

2γ + ‖X‖2γ

∥∥Y ′∥∥Cγ

)
(2.7)

for a constant M independent of X,Y .

REMARK 2. Notice that from (2.7) we deduce that∥∥(
Z,Z′

)∥∥
X,γ ≤M

(‖X‖γ (∥∥RY
∥∥

2γ + ‖Y‖Cγ

)+ ‖X‖2γ

∥∥Y ′∥∥Cγ

)
.(2.8)

For (Y,Y ′) ∈ Cγ
X and a C2 function ψ : Rn �→R

m, we may define a new weakly
controlled rough path (ψ(Y ),ψ(Y )′) ∈ Cγ

X as

ψ(Y )t =ψ(Yt), ψ(Y )′t =Dψ(Yt )Y
′
t .(2.9)

Then we have the following bound from [20], Lemma 2.2:

LEMMA 1. Let (Y,Y ′) ∈ Cγ
X and (ψ(Y ),ψ(Y )′) be as defined in (2.9). Then

we have∥∥(
ψ(Y ),ψ(Y )′

)∥∥
X,γ

≤M
(
1+ ‖ψ‖∞ +

∥∥D2ψ
∥∥∞)(

1+ ∥∥(X,X)
∥∥
γ

)(
1+ ∥∥(

Y,Y ′
)∥∥

X,γ

)2
,

where the supremum norms of ψ and D2ψ are taken over the ball of radius ‖Y‖∞,
and the constant M is independent of X,Y,ψ .

2.4. Notion of solution. With all of these notation at hand, we give the follow-
ing definition of a solution to (1.1):

DEFINITION 2. Let γ > 1
3 , and let (X,X) ∈ Dγ . Then Z ∈ Cγ is a solution

to (1.1) if (Z,Z′)= (Z,V (Z)) ∈ Cγ
X , and the integral version of (1.1) holds, where

the composition of a controlled rough path with a nonlinear function is interpreted
as in (2.9) and the integral of a controlled rough path against X is defined by (2.6).
Here, we denoted by V the collection (V1, . . . , Vd).



REGULARITY OF LAWS 2551

A standard fixed point argument, as given, for example, in [17, 33], then yields:

THEOREM 2.2. For V ∈ C 3, there exists a unique local solution to (1.1).

From now on, we will refer to this notion of a solution to (1.1).

REMARK 3. In Theorem 2.2, if the vector fields V are bounded with bounded
derivatives, then there exists a global solution [33].

3. A version of Norris’s lemma. One of the main ingredients of the proof of
Hörmander’s theorem using Malliavin calculus is Norris’s lemma, which is essen-
tially a quantitative version of the Doob–Meyer decomposition theorem. Loosely
speaking, it states that under certain additional regularity assumptions, if a semi-
martingale is “small,” then both its bounded variation part and its martingale part
have to be “small” separately. In other terms, if we have some a priori knowledge
of the regularity of a semimartingale, then there is a limit to the amount of cancel-
lations that can occur between the two terms in its Doob–Meyer decomposition.
The intuitive reason for this is that a continuous martingale is nothing but a time-
changed Brownian motion, and so it has to be very rough at every single scale.

Results of this type are usually considered to be the archetype of a probabilistic
result. The aim of this section is to argue that while the probabilistic intuition de-
scribed above is certainly correct, one can have a much more pathwise perspective
on Norris’s lemma. This was already apparent in [21], where the authors obtain a
result that is similar in flavor to Norris’s lemma, but where this lack of cancella-
tions is formulated as a deterministic property that occurs on a universal “large”
subset of Wiener space. Here, we take this viewpoint one step further by exhibit-
ing a universal set on which a quantitative version of Norris’s lemma holds as a
deterministic property.

The main ingredient in our pathwise perspective is the following definition that
makes precise what we mean by a path that is “rough at every scale”:

DEFINITION 3. A path Xt with values in R
n is said to be θ -Hölder rough

in the interval [0, T ] for θ ∈ (0,1), if there exists a constant Lθ(X) such that for
every s ∈ [0, T ], every ε ∈ (0, T /2] and every ϕ ∈ R

n with ‖ϕ‖ = 1, there exists
t ∈ [0, T ] such that

|t − s| ≤ ε and
∣∣〈ϕ, δXs,t 〉

∣∣ > Lθ(X)εθ .(3.1)

We denote the largest such Lθ the “modulus of θ -Hölder roughness of X.”

REMARK 4. We emphasize that the choice of quantifiers in the above defini-
tion ensures that such Hölder rough paths actually do exist. In particular, as soon
as n ≥ 2, it is essential to allow the precise location of t such that (3.1) holds to
depend on the vector ϕ.
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A first, rather straightforward consequence of this definition is that if a rough
path (X,X) happens to be Hölder rough, then the “derivative process” Z′ in the
decomposition (2.5) of a controlled rough path is uniquely determined by Z. This
can be made quantitative in the following way:

PROPOSITION 1. Let (X,X) ∈ Dγ ([0, T ],R
n) be such that X is a θ -Hölder

rough path. Then there exists a constant M depending only on n and m such that
the bound

∥∥Z′∥∥∞ ≤ M‖Z‖∞
Lθ(X)

(∥∥RZ
∥∥θ/(2γ )

2γ ‖Z‖−θ/(2γ )∞ ∨ T −θ )
,

holds for every controlled rough path (Z,Z′) ∈ Cγ
X([0, T ],R

m).

PROOF. Fix s ∈ [0, T ] and ε ∈ (0, T /2], From the definition of the remainder
RZ in (2.5), it then follows that

sup
|t−s|≤ε

∣∣Z′sδXs,t

∣∣≤ sup
|t−s|≤ε

(|δZs,t | +
∣∣RZ

s,t

∣∣)≤ 2‖Z‖∞ +
∥∥RZ

∥∥
2γ ε2γ .(3.2)

Let now Z′s(j) denote the j th row of the matrix Z′s . Since X is θ -Hölder rough by
assumption, for every j ≤ d , there exists v = v(j) with |v− s| ≤ ε such that∣∣〈Z′s(j), δXs,v

〉∣∣ > Lθ(X)εθ
∣∣Z′s(j)

∣∣.(3.3)

Combining both (3.2) and (3.3), we thus obtain that

Lθ(X)εθ
∣∣Z′s(j)

∣∣≤ 2‖Z‖∞ +
∥∥RZ

∥∥
2γ ε2γ .

Summing over the rows of Z′s yields a universal constant C such that

Lθ(X)εθ
∣∣Z′s ∣∣≤ C

(‖Z‖∞ + ∥∥RZ
∥∥

2γ ε2γ )
.

Optimizing over ε, we choose ε = ‖Z‖1/2γ∞ ‖RZ‖−1/2γ
2γ ∧(T /2), thus deducing that

∣∣Z′s ∣∣≤ M‖Z‖∞
Lθ(X)

(∥∥RZ
∥∥θ/(2γ )

2γ ‖Z‖−θ/(2γ )∞ ∨ T −θ )
.

Since s was arbitrary, the stated bound follows at once. �

One way of reading Proposition 1 is to say that if ‖Z‖∞ is small, then ‖Z′‖∞
must also be small, provided that (Z,Z′) ∈ Cγ

X([0, T ],R
m) and that X is Hölder

rough. In the following theorem, we apply Proposition 1 to obtain a quantita-
tive version of a “Doob–Meyer type decomposition” for SDEs driven by a rough
path X. This is the main new technical result of this article.
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THEOREM 3.1. Let (X,X) ∈ Dγ ([0, T ],R
n) with γ > 1

3 be such that
X is θ -Hölder rough with 2γ > θ . Let (A,A′) ∈ Cγ

X([0, T ],R
mn) and B ∈

Cγ ([0, T ],R
m), and set

Zt =
∫ t

0
As dXs +

∫ t

0
Bs ds.(3.4)

Then, there exist constants r > 0 and q > 0 such that, setting

R def= 1+Lθ(X)−1 + ∥∥(X,X)
∥∥
γ +

∥∥(
A,A′

)∥∥
X,γ + ‖B‖Cγ ,

one has the bound

‖A‖∞ + ‖B‖∞ ≤MRq‖Z‖r∞
for a constant M depending only on T , m and n.

REMARK 5. The proof provides the explicit value q = 6 and shows that r can
be taken arbitrarily close to (2γ − θ)2(3γ − 1)/(4γ 2(1+ γ )), but these values are
certainly not optimal.

PROOF. Note first that the definition of Z does not change if we add a constant
to X. We will therefore assume without loss of generality that X0 = 0, so that
‖X‖∞ ≤ T γ ‖X‖γ ≤ T γ R. By Theorem 2.1 we deduce that the pair (Z,A) is a
weakly controlled rough path, (Z,A) ∈ Cγ

X([0, T ],R
m), with

δZ =AδX+RZ(3.5)

and ∥∥RZ
∥∥

2γ ≤M
(‖X‖γ ∥∥RA

∥∥
2γ + ‖X‖2γ ‖A‖Cγ + ‖B‖Cγ

)≤MR2.

We deduce from the above that in particular, we have the a priori bound ‖Z‖∞ ≤
MR2.

It then follows from Proposition 1 that

‖A‖∞ ≤MLθ(X)−1‖Z‖1−θ/(2γ )∞
(∥∥RZ

∥∥θ/(2γ )
2γ + ‖Z‖θ/(2γ )∞

)
(3.6)

≤MR3‖Z‖1−θ/(2γ )∞ .

This is already the requested bound on A. The bound on B is slightly more difficult
to obtain.

At this stage, we would like to make use of the information that ‖A‖∞ is “small”
to get a bound on the integral of A against X. In order to do so, it turns out to be
convenient to choose a β ∈ (1

3 , γ ) with 2β > θ , so that we can interpret (X,X) as
an element of Dβ([0, T ],R

n) with ‖(X,X)‖β ≤M‖(X,X)‖γ . This will allow us
to make use of interpolation inequalities to combine our a priori knowledge about
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the boundedness of (A,A′) in Cγ
X norm with (3.6) to conclude that (A,A′) is small

in Cβ
X .

We first obtain a bound on A′. Since (A,A′) ∈ Cγ
X([0, T ],R

mn), we infer
from (3.6) and Proposition 1 that∥∥A′∥∥∞ ≤MLθ(X)−1∥∥RA

∥∥θ/(2γ )
2β ‖A‖1−θ/(2γ )∞ ≤MR4‖Z‖(1−θ/(2γ ))2

∞ .

Using the inequality ∥∥A′∥∥β ≤ 2
∥∥A′∥∥β/γ

γ

∥∥A′∥∥1−β/γ
∞ ,(3.7)

which follows immediately from the definition of the Hölder norm, we obtain the
bound ∥∥A′∥∥β ≤M

∥∥A′∥∥1−β/γ
∞

∥∥A′∥∥β/γ
γ ≤MR4‖Z‖(1−θ/(2γ ))2(1−β/γ )∞ ,

where we used the fact that β < γ . Similarly, we would like to obtain a bound on
‖RA‖2β . Combining the definition of RA with (3.6), we deduce that∥∥RA

∥∥∞ ≤ 2
(‖A‖∞ + ∥∥A′∥∥∞‖X‖∞)≤MR5‖Z‖(1−θ/(2γ ))2

∞ .

Using the obvious equivalent to (3.7), we conclude that∥∥RA
∥∥

2β ≤M
∥∥RA

∥∥β/γ
2γ

∥∥RA
∥∥1−β/γ
∞ ≤MR5‖Z‖(1−θ/(2γ ))2(1−β/γ )∞ .

We are now in a position to use Theorem 2.1 to bound the integral
∫ ·

0 As dXs .
Indeed, we obtain from (2.7) the bound∥∥∥∥

∫ ·
0

As dXs

∥∥∥∥∞ ≤M
(|A0|‖X‖∞ + ‖X‖β

∥∥RA
∥∥

2β + ‖X‖2β

∥∥A′∥∥β

)
.

Inserting into this bound all of the above estimates, we conclude that∥∥∥∥
∫ ·

0
As dXs

∥∥∥∥∞ ≤MR6‖Z‖(1−θ/(2γ ))2(1−β/γ )∞ .(3.8)

This estimate, together with the definition (3.4) of Z immediately implies that we
also have the bound∥∥∥∥

∫ ·
0

Bs ds

∥∥∥∥∞ ≤MR6‖Z‖(1−θ/(2γ ))2(1−β/γ )∞ .

Once again we use an interpolation inequality to strengthen this bound. Applying
the interpolation inequality

‖∂tf ‖∞ ≤M‖f ‖∞max
(

1

T
,‖f ‖−1/(γ+1)∞ ‖∂tf ‖1/γ+1

γ

)

(see [21], Lemma 6.14) with f (t)= ∫ t
0 Bs ds, it follows that

‖B‖∞ ≤MR6‖Z‖(1−θ/2γ )2(1−β/γ )γ /(1+γ )∞ .(3.9)

The claim now follows from (3.6) and (3.9), and the remark following the state-
ment follows by choosing β ≈ 1

3 . �
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3.1. Hölder roughness of sample paths of fBm. Our aim now is to show that
the sample paths of a fractional Brownian motion X (with H ≤ 1/2 throughout
this section) are indeed almost surely Hölder rough and to provide quantitative
bounds on the tail behavior of Lθ(X) for a suitable θ . Let {F X

s , s ∈ R} be the
natural filtration generated by the fBm X, namely F X

s is the σ -algebra generated
by {Xr}r∈(−∞,s]. We start with the following lemma on the small ball probability
of the conditioned fBm:

LEMMA 2. Let ϕ ∈R
n with ‖ϕ‖ = 1 and δ ≤ 1. Then there exist constants M

and c such that the bound

P

(
inf‖ϕ‖=1

sup
s,t∈[0,δ]

∣∣〈ϕ, δXst 〉
∣∣≤ ε

∣∣F X
0

)
≤Me−cδ2H ε−2

(3.10)

holds almost surely, for every 0 < ε ≤ 1 and H ≤ 1/2.

PROOF. By the scaling properties of (conditioned) fractional Brownian mo-
tion, and since the bound is trivial for ε > δH , we can restrict ourselves to the case
δ = 1 and ε ≤ 1. For the moment, let us fix an arbitrary ϕ with ‖ϕ‖ = 1.

Since X0 = 0, we obtain

P

(
sup

s,t∈[0,1]
∣∣〈ϕ, δXst 〉

∣∣≤ ε
∣∣F X

0

)
≤ P

(
sup

t∈[0,1]
∣∣〈ϕ,Xt 〉

∣∣≤ ε
∣∣F X

0

)
.

At this stage, we note that there exists a one-dimensional Wiener process W (de-
pending on ϕ) independent of F X

0 , a stochastic process Yϕ = 〈ϕ,Y 〉 such that Yt

is F X
0 -measurable for every t ≥ 0, and a constant c such that

〈ϕ,Xt 〉 = Y
ϕ
t + c

∫ t

0
(t − s)H−1/2 dW(s)

def= Y
ϕ
t + X̂t .(3.11)

(See, e.g., [18, 37], as well as (4.2) below.) Furthermore, Y has almost surely
bounded sample paths. Any such sample path then induces a seminorm ‖ · ‖Y on
R

n by

‖ϕ‖Y def= sup
t∈[0,1]

|Yϕ
t |.

Furthermore, this is almost surely nondegenerate, so that ‖ · ‖Y is actually a norm.
For the rest of the proof, we use c for a generic universal constant that will change
from expression to expression.

It then follows from [27], Theorem 2 (set α = 1), which is a refinement of
Anderson’s inequality [1], that we have the bound

P

(
sup

t∈[0,1]
∣∣〈ϕ,Xt 〉

∣∣≤ ε
∣∣F X

0

)
= P

(
sup

t∈[0,1]
∣∣X̂t + Y

ϕ
t

∣∣≤ ε
∣∣F X

0

)

≤ exp
(
− inf‖Yϕ−h‖∞≤ε

‖h‖2
H

2

)
P

(
sup

t∈[0,1]
|X̂t | ≤ ε

)
,
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where ‖h‖H denotes the norm of h in the Cameron–Martin space of X̂. Since this
norm is always stronger than the supremum norm, there exists a constant c such
that ‖h‖H ≥ c‖h‖∞ ≥ c(‖ϕ‖Y − ε), so that

P

(
sup

t∈[0,1]
∣∣〈ϕ,Xt 〉

∣∣≤ ε
∣∣F X

0

)
≤ C exp

(−c‖ϕ‖2
Y

)
P

(
sup

t∈[0,1]
|X̂t | ≤ ε

)
(3.12)

for some positive constants c and C independent of ε ≤ 1.
On the other hand, we can invert the expression (3.11) for X̂, yielding

Wt = c

∫ t

0
(t − s)1/2−H dX̂s = c

∫ t

0
(t − s)−1/2−H X̂s ds.

In particular, provided that H < 1
2 , we have the bound

sup
t∈[0,1]

|Wt | ≤ c sup
t∈[0,1]

|X̂t |,

so that

P

(
sup

t∈[0,1]
|X̂t | ≤ ε

)
≤ P

(
sup

t∈[0,δ]
|Wt | ≤ cδ1/2−H ε

)
≤Me−cε−2

,

where the last inequality is the well-known small ball probability for the standard
Brownian motion [31]. Combining this with (3.12), we conclude that

P

(
sup

t∈[0,δ]
∣∣〈ϕ,Xt 〉

∣∣≤ ε
∣∣F X

0

)
≤M exp

(
− c

ε2 − c‖ϕ‖2
Y

)
.(3.13)

Up to now, the calculation was performed with a fixed instance of ϕ. In order to
conclude, we use a covering argument similar to [38], page 127. The main prob-
lem difference is that such an argument requires a priori bounds on the process X,
and these are of course not uniform in Y . It turns out that, thanks to the exponen-
tially decaying factor in (3.13), it is still possible to obtain a uniform bound, but
one needs to be a little bit more careful. Our main tool is the fact that, as a conse-
quence of John’s theorem [2, 26], it is possible to perform an orthogonal change
of coordinates for ϕ (that depends on Y ) and to find constants Y (1), . . . , Y (n) such
that

sup
j

Y (j)|ϕj | ≤ ‖ϕ‖Y ≤ C sup
j

Y (j)|ϕj |,(3.14)

were the constant C is universal and depends only on n. By equivalence of norms in
R

n we can furthermore, for any given realization of Y , replace the Euclidean norm
‖ϕ‖ in (3.10) by the ∞ norm ‖ϕ‖∞. If we can find a finite collection � ⊂ R

n

such that, for every ϕ with ‖ϕ‖∞ = 1, one has the bound

sup
‖ϕ‖∞=1

inf
ϕ̃∈�

‖ϕ − ϕ̃‖Y ≤ ε

4
,(3.15)
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then we obtain the inequality

P

(
inf‖ϕ‖∞=1

sup
s,t∈[0,1]

∣∣〈ϕ, δXst 〉
∣∣≤ ε

∣∣Y)

≤M
∑
ϕ̃∈�

exp
(
− c

ε2 − c‖ϕ̃‖2
Y

)
(3.16)

+ P

(
sup

‖ϕ‖∞=1
inf
ϕ̃∈�

sup
s,t∈[0,δ]

∣∣〈ϕ −�,δX̂st 〉
∣∣≤ ε

4

)
.

If we can furthermore choose the collection � so that

sup
‖ϕ‖∞=1

inf
ϕ̃∈�

‖ϕ − ϕ̃‖∞ ≤ ε2,(3.17)

then, due to the Gaussian tails of X̂, the second term in (3.16) is bounded by
M exp(−c/ε2) as desired. It thus remains to show that, for every norm ‖ · ‖Y , it is
possible to choose � satisfying (3.15) and (3.17) and such that∑

ϕ∈�

exp
(−c‖ϕ‖2

Y

)≤ C

εκ
(3.18)

for some constants C > 0 and κ > 0, uniformly over ‖ · ‖Y . We choose � ⊂
{ϕ :‖ϕ‖∞ = 1} in the following way. Let

Aj = ε2 ∧ ε

4Y (j)
,

and, for every k ∈ Zd , denote by Ak the element in R
n given by

∑
j Ajkj ej , where

ej is the j th unit vector. We also write Zd
j for the elements in k ∈ Zd with kj = 0.

We then set �=⋃n
j=1(�

+
j ∪�−j ), where

�±j =
{±ej +Ak :k ∈ Zd

j

}∩ {
ϕ :‖ϕ‖∞ = 1

}
.

It is clear that this choice of � satisfies both (3.15) and (3.17), so that it remains
to show that (3.18) is satisfied, uniformly over the choices of {Y (j)}. For k ∈ Zd

j ,

denote ϕ±j ;k = ±ej + Ak. With this notation at hand, it follows from (3.14) that
there exists a constant c such that

‖ϕj ;k‖2
Y ≥ cε2

∑
i �=j

|ki |2(
1∧ ε2∣∣Y (i)

∣∣2)
.

It follows that∑
ϕ∈�±j

exp
(−c‖ϕ‖2

Y

)

≤ ∏
i �=j

∑
|k|≤A−1

i

exp
(−cε2|k|2(

1∧ ε2∣∣Y (i)
∣∣2))
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≤ ∏
i �=j

(
2ε−2 + 1|4Y (i)|>ε−1

∑
|k|≤4Y (j)/ε

exp
(−c|k|2ε4∣∣Y (i)

∣∣2))

≤ c
∏
i �=j

(
ε−2 + 1|4Y (i)|>ε−1

∫
R

e−c|x|2ε4|Y (i)|2 dx

)

≤ c
∏
i �=j

(
ε−2 + 1|4Y (i)|>ε−1

1

ε2|Y (i)|
)
≤ cε−2n,

where all the constants c are independent of the choice of coefficients Y (i), so that
the bound (3.18) does indeed hold, which concludes the proof.

Note that, for H = 1/2, the exact same argument goes through, but it is simpli-
fied due to the Markov property, which implies that Y = 0. �

We have the following corollary of Lemma 2:

COROLLARY 1. For any interval Iδ
def= [u,u + δ] ⊂ R of length δ and any

u≤ u, there exist constants M and c such that the bound

P

(
inf‖ϕ‖=1

sup
s,t∈Iδ

∣∣〈ϕ, δXst 〉
∣∣≤ ε

∣∣F X
u

)
≤Me−cδ2H ε−2

holds for every 0 < ε ≤ 1 and H ≤ 1/2.

PROOF. Define the event G
def= {inf‖ϕ‖=1 sups,t∈Iδ

|〈ϕ, δXst 〉| ≤ ε}. Since the
increments of the fBm are stationary, by Lemma 2 we obtain the bound

E
(
1G|F X

u

)≤Me−cδ2H ε−2
.(3.19)

Now notice that for any G ∈ F X
u

and u ≤ u, E(G|F X
u ) = E(E(G|F X

u
)|F X

u ).
Since the right-hand side of equation (3.19) does not depend on u, it immedi-
ately follows that

P

(
inf‖ϕ‖=1

sup
s,t∈Iδ

∣∣〈ϕ, δXst 〉
∣∣≤ ε

∣∣F X
u

)
= E

(
1G|F X

u

)≤Me−cδ2H ε−2
(3.20)

and the corollary follows. �

REMARK 6. Although the above proof requires that H ≤ 1
2 , one would expect

that a result similar to that of Lemma 2 holds for any Gaussian process X such that

M2
 |t − s|2H ≤ E|Xt −Xs |2 ≤M2

u|t − s|2H , s, t ∈ [0, T ]
for some constants M,Mu, even if H > 1

2 . For instance, a result similar to
Lemma 2 can be shown to hold in the case of fBm with index H > 1

2 ; see, for
example, [3], Proposition 3.4.
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Using this estimate we are now in the position to obtain bounds on the modulus
of Hölder roughness for fractional Brownian motion with H ≤ 1

2 by a type of
chaining argument.

LEMMA 3. Let X be a fBm with Hurst parameter H ≤ 1
2 . Then, for every

θ > H , the sample paths of X are almost surely θ -Hölder rough. Moreover, there
exist constants M and c independent of X such that

P
(
Lθ(X)≤ ε|F X

0
)≤M exp

(−cε−2)
for all ε ∈ (0,1). In particular, E(L

−p
θ (X)|F X

0 ) <∞ for every p > 0.

PROOF. A different way of formulating Definition 3 is given by

Lθ(X)= inf‖ϕ‖=1
inf

t∈[0,T ] inf
r∈[0,T /2] sup

|t−s|≤r

|〈ϕ, δXst 〉|
rθ

.

We then define the “discrete analog” Dθ(X) of Lθ(X) to be

Dθ(X)
def= inf‖ϕ‖=1

inf
n≥1

inf
k≤2n

sup
s,t∈Ik,n

|〈ϕ, δXst 〉|
(2−nT )θ

,

where Ik,n = [ k−1
2n T , k

2n T ]. We first claim that

Lθ(X)≥ 1

2 · 8θ
Dθ(X).(3.21)

Indeed, given t ∈ [0, T ] and r ∈ [0, T /2], pick n ∈N such that r/8≤ 2−nT < r/4.
It follows that there exists some k such that Ik,n is included in the set {s : r/2 ≤
|t − s| ≤ r}. Then, by definition of Dθ , for any unit vector ϕ there exist two points
t1, t2 ∈ In such that ∣∣〈ϕ, δXt2t1〉

∣∣≥ 2−nθDθ(X).

Therefore by the triangle inequality, we conclude that the magnitude of the dif-
ference between 〈ϕ,Xt 〉 and one of the two terms 〈ϕ,Xti 〉, i = 1,2 (say t1) is at
least ∣∣〈ϕ, δXt1t 〉

∣∣≥ 1
2 ·

(
2−nT

)θ
Dθ(X)

and therefore

|〈ϕ, δXt1t 〉|
rθ

≥ 1

2
· 2−nθ

rθ
Dθ(X)≥ 1

2 · 8θ
Dθ(X).

Since t , r and ϕ were chosen arbitrarily, claim (3.21) follows.
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It follows that it is sufficient to obtain the requested bound on P(Dθ(X) ≤
ε|F X

0 ). We have the straightforward bound

P
(
Dθ(X)≤ ε|F X

0
)≤ P

(
inf‖ϕ‖=1

inf
n≥1

inf
k≤2n

sup
s,t∈Ik,n

|〈ϕ, δXst 〉|
2−nθ

≤ ε
∣∣∣F X

0

)

≤
∞∑

n=1

2n∑
k=1

P

(
inf‖ϕ‖=1

sup
s,t∈Ik,n

|〈ϕ, δXst 〉|
2−nθ

≤ ε
∣∣∣F X

0

)
.

Applying Lemma 2 and noting that the bound obtained in this way is independent
of k, we conclude that

P
(
Dθ(X)≤ ε|F X

0
)≤M

∞∑
n=1

2n exp
(−c22n(θ−H)ε−2)≤ M̃

∞∑
n=1

exp
(−c̃nε−2)

.

Here, we used the fact that we can find constants K and c̃ such that

n log 2− c22n(θ−H)ε−2 ≤K − c̃nε−2,

uniformly over all ε ≤ 1 and all n≥ 1. We deduce from this the bound

P
(
Dθ(X)≤ ε|F X

0
)≤M

(
e−c̃ε−2 +

∫ ∞
1

exp
(−c̃ε−2x

)
dx

)
,

which immediately implies the result. �

4. Malliavin derivatives. In this section, we derive formulas for the Malliavin
derivatives of solutions to (1.1), when conditioned on the past of the driving noise.
In order to clarify the meaning of this statement, we will reduce this conditioned
solution to a functional of an underlying Wiener process. With this notation, the
Malliavin derivative will simply be the “usual” Malliavin derivative of a random
variable on Wiener space.

Before proceeding further, let us make a digression that clarifies this construc-
tion. For α ∈ (0,1), we define the fractional integration operator I α and the corre-
sponding fractional differentiation operator Dα by

I αf (t)≡ 1

�(α)

∫ t

0
(t − s)α−1f (s) ds,

(4.1)

Dαf (t)≡ 1

�(1− α)

d

dt

∫ t

0
(t − s)−αf (s) ds,

with the convention that I 0 and D0 denote the identity operator. The operators I α

and Dα are inverses of each other; see, for example, [41] for a survey of fractional
integral operators.

It turns out that the operator I 1/2−H is an isometry between the Cameron–
Martin space of the conditioned fBm and that of the underlying Wiener process
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mentioned at the beginning of this section. More precisely, given a typical instance
w− ∈ C(R−,R

d) of the “past” of the fBm, it follows from the Mandelbrot–van
Nesse representation of the fractional Brownian motion [18, 37] that there exists a
constant αH and a (one-sided) Wiener process W on R+ independent of w− such
that the future w+ ∈ C(R+,R

d) of the fBm conditioned on the past w− may be
expressed as

w+ = Gw− + αH D1/2−HW,(4.2)

where D1/2−H is as defined in (4.1), and the operator G: C(R−,R
d) �→ C(R+,R

d)

is given by

(Gw−)(t)
def= γH

∫ ∞
0

1

r
g

(
t

r

)
w−(−r) dr.(4.3)

Here, the kernel g is given by

g(v)
def= vH−1/2 + (H − 3/2)v

∫ 1

0

(u+ v)H−5/2

(1− u)H−1/2 du,(4.4)

and the constant γH is given by γH = (H − 1
2)αHα1−H , where αH is the constant

appearing in (4.2). The interpretation of the operator G is that (Gw−)(t) is the
conditional expectation at time t of a two-sided fractional Brownian motion with
Hurst parameter H , conditioned on coinciding with w− for negative times.

Henceforth we will use the notation (4.2); namely we denote the past of the fBm
by w− ∈ C(R−,R

d) and the future by w+ ∈ C(R,R
d). At this stage, we will use

a slight abuse of notation, and we will also sometimes interpret w+ as an element
in the space Cγ

g (R+,R
d) of geometric rough paths that are γ -Hölder continuous,

although we then usually denote it by (X,X).
In view of (4.2), it will be useful to clarify how to interpret this identity when

the future is considered as an element in the space Cγ
g (R+,R

d), and for which
instances of w− the decomposition (4.2) makes sense. Recall that, for (X,X) ∈
Cγ

g ([0, T ],R
d) and h ∈ C([0, T ],R

d) a path with bounded variation, we can define
a translated path (Y,Y)= τh(X,X) in a natural way by

Yt =Xt + ht ,
(4.5)

Ys,t = Xs,t +
∫ t

s
δXs,r ⊗ dhr +

∫ t

s
δhs,r ⊗ dXr +

∫ t

s
δhs,r ⊗ dhr .

Since we assumed h to be of bounded variation, the integrals appearing in this ex-
pression should be interpreted as usual Riemann–Stieltjes integrals. Assume fur-
thermore that h is such that there exists a constant ‖h‖1;γ such that, for every s ≤ t

in [0, T ], the variation of h over the interval [s, t] is bounded by ‖h‖1;γ |t − s|γ . In
this case, it follows immediately that there exists M (depending on T ) such that

‖Y −X‖γ ≤ ‖h‖1;γ , ‖Y−X‖2γ ≤M‖h‖1;γ
(‖h‖1;γ + ‖X‖γ )

.(4.6)
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Similarly, we check that there exists a constant M such that∥∥τh(X,X)− τh(X̃, X̃)
∥∥
γ ≤M‖h‖1;γ

∥∥(X,X)− (X̃, X̃)
∥∥
γ ,(4.7)

so that τh is Lipschitz continuous as a map from Cγ
g ([0, T ],R

d) to itself.
Denote now by Wγ the completion of C∞0 (R−;Rd) with respect to the norm

|||ω|||γ ≡ sup
s,t∈R−

s �=t

|ω(t)−ω(s)|
|t − s|γ (1+ |t | + |s|)1/2 .(4.8)

For H ∈ (0,1) and γ ∈ (0,H), it can be shown that there exists a probability
measure P− on Wγ such that the canonical process associated to P− is a fractional
Brownian motion with Hurst parameter H [18].

Notice now that the operator G given by (4.3) is actually defined on all of Wγ .
Indeed, similar to [22], Proposition A.2, it can be checked that the kernel g defined
in equation (4.4) is smooth away from 0 and that its derivative satisfies

g′(t)= O(1), t � 1, g′(t)= O
(
tH−3/2)

, t � 1.(4.9)

It follows that, for w− ∈ Wγ , one has the bound∣∣(Gw−)′(t)
∣∣≤ C|||w−|||γ (

tγ−1 + tγ−1/2)
,

where ||| · |||γ is as in (4.8). In particular, over every finite time interval there exists
a constant M such that

‖Gw−‖1;γ ≤M|||w−|||γ .(4.10)

As a consequence of this discussion, (4.2) makes sense in Cγ
g (R+,R

d) for every
w− ∈ Wγ , and this is how we will interpret this identity from now on.

4.1. Derivatives of the solutions. We now derive expressions for the deriva-
tives of solutions to (1.1), both with respect to its initial condition and with respect
to the driving noise. For this, we make the following assumption, which will be
enforced throughout the whole article:

ASSUMPTION 1. The vector fields Vj are C∞ and all of their derivatives grow
at most polynomially fast. Furthermore, for every initial condition z ∈ R

n, every
final time T and every (X,X) ∈ Dγ

g ([0, T ],R
d) with γ > 1

3 , (1.1) has a solution
up to time T .

REMARK 7. We assume polynomial growth so that we can bound the Malli-
avin derivatives in terms of moments of the Jacobian (see Theorem 4.1 below),
a condition which is typically not too hard to verify. Otherwise, our conditions
would be very awkward to state, for a rather minor gain in generality.
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REMARK 8. Since the solution to (1.1) depends continuously on both its ini-
tial condition and the rough path (X,X) [16], it follows from a simple compact-
ness argument that, for every R > 0 and every final time T > 0, there exists a
constant M such that, if we denote by (Z,Z′) the solution to (1.1), the bound∥∥(

Z,Z′
)∥∥

X,γ ≤M

holds uniformly over all initial conditions |z| ≤ R and all driving noises
‖(X,X)‖γ ≤ R. Here, we use the fact that, over finite time intervals, the em-

bedding Dγ
g ↪→ Dβ

g is compact for β < γ [16], Proposition 8.17, and that the

continuous dependence on the driving path also holds in Dβ
g .

For an initial condition z and an instance of the driving noise w = (w−,w+),
let �t(z,w+) denote the solution map of (1.1),

Zt =�t(z,w+).

Note that for defining the solution, we only use w+ and do not use w−, the past of
the driving noise. Define the Jacobian

J0,t
def= ∂�t(z,w+)

∂z
,

and, for notational convenience, set V = (V1,V2, . . . , Vd). Then the Jacobian J0,t

and its inverse satisfy the (rough) evolution equations

dJ0,t =DV0(Zt )J0,t dt +DV (Zt)J0,t dXt ,(4.11a)

dJ−1
0,t =−J−1

0,t DV0(Zt ) dt − J−1
0,t DV (Zt) dXt .(4.11b)

Here, both J and J−1 are n × n matrices, and J0,0 = J−1
0,0 = 1. In order to de-

duce (4.11b) from (4.11a), we used the chain rule, which holds provided that
(X,X) ∈ Cγ

g .
We now consider the effect on the solution of a variation, not of the ini-

tial condition, but of the driving noise itself. For this, we define the operators
AT :L2([0, T ],R

d) �→R
n by

AT v =
∫ T

0
J−1

0,s V (Zs)v(s) ds.(4.12)

A particular role will be played by A∗
T : Rn �→ L2([0, T ],R

d), the adjoint of AT ,
which is given by (

A∗
T ξ

)
(s)= V (Zs)

∗(J−1
0,s

)∗
ξ, ξ ∈R

n.(4.13)

It is known [16] that for every sample path w+ of fractional Brownian motion in
Dγ

g and for any fixed T , the map3

h ∈ HH,+ �→�T (z,w+ + h)(4.14)

3Since Dγ
g is not a linear space, the “addition” of the paths w+ and h should be interpreted in the

sense of (4.5) below.
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is Fréchet differentiable, where HH,+ denotes the Cameron–Martin space of the
Gaussian process w+. In fact this Fréchet differentiability in Cameron–Martin di-
rections holds in great generality for RDE solutions driven by rough paths [16].
Furthermore, setting h(s)= ∫ s

0 v(r) dr for some v, one has the identity

Dh�T (z,w+ + h)|h=0 = J0,T AT v,(4.15)

whenever v ∈ L2. Note that, by (4.2), the space HH,+ consists of those paths h

such that h= D1/2−H h̃ for some h̃ in the Cameron–Martin space of W , which in
turn is equal to H 1, the space of square integrable functions with square integrable
weak derivative. If H �= 1

2 , the corresponding element v does not necessarily be-
long to L2, so that one may wonder what the meaning of (4.15) is in general. Writ-
ing Fs = J−1

0,s V (Zs) as a shorthand, a calculation shows that, for 1/3 < H < 1/2,
there is a constant c such that

AT D1/2−Hv
(4.16)

= c

∫ T

0

(∫ T

s
(r − s)H−3/2(Fs − Fr) dr + (T − s)H−1/2

1/2−H
Fs

)
v(s) ds,

so that |AT D1/2−Hv| ≤M‖F‖Cγ ‖v‖L2 for some constant M , provided that γ >
1
2 −H . Since, in our particular case, F is a rough path controlled by (X,X), the
condition ‖F‖Cγ <∞ for γ > 1

2 −H can always be satisfied when 1
2 −H < H ,

namely when H > 1
4 . See [7] for more discussion on why a bound like this is true

in general. The reason for deriving the explicit expression (4.16) in our case is that
it will be useful in the next subsection.

In the sequel, we will write DvZ
z
T as a shorthand for the derivative of the solu-

tion map in the direction h= ∫ ·
0 v(s) ds, that is,

DvZ
z
T =Dh�T (z,w+)= J0,T AT v.(4.17)

We also set

DsZ
z
t = Js,tV

(
Zz

s

) def= J0,t J
−1
0,s V

(
Zz

s

)
,(4.18)

so that DvZ
z
T is the L2-scalar product of DZz

T with v.

4.2. Malliavin differentiability of the solutions. Using representation (4.2),
the solution map �t(z,w+) conditioned on the past w− of the driving noise may be
viewed as a functional of an underlying Wiener process on [0,∞) which then al-
lows us to define the Malliavin derivative of the solution map DZz

t =D�t(z,w+)

in the usual way. For H = 1/2, we have DsZ
z
t = DsZ

z
t where D is as defined

in (4.18). Thus we focus on the case H < 1/2 below. As shown in [7], the Malli-
avin derivative is related to the Fréchet derivative given by (4.14) in the following
way. For any

∫ ·
0 v(s) ds ∈ HH,+, define ṽ = I 1/2−Hv. Then we have the identity

DṽZ
z
T =

1

αH

DvZ
z
T =

1

αH

J0,T AT v = 1

αH

J0,T AT D1/2−H ṽ,(4.19)
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where αH is as in (4.2). In line with the notation from [39], we define s �→ DsZ
z
t

to be the stochastic process such that the relation

DṽZ
z
t =

∫ t

0
ṽ(s)DsZ

z
t ds

holds for every ṽ ∈ L2. Comparing this with (4.16), we see that one has the identity

DsZ
z
t = c

∫ t

s
(r − s)H−3/2(

Js,tV
(
Zz

s

)− Jr,tV
(
Zz

r

))
dr

(4.20)

+ 2c

1− 2H
(T − s)H−1/2Js,tV

(
Zz

s

)
for some fixed constant c. (Furthermore, DsZ

z
t = 0 for s ≥ t .) In general, we can

rewrite this as

DZz
t = D1/2−H

+ DZz
t ,(4.21)

where DsZ
z
t is as in (4.18), with DsZ

z
t = 0 for s ≥ t , and D1/2−H

+ is the linear
operator given by

(
D1/2−H
+ f

)
(s)= c

∫ ∞
s

(r − s)H−3/2(
f (r)− f (s)

)
dr.

The aim of this section is to obtain a priori bounds on the higher-order Malliavin
derivatives of the solution. As a first step, we obtain pointwise bounds on multiple
derivatives of the solution map. In view of (4.18), we will need to compute DsJ0,t

in order to obtain such bounds. At this stage, let us put indices back into the various
expressions in order to clarify the precise meaning of the various expressions that
appear. We will use Einstein’s convention of summation over repeated indices,
and we write Di

s for the derivative with respect to the ith component of the driving
noise (X,X). It is clear that DsJ0,t = 0 for t < s. Furthermore, we see from (4.11a)
that

Di
sJ

k
0,s =DmV k

i (Zs)J
m
0,s .(4.22)

For t > s, we formally differentiate (4.11a), and we use identity (4.18) to obtain
the rough evolution equation

dDi
sJ

k
0,t =DmV k

j (Zt)D
i
sJ

m
0,t dXj (t)+DmV k

0 (Zt )D
i
sJ

m
0,t dt

+D2
mnV

k
j (Zt )J

m
0,t J no

s,t V
o
i (Zt ) dXj (t)

+D2
mnV

k
0 (Zt )J

m
0,t J no

s,t V
o
i (Zt ) dt.

Note now that this is a linear inhomogeneous equation for Di
sJ

k
0,t , where the linear

part has exactly the same structure as (4.11a). As a consequence, we can solve it
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using the variation of constants formula which, when combined with (4.22), yields
the expression

Di
sJ

k
0,t = J

kj
s,tDmV

j
i (Zs)J

m
0,s

+
∫ t

s
J

kp
r,t D

2
mnV

p
j (Zr)J

m
0,r J nq

s,r V
q
i (Zr) dXj (r)(4.23)

+
∫ t

s
J

kp
r,t D

2
mnV

p
0 (Zr)J

m
0,r J nq

s,r V
q
i (Zr) dr.

A similar identity also holds for DsJ
−1
0,t , but the precise form of this expression is

unimportant as will be seen presently.
We now introduce the following notation in order to keep track of the terms

appearing in the expressions for higher order Malliavin derivatives. Denote by T
the space of finite rooted trees, and by F the space of finite forests (unordered finite
collections of trees, allowing for repetitions). Formally, we denote by (τ1, . . . , τk)

the forest consisting of the trees τ1, . . . , τk . For F = (τ1, . . . , τk) ∈ F, we also write
[F ] = [τ1, . . . , τk] ∈ T for the tree obtained by gluing the roots of the trees of F to
a common new root.

For any forest F ∈ F, we then build a sequence of subsets V k
F ⊂ Cγ

X([0, T ],R)

with k ≥ 1 in the following way. For the empty forest (·), we set V k
(·) = {1} for

every k. For F = (•), the forest consisting of one single tree, which itself consists
only of a root, we set

V k
(•) =

{
J

ij
0,·,

(
J−1

0,·
)ij

,D
()
i1,...,i

V j
m(Z·) : ∈ {0, . . . , k}},

where m ∈ {0, . . . , d}, and the indices i, j and i1, . . . , i belong to {1, . . . , n}. For
forests F = (τ1, . . . , τm) consisting of more than one tree, we set

V k
(τ1,...,τm) =

{
Y1 · · ·Ym :Yj ∈ V k

(τj ),∀j
}
.(4.24)

In other words, the processes contained in V k
(τ1,...,τm) are obtained by multiplying

together the processes contained in V k
(τj ). Finally, if F consists of a single tree

consisting of more than just one root, so that F = [G] for some forest G, we set

V k[G] =
{∫ ·

0
Ys dX(s),

∫ ·
0

Ys ds :Y ∈ V k
G,  ∈ {1, . . . , d}

}
.(4.25)

This construction has the following feature:

LEMMA 4. There exists a map F �→ TF from F to 2F, the set of subsets of F,
with the following properties:

• The set TF is finite for every F ∈ F.
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• For every F ∈ F, k ≥ 1, there exist coefficients ci
Y,U,Ū

taking values in {0,1,−1}
such that the identity

Di
sYt =

∑
G,Ḡ∈TF

∑
U∈V k+1

G

∑
Ū∈V k+1

Ḡ

ci
Y,U,Ū

UsŪt

holds for every Y ∈ V k
F and every 0≤ s < t ≤ T .

REMARK 9. Objects indexed by trees arise naturally when considering higher-
order expansions (in time) of solutions to differential equations [5], but this is
completely unrelated to the construction of this section. In our case, the bound on
the higher order Malliavin derivatives proceeds via an inductive argument, and the
set of trees used here is simply one relatively easy combinatorial object having the
same recursive structure as our bounds.

PROOF OF LEMMA 4. Note first that, by writing Jr,t = J0,t J
−1
0,r and similarly

for Js,r , we see from (4.23) that DsJ0,t can indeed be written as

Di
sJ

k
0,t =

∑
G,Ḡ∈TJ

∑
U∈V 2

G

∑
Ū∈V 2

Ḡ

cik
U,Ū

UsŪt

for some coefficients cik
U,Ū

∈ {0,1,−1}, and for

TJ = {
(•), (•,•,•), (•, [•,•,•,•,•])}.

The same statement holds true for Di
s(J

−1
0,t )k. Furthermore, we have from (4.18)

and the chain rule the identity

Di
sD

()
i1,...,i

V j
m(Zt)=D

(+1)
i1,...,i,k

V j
m(Zt)J

kp
s,t V

p
i (Zs),

so that we have

Di
sD

()
i1,...,i

V j
m(Zt)=

∑
G,Ḡ∈TD

∑
U∈V 2

G

∑
Ū∈V 2

Ḡ

c̄U,ŪUsŪt

for some coefficients c̄U,Ū ∈ {0,1,−1} (depending also on all the indices appear-
ing on the left-hand side), and for

TD = {
(•,•)}.

It follows that we can indeed find a set T(•) = TJ ∪ TD with the two properties
stated in the lemma.

For more complicated forests, the claim follows by building T recursively in
the following way. If F = (τ1, . . . , τm) for trees τj such that T(τj ) is known, we
observe that one has the identity

Dj
s Y1(t) · · ·Ym(t)=

m∑
i=1

Y1(t) · · ·Yi−1(t)D
j
s Yi(t)Yi+1(t) · · ·Ym(t).(4.26)
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As a consequence, if we write F ⊕G for the union of two forests and F �G for
the forest obtained by removing from F its subforest G, we can set

T(τ1,...,τm) =
m⋃

i=1

{
T(τi),F � (τi)⊕ T(τi)

}
.(4.27)

It follows from (4.26) and (4.24) that this definition does indeed ensure that the
requested properties are satisfied.

It remains to consider the case F = (τ ) for some nontrivial tree τ . In this case,
there exists a forest G such that τ = [G] and elements in V k

F are given by (4.25).
Note now that one has the identities

Di
s

∫ t

0
Yr dX(r)= δiYs +

∫ t

0
Di

sYr dX(r),

Di
s

∫ ·
0

Yr dr =
∫ t

0
Di

sYr dr.

As a consequence, if we set

T[G] = TG ∪ {
G,(·)}∪ {([H ]) :H ∈ TG

}
,(4.28)

the requested properties are again satisfied by induction. Since every forest can be
built from elementary trees by the two operations considered in (4.27) and (4.28),
this concludes the proof. �

For our purpose, this has the following useful consequence. For a fixed final
time T , define the controlled rough path J z ∈ Dγ

g ([0, T ],R
2n2+n) by

J z
t =

(
Zt, J0,t , J

−1
0,t

)
.(4.29)

(Note that both J and J−1 also implicitly depend on the starting point z.) We then
have an a priori bound on the derivatives of the solution with respect to the driving
noise in terms of J z:

PROPOSITION 2. Let At denote any component of the vector J z
t . Under As-

sumption 1, for every multiindex α = (α1, . . . , α) there exists a finite index set Tα

and elements Fk
j ∈ Cγ

X([0, T ],R) with k ∈ Tα and j ∈ {1, . . . , |α| + 1}, such that
the identity

Dα1
s1
· · ·Dα

s
At =

∑
k∈Tα

F k
1 (s1) · · ·Fk

 (s)F
k
+1(t),(4.30)

holds for every 0≤ s1 < · · ·< s < t ≤ T .
Furthermore, there exist constants M and p depending only on α and T such

that the bound ∥∥Fk
j

∥∥
X,γ ≤M

(
1+ ∥∥(

J z, J z′)∥∥
X,γ

)p
,

holds for every k and j .
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PROOF. The first claim follows immediately from Lemma 4 by induction
on |α|. The second claim follows from the construction of the sets V k

F , combined
with Lemma 1 and Theorem 2.1. �

In the particular case when X is fractional Brownian motion with Hurst param-
eter H , it follows from Proposition 2 that, if we consider the Malliavin derivatives
Ds with respect to the underlying Wiener process as at the beginning of this sec-
tion, we have the following bound:

THEOREM 4.1. As above, let At denote any component of the vector J z
t , and

let (X,X) be fractional Brownian motion with Hurst parameter H ∈ (1
3 , 1

2 ]. Under

Assumption 1, for every multiindex α = (α1, . . . , α), every γ ∈ (1
3 ,H), every δ >

0 and every T > 0, there exist constants M and p such that the bound(∣∣Dα1
s1
· · ·Dα

s
As+1

∣∣ ∏
j=1

|sj+1 − sj |1−2H+δ

)
≤M

(
1+ ∥∥(

J z, J z′)∥∥
X,γ

)p
,

holds uniformly for all 0≤ s1 < · · ·< s+1 ≤ T . Furthermore, the exponent p can
be chosen to depend only on |α|.

REMARK 10. Since the function t �→ t2H−1−δ is square integrable near the
origin for δ sufficiently small, the random variable At belongs to the stochastic
Sobolev space D∞loc. If furthermore E‖(J , J ′)‖pX,γ <∞ for every p, then At be-
longs to the stochastic Sobolev space D∞. See [39], page 49, for the definitions of
D∞loc and D∞.

PROOF OF THEOREM 4.1. The proof for H = 1/2 follows trivially from
Proposition 2. Consider now s1 < · · · < s to be fixed and consider, for j =
0, . . . , , the sequence of functions

F (j)(rj+1, . . . , r)=Ds1 · · ·Dsj Drj+1 · · ·DrAt ,

so that our aim is to obtain a bound on F (). Note that, by (4.21), the F (j) satisfy
the recursive formula

F (j)(rj+1, . . . , r)= c

∫ ∞
sj

(r − sj )
H−3/2(

F (j−1)(r, rj+1, . . . , r)

(4.31)
− F (j−1)(sj , rj+1, . . . , r)

)
dr.

We claim now that, for every j , there exists an index set Tj and a family of func-

tions F
(j,k)
i such that, for sj < rj+1 < · · ·< r < t , one has the identity

F (j)(rj+1, . . . , r)=
∑
k∈Tj

∏
i=j+1

F
(j,k)
i (ri).(4.32)
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Furthermore, for every β ∈ (1
2 −H,H), there exists a constant M independent of

s1, . . . , s such that these functions satisfy the bound

∏
i=j+1

∥∥F (j,k)
i (ri)

∥∥
β,j ≤M

j∏
i=1

|sj+1−sj |H−1/2−β(
1+∥∥(

J z, J z′)∥∥
X,γ

)p(4.33)

for some fixed p > 0. Here, where we denote by ‖F‖β,j the Cβ -norm (not semi-
norm!) of F , restricted to the interval [sj+1, t]. In the special case j = , this is
just |F(t)|. Once we show that (4.32) and (4.33) hold, the proof is complete since
the special case j =  and the choice β = 1

2 −H + δ yields the stated claim for δ

sufficiently small. For larger values of δ, the claim can easily be reduced to that for
small δ.

Note furthermore that F (j)(rj+1, . . . , r)= 0 if there exists i > j such that ri >

t and that the function F (j) is symmetric under permutations of its arguments. As
a consequence, (4.32) is sufficient to determine F (j).

The proof now goes by induction over j . For j = 0, we have

F (0)(r1, . . . , r)=Dr1 · · ·DrAt ,

which is indeed of the form (4.32) by Proposition 2. In this case, the bound (4.33)
reduces to the statement that the F

(0,k)
i are β-Hölder continuous, which is also a

consequence of Proposition 2. In order to make use of the recursion (4.31), we
have to rewrite it in such a way that the arguments of F (j−1) are always ordered.
Using the recursion hypothesis, we then have the identity

F (j)(rj+1, . . . , r)

= c
∑

k∈Tj−1

∫ rj+1

sj

(r − sj )
H−3/2(

F
(j−1,k)
j (r)− F

(j−1,k)
j (sj )

)
dr

×∏
i>j

F
(j−1,k)
i (ri)

+ c
∑

k∈Tj−1

∑
i>j

∫ ri+1

ri

(r − sj )
H−3/2F

(j−1,k)
i (r) dr

×
(

i−1∏
q=j

F (j−1,k)
q (rq+1)

)(
∏

q=i+1

F (j−1,k)
q (rq)

)

− 2c

1− 2H
(rj+1 − sj )

H−1/2F
(j−1,k)
j (sj )

∏
i>j

F
(j−1,k)
i (ri)

def= T1 + T2 + T3.
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Rewriting the integral from ri to ri+1 appearing in T2 as∫ t

ri

(r − sj )
H−3/2F

(j−1,k)
i (r) dr −

∫ t

ri+1

(r − sj )
H−3/2F

(j−1,k)
i (r) dr,

we see that F (j) is indeed again of the form (4.32). It remains to show that
bound (4.33) holds. To show that it holds for T1, write

Gk(s)=
∫ s

sj

(r − sj )
H−3/2(

F
(j−1,k)
j (r)− F

(j−1,k)
j (sj )

)
dr,

so that one has, for s > sj , the bound∣∣∂sGk(s)
∣∣≤ (s − sj )

H−3/2+β
∥∥F (j−1,k)

j

∥∥
β,j−1.

In particular, one has for s > sj+1 the bound∣∣∂sGk(s)
∣∣≤ (sj+1 − sj )

H−1/2(s − sj )
β−1∥∥F (j−1,k)

j

∥∥
β,j−1.

Furthermore, we obtain in a similar way the bound∣∣Gk(sj+1)
∣∣≤M(sj+1 − sj )

H−1/2+β
∥∥F (j−1,k)

j

∥∥
β,j−1

for some constant M , so that a straightforward calculation yields

‖Gk‖β,j ≤M(sj+1 − sj )
H−1/2∥∥F (j−1,k)

j

∥∥
β,j−1

for some constant M . The requested bound on T1 (actually a bound that it better
than requested) then follows at once.

To bound T2, we proceed similarly by setting

Gk(s)=
∫ t

s
(r − sj )

H−3/2F
(j−1,k)
i (r) dr,

and noting that Gk(t)= 0 and∣∣∂sGk(s)
∣∣≤ (sj+1 − sj )

H−1/2−β(s − sj )
β−1∥∥F (j−1,k)

i

∥∥
β,j−1.

It follows as above that

‖Gk‖β,j ≤M(sj+1 − sj )
H−1/2−β

∥∥F (j−1,k)
i

∥∥
β,j−1

as requested. Finally, the bound on T3 follows in the same way. �

5. Regularity of laws. Our aim in this section is to show that if the vector
fields V satisfy Hörmander’s celebrated Lie bracket condition (see below), then
the Malliavin matrix of the process Zt is almost surely invertible, and to obtain
quantitative bounds on its lowest eigenvalue.

In order to state Hörmander’s condition, we define recursively the families of
vector fields

V0 = {Vk :k ≥ 1}, Vn+1 = Vn ∪ {[U,Vk] :U ∈ Vn, k ≥ 0
}
,
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where [U,V ] denotes the Lie bracket between the vector fields U and V . Note
that under Assumption 1, the elements in Vn also have derivatives of all orders
that grow at most polynomially. We now formulate Hörmander’s bracket condi-
tion [24]:

ASSUMPTION 2. For every z0 ∈R
n, there exists N ∈N such that the identity

span
{
U(z0) :U ∈ VN

}=R
n(5.1)

holds.

It is well known from the works of Malliavin, Bismut, Kusuoka, Stroock and
others [4, 28–30, 35, 36, 38, 39] that when the driving noise X is Brownian motion,
one way of proving the smoothness of the law of ZT under Hörmander’s condition
is to first show the invertibility of the “reduced Malliavin matrix”4

CT
def= AT A∗

T =
∫ T

0
J−1

0,s V (Zs)V (Zs)
∗(J−1

0,s

)∗
ds.(5.2)

Recall that the matrix norm of a symmetric matrix is equal to its largest eigen-
value. Since CT is a symmetric matrix, one can write the norm of its inverse as∥∥C−1

T

∥∥−1 = inf‖ϕ‖=1
〈v,CT v〉, ϕ ∈R

n.(5.3)

5.1. Deterministic bounds on ‖C−1
T ‖. In this subsection we only use the fact

that (X,X) ∈ Dγ
g and the fact that X is θ -rough for some θ > H . Thus the bounds

obtained are purely deterministic.
Before we turn to our bound on the inverse of CT , let us introduce some nota-

tion. For any smooth vector field U , define the process ZU(t) = J−1
0,t U(Zt ), and

set

Rz
def= 1+Lθ(X)−1 + ∥∥(X,X)

∥∥
γ +

∥∥(
J z, J z′)∥∥

X,γ + |z|,(5.4)

where J z is as in (4.29). Here, we fix a “roughness exponent” θ > H which will
appear in subsequent statements.

LEMMA 5. Fix a final time T > 0. Under Assumption 1, there exist constants
c, a > 0 such that the bound∥∥〈

ϕ, ZU(·)〉∥∥∞ ≤MRc
z

∣∣〈ϕ,CT ϕ〉∣∣a,
holds for all U ∈ V1, all ϕ ∈ R

n such that ‖ϕ‖ = 1, all initial conditions z, all
(X,X) ∈ Dγ

g ([0, T ],R
d) and the constant M > 0 is independent of X,ϕ, z.

4This is a slight misnomer since our SDE is driven by fractional Brownian motion, rather than
Brownian motion. One can actually rewrite the solution as a function of an underlying Brownian
motion by making use of representation (4.2), but the associated Malliavin matrix has a slightly
more complicated relation to CT than usual. Still, it will be useful to first obtain a bound on the
inverse of CT .
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PROOF. By definition we have

〈ϕ,CT ϕ〉 =
d∑

i=1

∫ T

0

〈
ϕ,J−1

0,s Vi(Zs)
〉2

ds =
d∑

i=1

∥∥〈
ϕ, ZVi

(·)〉∥∥2
L2[0,T ].(5.5)

To obtain an upper bound of order |〈ϕ,CT ϕ〉|a on the supremum norm, our main
tool is the interpolation inequality

‖f ‖∞ ≤ 2 max
(
T −1/2‖f ‖L2[0,T ],‖f ‖2γ /(2γ+1)

L2[0,T ] ‖f ‖1/(2γ+1)
γ

)
,(5.6)

which holds for every γ -Hölder continuous function f : [0, T ] �→ R; see, for ex-
ample, [23], Lemma A.3. Since in our case the final time T is fixed, the L2 norm
is controlled by the γ -Hölder norm, so that∥∥〈

ϕ, ZVi
(·)〉∥∥∞ ≤M

∥∥〈
ϕ, ZVi

(·)〉∥∥2γ /(2γ+1)

L2[0,T ]
∥∥〈

ϕ, ZVi
(·)〉∥∥1/(2γ+1)

Cγ .

Since the vector fields Vi have derivatives with at most polynomial growth by
assumption, we obtain immediately from Lemma 1 the bound∥∥〈

ϕ, ZVi
(·)〉∥∥Cγ ≤MRa

z(5.7)

for some exponent a. Combining this with (5.5), the claim follows at once. �

The next lemma involves an iterative argument (similar in spirit to [3, 29, 38])
to show that a similar bound holds with Vj replaced by any vector field obtained
by taking finitely many Lie brackets between the Vj ’s.

LEMMA 6. Fix a final time T > 0. Under Assumption 1, for every i ≥ 1, there
exist constants ci, ai > 0 such that∥∥〈

ϕ, ZU(·)〉∥∥∞ ≤MRci
z

∣∣〈ϕ,CT ϕ〉∣∣ai

for every U ∈ Vi , every ϕ ∈ R
n such that ‖ϕ‖ = 1, every initial condition z, every

(X,X) ∈ Dγ
g ([0, T ],R

d) and the constant M > 0 is independent of X,ϕ, z.

PROOF. The proof goes by induction over i. We already know from Lemma 5
that the statement holds for i = 1. Assume now that it holds for some i ≥ 1, and let
us show that it holds for i + 1. For any t ≤ T and U ∈ Vi , a simple application of
the chain rule [which holds since (X,X) is assumed to be a geometric rough path]
yields

〈
ϕ, ZU(t)

〉= ∫ t

0

〈
ϕ, Z[V0,U ](s)

〉
ds +

d∑
j=1

∫ t

0

〈
ϕ, Z[Vj ,U ](s)

〉
dXj

s ,(5.8)

where the second integral is a rough integral as in Theorem 2.1.



2574 M. HAIRER AND N. S. PILLAI

First we derive a priori bounds on the two integrands of (5.8) and then apply
Theorem 3.1. It follows from Lemma 1 and Assumption 1 that∥∥〈

ϕ, Z[Vj ,U ](·)〉∥∥X,γ ≤MRa
z , j = 0, . . . , d,(5.9)

so that a similar bound holds on ‖〈ϕ, Z[Vj ,U ](·)〉‖γ .
By the induction hypothesis, for every U ∈ Vi we have the bound

‖〈ϕ, ZU(·)〉‖∞ ≤ MRci
z |〈ϕ,CT ϕ〉|ai for some constants ai, ci . Applying Theo-

rem 3.1 to (5.8) and using the a priori bound (5.9), we conclude that there exist
constants αi+1, ci+1 such that∥∥〈

ϕ, Z[U,V](·)
〉∥∥∞ ≤MRci+1

z

∣∣〈ϕ,CT ϕ〉∣∣αi+1

for = 0, . . . , d . Since Vi+1 contains precisely the vector fields [U,V], this con-
cludes the proof. �

Now we combine the above two lemmas and Hörmander’s hypothesis, Assump-
tion 2, to obtain lower bounds on the smallest eigenvalue of CT .

PROPOSITION 3. Assume that Assumptions 1 and 2 hold. Fix T > 0, and let
the matrix CT and the quantity R be as defined in (5.2) and (5.4), respectively.
Then there exists a constant c > 0 such that the bound

inf‖ϕ‖=1

∣∣〈ϕ,CT ϕ〉∣∣ > MR−c
z(5.10)

holds uniformly over every driving path (X,X) ∈ Dγ
g and every initial condition z.

The constant M > 0 is independent of X,ϕ, z.

REMARK 11. We emphasize again that (5.10) yields a lower bound on the
eigenvalues of CT that is not probabilistic in nature. All the probabilistic cancella-
tions that take place in the classical probabilistic proofs of Hörmander’s theorem
are “hidden” in the strict positivity of Lθ(X) and the boundedness of ‖(X,X)‖γ .

PROOF OF PROPOSITION 3. Let N ∈N be such that

K
def= inf|z|≤R

inf‖ϕ‖=1

∑
U∈V̄N

∣∣〈ϕ,U(z)
〉∣∣2 > 0.(5.11)

The existence of such an N follows from Assumption 2 and the smoothness of the
vector fields V .

Note now that, considering the right-hand side at time 0, we see that∣∣〈ϕ,U(z0)
〉∣∣2 ≤ ∥∥〈

ϕ, ZU(·)〉∥∥2
∞.

From Lemmas 5 and 6, there then exist constants cN,αN such that

K ≤ inf‖ϕ‖=1
sup

U∈V̄N

∥∥〈
ϕ, ZU(·)〉∥∥2

∞ ≤MRcN
z inf‖ϕ‖=1

∣∣〈ϕ,CT ϕ〉∣∣αN ,(5.12)
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which is precisely the required bound. �

Now let MT be the Malliavin matrix of the map W �→ Zz
T where W is the

underlying Wiener process from representation (4.2). Then we have the following
pathwise bound on MT :

THEOREM 5.1. Under the assumptions of Proposition 3, there exists a con-
stant c1 > 0 such that the bound

inf‖ϕ‖=1

∣∣〈ϕ, MT ϕ〉∣∣ > MR−c1
z(5.13)

holds for every driving path (X,X) ∈ Dγ , every initial condition z, and the con-
stant M > 0 is independent of X,ϕ, z.

PROOF. By virtue of (4.19), we have the identity∣∣〈ϕ, MT ϕ〉∣∣= ∥∥(
D1/2−H )∗A∗

T J ∗0,T ϕ
∥∥2
L2[0,T ],(5.14)

where (D1/2−H )∗ is the L2[0, T ] adjoint of the operator D1/2−H defined in (4.1).
Notice that I 1/2−H :L2[0, T ] �→ L2[0, T ] is a bounded operator, and since I 1/2−H

and D1/2−H are inverses of each other, we conclude that operator (D1/2−H )∗ has
a bounded inverse in L2[0, T ]. Thus∥∥(

D1/2−H )∗A∗
T J ∗0,T ϕ

∥∥
L2[0,T ] ≥M

∥∥A∗
T J ∗0,T ϕ

∥∥2
L2[0,T ]

=M
〈
J ∗0,T ϕ,CT J ∗0,T ϕ

〉
,

which, from Proposition 3, is bounded from below by

MR−c
z

∥∥J ∗0,T ϕ
∥∥2 ≥MR−c1

z ‖ϕ‖2,

where the last bound is a consequence of the fact that ‖J−1
0,T ‖ ≤MRz. �

5.2. Probabilistic bounds and smoothness of laws. Recall from (4.2) that the
“future” evolution of the fBm conditional on the past w− may be expressed as

w+ = Gw− + αH D1/2−HW,

where Gw− is the conditional expectation with the operator G given by (4.3). As
in the previous section, we will mostly be interested in the situation when w− is
fixed, and the conditional law of the solution is considered. If H = 1/2, then all
the statements are simple since in this case G = 0 and D0 is the identity operator.

One problem is that it is in general quite difficult to obtain moment bounds
on the Jacobian (and its inverse) for equations of the type (1.1) when the driving
noise is only γ -Hölder for some γ > 1

3 (rather than γ > 1
2 ). The best bounds

obtained in [16] rule out a downright explosion of the Jacobian, but only yield
logarithmic moments in general. The very recent article [8] obtains such moment
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bounds, but under boundedness conditions that are stronger than Assumption 1.
See also [14] for a related result. We therefore state the moment bounds on the
solution and its Jacobian as an additional assumption. We will use Ẽ and P̃ to
denote the expectation and probability, respectively, conditioned on the past of the
driving noise w−.

ASSUMPTION 3. There exists an exponent ζ < 2 and a seminorm ||| · ||| on
C(R−,R

d) such that |||w−||| is almost surely finite and such that, for every R > 0
and every p ≥ 1, the bound

Ẽ
∥∥(

J z, J z′)∥∥p
X,γ ≤M exp

(
M|||w−|||ζ )

,(5.15)

holds for some constant M independent of X, uniformly over all initial conditions
with |z| ≤R.

REMARK 12. Combining (5.15) with Fernique’s theorem immediately yields
the unconditioned bound

E
∥∥(

J z, J z′)∥∥p
X,γ ≤M(5.16)

for any p ≥ 1.

Now we combine the results above with the results from the previous section
to obtain probabilistic bounds on the inverse of the Malliavin matrix, under the
additional hypothesis that Assumption 3 holds.

PROPOSITION 4. Let (1.1) be such that Assumptions 1, 2 and 3 are satisfied.
Fix T > 0, and let MT be the Malliavin matrix as in (5.13).

Then, there exists a norm ||| · ||| such that |||w−|||<∞ almost surely and, for any
R > 0 and any p ≥ 1, there exists a constant M such that the bound

P̃

(
inf‖ϕ‖=1

〈ϕ, MT ϕ〉 ≤ ε
)
≤MeM|||w−|||ζ εp,(5.17)

holds for all ε ∈ (0,1] and all initial conditions z with |z| ≤R. Here, the constant ζ

is as in (5.15).
Similarly, the unconditional bound

P

(
inf‖ϕ‖=1

〈ϕ, MT ϕ〉 ≤ ε
)
≤Mεp(5.18)

holds.

PROOF. From Theorem 5.1 we deduce that for small enough ε,

P̃

(
inf‖ϕ‖=1

∣∣〈ϕ, MT ϕ〉∣∣≤ ε
)
≤ P̃

(
R ≥ ε−c1

)
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for some constant c1 > 0. By Markov’s inequality, for any p ≥ 1, this expression
is bounded by

Mεpc1ẼRp.

Now for any p ≥ 1, from Lemma 3 and Assumption 3 it follows that

Ẽ
(
Lθ(X)−p + ∥∥(

J z, J z′)∥∥p
X,γ

)≤MeM|||w−|||ζ .

Furthermore, it follows from (4.2) that Ẽ‖(X,X)‖pγ ≤MeM‖Gw−‖ζγ , thus proving
claim (5.17). The second claim then follows from Fernique’s theorem. �

As an immediate corollary, we obtain that the Malliavin matrix has all moments:

COROLLARY 2. Under the assumptions of Proposition 4, the matrix MT is
almost surely invertible and, for any R > 0 and any p ≥ 1,

Ẽ
(∥∥M−p

T

∥∥)≤MeM|||w−|||ζ ,

uniformly over all initial conditions z of (1.1) such that |z| ≤R.

As a consequence of Proposition 4, we obtain the smoothness of the laws of Zt

conditioned on an instance of the past w−:

THEOREM 5.2. Let (1.1) be such that Assumptions 1, 2 and 3 are satisfied.
Then, for every realization of the past w− with |||w−||| <∞, every initial con-

dition z and every t > 0, the conditional distribution of Zz
t has a smooth density

p(x; z,w−) with respect to Lebesgue measure.
Furthermore, for every multiindex α, the derivative ∂α

x p(x; z,w−) has finite mo-
ments of all orders, so that the unconditioned distribution p(x; z)= Ep(x; z,w−)

of Zz
t also has moments of all orders.

REMARK 13. The norm ||| · ||| appearing in the statement is the same as the
one appearing in Assumption 3.

PROOF OF THEOREM 5.2. Combining Theorem 4.1 with Assumption 3, we
see that the random variable Zz

t belongs to the space D∞. The claim then imme-
diately follows from the fact that the Malliavin matrix has inverse moments of all
orders [39].

The claim about the moments of the density follows from the fact that, by (5.15),
‖M−1

T ‖ and all Malliavin derivatives of Zz
t also have unconditional moments of

all orders. �



2578 M. HAIRER AND N. S. PILLAI

5.3. A cutoff argument. While [8] provides a large collection of examples for
which Assumption 3 holds, this condition is not always easy to check. In this
section, we therefore provide a cutoff argument that allows us to still show the
existence of a density for the law of the solutions to (1.1) under Hörmander’s
condition, without assuming that Assumption 3 holds. Actually, we show slightly
more than the mere existence of a density; namely, we show that the density can
be approximated from below by a sequence of smooth densities. More precisely,
the main result of this section is the following:

THEOREM 5.3. Assume that Assumptions 1 and 2 hold, and denote by μt the
conditional law of the solution to (1.1) at time t > 0, with fixed initial condition
z ∈R

n.
Then, there exists a sequence of increasing positive measures μn

t with C∞ den-
sities ρn

t such that limn→∞μn
t (A)= μt(A) for every Borel set A. In particular, μt

has a density ρt with respect to Lebesgue measure and limn→∞ ρn
t (x)= ρt(x) for

Lebesgue-almost every x.

REMARK 14. The statement that ρt can be approximated from below by
smooth functions is strictly stronger than just ρt ∈L1, which was already obtained
in [6]. An example of a density function that cannot be approximated in this way
would be the characteristic function of a Cantor set with positive Lebesgue mea-
sure.

PROOF OF THEOREM 5.3. The idea is to perform the following cutoff argu-
ment. For β > 0 real, T ≥ t and q ≥ 2 an even integer, we define the function

�β,q,T (X,X)=
∫ T

0

∫ t

0

|δXs,t |2q + ‖X̃st‖q
|t − s|2βq

ds dt,(5.19)

where we denote by X̃ the antisymmetric part of X. This function has the following
desirable properties:

(1) From the scaling of the covariance function for fractional Brownian motion
and the equivalence of moments for Gaussian measures, we conclude that if (X,X)

is fractional Brownian motion with Hurst parameter H , then �β,q,T (X,X) has
finite (conditional) moments of all orders, provided that β < H .

(2) For every γ ∈ (0,H) and every β ∈ (γ,H), there exists q > 0 and M > 0
such that

‖X‖2
γ + ‖X‖2γ ≤M�

1/q
β,q,T (X,X).(5.20)

A proof of this fact can be found in [16], page 149. Note that since we assume
(X,X) to be geometric, the symmetric part of Xs,t is given by δXs,t ⊗ δXs,t , so
that it is indeed sufficient to control the increments of X and the antisymmetric
part of X.
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(3) For every (X,X) ∈ Dγ , the map

HH,+ � h �→�β,q,T

(
τh(X,X)

)
,

is Fréchet differentiable to all orders [16], where τh is the “translation map” as
defined in (4.5) below. In particular, the map w+ �→�β,q,T (X(w+),X(w+)) be-
longs to the space D∞ of random variables that are Malliavin differentiable of all
orders with all Malliavin derivatives having moments of all orders. The precise
statement of this fact is given in Proposition 6 in the Appendix.

The proof is now straightforward. First of all, we let γ < H be as in the previous
sections, let β ∈ (γ,H) and fix q large enough so that (5.20) holds. We also let
χ : R+ → R+ be a C∞ nonincreasing cut-off function so that χ(λ) = 1 for λ ≤ 1
and χ(λ)= 0 for λ≥ 2. With these definitions at hand, we set

�n(w+)
def= χ

(
n−1�β,q,T

(
X(w+),X(w+)

))
.(5.21)

Fix furthermore z ∈ R
n, and as before denote by �t(z,w+) the Itô map, so that

μt =�∗t P. We then set μn
t =�∗t (�nP). In other words, we have the identity

μn
t (A)=

∫
�−1

t (A)
�n(w+)P(dw+),

valid for every measurable set A ⊂ R
n. Since �β,q,T is almost surely finite, we

clearly have μn
t (A)↗ μt(A) for every measurable set A, so that the claim follows

if we can show that every μn
t has a smooth density. This in turn follows by Malli-

avin’s lemma [39] if we are able to show that, for every bounded open set K ⊂R
n

and every multiindex α, there exists a constant M such that the bound

Ẽ
(
DαG

(
�t(z,w+)

)
�n(w+)

)≤M(w−) sup
x∈K

∣∣G(x)
∣∣

holds uniformly over all test functions G: Rn→R that are C∞ and supported in K .
Let α = (α1, α2, . . . , αk), αi ∈ {1,2, . . . , n}. Using the chain rule and the inte-

gration by parts formula from Malliavin calculus, we have the identity

Ẽ
(
DαG

(
�t(z,w+)

)
�n(w+)

)
(5.22)

= Ẽ
(
G

(
�t(z,w+)

)
Hα

(
�t(z,w+),�n(w+)

))
,

where the random variables Hα are defined as follows. For α = ∅, the empty
multiindex, we set H∅ = �n. Furthermore, given a random variable G and an
index α1, we set

Hα1(G)=D∗
(
G

n∑
j=1

(
M−1

t

)
α1j

Dj· �t(z,w+)

)
(5.23)

with these definitions at hand, and it is straightforward to see that, for α =
(α1, . . . , αk), we have

Hα = Hα1(H(α2,...,αk)).
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Fortunately, all of these expressions can be controlled in the following way. Define
the set

Sn
def= {

w :�β,q,T

(
X(w+),X(w+)

)≤ 2n
}
.(5.24)

It then follows from the local property of the Skorokhod integral [39], Proposi-
tion 1.3.15, that Hα(w+) = 0 for w+ /∈ Sn. As a consequence, we also have the
identity

Hα = H̃α1(H(α2,...,αk)),

where

H̃α1(G)=D∗
(
G

n∑
j=1

(
�2n

(
M−1

t

)
α1j

)
Dj·

(
�2n�t(z,w+)

))
.

Note now that, by Corollary 4, Theorems 5.1 and 4.1, both �2n(M−1
t )α1j and

�2n�t(z,w+) belong to the stochastic Sobolev space D,p for every ,p > 1,
uniformly over every w− such that |||w−|||γ ≤R for any R > 0, where |||w−|||γ was
defined in (4.8).

As a consequence, for α = (α1, . . . , αk) and  > 0, we have the bound

Ẽ
∥∥D()Hα

∥∥p ≤K
(|||w−|||) ∑

m≤+1

(
Ẽ

∥∥D(m)H(α2,...,αk)

∥∥2p)1/2
,

where we denote by D(k) the kth iterated Malliavin derivative and by ‖ · ‖ the L2-
norm. Since H∅ also belongs to D,p for every ,p > 1 by Corollary 4, the claim
then follows. �

6. Ergodicity of SDEs driven by fBm. The aim of this section is to use the
preceding results in order to obtain ergodicity results for stochastic differential
equations driven by fractional Brownian motion. In order to do this, we make use
of the abstract framework introduced in [18] and further refined in [19, 22]. This
allows us to introduce a notion of a “strong Feller property” for a large class of
equations driven by nonwhite noise, together with a corresponding version of the
Doob–Khasminskii theorem, stating that the strong Feller property, combined with
a form of topological irreducibility and a quasi-Markovian property, is sufficient
to deduce the uniqueness of an “invariant measure” in a suitable sense.

In order to use this framework, we view solutions to (1.1) as a discrete-time
Markov process on a space of the type W × R

n, where W contains all the in-
formation about the driving noise X required to solve (1.1) over a (fixed) time
interval 1 and to predict the law of its future evolution. In our case, it is natural to
choose W to be of the form

W = W− ⊕W+,
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where W− contains the “past” of the driving noise up to time 0, and W+ contains
the noise between times 0 and 1. The reason for splitting our space explicitly into
two parts is that in order to be able to give a meaning to solutions to (1.1), we
consider the driving noise as a rough path; that is, we choose W+ = Dγ

g ([0,1],R
d)

for some γ ∈ (1
3 ,H). (Recall that Dγ

g is the closure of the set of lifts of smooth
functions in Dγ .)

On the other hand, in order to recover the conditional law of fractional Brow-
nian motion given its past, iterated integrals are not needed, and it is sufficient to
retain information about the path itself. Therefore, it makes sense to choose W−
in a way similar to [18]; namely, we choose W− = Wγ for some γ < H , where
Wγ was defined in (4.8). Denote as before by P− the measure on Wγ such that
the canonical process is a fractional Brownian motion with Hurst parameter H

under P−.
For any given w− ∈ W−, we now construct a measure P̂(w−, ·) on W+ as the

law of a two-sided fractional Brownian motion, conditioned on its past w−, and
enhanced with the corresponding “area process.” To this end, let us first denote by
P̃+ the law of the stochastic process {Xt }t∈[0,1], given by

Xt = αH

∫ t

0
(t − r)H−1/2 dWr,(6.1)

where W is a standard Wiener process, and αH is the constant appearing in (4.2).
It can be checked that the covariance of P̃+ satisfies the assumptions of [9, 15], so
that it can be lifted in a canonical way to a measure P+ on W+.

With this definition at hand, we define a Markov transition kernel P̂ from W−
to W+ by

P̂(w−, ·)= τ ∗Gw−P+,

with the shift operator τGw− as in (4.5). It follows from (4.10), (4.6) and (4.7) that
P̂ is Feller. Furthermore, it determines a measure P on W = W−×W+ in a natural
way by

P(dw− × dw+)= P−(dw−)P̂(w−, dw+).

It follows from our construction that if we denote by �: W → C((−∞,1],R
d),

the natural map that concatenates w− with the “path” component of w+, then
the image of P under � is precisely the law of a two-sided fractional Brow-
nian motion with Hurst parameter H . Similarly, we have a natural shift map
�: W → W− that consists of composing � with the usual time-1 shift map that
maps C((−∞,1],R

d) into C((−∞,0],R
d)⊃ W−. It follows from the definitions

of W− and W+ that the map � is actually continuous. This construction allows us
to lift P̂ to a Feller Markov transition kernel on W by

P(w, ·)= δ�(w) ⊗ P̂
(
�(w), ·).
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It also follows from our construction that P is invariant (and ergodic) for P . Indeed,
the action of P(w, ·) is to shift the “path” component of w backwards by one time
unit and to then concatenate it with the canonical lift to W+ of a piece of two-sided
fractional Brownian motion, conditional on its past being given by �(w).

We now combine the noise process (W,P, P) with the solution map for (1.1)
in the following way. As before let �·(z,w+) denote the map that solves (1.1) for
a given initial condition z and a given realization w = (w−,w+) of the driving
noise. Since the Itô map is continuous on the space of rough paths with fixed
Hölder regularity [16], the map � is continuous. We can then view the solutions
to (1.1) as a Markov process on R

n ×W with transition probabilities given by

Q(z,w; ·)=�∗z P(w, ·),
where we define �z: W →R

n × W by �z(w)= (�1(z,w+),w). In other words,
we first shift back the noise by a time interval 1, then draw a sample from the
conditional realization of an enhanced fractional Brownian motion on [0,1], and
then use this sample to solve (1.1) between 0 and 1.

The aim of this section is to show that the Markov operator Q admits a unique
invariant measure, modulo a natural equivalence relation described in Section 6.1
below. Note that while Q is Feller (since � is continuous and P is Feller), it is
certainly not strong Feller in the usual sense. We will, however, show in Section 6.1
that there is a natural generalization of the strong Feller property in this context
that, in a way, only considers the part of Q in R

n. In this generalized sense, it turns
out that the invertibility of the Malliavin matrix shown in the preceding sections
allows us to prove that Q satisfies the strong Feller property in this generalized
sense. Combined with a form of topological irreducibility and a “quasi-Markov”
property, this is then sufficient to deduce the uniqueness of the invariant measure
for Q modulo equivalence of the induced laws on the space of trajectories on R

n.

6.1. General uniqueness criterion for the invariant measure. From now on,
we use the notation X = R

n in order to simplify notation and to emphasize the
fact that the results do not depend on the linear structure of the space.

The aim of this section is to study the uniqueness of “invariant measures”
for (1.1). The question of uniqueness of the invariant measure for the SDE (1.1)
should not be interpreted as the question of uniqueness of the invariant measure
for the Markov operator Q constructed in the previous section. This is because
one might imagine that the augmented phase space X ×W contains some “redun-
dant” randomness that is not necessary to describe the stationary solutions to (1.1).
(This would be the case, e.g., if the Vi’s are not always linearly independent.) One
would like therefore to have a concept of uniqueness for the invariant measure that
is independent of the particular description of the driving noise.

To this end, we introduce the Markov transition kernel Q̄ from X × W to X N

constructed in the following way. Denote by (zn,wn) a sample of the Markov chain
with transition probabilities Q starting at (z0,w0). We then denote by Q̄(z0,w0; ·)
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the law of (z1, z2, . . .). (We do not include the starting point, consistent with the
convention that 0 /∈N.)

With this notation, we have a natural equivalence relation between measures on
X ×W given by

μ∼ ν ⇔ Q̄μ= Q̄ν.(6.2)

In other terms, two measures on X × W are equivalent if they generate the same
dynamics in X . In the particular case when the process in X is Markov, Q̄ is
independent of w, and the equivalence relation simply states that the marginals on
X should agree. Denoting by ‖ · ‖TV the total variation norm, this suggests that the
following is a good generalization of the strong Feller property to our setting:

DEFINITION 4. The solutions to (1.1) are said to be strong Feller if there
exists a jointly continuous function : X 2 ×W →R+ such that∥∥Q̄(z,w; ·)− Q̄(y,w; ·)∥∥TV ≤ (z, y,w),(6.3)

and (z, z,w)= 0 for every z ∈ X and every w ∈ W .

We stress again that the definition given here has essentially nothing to do with
the strong Feller property of Q. It rather generalizes the notion of the strong Feller
property for the Markov process associated to (1.1) in the case where the driving
noise is white in time. See, for example, the review article [19] for more details.

DEFINITION 5. The solutions to (1.1) are said to be topologically irreducible
if, for every z ∈ X , w ∈ W and every nonempty open set U ⊂ X , one has
Q(z,w;U × W ) > 0.

REMARK 15. In order to prove topological irreducibility, one usually uses
some form of the Stroock–Varadhan support theorem [42]. A version of this theo-
rem was shown in the present context to hold in [16], Theorem 15.63. This shows
that, in order to verify that (1.1) is topologically irreducible, it suffices to show
that, for every x0 ∈ R

n, the set of points that are obtained as the solution at time
t = 1 to

ẋ(t)= V0
(
x(t)

)+ d∑
i=1

Vi

(
x(t)

)
ui(t), x(0)= x0,

with u ∈ C∞([0,1],R
d) is dense in R

n.

The following result, which is a consequence of [22], Theorem 3.10, is a gener-
alization of the well-known Doeblin–Doob–Khasminskii criterion for the unique-
ness of the invariant measure of a general Markov chain:
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THEOREM 6.1. If the solutions to (1.1) are strong Feller and and topologi-
cally irreducible, then (1.1) can have at most one invariant measure, modulo the
equivalence relation (6.2).

PROOF. The only missing ingredient to be able to apply [22], Theorem 3.10,
is the “quasi-Markov” property of the solutions to a stochastic differential equa-
tion driven by fractional Brownian motion with H ∈ (1

3 , 1
2). For the case H >

1
2 , this property was shown to hold in [22], Proposition 5.11, and in the case
H = 1

2 , solutions are Markovian anyway. The proof in the case H < 1
2 is virtu-

ally identical, so we only sketch it. It only uses the fact that the set X = {h ∈
C∞([0,1],R

d) :h′(0)= 0} has the following properties:

(1) The canonical injection X ↪→ W+ has dense image in W+.
(2) The set X belongs to the Cameron–Martin space of P̃+, viewed as a mea-

sure on C([0,1],R
d).

(3) The set {Ĝh :h ∈ X }, where Ĝ is defined as

Ĝh(t)= γH

∫ 1

0

1

r
g

(
t

r

)(
h(1− r)− h(0)

)
dr − γHh(0)

∫ ∞
1

1

r
g

(
t

r

)
dr,

belongs to the Cameron–Martin space of P̃+, viewed as a measure on C(R+,

R
d). Indeed, because of the representation (4.2) and the properties of fractional

integrals, it suffices to check that DH+1/2Ĝh ∈ L2(R+,R
d) for h ∈ X . Us-

ing (4.9), an explicit calculation shows that DH+1/2Ĝh ∼ t1/2−H for t � 1 and
DH+1/2Ĝh∼ t−1/2−H for t � 1 (see also [18], Lemma 4.3), so that this is indeed
the case.

Indeed, the first property ensures that, given any two open sets U,V ∈ W+, we
can find two smaller open sets Ū , V̄ ∈ W+, such that Ū ⊂ U , V̄ ⊂ V and V̄ =
τhŪ , with h ∈ X . Furthermore, P+(Ū) > 0, and so is P+(V̄ ) since the topological
support of P+ is all of W+ by [16], Theorem 15.63.

Since X belongs to the Cameron–Martin space of P+, this guarantees that,
for every w− ∈ W−, we can construct a subcoupling P̂U,V on W 2+ between
P̂(w−, ·)|Ū and P̂(w−, ·)|V̄ such that P̂U,V charges the set of pairs (w+, w̄+)

such that w̄+ = τhw+. In order to check the quasi-Markov property, it now suf-
fices to check that the measures Q̄(x,w; ·) and Q̄(x, w̄; ·) are mutually equivalent
if (w, w̄) are such that their components in W− are identical, and their compo-
nents in W+ satisfy w̄+ = τhw+. This in turn is precisely the content of the third
property above. �

The aim of the next section is to show that (1.1) does indeed possess the strong
Feller property, provided that the vector fields {Vi} satisfy Hörmander’s bracket
condition.
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6.2. Verification of the strong Feller property. The main result of this section
is that the strong Feller property is a consequence of Hörmander’s bracket condi-
tion.

THEOREM 6.2. Under Assumptions 1 and 2, (1.1) is strong Feller in the sense
of Definition 4.

REMARK 16. The main feature that distinguishes this situation from the usual
one is that the process is not Markov. As a consequence, our definition of the strong
Feller property implies that, as in [22], we need to construct a coupling between
solutions starting from nearby points such that, with high probability, solutions
agree not only after some fixed time (say 1), but also for all subsequent times.
Furthermore, we will circumvent the fact that we do not assume a priori that the
Jacobian of our solution has moments. This will be done by a cutoff procedure
similar to [22].

PROOF OF THEOREM 6.2. Fix some arbitrary value N > 1 and a Fréchet dif-
ferentiable map ψ : X N → R, which is bounded with bounded derivative. Denote
furthermore by RN : X N → X N the projection onto the first N components, and
set as before

Q̄ψ(z,w)
def=

∫
X N

ψ(RNx)Q̄(z,w;dx),

so that Q̄ψ : X ×W →R.
The strong Feller property will follow if we show the existence of a jointly

continuous function  : X 2 ×W �→R+ such that∣∣Q̄ψ(z,w)− Q̄ψ(y,w)
∣∣≤ (z, y,w)(6.4)

for all Fréchet differentiable functions ψ with bounded derivatives such that

sup
x∈X N

∣∣ψ(x)
∣∣≤ 1,

uniformly for all N > 1.
To this end, set zs = zs+y(1−s) for s ∈ [0,1] and ξ = z−y. Let �[1,T ](z,w+)

denote the solution to (1.1), restricted to the interval [1, T ]. Since

Qψ(z,w)= ẼψT

(
�[1,T ](z,w+)

)
,

where ψT is just ψ , composed with the evaluation map at integer times, we have
the identity

Q̄ψ(z,w)− Q̄ψ(y,w)= Ẽ

∫ 1

0
DψT

(
�[1,T ](zs,w+)

)
J s

0,·ξ ds.(6.5)

Here, J s
0,· denotes the linearization of (1.1) with the initial condition zs .
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If moment bounds for the Jacobian J s
0,t are available, as in [23], we can proceed

via a stochastic control argument using a Bismut–Elworthy–Li type formula [13]
to show that that Qψ(z,w) is actually differentiable in z. Since we do not assume
this, we will combine this with a cutoff argument adapted from [22].

Recall the function �β,q(X,X)
def= �β,q,1(X,X) from (5.19) with β > γ , and

set q to be an even integer such that (5.20) holds. Similar to (5.21), define the
cutoff function

�R(w+)
def= χ

(
1

R
�β,q

(
X(w+),X(w+)

))
, R > 0,(6.6)

where χ : R+ → R+ is a C∞ decreasing function with χ(λ) = 1 for λ ≤ 1 and
χ(λ)= 0 for λ≥ 2.

From (6.5) we obtain that

∣∣Q̄ψT (z,w)− Q̄ψT (y,w)
∣∣ ≤ ∣∣∣∣Ẽ

∫ 1

0
�R(w+)DψT

(
�[1,T ](zs,w+)

)
J s

0,·ξ ds

∣∣∣∣
+ ∣∣Ẽ(

1−�R(w+)
)
ψT

(
�[1,T ](z,w+)

)∣∣
+ ∣∣Ẽ(

1−�R(w+)
)
ψT

(
�[1,T ](y,w+)

)∣∣
def= T1 + T2 + T3.

Since ψT is bounded by 1, we have the bound

T2 + T3 ≤ 2P
(
w,

{
w+|�β,q

(
X(w+),X(w+)

)
> 2R

})
,(6.7)

which can be made arbitrarily small by choosing R sufficiently large.
For tackling the term T1, we now outline the stochastic control argument. Recall

the operator A from (4.12). As explained in (4.17), the Fréchet derivative of the
flow map with respect to the driving noise w+ in the direction of

∫ ·
0 v(s) ds is given

by

J s
0,T AT v.

The key idea underlying Bismut-type formulas is to use relation (4.17) to convert
the derivative of �T (zs,w+) with respect to its initial condition zs into a derivative
with respect to the driving noise and to use the integration by parts formula from
Malliavin calculus.

To this end, given an initial displacement ξ ∈ R
n, we seek for a “control”

v on the time interval [0,1] that solves the equation A1v = ξ . If this can be
achieved, then we extend v to all of R+ by setting v(s) = 0 for s ≥ 1 and define
ṽ = I 1/2−H v. Note that since v(s)= 0 for s > 1, it follows from the definition of
AT that we have AT v = A1v = ξ for T ≥ 1. If v is sufficiently regular in time so
that ṽ ∈ L2(R+,R

d), we have the identity

DṽZ
zs

T = J s
0,T ξ(6.8)
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for every T ≥ 1 and therefore, by the chain rule,

DψT (�[1,T ])J0,·ξ =DψT (�[1,T ])DṽZ
zs· =Dṽ

(
ψT (�[1,T ])

)
.(6.9)

It remains to find a control v which solves A1v = ξ . From Proposition 3, C1 =
A1A∗

1 is invertible, and therefore one possible solution to the equation A1v = ξ is
given by the “least squares” formula,

v(r)
def= A∗

1
((

A1A∗
1
)−1

ξ
)
(r)= V (Zr)

∗(J−1
0,r

)∗
C−1

1 ξ, r ∈ (0,1).(6.10)

Note that the control v also depends on the initial condition zs , but since |zs | ≤
|z| ∨ |y|, all our estimates for the rest of the proof will be uniform in the initial
condition by Remark 8.

Inserting identity (6.9) into the definition of T1, we obtain

|T1| =
∣∣∣∣
∫ 1

0
Ẽ

(
�R(w+)DṽψT

(
�[1,T ](zs,w+)

))
ds

∣∣∣∣.(6.11)

Applying the integration by parts formula from Malliavin calculus, we obtain

Ẽ
(
�R(w+)DṽψT (�[1,T ])

)= Ẽ
(
ψT (�[1,T ])D∗

(
�R(w+)ṽ

))
(6.12)

≤ (
Ẽ|D∗(�R(w+)ṽ

)|2)1/2
,

where the second inequality follows from the fact that ψT is bounded by 1. To
conclude the proof, it thus suffices to show that

Ẽ
(∣∣D∗(�Rṽ)

∣∣2)≤ C(R,w−, z)|ξ |2,(6.13)

where C is uniformly bounded on |||w−|||γ ≤M and |z| ≤M .
Since the stochastic process ṽ is in general not adapted to the filtration gen-

erated by the underlying Wiener process, we use the following extension of Itô’s
isometry [39]:

Ẽ
(∣∣D∗(�Rṽ)

∣∣2) = Ẽ

(∫ ∞
0

∣∣�Rṽ(s)
∣∣2 ds

)

+ Ẽ

∫ ∞
0

∫ ∞
0

tr
(
Dt

(
�Rṽ(s)

)T Ds

(
�Rṽ(t)

))
ds dt

(6.14)
≤ Ẽ‖�Rṽ‖2 + Ẽ

∥∥D(�Rṽ)
∥∥2 ≤ c

(
Ẽ‖�Rv‖2 + Ẽ‖D�Rv‖2)

def= I1 + I2.

Here, ‖v‖ denotes the L2-norm of v and similarly for Dv. Since ṽ = I H−1/2v, the
second inequality is a consequence of the fact that I H−1/2 is a bounded operator
from L2([0,1]) into L2(R+); see Corollary 3 below.

Bound (6.13) on I1 now follows immediately from Proposition 3 and Remark 8.
The bound on I2 follows similarly by also using Theorem 4.1. The proof of Theo-
rem 6.2 is complete. �
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We now show that I 1/2−H is indeed a bounded operator from L2([0,1]) to
L2(R+). For this, define the operator Ĩα by

(Ĩαv)(s)=
∫ 1

0
|s − r|α−1v(r) dr.

We then have:

LEMMA 7. For α ∈ (0, 1
2), there exists a constant c such that, for positive v,

‖Ĩαv‖2 ≤ c‖v‖‖Ĩ2αv‖.

PROOF. We have the bound

‖Ĩαv‖2 =
∫ 1

0

∫ 1

0

∫ ∞
0
|s − r|α−1|s − t |α−1 ds v(r)v(t) dr dt

≤
∫ 1

0

∫ 1

0

∫ ∞
−∞
|s − r|α−1|s − t |α−1 ds v(r)v(t) dr dt

= c

∫ 1

0

∫ 1

0
|r − t |2α−1 ds v(r)v(t) dr dt,

where the first step follows from the positivity of v, and the second step follows
from a simple scaling argument. Since this is nothing but c〈v, Ĩ2αv〉, the requested
bound follows from the Cauchy–Schwarz inequality. �

COROLLARY 3. For every α ∈ (0,1), the operator I α is bounded from
L2([0,1]) to L2(R+).

PROOF. Note that ∣∣I αv(s)
∣∣≤ I α|v|(s)≤ Ĩ α|v|(s).

Since |s− r|α−1 is square integrable if α > 1
2 , the claim follows for that range of α.

For smaller values of α, it is always possible to reduce oneself to the range (1
2 ,1)

by Lemma 7, noting also that ‖Ĩαv‖ ≤ c‖Ĩβv‖ for α > β . �

7. Examples. In this section, we collect a few examples to which our main
results apply.

7.1. Hypoelliptic Ornstein–Uhlenbeck process. Consider the process xt given
by

dx =Ax dt +C dBH(t),(7.1)

where x ∈ R
n, BH is an m-dimensional fractional Brownian motion with Hurst

parameter H > 1
3 , A is an n × n matrix with A + AT < 0 and C is an n × m
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matrix. It is well known that (7.1) satisfies Hörmander’s condition if and only if
there exists k > 0 such that the matrix (C,AC, . . . ,AkC) has rank n.

Since the Jacobian is given by Js,t = exp(A(t − s)) and therefore has moments
of all orders, we conclude that, for any initial condition x0 and for any sequence
of times t1, . . . , tk , the joint distribution of (xt1, . . . , xtk ) has a smooth density with
respect to Lebesgue measure. Since this distribution is Gaussian, one could have
verified directly that its covariance is nondegenerate, but this would have been a
rather lengthy calculation.

7.2. Linear equations/Lévy area. Let B be a d-dimensional fractional Brow-
nian motion and consider equations in R

m of the type

dXi = (AijkXj +Cik) ◦ dBk(t),(7.2)

where we use Einstein’s convention of summation over repeated indices. In this
case, the derivative of the solution with respect to its initial condition in a direction
η ∈R

m is nothing but the solution to

dJi =AijkJj ◦ dBk(t),(7.3)

with initial condition J (0)= η. Similar formulas hold for higher order derivatives,
so that it follows from the results recently obtained in [14] that Assumption 3 is
satisfied and our result on the smoothness of the densities applies, provided that
Hörmander’s condition holds.

As an immediate consequence, we have the smoothness of the Lévy area, which
was recently obtained independently in [10]:

PROPOSITION 5. Let B be a d-dimensional fractional Brownian motion with
Hurst parameter H > 1

3 , and let Wij (t)= ∫ t
0 Bi(s) ◦ dBj (s)− ∫ t

0 Bj(s) ◦ dBi(s)

for i < j . Then, for any fixed t > 0, the vector (Bk(t),Wij (t)) with k = 1, . . . , d

and i < j has a smooth density with respect to Lebesgue measure.

PROOF. The verification of Hörmander’s condition boils down to a simple
problem in linear algebra. Writing ej for the basis vector in the direction Bj and
fij for the basis vector in the direction Wij , we can rewrite x = B ⊕W as the
solution to the SDE

dx =∑
j

(
ej +

∑
i<j

fij 〈x, ei〉 −
∑
i>j

fji〈x, ei〉
)
◦ dBj =

∑
j

Vj (x) ◦ dBj .

An explicit calculation shows that, for j < k, we have

[Vj ,Vk](x)= 2fjk,

so that Hörmander’s condition holds after one step. �

REMARK 17. Higher order totally antisymmetric iterated integrals can be
treated in exactly the same way with the kth iterated Lie brackets recovering pre-
cisely the basis vectors of the elements in the kth antisymmetric tensor.
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7.3. Simplified fractional Langevin equation. Consider the process (qt ,pt ) on
R

2n given by

dq = p dt, dp =−∇V (q)dt − p dt + dBH(t),(7.4)

where, for the sake of simplicity, we assume that V : Rn→R+ has bounded second
derivative, and there exist C > 0 and κ > 0 such that〈

q,∇V (q)
〉≥ κ|q|2 −C, V (q)≥ κ|q|2 −C.(7.5)

This equation is a simplified version of the fractional Langevin equation. (The
equation satisfying the correct physical detailed balance condition would have a
more complicated memory kernel instead of the simple friction term −p dt ap-
pearing above.)

Because we assume V to have a bounded second derivative, the Jacobian
of (7.4) is bounded by a deterministic constant over any finite time interval. Fur-
thermore, Hörmander’s condition is easy to verify, so that we can apply Theo-
rem 5.2 to infer the existence of smooth densities for the joint distribution of the
solution at any time.

Regarding the existence of a unique invariant measure for (7.1), it only remains
to obtain a Lyapunov function for the solution to (7.4). For this, similar to [18], we
proceed as follows. We consider the process (p̃, q̃) solution to

dq̃ =−q̃ dt, dp̃ =−p̃ dt + dBH(t).

It is, of course, trivial to bound solutions to this equation. Then we set P = p− p̃

and Q= q − q̃ . The equation for (P,Q) can be written as

Q̇= P +RQ, Ṗ =−∇V (Q)− P +RP ,

where

RQ = p̃− q̃, RP =∇V (Q)−∇V (Q+ q̃).

Note that since we assumed that V has bounded second derivative, both RP and
RQ are bounded by a multiple of |p̃| + |q̃|, independently of P and Q. We now
set H̄ (P,Q)= 1

2P 2 + V (Q)+ γPQ for a constant γ to be determined later. An
explicit calculation yields the bound

d

dt
H̄ (P,Q)=−(1− γ )|P |2 − γ

〈
Q,∇V (Q)

〉+ 〈∇V (Q)+ γP,RQ

〉
+ 〈P + γQ,RP 〉.

Making use of (7.5) and the bounds on RQ and RP , we see that there exists con-
stant α > 0 and C > 0 such that

d

dt
H̄ (P,Q)≤−αH̄ (P,Q)+C

(
1+ |p̃|2 + |q̃|2)

.

Since, by (7.5), H̄ grows quadratically at infinity for γ small enough, it follows in
the same way as in [18], Proposition 3.12, that |p|2 + |q|2 is a Lyapunov function
for (7.4). We therefore have:
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THEOREM 7.1. If V has bounded second derivative and (7.5) holds, then
there exists a unique invariant measure for (7.4).

PROOF. The existence of an invariant measure follows from the fact that
|p|2+|q|2 is a Lyapunov function. The uniqueness then follows from Theorem 6.1.

�

REMARK 18. Our results also apply to more degenerate situations. For ex-
ample, if we consider the fractional Langevin equation associated to systems of
anharmonic oscillators in contact with thermal baths at their boundary, as stud-
ied in [11, 12], our results imply the uniqueness of a steady state. Existence of a
steady state, however, is a much harder problem in such systems, which is partially
unsolved even in the Markovian case.

REMARK 19. The noise in the above example is additive, and thus it might
seem that we are not using the rough path nature of the fBm here. This is true in
this particular case, but in more complicated situations with additive noise, like,
for example, the one in [11], both rough path analysis and our version of Norris’s
lemma are still needed in order to analyze expressions such as (5.8), when U is
given by a higher-order Lie bracket.

APPENDIX: BOUNDS ON THE CUTOFF FUNCTION

In this section, we show that the function �β,q appearing in Sections 5.3 and 6.2
does indeed have the requested smoothness properties. Our main result is the fol-
lowing:

PROPOSITION 6. Let �β,q be as in (5.19), and assume that β and q are such
that (5.20) holds and such that 2β ≤ γ +H . [This is always possible by first setting
β = (γ +H)/2 and then choosing q large enough.]

Then, for every k > 0 and every R > 0, there exists a constant M such that the
bound ∥∥D(k)�β,q(X,X)

∥∥≤M,

holds for all (X,X) such that �β,q(X,X)≤ 2R. Here, D(k) denotes the kth iterated
Malliavin derivative, and ‖ · ‖ is the L2-norm on [0, T ]k .

PROOF. Note first that, by definition,

Di
r δX

j
s,t = δij 1r∈[s,t],

where δij is the Kronecker delta. It thus follows from (4.21) that

Di
r δX

j
s,t = cδij

(
(t − r)H−1/21r<t − (s − r)H−1/21r<s

) def= δijfs,t (r).(A.1)
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The L2-norm of fs,t is given by

‖fs,t‖2 = c2
∫ t

s
(t − r)2H−1 dr + c2

∫ s

0

(
(t − r)2H−1 − (s − r)2H−1)

dr.

Since H < 1
2 by assumption, one has the inequality∣∣t2H − s2H

∣∣≤ |t − s|2H ,

so that a straightforward calculation yields the bound

‖fs,t‖ ≤ κ|t − s|H
for some constant κ > 0.

Concerning X̃
k
s,t =X

k
s,t −X

k
s,t , an explicit calculation yields the identity

Di
rX̃

k
s,t = 1r∈[s,t]

(
δik

(
δX

r,t − δX
s,r

)− δi

(
δXk

r,t − δXk
s,r

))
.

Applying again (4.21), we obtain

Dj
r X

k
s,t = δikG


s,t (r)+ δiG

k
s,t (r),

where we set

Gk
s,t (r)= 21r∈[s,t]

∫ t

r
(u− r)H−3/2δXk

r,u du

+ 1r∈[s,t]
(
δXk

r,t − δXk
s,r

) ∫ ∞
t

(u− r)H−3/2 du

+ 1r<s

∫ t

s
(u− r)H−3/2(

δXk
s,u − δXk

u,t

)
du.

The important fact about Gk
s,t (r) is that we can estimate it by∣∣Gk

s,t (r)
∣∣≤M‖X‖γ 1r∈[s,t](t − r)γ+H−1/2

+M‖X‖γ 1r<s(t − s)γ
(
(t − r)H−1/2 − (s − r)H−1/2)

,

so that its L2-norm is controlled by∥∥Gk
s,t

∥∥≤M‖X‖γ |t − s|H+γ .(A.2)

We finally compute the second Malliavin derivative of X
k
s,t . It follows in a rather

straightforward way from (4.21) that, for r1 ∈ (s, t) and v ∈ (r1, t), one has

Di
vDj

r1
X

k
s,t = (δikδj + δiδjk)

(
2

∫ t

v
(u− r1)

H−3/2 du+
∫ ∞
t

(u− r1)
H−3/2 du

)

for r1 < s and v ∈ (s, t), one has

Di
vDj

r1
X

k
s,t = (δikδj + δiδjk)

(
2

∫ t

v
(u− r1)

H−3/2 du−
∫ t

s
(u− r1)

H−3/2 du

)
,
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and for all other combinations with v > r1 one has Di
vDj

r1X
k
s,t = 0.

A lengthy but straightforward calculation then yields

Di
r2

Dj
r1

X
k
s,t = (δikδj + δiδjk)gs,t (r1, r2),(A.3)

where, for s < r1 < r2 < t , the function gs,t is given by

gs,t (r1, r2) = 2
∫ t

r2

(v − r2)
H−3/2

∫ v

r2

(u− r1)
H−3/2 dudv

+ cg(t − r2)
H−1/2(

2(r2 − r1)
H−1/2 − (t − r1)

H−1/2)
def= g

(1)
s,t (r1, r2)+ g

(2)
s,t (r1, r2)

for some constant cg . For r1 < s < r2 < t on the other hand, one has

gs,t (r1, r2)

= 2
∫ t

r2

(v − r2)
H−3/2

∫ v

r2

(u− r1)
H−3/2 dudv

+ cg(t − r2)
H−1/2(

2(r2 − r1)
H−1/2 − (s − r1)

H−1/2 − (t − r1)
H−1/2)

def= g
(3)
s,t (r1, r2)+ g

(4)
s,t (r1, r2).

Finally, for r1 < r2 < s < t , one has

gs,t (r1, r2)= 2
∫ t

s
(v − r2)

H−3/2
∫ v

r2

(u− r1)
H−3/2 dudv

def= g
(5)
s,t (r1, r2).

It is possible to check that

‖gs,t‖ ≤M|t − s|2H ,(A.4)

where ‖ · ‖ denotes again the L2-norm. (We postpone the proof of this to Lemma 8
below.)

We now have all the necessary tools to conclude. Write

�β,q(X,X)=�
(1)
β,q(X)+�

(2)
β,q(X),

where �(1) is as (5.19), but keeping only the term proportional to |δXs,t |2q in the
integral, and similarly for �(2). It follows from (A.1) that, for ≤ 2q , the multiple
Malliavin derivative of �

(1)
β,q satisfies the bound

∣∣Ds1 · · ·Ds�
(1)
β,q(X)

∣∣≤M

∫ T

0

∫ t

0

|δXs,t |2q−

|t − s|β(2q−)

∏
j=1

|fs,t (rj )|
|t − s|β ds dt.

Since the L2-norm of fs,t is bounded by M|t − s|H , it follows immediately that
there exits a constant M such that the L2-norm of Ds1 · · ·Ds�

(1)
β,q is bounded
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by M�
(1)
β,q . Its Malliavin derivative of order  > 2q on the other hand vanishes

identically.
Similarly, we only need to consider Malliavin derivatives of order  ≤ 2q for

�
(2)
β,q . A reasoning similar to the above shows that its Malliavin derivative can be

written as

Ds1 · · ·Ds�
(2)
β,q =

∫ T

0

∫ t

0

P(Xs,t ,Ds·Xs,t , gs,t (s·, s·))
|t − s|2βq

ds dt,

where P is a homogeneous polynomial of degree q and “s·” is a generic placeholder
for any of the times s1, . . . , s. It now follows from (A.2), (A.4) and the assumption
2β ≤ γ +H that the L2-norm of Ds1 · · ·Ds�

(2)
β,q is bounded by M(�

(2)
β,q +‖X‖qγ ).

Since on the other hand, ‖X‖qγ is bounded by M�β,q , by assumption, this com-
pletes the proof. �

COROLLARY 4. Let �R(w+) be as defined in (6.6) with �β,q as in (5.19),
and let β and q be as in Proposition 6.

Then, for every R > 0, �R ∈ D∞. Furthermore, every multiple Malliavin
derivative of �R vanishes outside of the set {�β,q(X,X)≤ 2R}.

PROOF. By the chain rule,

Ds�R(w+)= 1

R
χ ′

(
R−1�β,q(X,X)

)
Ds�β,q(X,X),

and similarly for higher order derivatives. Since all derivatives of χ vanish when
the argument is larger than 2, the claim follows from Proposition 6. �

LEMMA 8. For every T > 0, there exists a constant M such that the function
gs,t from (A.3) satisfies ‖gs,t‖ ≤M|t − s|2H .

PROOF. We show the bound separately for g
(j)
s,t with j = 1, . . . ,5. For g

(1)
s,t ,

we use the bound

(u− r1)
H−3/2 ≤ (u− r1)

H−3/2(r2 − r1)
−β,

in order to conclude that, provided that 1− 2H < β , one has the pointwise bound∣∣g(1)
s,t (r1, r2)

∣∣≤ (t − r2)
2H−1+β(r2 − r1)

−β ≤ |t − s|2H−1+β(r2 − r1)
−β.

If furthermore β < 1
2 (which is always possible if H > 1

4 ), the integral of
(r2 − r1)

−2β over s < r1 < r2 < t is proportional to |t − s|1−2β , thus yielding
the required bound.

Similarly, g
(2)
s,t satisfies∣∣g(2)

s,t (r1, r2)
∣∣≤ C(t − r2)

H−1/2(r2 − r1)
H−1/2,
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and a straightforward calculation shows that∫ t

s
(t − r2)

2H−1
∫ r2

s
(r2 − r1)

2H−1 dr1 dr2 = C|t − s|4H

for some constant C as required.
For g

(3)
s,t we have, as for g

(1)
s,t ,∣∣g(3)

s,t (r1, r2)
∣∣≤ (t − r2)

2H−1+β(r2 − r1)
−β.

This time, however, we choose β ∈ (1
2 ,1), so that∫ t

s

∫ s

0

∣∣g(3)
s,t (r1, r2)

∣∣2 dr1 dr2 ≤M

∫ t

s
(t − r2)

4H−2+2β(r2 − s)1−2β dr2,

which is indeed proportional to |t − s|4H .
To bound g

(4)
s,t we perform the change of variables r1 �→ s− r1 and r2 �→ r2+ s,

so that∫ t

s

∫ s

0

∣∣g(4)
s,t (r1, r2)

∣∣2 dr1 dr2

=M

∫ t−s

0
(t − s − r2)

2H−1

×
∫ s

0

(
2(r2 + r1)

H−1/2 − r
H−1/2
1 − (t − s + r1)

H−1/2)2
dr1 dr2.

We then dilate the expression by t − s, showing that it is proportional to

|t − s|4H
∫ 1

0

∫ s/(t−s)

0
(1− r2)

2H−1

× (
2(r2 + r1)

H−1/2 − r
H−1/2
1 − (1+ r1)

H−1/2)2
dr1 dr2.

It is straightforward to check that this integral converges for all H ∈ (0,1), which
shows the requested bound on g

(4)
s,t .

Finally, to bound g
(5)
s,t , we perform the change of variables r1 �→ s − r1 and

r2 �→ s − r2, followed by a dilatation of t − s, so that∫ s

0

∫ r2

0

∣∣g(5)
s,t (r1, r2)

∣∣2 dr1 dr2 = |t − s|4H
∫ s/(t−s)

0

∫ s/(t−s)

r2

∣∣g̃(5)(r1, r2)
∣∣2 dr1 dr2,

where

g̃(5)(r1, r2)=
∫ 0

−1
(r2 − v)H−3/2

∫ r2

v
(r1 − u)H−3/2 dudv.

Note now that, for every β ∈ (0, 3
2 −H), there exists a constant M such that, for

r1 > r2, one has the bound∣∣g̃(5)(r1, r2)
∣∣

≤M(r1 − r2)
−β

∫ 0

−1
(r2 − v)2H−2+β dv ≤M

(r1 − r2)
−βr

2H−1+β
2

1+ r2
dv.
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Choosing β ≈ 1
2 (but slightly larger than 1

2 ) for r1 > r2 + 1 and β = 0 for r1 ≤ r2,
we can check that ∫ ∞

0

∫ ∞
r2

∣∣g̃(5)(r1, r2)
∣∣2 dr1 dr2 <∞,

so that the claim follows. �
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