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1. Introduction and statements of  the main results 

In this paper we will consider integrals of  the calculus of  variations of  the 
type 

f f(Du(x)) dx, (I. 1) 
D 

where f is a function of  class C2(B"), /2 is a bounded open set of  R" (n => 2), 
u : /2  -+ R is a scalar function of  the Sobolev space HI'p(K2) for some p > 1, and 
Du : /2  ~ 1%" is the gradient of  u. 

We say that a function u is a minimizer for the integral (1.1) if 

f f(Du) dx <~ f f(Ou + Dq~) dx V~oE C0~(/2). (1.2) 
D 0 

In the following we will be more precise about the class of functions in which to 
look for a minimizer. 

The existence of a minimizer in the class of  Sobolev functions HI'P(/2), with a 
fixed boundary value, can be proved under the assumption that f is a strictly con- 
vex function satisfying 

mI#[P<:f(#)<=M(1 + I~1 q) V COB", 0 .3)  

for M ~ m > 0 and 1 < p ~ q. The minimizer exists in Hi'P(/2) independently 
of  the assumption in the right hand side of  (1.3). In particular, the condition 
p = q is not necessary in the existence theory. 

On the contrary, the assumption (1.3) with p = q has been considered 
crucial in the regularity theory. For  example, GIAQUINTA & GIUSTI [6] proved that, 
under the only assumption (1.3) with p = q > 1, every minimizer of the integral 
(1.1) is locally H61der continuous in/2.  More regularity on u (up to C~-regularity 
and analiticity) has been obtained under controllated growth conditions on the 
second derivatives of  f ,  for example of  the type 

ml,~[2--< ZS,ej(,~)~.,~.j~Ml2lz V ~ , 2 E R " ,  (1.4) 
o 
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where M ~ m > 0 (see for example LADYZHENSKAYA & URALtTSEVA (Section 6 
of Chapter 5 of [9]), Sections 1.10 and 1.11 by MORREY [13], GIUSTI (Section 8 
of Chapter 5 of [8])). Note that (1.4) implies that (1.3) holds (with different constants 
m, M and up to a linear function) with p = q = 2. 

Thus, for example, the following integral in three dimensions 

2 2 f (u2~ + Ux~ + u~ + u 4) dx, (1.5) 
D. 

or, more generally, an integral of the type (1.I) with f = f ( ~ ,  ~2 . . . . .  ~)  poly- 
nomial of different growth in the ~, has minimizers in H~'2(.Q) but, up to now, 
it was not known whether they were of class C~(-Q), or even of class C~ 

Recently the interest on studying problems of the calculus of variations with 
p < q has been pointed out. We cite for example [11], where a problem related to 
nonlinear elasticity is considered, and ACERBI & Fusco [1], who proved a C I''" 
partial regularity theorem for minimizers of integrals (1.1) with integrands f 
twice continuously differentiable, without growth conditions on the second deriv- 
atives of f ,  although f essentially behaves like in (1.3) with p = q. Both 
papers deal with vector valued functions u: [2--~ R N (N => 1) and quasiconvex 
functions f .  

Is the condition p ----- q in (1.3) really necessary for the regularity of minimiz- 
ers ? 

The aim of this paper is to show that the answer is no. In fact we propose an 
approach to the (everywhere) local regularity in the scalar case under non-standard 
growth conditions o n f a n d  on the second derivatives off .  We will prove the follow- 
ing theorems A, B, C" 

T h e o r e m  A. Let f be a function of class C2(R n) such that 

m i=l ~ I~jlqj ~ f(~:) ~ M ( I  + j=l ~ l~JioJ) ' (1.6) 

m l212 <~ i,j=l ~ f~izJ(')AiAy<~ M (  1 -]- y=l ~ ]~JlqJ22) ['~12' (1.7) 

for every ~ and 2 E R", where m and M are positive constants and 

2n 
2 ~ q j <  V j =  1,2 . . . . .  n (1.8) 

- -  n - - 2  

(2 ~ qj, V j, if n : 2). Let u be a minimizer of the integral (1.1). Then uE 
H~6~([2) and for every [2' ( (  [2 there isan increasing function ~:  [0, -~ ~x~)--> 
[0, -? o0) such that 

IlOullL~,, < W (j=~ Ilu~jllLa~,o,) - 

T h e o r e m  B. Let f be a function of class C2(R ") such that 

m I~l 2 ~ ~ f~i~j(~)~i~j~ M(1 q-[~[q--2)[~12, 
i,j=l 

(1.9) 
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for every ~, 2 E R ~, with m and M positive constants and 

2n 
2 _< q < ~ (1.10) 

- -  n - - 2  

(2 ~ q, i f  n = 2). Let uE H~qc(O) be a minimizer of  the integral (1.1). Then 
u~ H~,;7(-Q) and, for 12" QQ Q" ( Q  O, thereisan increasing function 7, : [0, + oc) 
-+ [0, + oo) such that 

II DullL~(a,,) ~ ~o(I[ Ou][Lq(~,)). 

Theorem C. Let f b e  a function of  class C2(F~ ") satisfying (1.9) with 0 < m <= M 
and 

2n 
2 ~ q < - -  i f  n > 3 (1.11) 

while 2 ~ q <  3, i f  n = 2  or n = 3 .  Let uE Hl'2(O) be a minimizer of  the 
integral (1.1) (the integral is well defined on H ~'q( O) and it is extended (see Section 6) 
"by semicontinuity" to Hl'2(O)). Then u E H ~ ( O )  and thus, by Theorem B, 
uE HI3~(g2). Moreover, for O' ( Q  Q, there are constants c > 0 and 

E (1, 2] such that 
q--2 +~"- 

IIhullLqr <= c II1 + IOullk=r �9 

We emphasize the fact that, in Theorem C, the integral (1.1) needs to be ex- 
tended from HI'q(Q) to HI'E(O). This problem has been studied in [11]. Here we 
show (see Section 6) how to use the extension to get regularity. 

Theorems A, B, C are proved respectively in Sections 4, 5, 6. In Section 7 
we propose the (standard) use of  the H 1,oo regularity to get the C ~ regularity. For  
example, by Theorem A, every minimizer of  the integral (1.5) is of  class Coo(O). 

In Section 7 we discuss also the fact that integrals of the types considered in 
Theorems A, B, C may have discontinuous minimizers if the exponent q is large 
enough with respect to n. 

Let us briefly mention a technical difficulty arising in the proof  of Theorem A: 
it seems necessary to consider separately each component of  the gradient Du to 
prove its pointwise local boundness. The prove is divided in n steps. We procede 
first to estimate the partial derivative Uxs of  "maximal growth" (see Section 4); 

then we use the fact that uxs E Llo~c(O) to estimate the other partial derivatives, 

and so on. 
Apart  from this and some other difficulties (like lack of  homogeneity in the 

estimates), we use a method of  iteration that can be found in the literature in 
similar contexts. We refer to the method of  MOSEg [14] to prove the local bound- 
ness of solutions of linear elliptic equations. We refer also to LADYZHENSKAYA & 
URAL'TSEVA ([9], Section 3 of Chapter 4) and to GIusrI ([8], Section 8 of Chapter 5). 
In particular the book by GIUSTI is full of suggestions toward the results presented 
here. 
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2. Euler's equation 

The aim of this section is to derive Euler's equation in weak form, in particu- 
lar to specify the function spaces in which to consider the minimizers and the test 
functions. 

Lemma 2.1. Let  f = f(~) be a function defined on R n such that 

If(')] =< M (1 + j=I2 ['j'qJ) ~1~' :~ (~j) E ~  n, (2.1) 

where M > 0 and qj >= 1 for  j = 1, 2 . . . . .  n. Let  ' i  be a component o f  the vector 
, and let us assume that f is convex with respect to 'i. Then the partial derivative f~t 

(which exists almost everywhere) satisfies 

IJ)i(')l ~ ct 1 + _ [,~ Iq; u  E R", (2.2) 
j = l  

for  some positive constant el. In particular, i f  qj = q for  every j = 1, 2 . . . . .  n, 
then there is a e2 > 0 such that 

If~,(') I----< c2(1 + ]~:1 q-l) u  (2.3) 

Proof. We follow the method of [10] (Step 2 of Section 2). With abuse of nota- 
tion let us denote by f ( ' i )  the function f when only the component ~,. of  the vector 
, varies. By the convexity off( , / ) ,  and by the assumption (2.1), for every h > 0 
we have 

• h) - f ( , 3  

•  

X c3 

1Ju hqi ~ - 2 [~j]qJ 
j = l  

•  

F~  h = ( l + 2 [ ' J l q J )  1 / q i w e ~  

If~il ~2C3 (1 ~- 2 I'J'qJ)" (1 ~f- ~ ['JlqJ) j = l  

q \ 1 - 1/ai 

Lemma 2.2. Let  f be a convex function o f  class C I ( R  ") satisfying (2.1) with 
qi>: I for  j : 1, 2 . . . .  , n. Le t  uE H1'1(~) be aminimizer  o f  the integral(1.1) 
such that 

Uxj E LV u j = 1, 2 . . . . .  n. (2.4) 
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Then, f o r  every i = 1, 2 . . . . .  n, 

t 

fr (Du) E L qi 

and u satisfies the Euler equation 

f dx = 0 
D i=1 

1 1 
with - - 7 + ~  = 1, (2.5) 

qi qi 

V q~ E H~'l(z"2) : ~:q C L qi, V i. (2.6) 

Proof. By (2.2) we have ( ;/1 
I~,(Du)I <~ e, 1 + ~ [uxjlqJ qi  . 

j = l  

Since uxjELaJ for j---- 1,2, . . . ,n ,  it follows that 

f~,(Du) ~ Lqi/(~-'(O) = Lq; (t2). 

Thus (2.5) holds. Now, with a standard argument, by using the mean value theo- 
rem, inequality (2.2) and Lebesgue's dominated convergence theorem, we obtain 
the Euler equation with ~ E C01(~2). Then, by (2.5), (2.6) holds for general ~ too. 

3. Some t e c h n i c a l  p r e l i m i n a r i e s  

For  or ~ 2 and k > 0 let us denote by g~,k(t) the function of the real variable t: 

[ [ t l~-2t  if Itl ~ k  

g~,k(t) = (~ --  1) k ~ - 2 ( t - - k )  ~- k ~ 1 if t >  k 

(~ - -  1) k~-E(t + k)  - -  k ~-~ i f  t <  - - k  

(3.1) 

Lemma 3.1. For every o~ ~ 2 and k ~ 0, g~,k is a Lipschitz-continuous funct ion 
that satisfies 

2 
2 t ' t g~,k( ) < g , ,~( ) .  It ]~. (3.2) 

----o~ - -  1 

Moreover the derivative g'~,k is increasing with respect to k and 

lim g~,k(t) = (cr -- 1) It I ~x-2. 
k-->§ oo 

(3.3) 

Proof. A computation gives 

, [ g~,k( ) --~ 
(~ - -  1 ) I t l  ~ 2 i f  It[ ~ k  

( ~ - -  1) k~,  z if [/1 > k.  
(3.4) 
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Thus  g~,k is a function o f  class Ca(R) and its derivative is bounded with respect 
to t (with a constant  that  depends on k). Moreover ,  for  l tl ~ k we have 

g2,k(t ) It i 2~-2 1 

g'~,k(t) - - (o~- -  1)]tl " - 2 - o ~ -  1 Itl~" 

Thus (3.2) holds if I t l ~ k. We will have (3.2) for I t l > k, too,  if we prove it 
for  t > k, since g,,k is an odd function. For  t => k we can compute  the maximum 
of  the ratio 

2 t g~,k( ) k ~-2 [(o~ - -  1) t - -  (o~ - -  2)k]  2 

' t t"  g~,~(), or - -  1 t 

I f  0 r  the max imum is assumed for t = k  and is equal to 1/(o~-- 1). B y a  
computa t ion  we can see that, if o~ > 2, then the maximum o f  the right side is 
assumed for  t = kc~/(c~ --  1) and is equal to 4(1 --  1/~)~/(0r --  1). Thus  in every 
case we have 

2 t 4 ( 1 )  ~ g~,k( ) < ~ 1 --  g;~,k" [tl". (3.5) 
~ 0 r  

This implies (3.2), since (1 - -  1/or ~ < e -~. Now let us show that g'~,h <= g'%k if 
h < k if  It[ =< h then g'~,h = g',k; if It[ ~ k then 

g'~.h = (~ - -  1) h ~-2 G (a - -  l) k ~-2 = g',k; 

finally, if h <  [ t l < k ,  then 

g~,,h(t) = (a - -  1)h '~-2 ~ (~ --  1) ltl ~-2 = g'~,k(t). 

This proves that  g',,k is increasing with respect to k. The relation (3.3) follows 
immediately f rom (3.4). 

In this section we assume that f is a function o f  class c2(a n) satisfying 

f (~)  ~ M ( l  + ~ I~j,v V ~ E R " ,  (3.6) 

Z f ~ , ~ i ( ~ e ) 2 , R j > m I R [  2 u ~:, 2 E R ' ,  (3.7) 
ij 

for  some c o n s t a n t s m a n d M > 0 a n d  q ~ 2  for  every j =  1 ,2  . . . . .  n. Let  us 
observe that, by (3.7), there is a constant  m '  such that  f(~) ~ m'  I~12 to within 
a linear function. 

We will assume also that u E H~'2(O) is a minimizer o f  the integral (1.1)satis- 
fying 

lgxj E L qj V i = 1, 2 . . . . .  n,  (3.8) 

so that  we can use the Euler equation (2.6). 
Fixed sE {1, 2 . . . . .  n} we denote by es the unit coordinate vector in the xs 

direction. Then we de fne  the difference quotient  in the direction e~ by 

Ahu(x ) = (u(x § he~) - -  u(x))/h (3.9) 
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We do not denote explicitly the dependence on s. The function 
I2h = {x E $2 : dist (x, 0s < h} and, for every j = 1, 2, . . . ,  n, 

for every h ~ 0. 
Ahu is defined in 
we have 

( A h u ) x j  : Zlhuxj C LqJ(ff2h). (3.10) 

For the properties of the difference quotient see for example Section 7.11 of [7], 
or Section 3 of Chapter 3 of [8], or Proposition IX.3 by [2]. 

Let ~6 CoI(~Q), r/=> 0 in L?. For Ih[ < (1/4) dist (supp ~/, &Q) let us define 

9 = A _h(r]2go~,k(ZlhU)) 

where go,,k (for ~ ~ 2 and k > 0) is the function defined in (3.1). We have 

%~i = d _h(rl2g'~,,k(dhU) LlhU,r i + 2rFl,:ig~,k(dhU)). 
By (3.10) ~xiEL qi for every i = 1, 2 . . . . .  n. We introduce ~0 in the Euler equa- 

tion (2.6). With standard computations we obtain 

f 2 Ahf~i(Du) (~2g',k(dhu) Ahuxi + 2~l~xi&,,k(Ahu)) dx = O. 
D i=1 

Let us compute separately Ahf~(Du): 

1 d 
1 f --d-i f~i(Du + thAhDu )dt Ahf~i(Du ) = --ff 

0 

1 

= f Y~ f~:j(Du + th A h Du) AhUx: dt. 
0 y 

Thus, by (3.2), the Cauchy-Schwarz inequality and the H61der inequality, we obtain 

1 
f at f Z Wu + th & Du) &Uxi &% dx 

0 $2 t,J 

1 

= f dt f --2~tg~,k(Ahu) ~.. h&rlxi/Ihuxjdx 
0 O ~,j 

1 dt 2r f ~{g"k(Anu) IAhut~ / ",~id 

2 1 / 7 2 {  , },12 
~ / ~  ,;/ ri=g',k(AhU) / ~ fc:.iAhuxiAhu*J d, 

1 }1/2 

11/2 
<= 1/7-'~-121/2 6/ at : ~2g'~,,k(Ahu) Xid fr 

�9 

I tJ 
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We simplify both sides of the inequality and we obtain 

1 

f dt f ~2g'~,k(Ahu ) .~. f,i,jAhUxi Ahuxj dx 
0 D t,j 

8 ~ (3.11) 

- - ~  - 1 o f dt f IA~ul ~ X: ~i,~9]x,9]x~ dx  
l,J 

First we use the assumption (3.7). Then, since the right hand side does not de- 
pend on k, we go to the limit as k --> -F- oo. By Beppo Levi's monotone conver- 
gence theorem and by (3.3) we obtain 

f 912 iAhul~-2 IAn Du]2 dx 
$2 

8 1 

m(c~ -- 1) 2 J dt f IAhul ~ ~. fr dx. 
t,J 

(3.12) 

Let us recall that in the right hand side of(3.12) we have ~,r = f~i~i (Du + th A h Du) 
and that (3.12) makes sense if the integral in the right-hand side is finite. Now let 
us compute separately the gradient of IAhUl~/2; we obtain the estimate 

ID(]AhuI~/2) I2~ [dhUl ~-2 ]AhDul 2 . (3.13) 

From (3.12) and (3.13) we infer 

20r i 
t ~  9]2 ID(IAhUl~/2)12dx <=m(o~ -- 1) 2 J dt f IAhu] ~' .~. fr (3.14) 

I,J 

Now we use the inequality 

]D(r/v) [2 ~ 2(9]2 ]Dv I 2 + v 2 IDol [ 2) with v = IAhu ]6/2. 

Finally, we use Sobolev's inequality applied to the function By, that has com- 
pact support in -(2. The result that we have proved is stated in the following lemma. 

Lemma 3.2. Let f be a function of  class C2(R ") satisfying (3.6), (3.7). Let u be 
a minimizer of  the integral (1.1) satisfying (3.8). There is a constant c such that, 
.for every o~ ~ 2 for which the integral on the right hand side is finite, we have 

(3.15) 

~ c f  at f lAhul  ~ ID~I2+ Z ~ i ~ j ( D u +  thAhDU)~x,9]xj ex, 
LJ 

where 2* = 2 n / ( n - - 2 )  / f  n > 2 ,  and 2 * = a n y  number greater than 1 if 
n = 2 .  
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4. Proof  of  Theorem A 

In this section we assume that f is a function of class C2(R n) satisfying (1.6), 
(1.7) and (1.8). We will prove that every minimizer of  the integral (1.1), in the class 
of  functions satisfying (3.8), is locally Lipschitz-continuous in .(2. 

Let us interchange the names of  the xfaxes  so that  

2n 
2 < qt --< q2 < < qn < - - .  (4.1) 

. . . . . . .  n - - 2  

Let us denote by BR and B e balls of  center Xo (we do not denote explicitly 
the dependence on Xo) and radii respectively R, e (R > p > 0), compactly con- 
tained in Q. 

Lemma 4.1. Let  us assume that (1.6), (1.7), (4.1) and (3.8) hold. Le t  sE { 1,2 . . . . .  n) 
and let us assume that the derivatives Ux~+l, Ux~+2 . . . .  , Uxn belong to Ll~c(f2). Then 

there exists a constant cl such that, i f  ux~ E L~q~I2(B1~) for  some o~ >= 2, then (we 

consider the case n > 2; i f  n = 2 we have only to replace the expression n/(n --  2) 
by any real number p > 1) ux 6 L~nl(n-2)(Bo) and 

I u,<:l "---~ dx)--; < (R -- ~)2 luxst'2-) "" (4.2) 

Proof, By Lemma 3.2 and assumption (1.7) we have 
c~ 2n \ n - - 2  

~cM o / dt ff [Ahu I~' (2 -I- S='2 lUx, -t-thAhuxjl q'-2) iDtTi2dx. 

Let us take r/ such that 
2 

E Clo(BR), r/ > 0, ~/ = 1 on B e, ]o71 < (4.3) 
= = R - - ~ "  

We use the assumption that  Ux,+l . . . . .  ux, E L~176 We use also H61der's in- 

equality with exponents q/(qj  --  2) and q/2 .  We get 

iAnui._---~ dx ---; 

(" c~_ e)~ ".f I/b,u ? (2 + ,=,~ (1% (x)l + I%(x + heDI)V-~)dx 

c= flAhul~,(c3+ ~([%(x)l+lux,(x+heDl)V_=)dx 
(R - 0 2 Bn s=l 

c, ~ (i + I%(x)l + 1%(x + heDI)Vdx -r- IA~u 
<---- (R - -  0) z s=l 

~v \ 2  
y-dx)~. 

(4.4) 
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Since Uxj E Lqfff2) and since qj ~ q~ if j ~ s, we can bound  the right hand side 

by 

(R - 0 2 

The  constant  cs depends on the L % n o r m  of  uxp but  it is independent  o f  h. 

We can go to the limit as h -+ 0, by using a s tandard argument  (see for  example 
[7], Section 7.11, or [8], Section I11-3, or [2], Proposi t ion IX.3), and we obtain 
(4.2). 

Lemma 4.2. Le t  us assume that (1.6), (1.7), (4.1) and (3.8) hold. Le t  us assume 
also that u~+ l, u~+2 . . . . .  u~, E Llo%( g2). Le t  R~ be a f i x e d  radius such that BR, Q ~ f2. 

Then there is a constant c6 such that 

l[ % [lL~<aR,/:) =< c6 If u~,ltLos<~,). (4.5) 

Proof. Let  us take R, O C (R~/2, R~] such that  

R - - - R k ,  ~ = R k + ~ ,  where Ri, = R~ ( ~-~-- + -~-~k ) , kE~T. 

We have R --  ~ = Rk --  Rk+l = R~ 2 -(k+~). Let  us define by induction a se- 
quence o~ k as follows: let oq = 2 and let 

2no~ k 
O~k+l q~(n -- 2) (4.6) 

(if  n = 2 we replace the symbol n/(n -- 2) with a real number  p large enough 
that  (4.8) is satisfied). It is easy to see that  

2n 
O~k = 22 k-1 where 2 qAn -- 2)" (4.7) 

qs < 2n/(n -- 2), then 

2n 
2 = qAL~n --  2) > I .  (4.8) 

Since 

With these notations,  by (4.2) we have 

( f}. I I J~ 
. lux, I -Tdx .  

~n 1 ~ R1 ] Snk 

Let  us define 

Ak---- lu . s t -~- -dx  ~-~-' = (lu~,l~-) ~k 
~,BRk 

(4.9) 

(4.10). 
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By (4.6) and (4.9) we deduce 

/ca4k+~\ q, 

Then, by induction, we obtain 

i [ct4i+l'~ qs 

Let us show that the product is bounded: 

qs qs k 1 ct4i+ I, 

f i  22i--1 T i~  1 [ct4,+,,~ ,og (--~--2) 
! = e 

i= l  

eo i+1 
c7 ~ 2 i -1  

S e  / : I  - - - -ca< §  

Thus A k S e8A~. Now we go to the limit as k ~ § oo. Since 0~ k -+ § oo (by 
(4.7) and (4.8)), by the representation of  Ae in the right-hand side of  (4.10) we 
get 

qs qs \ i ~ 2 
T 2  = lim [ (  f (]u~l-~)~kdx)~ t 

S l i m  supAk % c8A1 = c8 flux, l 'dx. 
k-+ + oo BR 1 

1/qs This implies (4.5) with c6 : c8 �9 
Now we are ready to complete the p roof  of  Theorem A. In fact it is sufficient 

to apply Lemma 4.2 n times by choosing s in the order s : n, n - -  1 . . . . .  2, 1. 

5. Proof  of  Theorem B 

In this section we assume that f is a function of  class C2(R ") satisfying (1.9) 
and (1.10). By (1.9) there are positive constants mr,  M1 and ca such that  

ml  l~l 2 - -  cl S f ( ~ ) ~  Mr(1 + [~[q) u ~ E R  n. (5.1) 

Since we assume that  u is a minimizer of  the integral (1.1) in the Sobolev 
Htor we have the same situation as in the preceding section, with space ~ '~ 

qj = q for every j = 1, 2 . . . .  , n. Then the proof  of  Theorem B can be  obtained 
in the same way as in the proof  of  Theorem A. 

However, in this case, it is possible to proceed more directly by mean of the 
following Lemma.  

Lemma 5.1. Let  f b e  a function satisfying (1.9) and let u C H ~ (  [2) be a minimi- 
zer o f  the integral (1.1). Then there is a constant c2 such that, for  BQ ~ BR ( Q  [2 
and for  every ~ >= 2, 

I1%//~ S - - e ) i  + [Oul - �9 ~ f1%111~ (5.2) 
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The  p r o o f  of  L e m m a  5.1 is similar to the p roo f  of  L e m m a  4,1 ; thus  we do 
not  give the details. 

Then  we obtain  the p r o o f  of  Theorem B with the method  of  L e m m a  4.2, by 
using the assumpt ion  q < 2n/(n -- 2). 

6 .  P r o o f  o f  T h e o r e m  C 

In this section we assume t h a t f i s  a function of  class C2(R ~) that  satisfies (1.9) 
and 0 .11) .  

Let  us first in t roduce some notations.  Fo r  0~E (1, 2] let us denote by g~(t) 
the funct ion of  the real variable t: 

c~ 2 

g~( t )= (1 -' t 21 2 t. (6.1) 

L e m m a  6.1. For every o~ E (1, 2] g~ is a Lipschitz-continuous function that 
satisfies 

1 
g~(t) ~ o~ --  I g '( t)  " (1 q- t2)~/2; (6.2) 

g'~(t) ~: (~ -- 1) (1 + t2) (~'-2)/2. (6.3) 

The p r o o f  of  L e m m a  6.1 is based on computa t ions  similar to those in the 
p r o o f  of  L e m m a  3.1, and we do not  give the details. 

L e m m a  6.2. Let f satisfy (1.9) and let u E H~(g2) be a minimizer of  the integral 
(1.1). Then there is a constant el (independent of  u) such that, for B e Q BR QQ [2 
and for 1 < o~ ~ 2, we have 

I Du t 7-5 dx -7- < f (1 + I Du t) q-z+~ dx. (6.4) 
= (R - 0) 2 BR 

Proof .  First  we proceed as in Section 3 to get a result o f  the type stated in 
L e m m a  3.2. I f  ~/ is taken as in (4.3), then, as in (4.4), we obtain 

,xn "~n- -2  

< (R , f ( 1  + I~hul2) 2 (2 + IOu(x)l + IDu(x+ he,)l)"-'dx. (6.5) 

Since uE H~;q(-Q) and o~ =< 2, we can go to the limit as h - + 0  and we obtain  
(6.4). 

L e m m a  6.3. Let f satisfy (1.9), (1.11) and let u C H~gg(g2) be a minimizer o f  
the integral (1.1). Let R1 ~ 0 such that BR~ Q (  $2. There are constants c3 > 0 
and o ~ ( 1 , 2 ]  such that, i f  R t / 2 ~ o <  R ~  Rt ,  then 

c3 (1 + IDul) z dx) 2 . (6.6) I Ou I q d x  -~ <: (R  - -  0) 2 
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Proof. Let us show that there exists a real number ~ such that 

ocn 

1 < ~  q ~ n - - 2 '  q - - 2 + 0 ~ 2 .  

In fact these inequalities can be written in the form 

[ n - - 2  4 _ q ]  ' - -  
~xE(1,2]A q n ' 

and the interval in the right-hand side is not empty if and only if 

( n - - 2  ) n - - 2 ~ 4 - - q  ~ q  <~2 �9 
l < 4 - - q ,  q n n -- ' 

that is q < 3 and q <~ 2n/(n --  1), in accordance with assumption (1.11). 
By (6.4), (6.7) and the fact that the function 

f lvl" dx -; 
o 

is increasing with respect to p, we get (6.6). 

(6.7) 

The integral (1.1) is well defined for u E C1(~'~. By (1.9) there exists a positive 
constant c4 such that 

- - c ,  ~ f ( ~ )  <~ c,(1 + [~[q) V ~E~2~ n (6.8) 

(more precisely (5.1) holds). Thus, by continuity, the integral (1.1) is well defined 
in CI(D) and in the Sobolev space H~(.Q) too. We extend it to Hl'2(y2) "by semi- 
continuity", using the method of [11]. Precisely, for every u E H~'2(Y2), we define 

F(u) = inf l i m in f  f f(Du~) dx:  uk E Hloc(Q) A H~,2(D) + u, Uk gI'2(~)~ U . 

(6.9) 

Let us notice that F is an extension to HI'z(.Q) of the integral defined on H~3q(.Q), 
since the integral is lower semicontinuous in the weak topology ( ~ )  of Ht'z(.Q). 
This means that (see [11]): 

F(u) = f f (Du)  dx V uE Hl;fl(g2). (6.10) 
t2 

Let .Q' be an open set whose closure is contained in .('2. Let e E (0, 1]. Let us 
define a functional F, by 

F~(u) : F(u) + e f lDu [q dx v U ~ H I '2(~)/~ o l'q(~t); (6.11) 
.q' 

moreover we define F , ( u ) =  + oo if u C HX'Z(-q) but u4~ HI"q(-Q'). 

Lemma 6.4. Let u be a minimizer on HI'2(~Q) of F(u). Let  u~ be a minimizer o f  
F~(u) in the Sobolev class H01"2(~) q- u. Then, as e --> O, u8 converges to u strongly 
in H1'2(~). 
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Proof .  Let  us first p rove  that  u~ converges to u in the weak topology of  H1'2(~c2). 
By (5.1) u, is bounded  in Hl'2f2) independent ly ofe.  Let u~ k be a sequence that  weak- 

ly converges in H1'2(~)  to a function Uo E Hl'2(f2). We will prove  that  Uo = u. 
By the same definition (6.9) F is lower semicont inuous in the weak topology  

of  Hl'2(f2). Since u,k minimizes F, k, for  every v 6 H1'2(~c2) -[- U we obta in  

F(uo) ~ lim infF(u~.) :< lim infF ,  ( u , )  < " 

N o w  we consider v 6 (Hol'2(/2) -~- u)/'~ H"q(-Q'). Fo r  such functions v we have 
F,(v) --> F(v) as e ---> 0. Thus  we obtain  

F(uo) ~ F(v) u vE (Hol'2(g2) + u) f~ H l ' q ( o ' ) .  (6.12) 

By the definition (6.9) o f  F, for  every v E H~'2(Q) there exists a sequence 
Vk E (H~'2(D) + u) A H~;,q(9) such tha t  F(vl,) converges to F(v) as k -+ + ~ .  
By (6.12) we obtain  

F(uo) ~ lira F(vj,) : r(v). 
k---> + e~ 

Thus  Uo is a minimizer  for  F in H~'z(s2) + u. 
By the left side of  (1.9) and by Tay lor ' s  fo rmula  we have 

m 
f(~) ~ f ( ~ )  -~- 2 J~i (~) (~]i -- ~i) ~- ~ - l  ~] -- ~ [2  

i:1 

Hlor We put  ~ = (Dr + Dw)/2; we put  also first r/---- Dr, Let  v, wE "q 
then r : Dw, and we add the two relations. We integrate on Q and we obtain  

( v . . ~ )  m 
F + - ~ f f I D ( v - - w ) 1 2 d x ~ � 8 9  (6.13) 

N o w  if v, w E HL2(f2), then we take vk, wk 6 H]~(f2)  that  converge respec- 
tively to v, w in the weak topology  of  H"2(-Q) and satisfy 

F(vk) -+ F(v), F(wk) -+ F(w). (6.14) 

We write (6.13) for  vk and wk and we go to the limit as k - +  + ~ .  By (6.14) 
and  by the weak lower semicontinui ty of  F and o f  the H"2-norm,  w e  obtain  
(6.13) for  every v, wE H~'2(-Q). 

Thus  the funct ional  F is strictly convex on H~'2(,Q) q- u and u = Uo. 
N o w  let us prove  that  F,(u~) converges to F(u) as e ---> 0. Since u, is a minimizer  

for  F~, we have F~(u,) ~ F,(v), for  every vE H~'2(-Q) + u. I f  vE (H~'2(,Q) + u) 
A H',q(o ') we obtain 

lims0u p F~(u~) ~ lirn ~ F~(v) = F(v). 

By the definition of  F, the above  inequali ty holds for  every v E Ho~'2(,Q)+ u; 
in par t icular  it  holds for  v = u. Since F,(u,) ~ F(u,) ~ F(u). finally we obtain  

lim~_~0 F,(u,) : tim ~ F(u~) : r(u). (6. l 5) 
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Let us use (6.13) with v = u  and w = u = :  

( u _ ~ )  m f ID( u - -  u=)] 2 dx < �89 [ F ( u ) +  F(u,)]. F + - 2 - a  = 

We go to the limit as e -+ 0. Since (u + u=)/2 weakly converges to u, by the lower 
semicontinuity of  F and by (6.15), we obtain 

m 
F(u) + -~- lim sup f ID(u - u,)[ ~ d x  <= F(u). 

e~O Q 

Since F(u) < + o% as e -+ 0, u= converges to u strongly in Hl'2(ff,~). Lemma 6.4 
is now proved. 

We are ready to conclude the proof  of  Theorem C. The function u, is a mini- 
mizer for F= on H~'2(,Q) + u. By the definition of F,, u, is also a minimizer of  F, 
on Hl,q(O'), when the integral if restricted to .Q'. The integrand f, ,  defined by 

f~(~) = f ( O  + * 1~ [L 

is a function of class C2(R n) satisfying (1.9), (1.11) with constants m and M '  = 
M'(q) independent of  eE (0, 1]. By Lemma6.3 ,  if B R C (  Q' ,  we have 

I Du, I ~ dx V < ( g  - -  0 - - ~  (1 + I Du, L) ~ dx)  2 . 

Now we go to the limit as e ~ 0. By Lemma 6.4 u= converges to u in the norm 
of  H1'2(,Q). Thus the right-hand side is continuous with respect to u=, while the left- 
hand side is lower semicontinuous. As e --~ 0 we obtain the inequality stated in 
Theorem C. 

7. Some other results 

First let us briefly recall how to use the Hl'~176 of the minimizers to 
get higher regularity. 

Theorem D. Let the assumptions (1.6), (1.7) and (1.8) of Theorem A or the 
assumptions (1.9) and (1.11) of Theorem C be satisfied. I f  the derivatives o f f  are 
H6lder continuous with exponent o~ E (0, 1) up to the order k > 2, then every 
minimizer u of  the integral (1.1) is of  class Clk&~(O). In particular, i f  fE  Coo(R n) 
then uE C~176 

Sketch of proof. By either Theorem A or Theorem C, u E H ~ ( O ) .  Since 
f E  C2(Rn), for every s CC ~ there is a constant cl such that  

m l2[2 <~ Z f~,$j(Ou(x)),~v~j <~ cl [,~[ 2 M 2 E R  n, 
o 

for almost every x E Q' .  Now the p roof  is standard, for example as in Section 6 
of  Chapter 4 of  LADYZHENSKAYA &; URAL'TSEVA [9] (see also Section 1.11 by MoR- 
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REY [13] and Section 8 of  Chapter V by GIUSTI [8]); First, by using the difference 
quotient as in Section 3, for every s E (1, 2 , . . . ,  n) we obtain 

f ~ ao(x) (u~s)~jw~ , dx --- 0 V ~ E C~(t2'), 

where 
a~j(x) = f ~  (Du(x)). 

Thus the partial derivative u~ is a weak solution of a second order linear elliptic 

equation with bounded coefficients in .Q'. By the DE GIORGI-NASH theorem [3] 
u~ is Hf lde r  continuous in .Q'. Thus the coefficients a~(x) are H61der continuous. 

This implies (see, for example, GIAQUINTA [4], Theorem 3.2 of Chapter 3) that  
0,~ t . Uxs E C~g~(.Q') for some fl E (0, 1). Then air(x ) E Cloc(g'2 ), finally it follows that  

Cjo~(12 ). The proof  is complete if k ~ 2. Higher regularity can be obtained U E 2,~ , 

by induction. 

Let us show that integrals of  the type considered in this paper may have dis- 
continuous minimizers if the exponent q is large in dependence of n. The example 
that we propose can be found in [5] and [12]. 

Let n 3> 3 and let us consider the integral 

+'- t �89 ~1 .x:~ q lux.I q dx ,  (7.1) 

where x ~ (xi), i =  1 ,2  . . . . .  n, and 

n - - i  
q 3> 2 - -  (7.2) 

F / - -  3 "  

Let .Q C ( x E R " :  x, 3> 0}. Then a minimizer of  the integral (7.1) is given by 

( n, 
xq/ i~ 1 q---2 /*/(X1, X2  . . . .  , xn) = c x (7.3) 

where 

c----- 1 q - - 2  " 

The constant c is positive and the function u is unbounded near the line 
xt  ----x2 = ... = xn_l ----0. The discontinuity on a line is not an accident; in 
fact a minimizer cannot have discontinuities in the interior of a ball, for example 
at a single point. 

We can modify the previous example by a little considering (1.1) on a bounded 
set f2 C {x E R" : x, 3>  c 2 )  , with c2 3> 0, and with f satisfying 

n--1 

f(O = �89 2] ~ + g(r 
i = l  

where, for some positive constants ca and c4, 

1 
g E C~176 g'" ~ c3, g ( t )  ~ - - t  q if I tl ~ cA. 

q 
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This integrand satisfies all the assumptions of Theorems A, B, C if q ( ~  2) is 
small. Thus, if q is small, every minimizer is of class C~(O);  while, if (7.2) holds, 
then the function u given by (7.3) is a discontinuous minimizer in the Sobolev class 
of  functions such that 

UxiE L2(O) V i = 1, 2 . . . . .  n -- 1 Ux,, E Lq(O). 

Finally we wish to emphasize the importance in Theorem C of the extension 
of  the integral (1.1) from HI'q(O) to HI'2(O). From a classical point of view the in- 
tegral (1.1) is well defined for every u E CI(O) (the integral is well defined also if 

u-~ C1(~), since the integrand is bounded from below). Under the assumption 
(1.9) the integral can be extended by continuity to HI'q(O) and, by semicontinuity, 
to H 1'2(O). Somebody could disagree with this kind of extension (and really some- 
body who disagrees still exists); in any case here we present a consequence of 
Theorem C that is independent of the definition of  the integral outside of Ca(O) 
(but that has been proved by using a right extension). 

Theorem E. Let f be a function of  class C2'g(R n) satisfying (1.9) and (1.11). Let 
Uo E H~'q(O). Then there is a unique solution of the problem 

min { j  f(Du) dx : uE C1(~), u--UoE HI'2(0)}. 

C2,~$2~ Moreover the minimizer belongs to 1oc~ J. 

ProoL The functional F defined in (6.9) has a unique minimizer in the Sobolev 
class HI'2(.Q) + Uo. By Theorems C and D the minimizer is of class C2o~(O). 
The result follows from the fact that the functional F is an extension of the integral 
(1.1), and thus it is equal to the integral for every uE C1(~2). 
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