Regularity of optimal transport on compact, locally nearly spherical, manifolds*

Philippe Delanoë and Yuxin Ge ${ }^{\dagger}$

Abstract

Given a couple of smooth positive measures of same total mass on a compact connected Riemannian manifold M, we look for a smooth optimal transportation map G, pushing one measure to the other at a least total squared distance cost, directly by using the continuity method to produce a classical solution of the elliptic equation of Monge-Ampère type satisfied by the potential function u, such that $G=\exp (\operatorname{grad} u)$. This approach boils down to proving an a priori upper bound on the Hessian of u, which was done on the flat torus by the first author. The recent local C^{2} estimate of Ma-Trudinger-Wang enabled Loeper to treat the standard sphere case by overcoming two difficulties, namely: in collaboration with the first author, he kept the image $G(m)$ of a generic point $m \in M$, uniformly away from the cut-locus of m; he checked a fourth-order inequality satisfied by the squared distance cost function, proving its so-called (strict) regularity. In the present paper, we treat along the same lines the case of manifolds with curvature sufficiently close to 1 in C^{2} norm - specifying and proving a conjecture stated by Trudinger.

In memoriam Thierry Aubin

Introduction

The smoothness problem, known results

Let $\left(M_{n}, g\right)$ be a compact connected n-dimensional Riemannian manifold with Lebesgue measure dVol and $\mu_{0}=\rho_{0} \mathrm{dVol}, \mu_{1}=\rho_{1} \mathrm{dVol}$, be two positive Borel measures on M_{n} of same total mass. Unless otherwise specified, all data will be smooth (or C^{∞}). We consider the associated Monge's problem for the BrenierMcCann [5, 6, 39] cost function c given by:

$$
\forall(p, q) \in M_{n}^{2}, c(p, q)=\frac{1}{2} d_{g}^{2}(p, q),
$$

d_{g} standing for the geodesic distance in $\left(M_{n}, g\right)$. The problem is to minimize the total cost functional

$$
\mathcal{C}(\Phi)=\int_{M_{n}} c[p, \Phi(p)] d \mu_{0}
$$

[^0]among measurable maps $\Phi: M_{n} \rightarrow M_{n}$ which push μ_{0} to μ_{1}; the latter means that $\mu_{1}(B)=\mu_{0}\left[\Phi^{-1}(B)\right]$ for each Borel subset $B \subset M_{n}$, and it is written $\Phi_{\#} \mu_{0}=\mu_{1}$. A problem of that kind was first considered by Monge [37] and the topic was revived by Brenier [5, 6]. Here, the existence of a unique minimizing map G is established in the landmark paper [39]. Let us emphasize at once that the solution G depends on the data $\left(\mu_{0}, \mu_{1}, g\right)$ in a natural way, meaning that it is equivariant under the action of diffeomorphisms. Specifically, for each diffeomorphism $\varphi: M_{n} \rightarrow M_{n}$, the minimizing map associated to the diffeomorphic data $\left(\varphi^{-1} \not \mu_{0}, \varphi^{-1} \# \mu_{1}, \varphi^{*} g\right)$ is equal to $\varphi^{-1} \circ G \circ \varphi$.
In the present paper, we are interested in the smoothness of the minimizer G. It turns out that it depends on the so-called (strict) regularity of the cost function c in a sense [44] described below (and studied in Theorem 2). For short, we just call regularity of optimal transport these two related notions. The smoothness of G is known in the following cases:
(i) anytime the densities ρ_{0}, ρ_{1} are close enough in $C^{\infty}\left(M_{n}\right)$ [16, p.157]; in $C^{0, \alpha}\left(M_{n}\right)$ for some $\alpha \in(0,1)$ is enough to have $G \in C^{1, \alpha}$;
(ii) given measures μ_{0}, μ_{1} as above, anytime the metric g is C^{∞}-close enough to a metric for which the optimal map is smooth [16, p.159]; $C^{2, \alpha}$-close would suffice to get $G \in C^{1, \alpha}$;
(iii) if the metric g is flat [16] (see also [7, 8, 9, 14]);
(iv) on the standard sphere [35];
(v) if the c-curvature is positive (a 4th-order condition on the cost function c put forward in [38], also expressed in Equations (2)-(4) below) and if the exponential map is non-singular on the tangent cut-locus [36];
not to mention a recent partial regularity result, namely:
(vi) on \mathbb{S}^{2} endowed with a metric C^{4} close to the standard one, the optimal map G is continuous for all measures μ_{0}, μ_{1} (possibly not smooth) [21].

Here, let us observe that the result (iv) implies, by naturality and uniqueness, that the optimal transportation map G is also smooth on any manifold (M_{n}, g) with constant positive curvature; this was independently observed by YoungHeon Kim. Further regularity results in that spirit are conjectured in [32] (see also Appendix C below). Besides, let us note that the second condition of the regularity result (v) precludes positively curved simply connected manifolds (with $\frac{1}{4}$-pinching if odd-dimensional) $[33,34]$ (see also $[45,1]$).
In contrast with the preceding results, if the curvature of g is not non-negative on M_{n}, one cannot expect G smooth for arbitrary smooth positive measures μ_{0}, μ_{1} [35]. Worse, it was recently shown that positive curvature alone does not imply G smooth $[30,36]$.

Trudinger's conjecture

Neil Trudinger has conjectured that the smoothness of the optimal map G should be tractable if the curvature of g is close to a positive constant (say 1) and slowly varying in C^{k} norm, for some integer $k \geq 2$. The geometric meaning of this condition is clear in dimension 2 ; in higher dimension, it is specified
below in terms of the concircular curvature tensor. Closed manifolds fulfilling that condition may be called locally nearly spherical. Analytically, Trudinger's conjecture is really about estimating in the weakest possible norm how close to 1 the curvature should be and showing that, indeed, this is the sole control required on g for proving that the optimal transportation map G pushing μ_{0} to μ_{1} is smooth. Our present work, particularly Theorem 2 below, is essentially an attempt to prove Trudinger's conjecture with $k=2$.
In order to strengthen our motivation for the study of this conjecture, let us comment upon its main features. Trudinger was lead to it while investigating from scratch the smoothness of optimal transport on ovaloids in \mathbb{R}^{3} which are close deformations of the standard sphere. The metric induced on such a surface is close to the standard one of \mathbb{S}^{2}; if an arbitrary closeness is allowed, an implicit function theorem argument (the result (ii) mentioned above) solves the problem. Trudinger thus asked for more in his conjecture; accordingly, we will have to carry out explicitable estimates throughout the paper. Which kind of closeness should be required ? Asking for the closeness of the metrics is not intrinsically natural (unlike the optimal transport solution-map, cf. supra), thus not sharp. For instance, if $\varphi: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ is a diffeomorphism and g_{0}, the standard metric of \mathbb{S}^{n}, asking for the pulled-back metric $g=\varphi^{*} g_{0}$ to be C^{4} close to g_{0} means that the map φ must be C^{5} close to the identity, which is unnecessary of course (g has constant curvature 1 like g_{0}). Ever since the days of Riemann's thesis, one knows precisely the way to remedy this; Trudinger knew it and thus asked for curvature closeness (in a suitable sense). Finally, he conjectured that the optimal order of curvature closeness is 2 because the c-curvature is a 4 th order quantity in the Brenier-McCann cost-function c.

Outline of the paper

In the sequel of the Introduction, we set up our approach of the regularity problem for optimal transportation maps, a PDE approach, via the so-called continuity method [23]. We further state two theorems, our main results, and infer from them several regularity corollaries presented at once with their proofs. The main theorems are proved respectively in Sections 1 and 2. For the reader's convenience, we also provide some auxiliary material required in our proofs adapted from [35] (Appendix A) and [38] (Appendix B), as well as a folklore result mentioned above in the covering spaces setting (Appendix C).

Acknowledgments

The authors are grateful to Neil Trudinger and Xu-Jia Wang for giving them full hospitality while visiting the CMA (ANU, Canberra) in November-December 2006, during an Australian-French exchange programme (grant PHC FAST \#12739WA) and for sharing with them their expertise on the regularity issue for optimal transportation maps. The authors would like to thank also Cédric Villani for his keen interest in the first part of the present work which lead to a clearer statement of Theorem 1 and Erwann Aubry for useful geometric discussions at Luminy (CIRM). The first author benefited from stimulating conversations with Grégoire Loeper, Young-Heon Kim and Robert McCann at the ICMS Workshop (Edinburgh, July 2007) where he reported on the bigcrunch argument of Proposition 1 below; he thanks McCann, Kim and Villani
for quick communication of the preprints $[30,31,36]$. The landmark reference [45] was found in [36]. Finally, thanks are due to the Referee for valuable comments and suggestions on the original draft of this paper.

The continuity method

The optimal map G has the following special form (with obvious notations relative to the metric g):

$$
\forall m \in M_{n}, G(m)=\exp _{m}\left(\operatorname{grad}_{m} u\right),
$$

where the potential-function u, normalized by $\int_{M_{n}} u \mathrm{dVol}=0$, is a c-convex function (see [39]). As such, if G is smooth, it must satisfy pointwise the pullback (Jacobian) equation: $G^{*} \mu_{1}=\mu_{0}$ (viewing μ_{0}, μ_{1} as volume forms, possibly of odd type in case M_{n} is not orientable) [15, Theorem 4.2]. The latter holds if and only if G is a diffeomorphism (cf. e.g. [18, Appendix A]). It is thus equivalent to say that the optimal map G is smooth, or that it is a diffeomorphism. Accordingly, let us set \mathcal{A} for the open subset of the Fréchet space

$$
C_{0}^{\infty}=\left\{v \in C^{\infty}\left(M_{n}\right), \int_{M_{n}} v \mathrm{dVol}=0\right\}
$$

consisting of those functions v such that the map $\exp (\operatorname{grad} v)$ is a diffeomorphism of M_{n} to itself. One can readily verify that, for each $(v, m) \in \mathcal{A} \times M_{n}$, the smoothness of $\exp (\operatorname{grad} v)$ requires that the closed geodesic segment

$$
\left\{\exp _{m}\left(t \operatorname{grad}_{m} v\right), t \in[0,1]\right\}
$$

does not cross the cut-locus of m (henceforth denoted by Cut_{m}); in particular, $|\operatorname{grad} v(m)|$ stays bounded above strictly by the diameter of $\left(M_{n}, g\right)$. Fixing the metric g and the smooth positive measure μ_{0}, let us consider the nonlinear second order differential operator given by:

$$
v \in \mathcal{A} \rightarrow F(v):=\left[\rho(v)-\rho_{0}\right] \in C_{0}^{\infty}, \text { with } \rho(v):=\frac{d}{\mathrm{dVol}}\left[\exp (\operatorname{grad} v)_{\#} \mu_{0}\right]
$$

(Radon-Nikodym derivative). The operator F is elliptic of Monge-Ampère type and it is a local diffeomorphism which is one-to-one (hence a diffeomorphism) onto its image [16] (see also [17, Remark 6] for an Erratum of the proof of the second part of [16, Proposition 3]).
The Jacobian equation satisfied by the optimal map G (cf. supra), written in terms of the potential-function u, reads: $F(u)=\rho_{1}-\rho_{0}$. If $u \in \mathcal{A}$ solves this equation, it must be c-convex [16, Proposition 2] hence $G=\exp (\operatorname{grad} u)$ must be optimal pushing μ_{0} to μ_{1} [39, Theorem 8]. So, proving that the optimal map G is smooth amounts to proving that F is onto C_{0}^{∞}. To do so, given an arbitrary measure μ_{1} as above, one may use the continuity method as in [16, p.158] and consider, for $t \in[0,1]$, the solution $u_{t} \in \mathcal{A}$ of the pointwise equation expressing the optimal mass transportation of μ_{0} to $\mu_{t}:=t \mu_{1}+(1-t) \mu_{0}$, namely:

$$
\begin{equation*}
\exp \left(\operatorname{grad} u_{t}\right)_{\#} \mu_{0}=\mu_{t} \Longleftrightarrow F\left(u_{t}\right)=t\left(\rho_{1}-\rho_{0}\right) \tag{1}
\end{equation*}
$$

arguing by connectedness on the subset $\mathcal{T} \subset[0,1]$ of t 's such that there exists a solution $u_{t} \in \mathcal{A}$. The set \mathcal{T} obviously contains 0 and it is relatively open in $[0,1]$;
granted \mathcal{T} is closed, one infers $\mathcal{T}=[0,1]$ hence the map F is indeed onto (and G, smooth). By standard arguments [23, Section 17.4] (using the concavity of the Monge-Ampère type operator $v \mapsto f(x, d v, \nabla d v):=F(v)$ with respect to the covariant Hessian variable $\nabla d v$, where ∇ stands for the Levi-Civita connection of g), the closedness of \mathcal{T} follows from a uniform pinching (independent of $t \in[0,1]$) on the eigenvalues with respect to the metric g of the symmetric tensor $\nabla d u_{t}$. A uniform lower bound on these eigenvalues is already known [16, p.154]; so the smoothness of the optimal transportation map G boils down to carrying out a uniform upper bound on them.

The first genuinely interior bound of that sort (previous bounds would require affine boundary-value data [41, pp.73-76], they were thus never really interior) was recently derived by Ma, Trudinger and Wang [38, Theorem 4.1] dealing, in some open subset Ω of \mathbb{R}^{n}, with elliptic Monge-Ampère equations of the form:

$$
\operatorname{det}\left[\mathfrak{A}_{i j}(x, v, d v)+\frac{\partial^{2} v}{\partial x^{i} \partial x^{j}}\right]=\mathfrak{B}(x, v, d v)>0
$$

where $\mathfrak{A}_{i j}=\mathfrak{A}_{i j}(x, z, p)$ is a $n \times n$ symmetric matrix field on $J^{1} \Omega$ (first jet space). If v is a solution such that the so-called strict regularity condition [44] holds, namely (using Einstein's summation convention and, say, standard Euclidean norms):
(2) $\exists \theta>0, \forall(\xi, \nu) \in T_{x} \Omega \times T_{x}^{*} \Omega$ with $\nu(\xi)=0,-\frac{\partial^{2} \mathfrak{A}_{i j}}{\partial p_{k} \partial p_{l}} \xi^{i} \xi^{j} \nu_{k} \nu_{l} \geq \theta|\xi|^{2}|\nu|^{2}$
on the subset $\{[x, v(x), d v(x)], x \in \Omega\} \subset J^{1} \Omega$, they derived an upper bound on the eigenvalues of the symmetric matrix $\left(\mathfrak{A}_{i j}(x, v, d v)+\partial_{i j}^{2} v\right)$ in terms of the constant θ, of the $C^{1}(\bar{\Omega})$-norm of v, the C^{2}-norms of $\left(\mathfrak{A}_{i j}\right)$ and \mathfrak{B}, and the distance of the point $x \in \Omega$ to the boundary $\partial \Omega$ (see [38, 44]).
In local charts of M_{n}, equation (1) reads like a Monge-Ampère equation of the above form with a matrix field $\mathfrak{A}_{i j}(x, d v)$ independent of the v variable (see $[16,35]$ and Appendix B below). Specifically, in a generic chart x of M_{n}, the matrix $\left(\mathfrak{A}_{i j}\right)$ which occurs for equation (1) is given by:
(3) $\quad \forall(v, m) \in \mathcal{A} \times M_{n},\left(\mathfrak{A}_{i j}(x, d v)+\partial_{i j}^{2} v\right) d x^{i} \otimes d x^{j}=\operatorname{Hess}^{(c)}(v)(m)$,
where $x=x(m)$, and Hess ${ }^{(c)}(v)$ denotes the c-Hessian of v, namely the covariant symmetric 2 -tensor field defined by:

$$
\operatorname{Hess}^{(c)}(v)(m):=\left.[\nabla d c(., q)]\right|_{[m, \exp (\operatorname{grad} v)(m)]}+\nabla d v(m),
$$

which is known to be positive definite on M_{n} for each $v \in \mathcal{A}[16$, Proposition 3][17, Remark 6]. From this definition, we see that the local quantity:

$$
A_{i j}\left(x, \nabla_{x} v\right):=\mathfrak{A}_{i j}(x, d v)+\Gamma_{i j}^{k}(x) \partial_{k} v
$$

is actually intrinsic, hence globally defined (here the $\Gamma_{i j}^{k}$'s stand for the Christoffel symbols of g in the chart $x\left(c f\right.$. infra) and $\nabla_{x} v:=T_{m} x\left(\operatorname{grad}_{m} v\right)$ with $x=x(m)$, for the local expression of the gradient of $v)$. Indeed, we have:

$$
\begin{equation*}
\left.A_{i j}\left(x, \nabla_{x} v\right) d x^{i} \otimes d x^{j} \equiv[\nabla d c(., q)]\right|_{[m, \exp (\operatorname{grad} v)(m)]} \tag{4}
\end{equation*}
$$

and this is the quantity which we will consider below (see (9)) in place of the Ma-Trudinger-Wang local quantity $\mathfrak{A}_{i j}(x, d v) d x^{i} \otimes d x^{j}$. Importantly, in that context, it follows from (4) that the left-hand side of inequality (2) is also intrinsic. When the g-norms of ξ and ν are equal to 1 , it was called a 'cost-sectional curvature' [35] (we will say c-curvature, for short). An intrinsic definition of it is given below (see (8)). More deeply, the fact that the c-curvature depends on the metric g only through the cost-function $c=\frac{1}{2} d_{g}^{2}$, as written in [38], was recently interpreted geometrically [31].

Let us say that condition (2) holds uniformly for equation (1) whenever this condition, written in a generic chart x of M_{n} with the norms of the metric g (instead of local Euclidean norms depending on the chart) and bearing on the matrix field $\mathfrak{A}_{i j}\left(x, d u_{t}\right)$ given by (3) with $v(x)=u_{t}(m)$, thus expressing a global condition on M_{n}, holds at each point $m \in M_{n}$ with a constant $\theta>0$ independent of $(m, t) \in M_{n} \times[0,1]$.

Assuming it does (cf. corollaries below, especially the proof of Corollary 1), the Ma-Trudinger-Wang interior estimate will be shown (in Appendix B) to imply an upper bound on the eigenvalues (with respect to g) of the tensor $\operatorname{Hess}^{(c)}\left(u_{t}\right)(m)$. Let us emphasize here that the latter may not be enough to infer an upper bound on $\nabla d u_{t}$. Indeed, on the standard n-sphere, $(n-1)$ eigenvalues of $\left.[\nabla d c(., q)]\right|_{\left[m, \exp \left(\operatorname{grad} u_{t}\right)(m)\right]}$ are equal to: $\left|\operatorname{grad} u_{t}\right| \cot \left(\left|\operatorname{grad} u_{t}\right|\right)(m)$, hence they diverge to $-\infty$ as $\left|\operatorname{grad} u_{t}\right|(m)$ tends to π, or else, as the image-point of m by $\exp \left(\operatorname{grad} u_{t}\right)$ gets close to a conjugate point of m (its antipode, here). The latter occurence was ruled out in [19]. It enabled Loeper to complete the proof of the smoothness of G after checking the strict regularity condition (2) on the standard sphere [35].

We wish to investigate along the same lines the trickier case of a metric g with variable curvature. Here, the topology of the manifold will be important and our results, stronger if it is nontrivial. Indeed, if so and under a curvature pinching condition, for each point $m \in M_{n}$, the cut-locus Cut_{m} will be free from conjugate points (along rays emanating from m) and uniformly distant from such points. In that case, the eigenvalues (with respect to g) of $\left.[\nabla d c(., q)]\right|_{\left[m, \exp \left(\operatorname{grad} u_{t}\right)(m)\right]}$ are a priori bounded below (see Appendix B), hence those of $\nabla d u_{t}$ are uniformly bounded above and we are done (as in Corollary 2 below).
This is in contrast to the simply connected case (still with curvature pinching): the latter will be the hardest one because then, Cut_{m} must contain a conjugate point, for some point $m \in M_{n}[33,34]$. In that case, we will require an extension of the result of [19] (see Theorem 1 below) asserting that, for each $m \in M_{n}$, the point $\exp \left(\operatorname{grad} u_{t}\right)(m)$ stays uniformly away from Cut_{m} (hence from conjugate points), provided the curvature is sufficiently pinched and the given densities ρ_{0}, ρ_{1}, satisfy a zero order closeness assumption (void for constant curvature).

Main results; corollaries and their proofs

Before stating our results, loosing no generality, let us scale the metric g so that its sectional curvature K satisfies:

$$
\begin{equation*}
\min _{M_{n}} K=1 \tag{5}
\end{equation*}
$$

Remark 1 For later use, let us record the consequences of the normalization (5) for the geometry and topology of M_{n}. By Myers theorem [13], it implies:

$$
\begin{equation*}
D:=\operatorname{diam}\left(M_{n}\right) \leq \pi \tag{6}
\end{equation*}
$$

and $\pi_{1}\left(M_{n}\right)$ is finite (setting henceforth $\operatorname{diam}(S)$ for the diameter of a subset $S \subset M_{n}$ measured in M_{n} with the distance d_{g}). Let us set:

$$
\eta_{M}:=\left(1-\frac{D}{\pi}\right) \in[0,1)
$$

If $\pi_{1}\left(M_{n}\right)$ is not trivial, the topology creates a gap for η_{M}; specifically, the Grove-Shiohama diameter sphere theorem [26] implies: $\eta_{M} \geq \frac{1}{2}$. If M_{n} is simply connected, the Toponogov maximal diameter theorem [13, p.110] implies $\eta_{M}>0$ unless $\left(M_{n}, g\right)$ is isometric to the standard unit n-sphere, and no gap occurs anymore (as shown by the example of an ellipsoid, see Remark 4 below).
The (open) geodesic ball of radius r centered at $m \in M_{n}$ will be denoted by $B(m, r)$ and the volume of a Borel subset $S \subset M_{n}$ for the Lebesgue measure dVol , by $\operatorname{Vol}(S)$.

In Section 1 below, we will prove an extension of the result of [19] required for implementing the Ma-Trudinger-Wang estimate on simply connected manifolds, as explained above (see also Remark 4); specifically, dealing with the solution u_{t} of (1), we will prove:

Theorem 1 Assume that the manifold M_{n} is simply connected and that the sectional curvature of the metric g (normalized by (5)) satisfies: $K<1.44$. Setting $\varepsilon:=1-\frac{1}{\sqrt{\max _{M_{n}} K}}<\frac{1}{6}$ and

$$
C_{1}:=\sup _{\rho \in\left[0, \frac{1}{6}\right], q \in M_{n}} \rho^{-n / 2} \frac{\operatorname{Vol}[B(q, 5 \pi \rho)]}{\operatorname{Vol}[B(q, D \sqrt{\rho})]}
$$

assume on g the further sectional curvature pinching condition: $\varepsilon^{n / 2} C_{1}<1$. For $t \in[0,1]$, set $\rho_{t}:=\frac{d \mu_{t}}{\mathrm{dVol}}$. If the measures μ_{0}, μ_{1} satisfy the inequality:

$$
\begin{equation*}
\frac{\max _{[0,1] \times M_{n}} \rho_{t}}{\min _{M_{n}} \rho_{0}}<\frac{1}{C_{1} \eta^{n / 2}} \tag{7}
\end{equation*}
$$

for some $\eta \in\left(\varepsilon, \frac{1}{6}\right)$, then:

$$
\left|\operatorname{grad} u_{t}\right| \leq(1-\eta) D
$$

and

$$
\forall m \in M_{n}, d_{g}\left[\exp \left(\operatorname{grad} u_{t}\right)(m), \mathrm{Cut}_{m}\right] \geq(\eta-\varepsilon) \pi
$$

Here, one should mention that a similar stay-away property holds, dropping the assumption on the measures μ_{0}, μ_{1}, but strengthening those on the manifold [36]. One assumption made on the manifold in [36] (non-focality) precludes the $\frac{1}{4}$-pinched simply connected case $[33,34]$ which is the sole case where we will require the stay-away property ($c f$. Corollary 1). Another condition introduced in [36] (uniform regularity of the manifold) bears essentially on the 4th jet of the metric $[36,21]$ in contrast to the curvature pinching condition of Theorem 1 , which is only of second order.

Section 2 will be devoted to proving a fairly general c-curvature estimate on compact positively curved manifolds (Theorem 2 below), essential for any subsequent proof of the regularity of the optimal transportation map G. We require further notations. We set Cut for the closed subset of $T M_{n}$ defined by:

$$
\text { Cut }=\left\{(m, v) \in M_{n} \times T_{m} M_{n}, \exp _{m}(v) \in \operatorname{Cut}_{m}\right\}
$$

and consider the open connected component of $T M_{n} \backslash$ Cut containing the zero section, let us denote it here (for convenience) by:

$$
\text { NoCut }:=\{(m, v), \forall t \in[0,1] \text { and }(m, t v) \notin \mathrm{Cut}\},
$$

which thus satisfies: $\partial(\mathrm{NoCut}) \subset$ Cut. For $\eta \in(0,1)$, we also set:

$$
\text { NoCut }_{\eta}:=\{(m, v) \in \text { NoCut, }|v| \leq(1-\eta) \pi\}
$$

Remark 2 As already pointed out, for each $(u, m) \in \mathcal{A} \times M_{n}$, the couple $\left(m, \operatorname{grad}_{m} u\right)$ must lie in NoCut. However, a priori estimates on the solutions u_{t} of equation (1) will require more, namely that the image-point $\exp _{m}\left(\operatorname{grad}_{m} u_{t}\right)$ stays uniformly away from the first conjugate point of m on the corresponding geodesic, and this will be checked below via a comparison device with the (constant curvature 1) spherical case. The reader may anticipate that, conceivably, it will require the existence of some uniform $\eta>0$ such that $\left|\operatorname{grad}_{m} u_{t}\right| \leq(1-\eta) \pi$ and, from Remark 1, that the simply connected case will be the only difficult one. In the latter case, though, Klingenberg's theorem [34] shows that, even though η may get small, any point (m, v) in NoCut_{η} will stay uniformly away from Cut, provided the curvature is sufficiently pinched. So much for motivating the notation NoCut_{η}.

Given $\left(m_{0}, v_{0}\right) \in$ NoCut and two tangent vectors $(\xi, \nu) \in\left(T_{m_{0}} M_{n}\right)^{2}$, let us define intrinsically the associated c-curvature by:

$$
\begin{equation*}
\mathcal{C}\left(m_{0}, v_{0}\right)(\xi, \nu):=-\left.\mathrm{D} d\left[v \mapsto A\left(m_{0}, v\right)(\xi)\right]\right|_{v=v_{0}}(\nu, \nu), \tag{8}
\end{equation*}
$$

where D stands for the canonical flat connection in $T_{m_{0}} M_{n}$ and $\xi \mapsto A\left(m_{0}, v\right)(\xi)$ stands for the quadratic form on $T_{m_{0}} M_{n}$ given for $\left(m_{0}, v\right) \in$ NoCut by:

$$
\begin{equation*}
A\left(m_{0}, v\right)(\xi)=\left.\nabla d\left[m \mapsto c\left(m, \exp _{m_{0}}(v)\right)\right]\right|_{m=m_{0}}(\xi, \xi) . \tag{9}
\end{equation*}
$$

In case $|\xi|=|\nu|=1$ with $\xi \perp \nu$, the c-curvature $\mathcal{C}\left(m_{0}, v_{0}\right)(\xi, \nu)$ was called costsectional curvature [35], while in the general case, it was called cross-curvature [31]; it is convenient for us here to use the single word c-curvature (as suggested
by Neil Trudinger).
By formal analogy with the expressions occuring in the spherical case [19, 35], using on $T_{m_{0}} M_{n}$ the norm defined by $g_{m_{0}}$, let us set for $v \neq 0$:

$$
\bar{A}\left(m_{0}, v\right)(\xi):=|\xi|^{2}-(1-|v| \cot |v|)\left[|\xi|^{2}-\frac{\left(g_{m_{0}}(\xi, v)\right)^{2}}{|v|^{2}}\right]
$$

and define $\overline{\mathcal{C}}\left(m_{0}, v_{0}\right)(\xi, \nu)$ by formula (8) computed with $\bar{A}\left(m_{0}, v\right)(\xi)$ instead of $A\left(m_{0}, v\right)(\xi)$, now with $v_{0} \neq 0$. We will require that calculation (first treated in [35]); for convenience, it is provided in Appendix A below. So, these barred quantities are the expressions which the above non-barred ones would be equal to if the metric g had constant curvature 1 . Consistently with that comment (see Remark 3 below), we readily find $\lim _{v \rightarrow 0} \bar{A}\left(m_{0}, v\right)(\xi)=|\xi|^{2}$ and

$$
\lim _{v \rightarrow 0} \overline{\mathcal{C}}\left(m_{0}, v\right)(\xi, \nu)=\frac{2}{3}\left[|\xi|^{2}|\nu|^{2}-\left(g_{m_{0}}(\xi, \nu)\right)^{2}\right]
$$

(see Appendix A). Henceforth, we will use these limits to prolonge continuously \bar{A} and $\overline{\mathcal{C}}$ at $v=0$. We will also restrict to unit vectors for the couple (ξ, ν). Let us emphasize here that, for the purpose of optimal transport strict regularity (in Trudinger's sense [44]), comparison of the actual c-curvature $\mathcal{C}\left(m_{0}, v_{0}\right)(\xi, \nu)$ with the corresponding formal quantity $\overline{\mathcal{C}}\left(m_{0}, v_{0}\right)(\xi, \nu)$ just introduced, is enough. The reference metric for us is the actual metric g and none other. We will not introduce any extra metric \bar{g} with constant curvature $\bar{K}=1$, unlike what is done in [21] on \mathbb{S}^{2}. Still, there exists an intrinsic (thus sharp) way of measuring how far our single metric g is from having constant curvature 1. In dimension 2, we just have to consider the difference $K-1$ in a suitable norm; let us explain what to do in higher dimension.

We set Riem for the Riemann curvature tensor of the metric g, viewed as an endomorphism valued 2-form on M_{n} and, given vector fields U, V, W, we write $\operatorname{Riem}(U, V) W$ for the resulting vector field. It is convenient to define a further tensor of the former sort, namely:

$$
\operatorname{Cur}_{1}(U, V) W:=g(W, V) U-g(W, U) V .
$$

Anytime a metric has constant curvature $K=1$, it satisfies: Riem $=$ Cur $_{1}$. We set Scal for the scalar curvature of g and recall the definition of the concircular curvature tensor [4]:

$$
\text { Concirc }:=\text { Riem }-\frac{\text { Scal }}{n(n-1)} \operatorname{Cur}_{1} .
$$

In dimension 2, this tensor identically vanishes; when $n>2$, its vanishing is equivalent for g to having constant curvature.

We further set $\|\cdot\|_{C^{2}\left(M_{n}, g\right)}$ for the C^{2}-norm of tensor fields on M_{n}, calculated with the metric g and its Levi-Civita connection ∇. Dealing with the various estimates derived in Section 2, we will say that a constant is "under control" whenever it only depends on: the dimension $n, \operatorname{diam}\left(M_{n}\right)$, the metric tensor g and $\|$ Riem $\|_{C^{2}\left(M_{n}, g\right)}$. Actually, due to the curvature assumptions made on $\left(M_{n}, g\right)$, each constant under control C occuring in the proofs below will be
some universal function of the sole dimension n (with polynomial growth in the variable \sqrt{n}, cf. Remark 7).

The following result provides a control of order zero on the c-curvature deviation from being spherical, at $\left(m_{0}, v_{0}\right) \in \mathrm{NoCut}_{\eta}$, in terms of η and of a global second order control δ on the ambiant concircular curvature tensor (or on $K-1$ if $n=2$). The control dependence with respect to η and δ is explicit, which will be important for dealing with blow up rates as $\eta \downarrow 0$ (approaching spherical conjugacy). It will be used to control the positivity of the c-curvature $\mathcal{C}\left(m_{0}, v_{0}\right)(\xi, \nu)$ when $\xi \perp \nu$ and show that condition (2) holds uniformly for equation (1). It may be viewed as a tentatively general quantified statement of Trudinger's conjecture:

Theorem 2 Let $\left(M_{n}, g\right)$ be a compact connected n-dimensional Riemannian manifold satisfying (5) and

$$
\begin{equation*}
\left\|\operatorname{Riem}-\operatorname{Cur}_{1}\right\|_{C^{2}\left(M_{n}, g\right)} \leq \delta \tag{10}
\end{equation*}
$$

for some real $\delta>0$. Let $\left(m_{0}, v_{0}\right) \in$ NoCut; so $\left|v_{0}\right|=\left(1-\eta_{0}\right) \pi$ for some $\eta_{0} \in(0,1]$. Assume δ is small enough such that:

$$
\begin{equation*}
2 \sqrt{n-1} \frac{\left|v_{0}\right|}{\sin \left|v_{0}\right|} \delta \leq \frac{1}{2} \tag{11}
\end{equation*}
$$

There exists a constant $C_{2} \geq 1$ under control (thus independent of ($\left.m_{0}, v_{0}, \eta_{0}, \delta\right)$) such that, for each couple of unit tangent vectors (ξ, ν) in $T_{m_{0}} M_{n}$, the following inequality holds:

$$
\begin{equation*}
\left|\mathcal{C}\left(m_{0}, v_{0}\right)(\xi, \nu)-\overline{\mathcal{C}}\left(m_{0}, v_{0}\right)(\xi, \nu)\right| \leq C_{2} \frac{\delta}{\eta_{0}^{4}} \tag{12}
\end{equation*}
$$

It is a standard exercise to verify that the curvature statement (10) can be written equivalently as follows (with another constant δ of same order):

$$
\| \text { Concirc } \|_{C^{2}\left(M_{n}, g\right)} \leq \delta, \text { if } n>2,
$$

or:

$$
\|K-1\|_{C^{2}\left(M_{n}, g\right)} \leq \delta, \text { if } n=2
$$

we will use below the more convenient form (10). If we read the condition (11), given $\delta>0$ small, as bearing on $\left|v_{0}\right|$, it stipulates how far (in terms of δ and n) the point $\exp _{m_{0}}\left(v_{0}\right)$ should stay away from the, so to say, spherical conjugate point of m_{0} (along the geodesic starting at m_{0} with the velocity v_{0}), in order to control with a perturbative method the inverse of the Jacobian of the map $v \mapsto \exp _{m_{0}}(v)$ at $v=v_{0}$; it will be used in Section 2.6 to establish the final estimates (70) (71) required to obtain (12). Afterwards, these estimates will be also essential to implement in our context the Ma-Trudinger-Wang argument (see Lemma 15, Appendix B).

Remark 3 (proof when $v_{0}=0$) The proof of Theorem 2 with $v_{0}=0$ is straightforward. Actually, a stronger result holds in that case, because we know that $\mathcal{C}\left(m_{0}, 0\right)(\xi, \nu)$ vanishes if $\xi \| \nu$, and that it is given by

$$
\mathcal{C}\left(m_{0}, 0\right)(\xi, \nu) \equiv \frac{2}{3} K(p)\left[|\xi|^{2}|\nu|^{2}-\left(g_{m_{0}}(\xi, \nu)\right)^{2}\right]
$$

if $\xi \nVdash \nu$, where $K(p)$ denotes the sectional curvature of the tangent 2-plane p defined at m_{0} by the unit vectors $(\xi, \nu)[35,31]$ (for a proof, see Remark 6 below combined with a mild algebraic result found e.g. in [10, Chapter 4, Proposition 3.1]). So, recalling the expression of $\overline{\mathcal{C}}\left(m_{0}, 0\right)(\xi, \nu)$ (cf. supra), the mere pinching of $K(p)$ between 1 and $1+\delta$ yields a C^{0} control of the c-curvature deviation when $v_{0}=0$. Accordingly, in Section 2 below, we will consider only the case $v_{0} \neq 0$.

We are now in position to derive a smoothness result, namely:
Corollary 1 Let $\left(M_{n}, g\right)$ be a compact simply connected n-dimensional Riemannian manifold satisfying (5) and (10) with δ small enough such that:

$$
\begin{equation*}
1-\frac{1}{\sqrt{1+\delta}}<\frac{1}{C_{1}^{2 / n}} \tag{13}
\end{equation*}
$$

(where C_{1} is the constant defined in Theorem 1) and:

$$
\begin{equation*}
\delta<\min \left[\frac{5}{6^{4} \pi^{2} C_{2}}, \frac{1}{24 \sqrt{n-1}}\right] \tag{14}
\end{equation*}
$$

(where C_{2} is the constant occuring in (12)). Let $\left(\mu_{0}, \mu_{1}\right)$ be smooth positive Borelian measures on M_{n} of same total mass satisfying (7) for some $\eta \in\left(\varepsilon, \frac{1}{6}\right)$ with $\varepsilon=1-\frac{1}{\sqrt{\max _{M_{n} K}}}$. Assume furthermore that η is large enough such that the following inequalities hold:

$$
\begin{gather*}
\delta \leq \frac{1}{4 \sqrt{n-1}} \eta \tag{15}\\
\delta<\frac{1}{\pi^{2} C_{2}} \eta^{3}(1-\eta) . \tag{16}
\end{gather*}
$$

Then the optimal transportation map G (pushing μ_{0} to μ_{1}) is smooth.

Here, the requirement (14) implies (16) and (15) when $\eta=\frac{1}{6}$, and the inequality $\varepsilon=1-\frac{1}{\sqrt{\max _{M_{n}} K}}<\frac{1}{6}$.

In the particular case of an ovaloid Σ_{f} in \mathbb{R}^{n+1} represented as a radial graph over the unit sphere: $m \in \mathbb{S}^{n} \rightarrow M \in \Sigma_{f}$ with $\overrightarrow{O M}=e^{f(m)} \overrightarrow{O m}$, the curvature assumptions $(13)(15)(16)$ which, together with condition (7) on the measures μ_{0}, μ_{1}, yield strict regularity (in Trudinger's sense [44]) for equation (1), amount to smallness conditions on the C^{4}-norm of the function f.

Proof of Corollary 1. Condition (10) implies $K \leq 1+\delta$; so, the two pinching conditions of Theorem 1 hold, respectively due to (14) and (13). Using the continuity method and fixing $t \in \mathcal{T}$ (cf. supra), we may thus apply Theorem 1 to u_{t} and conclude that the section grad u_{t} of $T M_{n}$ ranges in NoCut ${ }_{\eta}$. Now we wish to apply Theorem 2 at $\left(m_{0}, v_{0}\right)$ with $v_{0}=\operatorname{grad} u_{t}\left(m_{0}\right)$. We may do so
because (15) implies condition (11). Fixing an arbitrary couple of orthogonal unit vectors $\xi \perp \nu$ in $T_{m_{0}} M_{n}$, inequality (12) implies:

$$
\mathcal{C}\left(m_{0}, v_{0}\right)(\xi, \nu)-\overline{\mathcal{C}}\left(m_{0}, v_{0}\right)(\xi, \nu) \geq-C_{2} \frac{\delta}{\eta_{0}^{4}}
$$

where $\eta_{0} \in[\eta, 1]$ is given by $\left|\operatorname{grad} u_{t}\right|\left(m_{0}\right)=\left(1-\eta_{0}\right) \pi$. If $v_{0} \neq 0$, the following spherical case inequality holds:

$$
\begin{equation*}
\overline{\mathcal{C}}\left(m_{0}, v_{0}\right)(\xi, \nu) \geq \frac{1}{\pi^{2}} \max \left(1, \frac{1-\eta_{0}}{\eta_{0}}\right) \tag{17}
\end{equation*}
$$

(see Appendix A below) and, combining it with the preceding one, we get the lower bound: $\mathcal{C}\left(m_{0}, v_{0}\right)(\xi, \nu) \geq \theta_{0}$ with

$$
\theta_{0}=\frac{1}{\pi^{2}} \max \left(1, \frac{1-\eta_{0}}{\eta_{0}}\right)-C_{2} \frac{\delta}{\eta_{0}^{4}} .
$$

We can improve this bound by writing

$$
\theta_{0}=\frac{1}{\eta_{0}^{4}}\left\{\frac{1}{\pi^{2}} \max \left[\eta_{0}^{4}, \eta_{0}^{3}\left(1-\eta_{0}\right)\right]-C_{2} \delta\right\}
$$

and by noting that the map

$$
\eta_{0} \in[\eta, 1] \rightarrow \max \left[\eta_{0}^{4}, \eta_{0}^{3}\left(1-\eta_{0}\right)\right]
$$

is increasing, equal to $\eta^{3}(1-\eta)$ for $\eta_{0}=\eta<\frac{1}{6}$; we thus find:

$$
\eta_{0}^{4} \theta_{0} \geq \theta:=\frac{1}{\pi^{2}} \eta^{3}(1-\eta)-C_{2} \delta .
$$

Under assumption (16), the latter right-hand side is strictly positive hence we obtain for the c-curvature the uniform lower bound:

$$
\begin{equation*}
\mathcal{C}\left(m_{0}, v_{0}\right)(\xi, \nu) \geq \theta>0, \tag{18}
\end{equation*}
$$

still valid if $v_{0}=0$ in view of Remark 3. In other words, the strict regularity condition (2) holds uniformly for equation (1). The Ma-Trudinger-Wang interior estimate [38] thus provides an upper bound on the eigenvalues with respect to g of the covariant symmetric 2 -tensor Hess ${ }^{(c)}\left(u_{t}\right)(m)$ (see Appendix B). A uniform upper bound on $\nabla d u_{t}$ follows, due to Theorem 1, which implies that (setting $U M_{n}$ for the unit-sphere bundle) the function:

$$
(m, \xi) \in U M_{n} \rightarrow A\left(m, \operatorname{grad}_{m} u_{t}\right)(\xi)
$$

is bounded below uniformly with respect to $t \in[0,1]$ (see e.g. [15, Lemma 2.3]). As explained above, it yields the closedness of the set \mathcal{T} of deformation parameters t for which the continuity equation (1) admits a solution $u_{t} \in \mathcal{A}$ (cf. supra $)$. So $\mathcal{T}=[0,1]$ and the optimal transportation $\operatorname{map} G=\exp \left(\operatorname{grad} u_{1}\right)$ is smooth, as desired.

Remark 4 Unless $\left(M_{n}, g\right)$ is isometric to the standard unit sphere, the constant η_{M} introduced in Remark 1 is strictly positive. However, its value depends on the curvature pinching parameter δ and may vanish with him in such a way that condition (16) of Corollary 1 no longer holds with $\eta=\eta_{M}$. Indeed, if we take for $\left(M_{n}, g\right)$ the ellipsoid of revolution of \mathbb{R}^{3} given by:

$$
\frac{x^{2}+y^{2}}{r^{2}}+z^{2}=1, \text { with } r<1
$$

then (5) is satisfied and we find $\max _{M_{2}} K=\frac{1}{r^{4}}$ hence $\delta \geq \frac{1}{r^{4}}-1$, while the expansion of the right-hand side of the inequality:

$$
1-\eta_{M}=\frac{D}{\pi} \geq \frac{1}{\pi} \int_{-1}^{1} \sqrt{1+\frac{r^{2} z^{2}}{1-z^{2}}} d z
$$

as $r \rightarrow 1$ yields: $\eta_{M} \leq 1-r+o(1-r)$. In particular, as expected, η_{M} vanishes as $r \uparrow 1$ i.e. as the ellipsoid approaches the unit-sphere. Besides, the ratio $\frac{\delta}{\eta_{M}^{3}}$ blows up at least like $(1-r)^{-2}$ as $r \uparrow 1$ and condition (16) with $\eta=\eta_{M}$, which would serve to check the positivity of the c-curvature of our ellipsoid in the absence of a precise calculation of it, fails. This fact explains why, in the simply connected case, we require a condition like (7) on the data $\left(\mu_{0}, \mu_{1}\right)$.
In that example, it would be important (although quite lengthy and outside our present scope), of course, to investigate the sign of the leading blowing-up term which occurs in the expression of $\mathcal{C}\left(m_{0}, v_{0}\right)(\xi, \nu)$ with $\xi \perp \nu$ at the point $\left(m_{0}, v_{0}\right)=[(0,0,1),(0,0,-(1-\eta) \pi)]$ as $r \uparrow 1$ and $\eta \downarrow 0$. It turns out that it is positive due to a recent 2-dimensional result of [21]; in higher dimension, the analogous question is open.

Interestingly, one can do without any condition imposed on the measures provided the manifold M_{n} has nontrivial topology:

Corollary 2 Let $\left(M_{n}, g\right)$ be a compact connected n-dimensional Riemannian manifold satisfying (5) and (10). Assume $\pi_{1}\left(M_{n}\right)$ is nontrivial and δ is small enough such that:

$$
\begin{equation*}
\delta<\min \left(\frac{1}{\pi^{2} C_{2}} \eta_{M}^{4}, \frac{1}{4 \sqrt{n-1}} \eta_{M}\right) \tag{19}
\end{equation*}
$$

(where C_{2} is the constant occuring in (12)). Then the optimal transportation map G (pushing μ_{0} to μ_{1}) is smooth.
Proof. On the one hand, from the nontrivial topology and (5), we have: $D \leq \frac{\pi}{2}$ [26]. On the other hand, recalling $K \leq 1+\delta$, the Rauch comparison theorem [13, p.29][10, p.215] readily yields for the conjugate radius the lower bound:

$$
\operatorname{conj}\left(M_{n}\right) \geq \frac{\pi}{\sqrt{1+\delta}}
$$

Furthermore, since $C_{2} \geq 1$ and $\eta_{M}<1$, inequality (19) implies $\delta<\frac{1}{\pi^{2}}$ hence $\operatorname{conj}\left(M_{n}\right) \geq \pi-\frac{1}{2 \pi}$; in particular, we get:

$$
\operatorname{conj}\left(M_{n}\right)>\operatorname{diam}\left(M_{n}\right)
$$

It follows that the exponential map must be nonsingular on Cut. Besides, since $\eta_{M} \geq \frac{1}{2}$, arguing as above now with $\eta=\eta_{M}$ such that $\max \left[\eta^{4}, \eta^{3}(1-\eta)\right]=$ η^{4}, condition (19) combined with Theorem 2 implies that $\mathcal{C}\left(m_{0}, v_{0}\right)(\xi, \nu)$ is uniformly positive for all $\left(m_{0}, v_{0}\right) \in$ NoCut and all couples of unit vectors $\xi \perp \nu$ in $T_{m_{0}} M_{n}$. Corollary 2 now follows from the result (v) of Loeper-Villani [36] mentionned at the beginning of the Introduction. Alternatively, using the continuity method and fixing $t \in \mathcal{T}$, we simply note that, for each $m \in M_{n}$, the inverse of the tangent map

$$
d\left(\exp _{m}\right)\left(\operatorname{grad}_{m} u_{t}\right): T_{m} M_{n} \rightarrow T_{\exp _{m}\left(\operatorname{grad}_{m} u_{t}\right)} M_{n}
$$

has its g-norm bounded above by a constant independent of $m \in M_{n}$ and $t \in \mathcal{T}$ (equal to $\sqrt{1+(n-1) \pi^{2}}$ as shown by the inequality (71) below, read here with $\left.\left|v_{0}\right|=\frac{\pi}{2}\right)$. This key-estimate enables us to apply the Ma-Trudinger-Wang device (see Appendix B) and conclude as above.

Back to the simply connected case, Corollary 2 yields an alternative (symmetry) condition on the given measures, sufficient for the existence of a smooth optimal transport:

Corollary 3 Let $\left(\widetilde{M_{n}}, \widetilde{g}\right)$ be compact simply connected satisfying (5) and (10). Let $\left(\widetilde{\mu_{0}}, \widetilde{\mu_{1}}\right)$ be smooth positive Borelian measures on $\widetilde{M_{n}}$ of same total mass, invariant under a non-trivial subgroup of isometries Γ acting on $\widetilde{M_{n}}$ in a totally discontinuous way. Set $\left(M_{n}, g\right)$ for the quotient manifold and

$$
\eta_{M}=1-\frac{\operatorname{diam}\left(M_{n}\right)}{\pi}
$$

assume that the pinching constant δ occuring on $\widetilde{M_{n}}$ for (10) is small enough such that (19) holds. Then the optimal transportation map \widetilde{G} (pushing $\widetilde{\mu_{0}}$ to $\widetilde{\mu_{1}}$) is smooth.

Proof. Set $p: \widetilde{M_{n}} \rightarrow M_{n}$ for the natural (covering space) projection and r for its degree (fiber cardinal). From the Γ-invariance of the measures, there exists a couple of smooth positive Borelian measures $\left(\mu_{0}, \mu_{1}\right)$ on M_{n} such that $r \mu_{i}=p_{\#} \widetilde{\mu_{i}}$ for each $i \in\{0,1\}$. By naturality and under our assumption on δ, the manifold $\left(M_{n}, g\right)$ fulfills the hypothesis of Corollary 2. Accordingly, let $G=\exp _{g}\left(\operatorname{grad}_{g} u\right): M_{n} \rightarrow M_{n}$ be the smooth optimal transportation map pushing μ_{0} to μ_{1}. The map $\widetilde{G}=\exp _{\tilde{g}}\left(\operatorname{grad}_{\tilde{g}} p^{*} u\right)$ satisfies $\widetilde{G}_{\#} \widetilde{\mu_{0}}=\widetilde{\mu_{1}}$ (a general fact, see Appendix C); it is a smooth optimal transportation map for our original data, the unique one [39, 16].

1 Distance from cut-locus

This section is devoted to the proof of Theorem 1. In the next two subsections, we return to a compact connected n-dimensional Riemannian manifold (M_{n}, g) with no particular curvature assumption. We will get back to assumption (5) subsequently.

1.1 2-monotonicity of optimal maps

Recall that a map $\Phi: M_{n} \rightarrow M_{n}$ is called 2-monotonous with respect to the geodesic distance d_{g} if it satisfies the following: $\forall\left(m_{1}, m_{2}\right) \in M_{n}^{2}$,

$$
\begin{equation*}
d_{g}^{2}\left[m_{1}, \Phi\left(m_{1}\right)\right]+d_{g}^{2}\left[m_{2}, \Phi\left(m_{2}\right)\right] \leq d_{g}^{2}\left[m_{1}, \Phi\left(m_{2}\right)\right]+d_{g}^{2}\left[m_{2}, \Phi\left(m_{1}\right)\right] \tag{20}
\end{equation*}
$$

For completeness, we will prove here the continuous version of a 2-monotonicity lemma which would hold almost-everywhere under weaker assumptions - not required below - as in [19, 35]. It is a particular case of a property (called c-cyclicity) valid in a very general context [22, Theorem 2.7].

Lemma 1 For each couple of continuous positive Borelian measures (μ, ν) with same total mass, if the optimal transportation map G such that $G_{\#} \mu=\nu$ is continuous, it is 2-monotonous.

Proof. We adapt the argument of [19, Lemma 1]. Pick two distinct points $\left(m_{1}, m_{2}\right) \in M_{n}^{2}$ and fix a small real $r>0$. Set $B_{1 r}=B\left(m_{1}, r\right)$ and take $\rho>0$ such that the ball $B_{2 \rho}=B\left(m_{2}, \rho\right)$ satisfies: $\mu\left(B_{1 r}\right)=\mu\left(B_{2 \rho}\right)$. By [20, Theorem 8.6], there exists a μ-preserving diffeomorphism $\varphi_{r}: B_{1 r} \rightarrow B_{2 \rho}$, out of which we may define a μ-preserving map $\psi_{r}: M_{n} \rightarrow M_{n}$ as follows:

$$
\psi_{r}=\varphi_{r} \text { on } \overline{B_{1 r}} ; \psi_{r}=\varphi_{r}^{-1} \text { on } \overline{B_{2 \rho}} ; \psi_{r}=\text { Id elsewhere. }
$$

As in [19, p.301], write:

$$
\frac{1}{\mu\left(B_{1 r}\right)}\left[\mathcal{C}(G)-\mathcal{C}\left(G \circ \psi_{r}\right)\right] \leq 0
$$

and let $r \rightarrow 0$ to get the desired conclusion.

1.2 Big-crunch argument

Let us denote by $\mathcal{N}_{r}(S)$ the open r-neighborhood of a subset $S \subset M_{n}$, that is, the set $\left\{p \in M_{n}, \exists q \in S, d_{g}(p, q)<r\right\}$.

Proposition 1 Assume the following condition on the manifold $\left(M_{n}, g\right)$: for $s>0$ small, there exists a positive increasing function $s \mapsto f(s)$ with $\lim _{s \downarrow 0} f(s)=$ 0 such that: $\exists \eta_{0}>0, \forall \eta \in\left(0, \eta_{0}\right), \forall(m, q) \in M_{n} \times \operatorname{Cut}_{m}$,

$$
\begin{equation*}
\frac{\operatorname{Vol}\left[B(q, 4 D \sqrt{\eta}) \cap \mathcal{N}_{3 D \eta}\left(\operatorname{Cut}_{m}\right)\right]}{\operatorname{Vol}[B(q, D \sqrt{\eta})]} \leq f(\eta) \tag{21}
\end{equation*}
$$

Take $\eta_{0} \leq \frac{1}{6}$ with no loss of generality. Given two positive continuous Borelian measures $\mu_{0}=\rho_{0} \mathrm{dVol}$ and $\mu_{1}=\rho_{1} \mathrm{dVol}$ on M_{n} with same total mass and $\eta \in\left(0, \eta_{0}\right)$ such that:

$$
\frac{\max _{M_{n}} \rho_{1}}{\min _{M_{n}} \rho_{0}}<\frac{1}{f(\eta)},
$$

the optimal transportation map G pushing μ_{0} to μ_{1}, if it is continuous, satisfies:

$$
\forall m \in M_{n}, d_{g}[m, G(m)] \leq(1-\eta) D
$$

Proof. By continuity, the set $\left\{d_{g}[m, G(m)], m \in M_{n}\right\} \subset \mathbb{R}$ is connected and closed; we prove: $\max _{M_{n}} d_{g}[m, G(m)] \leq(1-\eta) D$, arguing by contradiction. Set $d=\frac{d_{g}}{D}$ and fix $m \in M_{n}$ such that $d[m, G(m)]>1-\eta$. Let $\left[m, m^{\prime}\right]$ be a maximal geodesic segment containing $G(m)$. So $m^{\prime} \in \operatorname{Cut}_{m}$ and $d\left[G(m), m^{\prime}\right]<$ η. Consider the open geodesic ball $B\left(m^{\prime}, \sqrt{\eta}\right)$. By Lemma 1 , for any $p \in$ $B\left(m^{\prime}, \sqrt{\eta}\right)$, we have:

$$
d^{2}(m, G(m))+d^{2}(p, G(p)) \leq d^{2}(m, G(p))+d^{2}(p, G(m))
$$

Using the triangle inequality, and since $\eta<\frac{1}{6}$, we get the lower bound:
$d^{2}(m, G(m))-d^{2}(p, G(m)) \geq d^{2}(m, G(m))-\left[d\left(p, m^{\prime}\right)+d\left(m^{\prime}, G(m)\right)\right]^{2} \geq(1-3 \eta)^{2}$, which, combined with the 2-monotonicity inequality, yields:

$$
(1-3 \eta)^{2}+d^{2}(p, G(p)) \leq d^{2}(m, G(p))
$$

On the one hand, since $d(m, G(p)) \leq 1$, it implies $d(p, G(p)) \leq 3 \sqrt{\eta}$, hence, by the triangle inequality: $d\left(m^{\prime}, G(p)\right)<4 \sqrt{\eta}$; on the other hand, we infer: $d(m, G(p))>1-3 \eta$. Altogether, we thus have:

$$
G(p) \in \mathcal{N}_{3 D \eta}\left(\mathrm{Cut}_{m}\right) \cap B\left(m^{\prime}, 4 D \sqrt{\eta}\right)
$$

in other words:

$$
G\left[B\left(m^{\prime}, D \sqrt{\eta}\right)\right] \subset \mathcal{N}_{3 D \eta}\left(\mathrm{Cut}_{m}\right) \cap B\left(m^{\prime}, 4 D \sqrt{\eta}\right)
$$

Since $G_{\#} \mu_{0}=\mu_{1}$, the preceding inclusion implies:

$$
\text { (22) } \min _{M_{n}} \rho_{0} \operatorname{Vol}\left[B\left(m^{\prime}, D \sqrt{\eta}\right)\right] \leq \max _{M_{n}} \rho_{1} \operatorname{Vol}\left[\mathcal{N}_{3 D \eta}\left(\operatorname{Cut}_{m}\right) \cap B\left(m^{\prime}, 4 D \sqrt{\eta}\right)\right]
$$

which contradicts the assumption.

1.3 Geometric estimates

In case M_{n} is simply connected, let us show that condition (21) holds with η reasonably small, provided the curvature of g, normalized by (5), is sufficiently pinched. We denote below by $\operatorname{inj}\left(M_{n}\right)$ (or i for short) the injectivity radius of the manifold $\left(M_{n}, g\right)$.

Proposition 2 Assume that M_{n} is simply connected satisfying (5) and:

$$
\begin{equation*}
\exists \alpha \in(0,3), K<(1+\alpha) \tag{23}
\end{equation*}
$$

Then the following pinching holds for the distance from a generic point to any point of its cut-locus:

$$
\begin{equation*}
\frac{\pi}{\sqrt{1+\alpha}} \leq \operatorname{inj}\left(M_{n}\right) \leq \operatorname{diam}\left(M_{n}\right) \leq \pi \tag{24}
\end{equation*}
$$

and, setting $\varepsilon:=1-\frac{1}{\sqrt{1+\alpha}}$, we have for each $m \in M_{n}$:

$$
\begin{equation*}
\operatorname{diam}\left(\mathrm{Cut}_{m}\right) \leq 2 \varepsilon \pi \tag{25}
\end{equation*}
$$

Moreover, for $\alpha<0.44$ (or else $\varepsilon<\frac{1}{6}$), there exists a constant $C_{1} \geq 1$ independent of $\varepsilon \in\left(0, \frac{1}{6}\right)$ such that, for each $(m, q) \in M_{n} \times \mathrm{Cut}_{m}$ and each $\eta \in\left(\varepsilon, \frac{1}{6}\right)$, condition (21) holds with $f(\eta)=C_{1} \eta^{n / 2}$.
Proof. Under condition (23), recalling (6), Klingenberg's theorem [34] implies $i \geq \frac{\pi}{\sqrt{1+\alpha}}$, proving (24).
In order to prove (25), we fix $m \in M_{n},(p, q) \in \operatorname{Cut}_{m}^{2}$ and consider the hinge $\widehat{p m q}$ forming an angle β at m. Let us consider a comparison hinge $\widehat{\bar{p} \bar{m} \bar{q}}$ in the standard unit-sphere \mathbb{S}^{n} with: $d_{g}(m, p)=d_{\mathbb{S}^{n}}(\bar{m}, \bar{p}), d_{g}(m, q)=d_{\mathbb{S}^{n}}(\bar{m}, \bar{q})$ and same angle β at \bar{m}. From (24), we have:

$$
\begin{equation*}
\forall r \in\{p, q\},(1-\varepsilon) \pi \leq d_{g}(m, r) \leq \pi \tag{26}
\end{equation*}
$$

By Toponogov's theorem [20], we infer: $d_{g}(p, q) \leq d_{\mathbb{S}^{n}}(\bar{p}, \bar{q})$. Setting \bar{m}^{\prime} for the antipodal point of \bar{m} in \mathbb{S}^{n}, the triangle inequality yields:

$$
\begin{aligned}
d_{\mathbb{S}^{n}}(\bar{p}, \bar{q}) \leq d_{\mathbb{S}^{n}}\left(\bar{p}, \bar{m}^{\prime}\right)+d_{\mathbb{S}^{n}}\left(\overline{m^{\prime}}, \bar{q}\right) & =\pi-d_{\mathbb{S}^{n}}(\bar{m}, \bar{p})+\pi-d_{\mathbb{S}^{n}}(\bar{m}, \bar{q}) \\
& \equiv \pi-d_{g}(m, p)+\pi-d_{g}(m, q)
\end{aligned}
$$

Altogether, recalling (26), we conclude: $d_{g}(p, q) \leq 2 \varepsilon \pi$, proving (25).
As for the final part of Proposition 2, given $(m, q) \in M_{n} \times \operatorname{Cut}_{m}$ and $\eta \in\left(\varepsilon, \frac{1}{6}\right)$, we note that the inequality (25) implies:

$$
\mathcal{N}_{3 D \eta}\left(\mathrm{Cut}_{m}\right) \subset B(q, 5 \pi \eta)
$$

hence:

$$
\frac{\operatorname{Vol}\left[B(q, 4 D \sqrt{\eta}) \cap \mathcal{N}_{3 D \eta}\left(\operatorname{Cut}_{m}\right)\right]}{\operatorname{Vol}[B(q, D \sqrt{\eta})]} \leq \frac{\operatorname{Vol}[B(q, 5 \pi \eta)]}{\operatorname{Vol}[B(q, D \sqrt{\eta})]} \leq C_{1} \eta^{n / 2}
$$

where C_{1} is the constant defined in Theorem 1 , by:

$$
C_{1}:=\sup _{\rho \in\left[0, \frac{1}{6}\right], q \in M_{n}} \rho^{-n / 2} \frac{\operatorname{Vol}[B(q, 5 \pi \rho)]}{\operatorname{Vol}[B(q, D \sqrt{\rho})]} .
$$

Under our curvature pinching assumption, we can estimate the constant C_{1} by means of standard volume comparison theorems. Specifically, for $\rho>0$ small enough (see (27) below), the Bishop inequality [3] (applied with (5)) yields:

$$
\operatorname{Vol}[B(q, 5 \pi \rho)] \leq \frac{2 \pi^{n / 2}}{\Gamma\left(\frac{n}{2}\right)} \int_{0}^{5 \pi \rho}(\sin t)^{n-1} d t
$$

while the Günther inequality [27] (applied with (23)) provides:

$$
\operatorname{Vol}[B(q, D \sqrt{\rho})] \geq \frac{2 \pi^{n / 2}}{\Gamma\left(\frac{n}{2}\right)} \int_{0}^{D \sqrt{\rho}}\left[\frac{\sin (\sqrt{1+\alpha} t)}{\sqrt{1+\alpha}}\right]^{n-1} d t
$$

Combining the two inequalities yields, after some calculations, the upper bound:

$$
C_{1} \leq\left(\frac{5 \pi}{D}\right)^{n} \frac{1}{(1+\alpha)^{\frac{n}{2}-1}\left[1-\left(\frac{0,04 \pi^{2}}{n+2}\right)\right]}
$$

Regarding the size of ρ in this argument, the Bishop-Günther inequalities hold on balls with radius smaller than the injectivity radius. Here, recalling (24), we require:

$$
\begin{equation*}
\max (5 \pi \rho, \pi \sqrt{\rho})<\frac{\pi}{\sqrt{1+\alpha}}, \tag{27}
\end{equation*}
$$

which, to be consistent with the condition $\eta>\varepsilon=1-\frac{1}{\sqrt{1+\alpha}}$ when $\rho=\eta$, implies for α the inequality:

$$
\max \left[5\left(1-\frac{1}{\sqrt{1+\alpha}}\right), \sqrt{1-\frac{1}{\sqrt{1+\alpha}}}\right]<\frac{1}{\sqrt{1+\alpha}}
$$

satisfied for $\alpha<0.44$. The latter combined with (27) yields $\rho<\frac{1}{6}$.
Finally, using assumption (5), a lower bound on C_{1} follows from the BishopGromov inequality $[25,12,40,42]$ which reads, for $\rho>0$ small enough:

$$
\frac{\operatorname{Vol}[B(q, 5 \pi \rho)]}{\operatorname{Vol}[B(q, D \sqrt{\rho})]} \geq \frac{\int_{0}^{5 \pi \rho}(\sin t)^{n-1} d t}{\int_{0}^{D \sqrt{\rho}}(\sin t)^{n-1} d t}
$$

and which, recalling (6), yields: $C_{1}>\frac{5^{n+1}}{8}$; in particular $C_{1}>1$ as claimed.

1.4 Completion of the proof of Theorem 1

Under the assumption made on the manifold $\left(M_{n}, g\right)$, Proposition 2 holds. Its final part ensures that assumption (21) of Proposition 1 holds provided $\eta>\varepsilon$. Applying the latter proposition with $\eta \in\left(\varepsilon, \frac{1}{6}\right)$ and with ρ_{1} replaced by ρ_{t}, we get:

$$
\forall m \in M_{n}, d_{g}\left[m, \exp \left(\operatorname{grad} u_{t}\right)(m)\right] \leq(1-\eta) D
$$

or else: $\left|\operatorname{grad} u_{t}\right| \leq(1-\eta) D$, as desired. To derive the second inequality of Theorem 1, we use the triangle inequality:

$$
d_{g}\left[\exp \left(\operatorname{grad} u_{t}\right)(m), \operatorname{Cut}_{m}\right] \geq d_{g}\left(m, \operatorname{Cut}_{m}\right)-d_{g}\left[m, \exp \left(\operatorname{grad} u_{t}\right)(m)\right]
$$

combined with the preceding one, getting:

$$
d_{g}\left[\exp \left(\operatorname{grad} u_{t}\right)(m), \mathrm{Cut}_{m}\right] \geq i-(1-\eta) D,
$$

and we finish the proof using (24).

2 c-curvature estimate

Section 2 is devoted to the proof of Theorem 2 with $v_{0} \neq 0$; here is the strategy. Fixing $\left(m_{0}, v_{0}\right) \in \mathrm{NoCut}_{\eta}$ with $v_{0} \neq 0$, and a unit vector $\xi \in T_{m_{0}} M_{n}$, we will compute the quadratic form $A\left(m_{0}, v\right)(\xi)$ for $v \in T_{m_{0}} M_{n}$ close to v_{0} (Section 2.2), then differentiate it twice with respect to v at $v=v_{0}$. Unless the curvature $K \equiv 1$, the expression of $A\left(m_{0}, v\right)(\xi)$ is not an explicit function of v; it is obtained from the value taken at time 1 by the solutions produced by initial data variation along the geodesic which starts from the point m_{0} with the velocity v. So we will have to proceed stepwise, viewing the initial data (m, v) as parameters
in the Cauchy problem for the geodesic equation; we will differentiate that problem with respect to those parameters, three times successively (Sections 2.3 to 2.5). To treat the resulting expressions at each step, we will view them as perturbations of the corresponding ones in the spherical case. Finally, putting intermediate quantities together, we will write an expansion of the c-curvature (8) starting out with the spherical expression, and estimate the order of the next term, adjusting the size of the curvature deformation parameter δ and of the, so to say, distance from conjugate-locus parameter η_{0} (section 2.6).

2.1 Riemannian tools in Fermi charts

For completeness, let us recall auxiliary tools from Riemannian geometry [2, $24,40,42,43]$, thus letting again provisionally $\left(M_{n}, g\right)$ be a compact connected n-dimensional Riemannian manifold with no particular curvature assumption. Our sign convention for the Riemann curvature tensor is:

$$
\operatorname{Riem}(U, V)=\left[\nabla_{U}, \nabla_{V}\right]-\nabla_{[U, V]}
$$

where $[.,$.$] stands successively for a covariant derivatives commutator and for$ the Lie bracket of the vector fields U, V. In any local chart $\left(x^{1}, \ldots, x^{n}\right)$, setting $\partial_{i}=\frac{\partial}{\partial x^{i}}$, the i-th component $R_{j k l}^{i}$ of the local vector field $\left[\operatorname{Riem}\left(\partial_{k}, \partial_{l}\right) \partial_{j}\right]$ is thus given by:

$$
R_{j k l}^{i}=\partial_{k} \Gamma_{j l}^{i}-\partial_{l} \Gamma_{j k}^{i}+\Gamma_{k s}^{i} \Gamma_{j l}^{s}-\Gamma_{l s}^{i} \Gamma_{j k}^{s}
$$

where the $\Gamma_{j k}^{i}$'s stand for the Christoffel symbols of the Levi-Civita connection ∇, equal to:

$$
\Gamma_{j k}^{i}=\frac{1}{2} g^{i l}\left(\partial_{k} g_{j l}+\partial_{j} g_{k l}-\partial_{l} g_{j k}\right), \text { with } g^{i l} g_{l j} \equiv \delta_{j}^{i} .
$$

The sectional curvature tensor is defined by:

$$
\operatorname{Sect}(U, V, W, Z)=g[U, \operatorname{Riem}(W, Z) V]
$$

and its components, accordingly by $R_{i j k l}=g_{i s} R_{j k l}^{s}$.
Definition 1 (Fermi chart) Given $\left(m_{0}, v_{0}\right) \in$ NoCut, with $v_{0} \neq 0$, and an orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$ of $T_{m_{0}} M_{n}$ with $e_{n}=\frac{v_{0}}{\left|v_{0}\right|}$, the associated Fermi chart $x=\left(x^{1}, \ldots, x^{n}\right)$ along the normalized geodesic:

$$
s \in\left[0,\left|v_{0}\right|\right] \rightarrow c(s):=\exp _{m_{0}}\left(s e_{n}\right)
$$

(the latter will be called 'the axis' of the chart, for short) is defined, after parallel transport of the orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$ along the axis, by:

$$
x(m)=\left(x^{1}, \ldots, x^{n}\right) \Longleftrightarrow m=\mathcal{F}(x):=\exp _{c\left(x^{n}\right)}\left(\sum_{\alpha=1}^{n-1} x^{\alpha} e_{\alpha}\right)
$$

The differential of \mathcal{F} on $\left\{x \in \mathbb{R}^{n}, x^{1}=\ldots=x^{n-1}=0,0 \leq x^{n} \leq\left|v_{0}\right|\right\}$ is readily found equal to the identity; so, indeed, with $\left(m_{0}, v_{0}\right) \in$ NoCut, there exists a neighborhood of the axis on which the map \mathcal{F} defines a chart.

Note that, in this definition, we keep the flexibility of rotating all basis vectors at m_{0} but the last one e_{n}.
Along the axis, the geodesic motion: $t \in[0,1] \rightarrow \exp _{m_{0}}\left(t v_{0}\right)$ simply reads: $t \mapsto\left(0, \ldots, 0, t\left|v_{0}\right|\right)$, and the chart is normal (in particular, Christoffel symbols vanish), meaning:

$$
\forall x^{n} \in\left[0,\left|v_{0}\right|\right], \forall i, j, k \in\{1, \ldots, n\}, g_{i j}\left(0, x^{n}\right)=\delta_{i j}, \partial_{k} g_{i j}\left(0, x^{n}\right)=0
$$

(see e.g. [2, 40]). We will require higher order non-intrinsic quantities which become of geometrical significance on the axis; specifically, letting latin indices range in $\{1, \ldots, n\}$, greek indices in $\{1, \ldots, n-1\}$, we will prove the following explicit formulas (of independent interest):

Lemma 2 The following identities hold on the axis:

$$
\begin{align*}
\partial_{\alpha \beta} g_{n n}=-2 R_{n \alpha n \beta} & , \partial_{\alpha \beta} g_{n \gamma}=-\frac{2}{3}\left(R_{\gamma \alpha n \beta}+R_{\gamma \beta n \alpha}\right) \tag{28}\\
\partial_{\alpha} \Gamma_{j n}^{i}=R_{j \alpha n}^{i} & , \partial_{\alpha} \Gamma_{\beta \gamma}^{i}=\frac{1}{3}\left(R_{\beta \alpha \gamma}^{i}+R_{\gamma \alpha \beta}^{i}\right) ; \tag{29}\\
\partial_{\alpha \beta} \Gamma_{n n}^{i} & =\nabla_{\alpha} R_{n \beta n}^{i}+\nabla_{n} R_{\beta \alpha n}^{i} ; \tag{30}\\
\partial_{\alpha \beta} \Gamma_{n \gamma}^{n} & =\frac{1}{3} \nabla_{n}\left(R_{\beta \alpha \gamma}^{n}-R_{\gamma \beta \alpha}^{n}\right)-\nabla_{\alpha} R_{\gamma n \beta}^{n} ; \tag{31}\\
\partial_{\alpha \beta} \Gamma_{n \gamma}^{\lambda} & =\frac{1}{2}\left(\nabla_{\alpha} R_{\gamma \beta n}^{\lambda}+\nabla_{\beta} R_{\gamma \alpha n}^{\lambda}\right) \tag{32}\\
& +\frac{1}{6} \nabla_{n}\left(R_{\alpha \beta \gamma}^{\lambda}+R_{\beta \alpha \gamma}^{\lambda}\right)
\end{align*}
$$

Moreover, applying m times ∂_{n} (axis-derivative) to any of the preceding nonintrinsic left-hand quantities, yields on the axis the m-th covariant derivative ∇_{n}^{m} of the corresponding intrinsic right-hand quantity. For instance:

$$
\partial_{n}\left(\partial_{\alpha} \Gamma_{j n}^{i}\right)=\nabla_{n} R_{j k n}^{i}
$$

A further formula (the one for $\partial_{\alpha \beta} \Gamma_{\lambda \gamma}^{n}$), only required to implement the Ma-Trudinger-Wang estimate, will be stated and established in Appendix B.

Proof. The first formula of line (28) is routine from the definition. The second one is not; it is obtained by combining the first Bianchi identity with the following Fermi analogue (read with $i=n$) of a key-identity first proved in geodesic polar coordinates by Riemann, namely:

$$
\begin{equation*}
\sum_{(\alpha, \beta, \gamma)} \partial_{\alpha \beta} g_{i \gamma}=0 \tag{33}
\end{equation*}
$$

where $\sum_{(\alpha, \beta, \gamma)}$ means circular summation on (α, β, γ). The proof of (33) is a straightforward adaptation of the one given in [43, chap.4, prop.4] (see Appendix B, proof of Lemma 16); we will thus omit it. Here, for later use, let us pause and derive yet another identity of the type (33) known to Riemann as well, namely:

$$
\begin{equation*}
\sum_{(\alpha, \beta, \gamma)} \partial_{\mu \alpha} g_{\beta \gamma}=0 \tag{34}
\end{equation*}
$$

We prove it by applying (33) to anyone of its summands, say to $\partial_{\mu \gamma} g_{\alpha \beta}$, which makes the preceding circular sum equal to:

$$
\partial_{\mu \alpha} g_{\beta \gamma}-\partial_{\beta \gamma} g_{\mu \alpha}
$$

By symmetry, it is thus also equal to:

$$
\frac{1}{3} \sum_{(\alpha, \beta, \gamma)}\left(\partial_{\mu \alpha} g_{\beta \gamma}-\partial_{\beta \gamma} g_{\mu \alpha}\right)
$$

Now (33) yields equality to $\frac{1}{3} \sum_{(\alpha, \beta, \gamma)} \partial_{\mu \alpha} g_{\beta \gamma}$ proving the desired vanishing. As a by-product of that argument, we get on the axis the further identity:

$$
\begin{equation*}
\forall \alpha, \beta, \gamma, \mu \in\{1, \ldots, n-1\}, \partial_{\mu \alpha} g_{\beta \gamma}=\partial_{\beta \gamma} g_{\mu \alpha} \tag{35}
\end{equation*}
$$

Back to the proof of Lemma 2, the first formula of line (29) can be routinely verified from the local formula defining the curvature. As regards the second formula, first with $i=n$, direct calculation provides:

$$
\partial_{\alpha} \Gamma_{\beta \gamma}^{n}=\frac{1}{2}\left(\partial_{\alpha \beta} g_{n \gamma}+\partial_{\alpha \gamma} g_{n \beta}\right)
$$

and the desired formula follows from the second one of line (28). Still for the second formula of line (29), now with $i=\lambda$, the definition of the curvature yields $\partial_{\alpha} \Gamma_{\beta \gamma}^{\lambda}=R_{\beta \alpha \gamma}^{\lambda}+\partial_{\gamma} \Gamma_{\alpha \beta}^{\lambda}=R_{\gamma \alpha \beta}^{\lambda}+\partial_{\beta} \Gamma_{\alpha \gamma}^{\lambda}$, hence also:

$$
\partial_{\alpha} \Gamma_{\beta \gamma}^{\lambda}=\frac{1}{3}\left(R_{\beta \alpha \gamma}^{\lambda}+R_{\gamma \alpha \beta}^{\lambda}+\sum_{(\alpha, \beta, \gamma)} \partial_{\alpha} \Gamma_{\beta \gamma}^{\lambda}\right)
$$

From the latter formula we are done: indeed, the mere definition of the Christoffel symbols provides the equality

$$
\sum_{(\alpha, \beta, \gamma)} \partial_{\alpha} \Gamma_{\beta \gamma}^{\lambda}=\frac{1}{2} \sum_{(\alpha, \beta, \gamma)}\left(\partial_{\alpha \beta} g_{\lambda \gamma}+\partial_{\alpha \gamma} g_{\lambda \beta}-\partial_{\alpha \lambda} g_{\beta \gamma}\right)
$$

the right-hand side of which vanishes by (33) and (34).
The formula of line (30) follows from the first one of line (29) by applying ∂_{α} to the local expression defining $R_{n \beta n}^{i}$ and by using the final (obvious) formula of the lemma.
As regards (31), brute calculation yields:

$$
\partial_{\alpha \beta} \Gamma_{n \gamma}^{n}=\frac{1}{2} \partial_{\alpha \beta \gamma} g_{n n}, \partial_{\alpha \beta} \Gamma_{n n}^{\gamma}=\frac{1}{2}\left(2 \partial_{n \alpha \beta} g_{n \gamma}-\partial_{\alpha \beta \gamma} g_{n n}\right) .
$$

Combining these equalities, we infer: $\partial_{\alpha \beta} \Gamma_{n \gamma}^{n}=\partial_{n}\left(\partial_{\alpha \beta} g_{n \gamma}\right)-\partial_{\alpha \beta} \Gamma_{n n}^{\gamma}$, and we conclude by using (30) and the second formula of (28).
For (32), we first compute on the axis: $\nabla_{\alpha} R_{\gamma \beta n}^{\lambda}=\partial_{\alpha \beta} \Gamma_{n \gamma}^{\lambda}-\partial_{n \alpha} \Gamma_{\gamma \beta}^{\lambda}$ and infer, by symmetry with respect to (α, β), the equality:

$$
\partial_{\alpha \beta} \Gamma_{n \gamma}^{\lambda}=\frac{1}{2}\left[\nabla_{\alpha} R_{\gamma \beta n}^{\lambda}+\nabla_{\beta} R_{\gamma \alpha n}^{\lambda}+\partial_{n}\left(\partial_{\alpha} \Gamma_{\gamma \beta}^{\lambda}+\partial_{\beta} \Gamma_{\gamma \alpha}^{\lambda}\right)\right]
$$

But on the axis, using (33), we readily find: $\left(\partial_{\alpha} \Gamma_{\gamma \beta}^{\lambda}+\partial_{\beta} \Gamma_{\gamma \alpha}^{\lambda}\right)=\partial_{\alpha \beta} g_{\gamma \lambda}$ hence, circular summing on (α, β, γ) the second last equality and using again (33) yields:

$$
\begin{equation*}
\sum_{(\alpha, \beta, \gamma)} \partial_{\alpha \beta} \Gamma_{n \gamma}^{\lambda}=\sum_{(\alpha, \beta, \gamma)} \nabla_{\alpha} R_{\gamma \beta n}^{\lambda} . \tag{36}
\end{equation*}
$$

Moreover, from the above equality we also get:

$$
\begin{aligned}
\partial_{\alpha \beta} \Gamma_{n \gamma}^{\lambda}-\partial_{\beta \gamma} \Gamma_{n \alpha}^{\lambda} & =\frac{1}{2}\left[\nabla_{\alpha} R_{\gamma \beta n}^{\lambda}+\nabla_{\beta} R_{\gamma \alpha n}^{\lambda}\right. \\
& \left.-\nabla_{\beta} R_{\alpha \gamma n}^{\lambda}-\nabla_{\gamma} R_{\alpha \beta n}^{\lambda}+\partial_{n}\left(\partial_{\alpha} \Gamma_{\gamma \beta}^{\lambda}-\partial_{\gamma} \Gamma_{\alpha \beta}^{\lambda}\right)\right]
\end{aligned}
$$

and we recognize that the final right-hand parenthesis is nothing but $\nabla_{n} R_{\beta \alpha \gamma}^{\lambda}$. Combining this with a similar calculation for $\left(\partial_{\alpha \beta} \Gamma_{n \gamma}^{\lambda}-\partial_{\alpha \gamma} \Gamma_{n \beta}^{\lambda}\right)$, we find for the left-hand side of (36):
$\sum_{(\alpha, \beta, \gamma)} \partial_{\alpha \beta} \Gamma_{n \gamma}^{\lambda}=3 \partial_{\alpha \beta} \Gamma_{n \gamma}^{\lambda}+$ first covariant derivatives of the Riemann tensor, specifically:

$$
\begin{aligned}
& +\frac{1}{2}\left[\nabla_{\beta}\left(R_{\alpha \gamma n}^{\lambda}-R_{\gamma \alpha n}^{\lambda}\right)+\nabla_{\gamma} R_{\alpha \beta n}^{\lambda}-\nabla_{\alpha} R_{\gamma \beta n}^{\lambda}-\nabla_{n} R_{\beta \alpha \gamma}^{\lambda}\right. \\
& \left.\quad+\nabla_{\alpha}\left(R_{\beta \gamma n}^{\lambda}-R_{\gamma \beta n}^{\lambda}\right)+\nabla_{\gamma} R_{\beta \alpha n}^{\lambda}-\nabla_{\beta} R_{\gamma \alpha n}^{\lambda}-\nabla_{n} R_{\alpha \beta \gamma}^{\lambda}\right]
\end{aligned}
$$

From the latter equality combined with (36), we obtain:

$$
\begin{aligned}
\partial_{\alpha \beta} \Gamma_{n \gamma}^{\lambda} & =\frac{1}{3}\left(\sum_{(\alpha, \beta, \gamma)} \nabla_{\alpha} R_{\gamma \beta n}^{\lambda}\right)-\frac{1}{6}\left[\nabla_{\beta}\left(R_{\alpha \gamma n}^{\lambda}-R_{\gamma \alpha n}^{\lambda}\right)+\nabla_{\gamma} R_{\alpha \beta n}^{\lambda}-\nabla_{\alpha} R_{\gamma \beta n}^{\lambda}\right. \\
& \left.-\nabla_{n} R_{\beta \alpha \gamma}^{\lambda}+\nabla_{\alpha}\left(R_{\beta \gamma n}^{\lambda}-R_{\gamma \beta n}^{\lambda}\right)+\nabla_{\gamma} R_{\beta \alpha n}^{\lambda}-\nabla_{\beta} R_{\gamma \alpha n}^{\lambda}-\nabla_{n} R_{\alpha \beta \gamma}^{\lambda}\right] \\
& =\frac{1}{3}\left(\sum_{(\alpha, \beta, \gamma)} \nabla_{\alpha} R_{\gamma \beta n}^{\lambda}\right)-\frac{1}{6}\left[\nabla_{\beta}\left(R_{\alpha \gamma n}^{\lambda}-2 R_{\gamma \alpha n}^{\lambda}\right)+\nabla_{\gamma}\left(R_{\alpha \beta n}^{\lambda}+R_{\beta \alpha n}^{\lambda}\right)\right. \\
& \left.+\nabla_{\alpha}\left(R_{\beta \gamma n}^{\lambda}-2 R_{\gamma \beta n}^{\lambda}\right)-\nabla_{n}\left(R_{\alpha \beta \gamma}^{\lambda}+R_{\beta \alpha \gamma}^{\lambda}\right)\right] \\
& =\frac{1}{2}\left(\nabla_{\alpha} R_{\gamma \beta n}^{\lambda}+\nabla_{\beta} R_{\gamma \alpha n}^{\lambda}\right)+\frac{1}{6} \nabla_{n}\left(R_{\alpha \beta \gamma}^{\lambda}+R_{\beta \alpha \gamma}^{\lambda}\right) \\
& +\frac{1}{6}\left[\nabla_{\alpha}\left(R_{\gamma \beta n}^{\lambda}-R_{\beta \gamma n}^{\lambda}\right)-2 \nabla_{\beta}\left(R_{\alpha \gamma n}^{\lambda}-R_{\gamma \alpha n}^{\lambda}\right)+\nabla_{\gamma}\left(R_{\beta \alpha n}^{\lambda}-R_{\alpha \beta n}^{\lambda}\right)\right] .
\end{aligned}
$$

By the first Bianchi identity, we have: $\nabla_{\alpha}\left(R_{\gamma \beta n}^{\lambda}-R_{\beta \gamma n}^{\lambda}\right)=\nabla_{\alpha} R_{n \beta \gamma}^{\lambda}$ and similarly for the two other differences occuring in the last brackets. Combining this with the second Bianchi identity now routinely yields formula (32). Lemma 2 is proved.

Finally, we will require yet another set of identities, involving third derivatives of the Christoffel symbols. Unlike the preceding ones, they will hold only modulo addition of a linear combination of terms, each of which being a component (in the Fermi chart, on the axis) of one of the following three tensors:

$$
\left(\operatorname{Riem}-\operatorname{Cur}_{1}\right), \nabla\left(\operatorname{Riem}-\operatorname{Cur}_{1}\right) \equiv \nabla \operatorname{Riem}, \nabla^{2}\left(\operatorname{Riem}-\operatorname{Cur}_{1}\right) \equiv \nabla^{2} \operatorname{Riem},
$$

and the absolute value of each coefficient of the linear combination being bounded above by some constant under control (thus independent of (m_{0}, v_{0}) NoCut and of $\delta>0$). In the sequel, an equality modulo the addition of such a linear combination will be denoted by " \simeq ". Recalling (10), if two scalars A and B satisfy $\mathrm{A} \simeq \mathrm{B}$, there exists a constant under control c such that $|\mathrm{A}-\mathrm{B}| \leq c \delta$. This is exactly the type of inequality allowed for proving Theorem 2. The proof of the next lemma will illustrate the use of these notations.

Lemma 3 The following 'equalities' hold on the axis:

$$
\partial_{\alpha \beta \gamma} \Gamma_{n n}^{n} \simeq 0, \partial_{\alpha \beta \gamma} \Gamma_{n n}^{\lambda} \simeq-\frac{4}{3} \sum_{(\alpha, \beta, \gamma)} \delta_{\lambda \alpha} \delta_{\gamma \beta}
$$

Proof. Brute calculation yields on the axis:

$$
\nabla_{\alpha \beta} R_{n \gamma n}^{n}=\partial_{\alpha \beta} R_{n \gamma n}^{n}+\left(\partial_{\alpha} \Gamma_{\beta \lambda}^{n}\right) R_{n \gamma n}^{\lambda}-\left(\partial_{\alpha} \Gamma_{\beta n}^{\lambda}\right) R_{\lambda \gamma n}^{n}
$$

Using (29) and the identity:

$$
\begin{align*}
\text { Riem } \otimes \text { Riem } & \equiv \operatorname{Riem} \otimes\left(\text { Riem }-\operatorname{Cur}_{1}\right) \tag{37}\\
& +\left(\text { Riem }-\operatorname{Cur}_{1}\right) \otimes \operatorname{Cur}_{1}+\operatorname{Cur}_{1} \otimes \operatorname{Cur}_{1},
\end{align*}
$$

we readily infer: $\partial_{\alpha \beta} R_{n \gamma n}^{n} \simeq 0$. Calculation again yields:

$$
\begin{aligned}
\partial_{\alpha \beta} R_{n \gamma n}^{n}=\partial_{\alpha \beta \gamma} \Gamma_{n n}^{n}-\partial_{n}\left(\partial_{\alpha \beta} \Gamma_{n \gamma}^{n}\right) & +\partial_{\alpha} \Gamma_{n n}^{j} \partial_{\beta} \Gamma_{\gamma j}^{n}+\partial_{\alpha} \Gamma_{\gamma j}^{n} \partial_{\beta} \Gamma_{n n}^{j} \\
& -\partial_{\alpha} \Gamma_{\gamma n}^{j} \partial_{\beta} \Gamma_{n j}^{n}-\partial_{\alpha} \Gamma_{n j}^{n} \partial_{\beta} \Gamma_{\gamma n}^{j} .
\end{aligned}
$$

Now we use (31), and (29) combined with (37), to obtain:

$$
\partial_{\alpha \beta} R_{n \gamma n}^{n} \simeq \partial_{\alpha \beta \gamma} \Gamma_{n n}^{n}
$$

thus proving the first formula.
For the second formula, we first observe the 'equality':

$$
\nabla_{\alpha \beta}\left(\operatorname{Riem}-\operatorname{Cur}_{1}\right)_{n \gamma n}^{\lambda} \simeq \partial_{\alpha \beta}\left(\operatorname{Riem}-\operatorname{Cur}_{1}\right)_{n \gamma n}^{\lambda}
$$

and compute each term of the right-hand side. Using (28) and Riem $\simeq \mathrm{Cur}_{1}$, we find:

$$
\begin{equation*}
\partial_{\alpha \beta}\left(\operatorname{Cur}_{1}\right)_{n \gamma n}^{\lambda}=\delta_{\gamma}^{\lambda} \partial_{\alpha \beta} g_{n n} \simeq-2 \delta_{\lambda \gamma} \delta_{\alpha \beta} \tag{38}
\end{equation*}
$$

Brute calculation yields for the other term:

$$
\begin{align*}
\partial_{\alpha \beta} R_{n \gamma n}^{\lambda}=\partial_{\alpha \beta \gamma} \Gamma_{n n}^{\lambda}-\partial_{n}\left(\partial_{\alpha \beta} \Gamma_{n \gamma}^{\lambda}\right) & +\partial_{\alpha} \Gamma_{n n}^{j} \partial_{\beta} \Gamma_{\gamma j}^{\lambda}+\partial_{\alpha} \Gamma_{\gamma j}^{\lambda} \partial_{\beta} \Gamma_{n n}^{j} \\
& -\partial_{\alpha} \Gamma_{\gamma n}^{j} \partial_{\beta} \Gamma_{n j}^{\lambda}-\partial_{\alpha} \Gamma_{n j}^{\lambda} \partial_{\beta} \Gamma_{\gamma n}^{j} . \tag{39}
\end{align*}
$$

Combining (29) with (37), we find for the last two terms of the right-hand side:

$$
-\left(\partial_{\alpha} \Gamma_{\gamma n}^{j} \partial_{\beta} \Gamma_{n j}^{\lambda}+\partial_{\alpha} \Gamma_{n j}^{\lambda} \partial_{\beta} \Gamma_{\gamma n}^{j}\right) \simeq\left(\delta_{\lambda \alpha} \delta_{\gamma \beta}+\delta_{\lambda \beta} \delta_{\gamma \alpha}\right)
$$

To cope with the two preceding terms, we apply to (39) the circular sum over ($\alpha, \beta, \gamma)$; by symmetry, the last 'equality' and (38) yield, recalling (32):

$$
\partial_{\alpha \beta \gamma} \Gamma_{n n}^{\lambda} \simeq-\frac{4}{3} \sum_{(\alpha, \beta, \gamma)}\left(\delta_{\lambda \alpha} \delta_{\gamma \beta}+\frac{1}{4} \partial_{\alpha} \Gamma_{n n}^{j} \partial_{\beta} \Gamma_{\gamma j}^{\lambda}+\frac{1}{4} \partial_{\alpha} \Gamma_{\gamma j}^{\lambda} \partial_{\beta} \Gamma_{n n}^{j}\right)
$$

To treat the last two terms, noting the 'equality' $\partial_{\alpha} \Gamma_{n n}^{j} \simeq \delta_{\alpha j}$ which follows from (29), we are lead to study the circular sum: $\sum_{(\alpha, \beta, \gamma)}\left(\partial_{\beta} \Gamma_{\gamma \alpha}^{\lambda}+\partial_{\alpha} \Gamma_{\gamma \beta}^{\lambda}\right)$. Brute calculation on the axis yields:

$$
\partial_{\beta} \Gamma_{\gamma \alpha}^{\lambda}+\partial_{\alpha} \Gamma_{\gamma \beta}^{\lambda}=-\frac{1}{2}\left(\partial_{\beta \mu} g_{\alpha \gamma}+\partial_{\alpha \mu} g_{\beta \gamma}-\partial_{\alpha \beta} g_{\mu \gamma}\right),
$$

so, by (33), circular summation cancels the last term of the latter right-hand side and we readily find:

$$
\sum_{(\alpha, \beta, \gamma)}\left(\partial_{\beta} \Gamma_{\gamma \alpha}^{\lambda}+\partial_{\alpha} \Gamma_{\gamma \beta}^{\lambda}\right)=-\sum_{(\alpha, \beta, \gamma)} \partial_{\alpha \mu} g_{\beta \gamma}
$$

which vanishes by (34). Lemma 3 is proved.

2.2 Hessian of the squared distance from a point

Let us fix a point $m_{0} \in M_{n}$ and a normal chart $x=\left(x^{1}, \ldots, x^{n}\right)$ centered at m_{0}. For an arbitrary geodesic segment $\left[m, \exp _{m}(v)\right]$ contained in the domain of our chart, with $(m, v) \in$ NoCut, it will be convenient to stick to a normalized 'time' parameter $t \in[0,1]$. We will set $\left(v^{1}, \ldots, v^{n}\right)$ for the fiber coordinates of the chart of $T M_{n}$ naturally associated to the chart x, and:

$$
X=X\left(x^{1}, \ldots, x^{n}, v^{1}, \ldots, v^{n}, t\right):=x \circ\left[\exp _{m}(t v)\right]=:\left(X^{1}, \ldots, X^{n}\right)
$$

thus with $v=v^{i} \partial_{i}$. To compute the local expression $A(x, v)$ of the quadratic form defined by (9) at $x=0$, we start from the well-known identity [29, p.156]:

$$
\begin{equation*}
p_{2} \equiv \exp _{p_{1}}\left[-\operatorname{grad}_{p_{1}} c\left(p_{1}, p_{2}\right)\right] \tag{40}
\end{equation*}
$$

valid whenever $\left(p_{1}, p_{2}\right) \in M_{n}^{2}$ are not cut-points of each other. Taking the points p_{a} 's lying in the domain of our chart and setting $x_{a}=x\left(p_{a}\right)$, we differentiate (40) with respect to the coordinates x_{1}^{j} 's at $x_{1}=0$, getting for $X\left(x_{1}, v, t\right)$ at $x_{1}=0, t=1$ and at $v=v^{i} \partial_{i}$ given by $\exp _{m_{0}}(v)=p_{2}$, the following identity:

$$
0 \equiv \frac{\partial X^{i}}{\partial x_{1}^{j}}(0, v, 1)-\sum_{k=1}^{n} \frac{\partial X^{i}}{\partial v^{k}}(0, v, 1) \frac{\partial^{2} c}{\partial x_{1}^{j} \partial x_{1}^{k}}[0, X(0, v, 1)] .
$$

We may thus write, in matrix form (and dropping the subscript of x_{1}):

$$
\begin{equation*}
A(0, v) \equiv\left[\frac{\partial X}{\partial v}(0, v, 1)\right]^{-1}\left[\frac{\partial X}{\partial x}(0, v, 1)\right] . \tag{41}
\end{equation*}
$$

This is the fundamental formula to be used for the calculation at m_{0} of the c curvature (8). It leads us to compute the matrix coefficients of $\left[\frac{\partial X}{\partial x}(x, v, t)\right]$ and $\left[\frac{\partial X}{\partial v}(x, v, t)\right]$ in the next section, then the first and second partial derivatives of $\left[\frac{\partial X}{\partial x}(0, v, t)\right]$ and $\left[\frac{\partial X}{\partial v}(0, v, t)\right]$ with respect to the fiber variable v respectively in Sections 2.4 and 2.5.

2.3 First derivatives of geodesic motion

Preliminary bounds.

In this section and the next two, we will proceed stepwise, deriving first a bound under control on the g-norms of the x and v derivatives of X and $\dot{X}=\frac{d X}{d t}$ under study calculated at $\left(0, v_{0}, t\right)$. Then we will compare these derivatives with the ones which would occur in the constant curvature 1 case and prove that the g-norms of the differences between the two are $\simeq 0$.
The strategy to get a bound under control on derivatives of X and \dot{X} with respect to the initial conditions (x, v), calculated at $\left(0, v_{0}, t\right)$, goes as follows. Any such derivative of X, denote it by $J(t)$, will satisfy constant initial conditions and solve the Jacobi equation along the geodesic γ_{0} (which reads $t \mapsto X\left(0, v_{0}, t\right)$), possibly in non-homogeneous form, which we write here (with standard notations specified below):

$$
\ddot{J}+\operatorname{Riem}\left(J, \dot{\gamma}_{0}\right) \dot{\gamma}_{0}=P,
$$

where the right-hand side P will be a polynomial expression in the (previously kept under control) lower order derivatives of X and \dot{X}, with only local Riemannian invariants as coefficients. Granted this, the estimation scheme is standard; let us sketch it here once for all.

Standard estimation scheme. Transform the Jacobi equation into a first order system (S) bearing on the auxiliary variable:

$$
K:=\binom{J}{\dot{J}}
$$

and compute $\frac{d}{d t}$ of the squared norm $|K|^{2}=|J|^{2}+|\dot{J}|^{2}$. Using the system (S) combined with the triangle and the Schwarz inequalities, get a constant under control C such that:

$$
\frac{d|K|^{2}}{d t} \leq C\left(1+|K|^{2}\right)
$$

and conclude: $1+|K|^{2}(t) \leq\left[1+|K|^{2}(0)\right] e^{C t}$.

First derivatives calculations

Henceforth, we fix $\left(m_{0}, v_{0}\right) \in$ NoCut with $v_{0} \neq 0$ (unless otherwise specified) and an associated Fermi chart. The n-tuple $X=X(x, v, t)$ is the solution of the following Cauchy problem:

$$
\begin{equation*}
\ddot{X}^{i}+\Gamma_{j k}^{i}(X) \dot{X}^{j} \dot{X}^{k}=0, X^{i}(0)=x^{i}, \quad \dot{X}^{i}(0)=v^{i} . \tag{42}
\end{equation*}
$$

dots standing for time derivatives. By differentiating that problem with respect to the parameters x^{a} or v^{a}, we get the following equation satisfied by J_{a} (equal to either $\partial_{x^{a}} X$ or $\left.\partial_{v^{a}} X\right)$:

$$
\begin{equation*}
\ddot{J}_{a}^{i}+\partial_{l} \Gamma_{j k}^{i}(X) \dot{X}^{j} \dot{X}^{k} J_{a}^{l}+2 \Gamma_{j k}^{i}(X) \dot{X}^{j} \dot{J}_{a}^{k}=0, \tag{43}
\end{equation*}
$$

with the correspondingly differentiated initial conditions, namely either:

$$
\begin{equation*}
\partial_{x^{a}} X^{i}(0)=\delta_{a}^{i}, \partial_{x^{a}} \dot{X}^{i}(0)=0 \tag{44}
\end{equation*}
$$

or:

$$
\begin{equation*}
\partial_{v^{a}} X^{i}(0)=0, \partial_{v^{a}} \dot{X}^{i}(0)=\delta_{a}^{i} . \tag{45}
\end{equation*}
$$

On the axis, setting for short $X_{0}(t):=X\left(0, v_{0}, t\right)$ and recalling (29), equation (43) becomes:

$$
\begin{equation*}
\ddot{J_{a}^{i}}+\left|v_{0}\right|^{2} R_{n \alpha n}^{i}\left(X_{0}\right) J_{a}^{\alpha}=0 \tag{46}
\end{equation*}
$$

or else, in coordinate-free form, setting $\gamma_{0}(t):=\exp _{m_{0}}\left(t v_{0}\right)\left(\right.$ so $\left.X_{0} \equiv x \circ \gamma_{0}\right)$):

$$
\ddot{J}_{a}+\operatorname{Riem}\left(J_{a}, \dot{\gamma}_{0}\right) \dot{\gamma}_{0}=0
$$

we recognize the Jacobi equation ${ }^{1}$. For later use, let us record a basic fact ($c f$. supra) from second order differential equations theory:

Lemma 4 There exists a constant $c_{1}>0$ under control such that, for each $t \in[0,1]$, the following g-norms:

$$
\left|\partial_{x} X\left(0, v_{0}, t\right)\right|,\left|\partial_{x} \dot{X}\left(0, v_{0}, t\right)\right|,\left|\partial_{v} X\left(0, v_{0}, t\right)\right|,\left|\partial_{v} \dot{X}\left(0, v_{0}, t\right)\right|,
$$

are all bounded above by c_{1}; here, the g-norm of $\partial_{x} X(x, v, t)$ is defined by:

$$
\left|\partial_{x} X(x, v, t)\right|^{2}=g_{i j}[X(x, v, t)] g^{k l}[X(x, v, t)] \frac{\partial X^{i}}{\partial x^{k}}(x, v, t) \frac{\partial X^{j}}{\partial x^{l}}(x, v, t)
$$

and similarly for $\left|\partial_{x} \dot{X}(x, v, t)\right|,\left|\partial_{v} X(x, v, t)\right|,\left|\partial_{v} \dot{X}(x, v, t)\right|$.
Let us rewrite the Jacobi equation in the perturbative form:

$$
\ddot{J}_{a}+\operatorname{Cur}_{1}\left(J_{a}, \dot{\gamma}_{0}\right) \dot{\gamma}_{0}=\left(\operatorname{Cur}_{1}-\operatorname{Riem}\right)\left(J_{a}, \dot{\gamma}_{0}\right) \dot{\gamma}_{0}
$$

(where it is understood, here and below, that the tensors Cur ${ }_{1}$ and Riem are considered at γ_{0}) which will enable us to use assumption (10). The preceding equation reads $J_{a}^{n}=0$ and:

$$
\begin{equation*}
\forall \alpha<n, \ddot{J}_{a}^{\alpha}+\left|v_{0}\right|^{2} J_{a}^{\alpha}=\left|v_{0}\right|^{2}\left(\operatorname{Cur}_{1}-\operatorname{Riem}\right)_{n \gamma n}^{\alpha} J_{a}^{\gamma} . \tag{47}
\end{equation*}
$$

We will require the notation $\overline{\partial_{x} X_{0}}(t)$ (resp. $\overline{\partial_{v} X_{0}}(t)$) for the solution \bar{J}_{a} of the, so to say, unperturbed equation

$$
\ddot{\bar{J}}_{a}+\operatorname{Cur}_{1}\left(\bar{J}_{a}, \dot{X}_{0}\right) \dot{X}_{0}=0
$$

satisfying the same initial conditions (44) (resp. (45)) as $\partial_{x} X$ (resp. $\partial_{v} X$).
Lemma 5 In the Fermi chart, on the axis, the first derivatives of the geodesic motion with respect to the initial conditions satisfy, for each $t \in[0,1]$, the following g-norm bounds:

$$
\max \left(\left|\partial_{x} X\left(0, v_{0}, t\right)-\overline{\partial_{x} X_{0}}(t)\right|,\left|\partial_{v} X\left(0, v_{0}, t\right)-\overline{\partial_{v} X_{0}}(t)\right|\right) \leq 2 c_{1} \delta
$$

Proof. From (47), we readily find for $\partial_{x} X\left(0, v_{0}, t\right)$ (resp. $\partial_{v} X\left(0, v_{0}, t\right)$) and for $\overline{\partial_{x} X_{0}}(t)$ (resp. $\overline{\partial_{v} X_{0}}(t)$) the same axis components, namely:
(48) $\partial_{x^{n}} X_{0}^{n}=1, \partial_{v^{n}} X_{0}^{n}=t, \partial_{x^{\alpha}} X_{0}^{n}=\partial_{v^{\alpha}} X_{0}^{n}=\partial_{x^{n}} X_{0}^{\alpha}=\partial_{v^{n}} X_{0}^{\alpha}=0$.

We thus focus on the J_{β}^{α} components. We require a lemma (easily verified):

[^1]Lemma 6 (representation formula) Given a function $t \mapsto \varphi(t)$ and a real number $\omega_{0} \neq 0$, set:

$$
\psi=\ddot{\varphi}+\omega_{0}^{2} \varphi, \lambda=\varphi(0), \mu=\dot{\varphi}(0)
$$

The following identity holds:

$$
\varphi(t)=\lambda \cos \left(\omega_{0} t\right)+\mu \frac{\sin \left(\omega_{0} t\right)}{\omega_{0}}+\sin \left(\omega_{0} t\right) \int_{0}^{t} \frac{1}{\sin ^{2}\left(\omega_{0} \tau\right)}\left[\int_{0}^{\tau} \sin \left(\omega_{0} \theta\right) \psi(\theta) d \theta\right] d \tau
$$

Applying Lemma 6 to $\varphi=J_{\beta}^{\alpha}$ (with $\omega_{0}=\left|v_{0}\right|$), equation (47) implies

$$
\partial_{x^{\beta}} X_{0}^{\alpha}(t)=\delta_{\beta}^{\alpha} \cos \left(\left|v_{0}\right| t\right)+\mathcal{E}_{x^{\beta}}^{\alpha}(t) \equiv\left(\overline{\partial_{x} X_{0}}\right)_{\beta}^{\alpha}(t)+\mathcal{E}_{x^{\beta}}^{\alpha}(t)
$$

with the x-correction term given by:
$\mathcal{E}_{x^{\beta}}^{\alpha}(t)=\left|v_{0}\right|^{2} \sin \left(\left|v_{0}\right| t\right) \int_{0}^{t} \frac{1}{\sin ^{2}\left(\left|v_{0}\right| \tau\right)}\left[\int_{0}^{\tau} \sin \left(\left|v_{0}\right| \theta\right)\left(\operatorname{Cur}_{1}-\operatorname{Riem}\right)_{n \gamma n}^{\alpha} \partial_{x^{\beta}} X_{0}^{\gamma}(\theta) d \theta\right] d \tau$,
and

$$
\partial_{v^{\beta}} X_{0}^{\alpha}(t)=\delta_{\beta}^{\alpha} \frac{\sin \left(\left|v_{0}\right| t\right)}{\left|v_{0}\right|}+\mathcal{E}_{v^{\beta}}^{\alpha}(t) \equiv\left(\overline{\partial_{v} X_{0}}\right)_{\beta}^{\alpha}(t)+\mathcal{E}_{v^{\beta}}^{\alpha}(t)
$$

with the v-correction term given by:
$\mathcal{E}_{v^{\beta}}^{\alpha}(t)=\left|v_{0}\right|^{2} \sin \left(\left|v_{0}\right| t\right) \int_{0}^{t} \frac{1}{\sin ^{2}\left(\left|v_{0}\right| \tau\right)}\left[\int_{0}^{\tau} \sin \left(\left|v_{0}\right| \theta\right)\left(\operatorname{Cur}_{1}-\operatorname{Riem}\right)_{n \gamma n}^{\alpha} \partial_{v^{\beta}} X_{0}^{\gamma}(\theta) d \theta\right] d \tau$.
Using (10), Schwarz inequality and Lemma 4, we infer for the Euclidean norm of both x and v error $(n-1) \times(n-1)$ matrices $\mathcal{E}=\left[\mathcal{E}_{\beta}^{\alpha}(t)\right]$ the upper bound $|\mathcal{E}| \leq \delta c_{1} \Im_{\left|v_{0}\right|}(t)$ with:

$$
\Im_{\omega_{0}}(t):=\omega_{0}^{2} \sin \left(\omega_{0} t\right) \int_{0}^{t} \frac{1}{\sin ^{2}\left(\omega_{0} \tau\right)}\left[\int_{0}^{\tau} \sin \left(\omega_{0} \theta\right) d \theta\right] d \tau
$$

Now Lemma 5 follows from the following technical one (left as an exercise):
Lemma 7 For $\left(\omega_{0}, t\right) \in[0, \pi] \times[0,1]$, the following equality holds:

$$
\Im_{\omega_{0}}(t)=1-\cos \left(\omega_{0} t\right)
$$

Remark 5 For later use, dealing with $\left|\partial_{v} X\left(0, v_{0}, t\right)-\overline{\partial_{v} X_{0}}(t)\right|$, let us note that the constant c_{1} of Lemma 5 may be taken equal to $\sqrt{n-1}$. Indeed, on the one hand, the proof of Lemma 5 combined with Lemma 7 and Schwarz inequality provides the g-norms inequality:

$$
\left|\partial_{v} X\left(0, v_{0}, t\right)-\overline{\partial_{v} X_{0}}(t)\right| \leq 2 \delta \max _{\theta \in[0,1]} \sqrt{\sum_{\beta, \gamma}\left[\partial_{v^{\beta}} X_{0}^{\gamma}(\theta)\right]^{2}}
$$

On the other hand, for each $\beta \in\{0, \ldots, n-1\}$, recalling (5) and $\left(m_{0}, v_{0}\right) \in$ NoCut, we may apply the Rauch comparison theorem [13, p.29] [10, p.215] to
the Jacobi field $\partial_{v^{\beta}} X_{0}(t)$ along the axis and readily infer from it the upper bound:

$$
\forall \theta \in[0,1], \sum_{\gamma}\left[\partial_{v^{\beta}} X_{0}^{\gamma}(\theta)\right]^{2} \leq \sum_{\gamma}\left[\overline{\partial_{v^{\beta}} X_{0}^{\gamma}(\theta)}\right]^{2}=\left(\frac{\sin \left|v_{0}\right| \theta}{\left|v_{0}\right|}\right)^{2} \leq 1 .
$$

The claim follows by summing over $\beta<n$ the resulting inequality, taking the square root of each side and the maximum over $\theta \in[0,1]$.

We will require a similar result for the time derivative of $\partial_{x} X$ and $\partial_{v} X$, namely:
Lemma 8 In the Fermi chart, on the axis, the first derivatives of the time derivative of the geodesic motion with respect to the initial conditions satisfy:

$$
\max \left(\left|\partial_{x} \dot{X}\left(0, v_{0}, t\right)-\overline{\partial_{x} X_{0}}(t)\right|,\left|\partial_{v} \dot{X}\left(0, v_{0}, t\right)-\overline{\partial_{v} X_{0}}(t)\right|\right) \leq c_{1}^{\prime} \delta
$$

for some constant under control $c_{1}^{\prime}>0$ independent of $t \in[0,1]$.
Proof. All axis components of the differences under study vanish, so let us focus on the sole components $\mathcal{E}_{\beta}^{\alpha}$ (the subscript β standing for either x^{β} or v^{β}) which satisfy, recalling (47):

$$
\ddot{\mathcal{E}}_{\beta}^{\alpha}+\left|v_{0}\right|^{2} \mathcal{E}_{\beta}^{\alpha} \simeq 0
$$

with null initial conditions. The latter yields the representation:

$$
\dot{\mathcal{E}}_{\beta}^{\alpha}(t)=\int_{0}^{t} \ddot{\mathcal{E}}_{\beta}^{\alpha}(\tau) d \tau,
$$

hence the former, combined with the triangle inequality and Lemma 5, implies:

$$
|\dot{\mathcal{E}}| \leq c_{1}^{\prime} \delta
$$

with a constant c_{1}^{\prime} under control, as required.

2.4 Second derivatives of geodesic motion

Differentiating with respect to the parameter v^{b} (component of the initial velocity in the Fermi chart) the Cauchy problems (43)-(44) or (43)-(45), and sticking to the notation J_{a}^{i} used there, yields the following equation satisfied at $X=X(0, v, t)$ by $J_{a b} \equiv J_{b a}$ (an admittedly loose but typographically convenient abbreviation, in which the subscript a will be the sole one to stand for either x^{a} or v^{a}, other subscripts b, c, \ldots standing only for v^{b}, v^{c}, \ldots; it will enable us, in the next subsection, to write (for short) sums involving the $J_{a b}$'s as circular sums) with $J_{a b}$ equal either to $\partial_{x^{a} v^{b}}^{2} X=\partial_{x^{a} v^{b}}^{2} X(0, v, t)$ or to $\partial_{v^{a} v^{b}}^{2} X=\partial_{v^{a} v^{b}}^{2} X(0, v, t)$:

$$
\begin{align*}
\ddot{J}_{a b}^{i} & +\left(\partial_{l} \Gamma_{j k}^{i}\right) \dot{X}^{j} \dot{X}^{k} J_{a b}^{l}+2 \Gamma_{j k}^{i} \dot{X}^{j} \dot{J}_{a b}^{k}= \tag{49}\\
& -\left(\partial_{l m} \Gamma_{j k}^{i} \dot{X}^{j} \dot{X}^{k} J_{a}^{l} J_{b}^{m}-2\left(\partial_{l} \Gamma_{j k}^{i}\right) \dot{X}^{j}\left(\dot{J}_{b}^{k} J_{a}^{l}+\dot{J}_{a}^{k} J_{b}^{l}\right)\right. \\
& -2 \Gamma_{j k}^{i} \dot{J}_{b}^{j} \dot{j}_{a}^{k} .
\end{align*}
$$

and (in either case) the null initial conditions:

$$
\begin{equation*}
J_{a b}(0)=0, \dot{J_{a b}}(0)=0 \tag{50}
\end{equation*}
$$

Along the axis, recalling (29), equation (49) reads:
$\ddot{J}_{a b}^{i}+\left|v_{0}\right|^{2} R_{n \gamma n}^{i}\left(X_{0}\right) J_{a b}^{\gamma}=-\left|v_{0}\right|^{2}\left(\partial_{l m} \Gamma_{n n}^{i}\right) J_{a}^{l} J_{b}^{m}-2\left|v_{0}\right| R_{k \beta n}^{i}\left(\dot{J}_{b}^{k} J_{a}^{\beta}+\dot{J}_{a}^{k} J_{b}^{\beta}\right)$.
Using (29)(30) and Lemma 4 to treat the latter right-hand side, we may once again record a standard result of second order differential equations theory, namely:

Lemma 9 There exists a constant $c_{2}>0$ under control such that, for each $t \in[0,1]$, the following g-norms:

$$
\left|\partial_{x v}^{2} X\left(0, v_{0}, t\right)\right|,\left|\partial_{x v}^{2} \dot{X}\left(0, v_{0}, t\right)\right|,\left|\partial_{v v}^{2} X\left(0, v_{0}, t\right)\right|,\left|\partial_{v v}^{2} \dot{X}\left(0, v_{0}, t\right)\right|,
$$

are all bounded above by c_{2}.
Let us rewrite the above equation in perturbative form, namely:

$$
\begin{align*}
\ddot{J}_{a b}^{i}+\left|v_{0}\right|^{2} \delta_{\gamma}^{i} J_{a b}^{\gamma} & =\left|v_{0}\right|^{2}\left(\operatorname{Cur}_{1}-\operatorname{Riem}\right)_{n \gamma n}^{i} J_{a b}^{\gamma} \\
& -\left|v_{0}\right|^{2}\left(\partial_{l m} \Gamma_{n n}^{i}\right) J_{a}^{l} J_{b}^{m}-2\left|v_{0}\right| R_{k \beta n}^{i}\left(\dot{J}_{b}^{k} J_{a}^{\beta}+\dot{\left.J_{a}^{k} J_{b}^{\beta}\right) .}\right. \tag{51}
\end{align*}
$$

Using (29)(30) to treat the right-hand side, we find:

$$
\begin{aligned}
\ddot{J}_{a b}^{i}+\left|v_{0}\right|^{2} \delta_{\gamma}^{i} J_{a b}^{\gamma} & \simeq-2\left|v_{0}\right|\left(\operatorname{Cur}_{1}\right)_{k \beta n}^{i}\left(\dot{J_{b}^{k}} J_{a}^{\beta}+\dot{\left.J_{a}^{k} J_{b}^{\beta}\right)}\right. \\
& =-2\left|v_{0}\right|\left(\delta_{i \beta} \delta_{k n}-\delta_{i n} \delta_{k \beta}\right)\left(\dot{J_{b}^{k}} J_{a}^{\beta}+\dot{J_{a}^{k} J_{b}^{\beta}}\right)
\end{aligned}
$$

or else, if $i=\alpha$:

$$
\begin{equation*}
\ddot{J}_{a b}^{\alpha}+\left|v_{0}\right|^{2} J_{a b}^{\alpha} \simeq-2\left|v_{0}\right|\left(\dot{J}_{b}^{n} J_{a}^{\alpha}+\dot{J_{a}^{n}} J_{b}^{\alpha}\right) \tag{52}
\end{equation*}
$$

while if $i=n$:

$$
\begin{equation*}
\ddot{J}_{a b}^{n} \simeq 2\left|v_{0}\right| \sum_{\beta=1}^{n-1}\left(\dot{J}_{b}^{\beta} J_{a}^{\beta}+\dot{J}_{a}^{\beta} J_{b}^{\beta}\right) \tag{53}
\end{equation*}
$$

Recalling (48), if $a=b=n$, we infer at once:

$$
\begin{equation*}
\ddot{J}_{n n}^{i}+\left|v_{0}\right|^{2} \delta_{\gamma}^{i} J_{n n}^{\gamma} \simeq 0 ; \tag{54}
\end{equation*}
$$

moreover, if a or b is equal to n, we get from (53), say with $b=n$:

$$
\begin{equation*}
\ddot{J}_{a n}^{n} \simeq 0 \tag{55}
\end{equation*}
$$

Let us treat equation (53) in the remaining cases for (a, b). If $a=\lambda \neq b=\mu$, the combination of (53) with Lemmas 4,5 and 8 , implies the existence of a constant $c_{21}>0$ under control such that:

$$
\begin{equation*}
\max _{\lambda \neq \mu, t \in[0,1]}\left|\ddot{J}_{\lambda \mu}^{n}\right|\left(0, v_{0}, t\right) \leq c_{21} \delta . \tag{56}
\end{equation*}
$$

Finally, if $a=b=\lambda$, sticking to the auxiliary notation \bar{J}_{a}^{i} of the preceding subsection, we write:

$$
\dot{J}_{\lambda}^{\beta} J_{\lambda}^{\beta}=\dot{\bar{J}}_{\lambda}^{\beta} \bar{J}_{\lambda}^{\beta}+\dot{\bar{J}}_{\lambda}^{\beta}\left(J_{\lambda}^{\beta}-\bar{J}_{\lambda}^{\beta}\right)+\left(\dot{J}_{\lambda}^{\beta}-\dot{\bar{J}}_{\lambda}^{\beta}\right) J_{\lambda}^{\beta}
$$

and, recalling Lemmas 5 and 8, we obtain the existence of a constant under control $c_{22}>0$ such that either (if $a=b=v^{\lambda}$):

$$
\begin{equation*}
\max _{\lambda, t \in[0,1]}\left|\ddot{J}_{\lambda \lambda}^{n}-4\right| v_{0}\left|\sum_{\beta=1}^{n-1} \dot{\bar{J}}_{\lambda}^{\beta} \bar{J}_{\lambda}^{\beta}\right| \leq c_{22} \delta, \tag{57}
\end{equation*}
$$

or (if $a=x^{\lambda}$, thus $b=v^{\lambda}$):

$$
\begin{equation*}
\max _{\lambda, t \in[0,1]}\left|\ddot{J}_{\lambda \lambda}^{n}-2\right| v_{0}\left|\sum_{\beta=1}^{n-1}\left(\dot{\bar{J}}_{x^{\lambda}}^{\beta} \bar{J}_{v^{\lambda}}^{\beta}+\bar{J}_{x^{\lambda}}^{\beta} \dot{\bar{J}_{v^{\lambda}}^{\beta}}\right)\right| \leq c_{22} \delta, \tag{58}
\end{equation*}
$$

Let us turn to equation (52) in case a or b differs from n; we must distinguish cases. If both differ from n, we infer from (48) that the quantity $\left(\dot{J}_{b}^{n} J_{a}^{\alpha}+\dot{J}_{a}^{n} J_{b}^{\alpha}\right)$ vanishes; so there exists a constant under control $c_{23}>0$ such that:

$$
\begin{equation*}
\max _{\lambda, \mu, t \in[0,1]}\left|\ddot{J}_{\lambda \mu}^{\alpha}+\left|v_{0}\right|^{2} J_{\lambda \mu}^{\alpha}\right| \leq c_{23} \delta . \tag{59}
\end{equation*}
$$

If a stands for x^{n} (b thus differing from n), we infer similarly the vanishing of $\left(\dot{J}_{b}^{n} J_{a}^{\alpha}+\dot{J}_{a}^{n} J_{b}^{\alpha}\right)$ hence the existence of a constant under control $c_{24}>0$ such that:

$$
\begin{equation*}
\max _{\lambda, t \in[0,1]}\left|\ddot{J}_{x^{n} \lambda}^{\alpha}+\left|v_{0}\right|^{2} J_{x^{n} \lambda}^{\alpha}\right| \leq c_{24} \delta . \tag{60}
\end{equation*}
$$

If a or b stands for v^{n}, still using (48) and taking (say) $a=v^{n}, b=\lambda$, we find: $\left(\dot{J}_{b}^{n} J_{a}^{\alpha}+\dot{J_{a}^{n}} J_{b}^{\alpha}\right)=J_{\lambda}^{\alpha}$. If $\lambda \neq \alpha$, Lemma 5 implies the existence of a constant under control $c_{25}>0$ such that:

$$
\begin{equation*}
\max _{\lambda \neq \alpha, t \in[0,1]}\left|\ddot{J}_{v^{n} \lambda}^{\alpha}+\left|v_{0}\right|^{2} J_{v^{n} \lambda}^{\alpha}\right| \leq c_{25} \delta, \tag{61}
\end{equation*}
$$

while if $\lambda=\alpha$, it implies the existence of a constant under control $c_{26}>0$ such that:

$$
\begin{equation*}
\max _{\alpha, t \in[0,1]}\left|\ddot{J}_{v^{n} \alpha}^{\alpha}+\left|v_{0}\right|^{2} J_{v^{n} \alpha}^{\alpha}+2\right| v_{0}\left|\bar{J}_{\alpha}^{\alpha}\right| \leq c_{26} \delta \tag{62}
\end{equation*}
$$

At this stage, sticking to the intermediate notations \bar{J}_{a}^{i} of the preceding section, let us introduce the solutions $\overline{\partial_{x v}^{2} X_{0}}$ and $\overline{\partial_{v v}^{2} X_{0}}$ along the axis of the unperturbed equation:

$$
\begin{equation*}
\ddot{\bar{J}}_{a b}^{i}+\left|v_{0}\right|^{2} \delta_{\gamma}^{i} \bar{J}_{a b}^{\gamma}=-2\left|v_{0}\right|\left(\delta_{i \beta} \delta_{k n}-\delta_{i n} \delta_{k \beta}\right)\left(\bar{J}_{a}^{\beta} \dot{\bar{J}}_{b}^{k}+\bar{J}_{b}^{\beta} \dot{\bar{J}}_{a}^{k}\right) \tag{63}
\end{equation*}
$$

still with null initial conditions.
Lemma 10 There exists a constant $c_{27}>0$ under control such that, for each $t \in[0,1]$, the following g-norms:

$$
\left|\partial_{x v}^{2} X\left(0, v_{0}, t\right)-\overline{\partial_{x v}^{2} X_{0}}(t)\right|,\left|\partial_{v v}^{2} X\left(0, v_{0}, t\right)-\overline{\partial_{v v}^{2} X_{0}}(t)\right|,
$$

are bounded above by $c_{27} \delta$.

Proof. Setting $\mathcal{E}_{a b}^{i}(t)$ for the components of the difference under study and combining (54)(55)(56)(57)(58)(59)(60)(61)(62), we find that $\mathcal{E}_{a b}^{i}$ satisfies:

$$
\ddot{\mathcal{E}}_{a b}^{i}+\left|v_{0}\right|^{2} \delta_{\gamma}^{i} \mathcal{E}_{a b}^{\gamma} \simeq 0
$$

with null initial conditions. Applying Lemma 6 to $\mathcal{E}_{a b}^{i}$, as done above, yields the desired upper bound on its g-norm.
Besides, since $\mathcal{E}_{a b}^{i}$ solves the preceding Cauchy problem, we may argue as in the proof of Lemma 8 and immediately obtain:

Lemma 11 There exists a constant under control $c_{2}^{\prime}>0$ such that, for each $t \in[0,1]$, the following g-norms:

$$
\left|\partial_{x v}^{2} \dot{X}\left(0, v_{0}, t\right)-\overline{\partial_{x v}^{2} X_{0}}(t)\right|,\left|\partial_{v v}^{2} \dot{X}\left(0, v_{0}, t\right)-\overline{\partial_{v v}^{2} X_{0}}(t)\right|,
$$

are bounded above by $c_{2}^{\prime} \delta$.

2.5 Third derivatives of geodesic motion

Differentiating with respect to the initial velocity component parameter v^{c} the Cauchy problems (49)-(50) yields on the axis the following equation for $J_{a b c}(t)$ equal to, either $\partial_{x^{a} v^{b} v^{c}}^{3} X\left(0, v_{0}, t\right)$ or to $\partial_{v^{a} v^{b} v^{c}}^{3} X\left(0, v_{0}, t\right)$, after use of (29):

$$
\begin{align*}
\ddot{J}_{a b c}^{i}+\left|v_{0}\right|^{2} R_{n \gamma n}^{i} J_{a b c}^{\gamma} & =-\left|v_{0}\right|^{2}\left(\partial_{l m p} \Gamma_{n n}^{i}\right) J_{a}^{l} J_{b}^{m} J_{c}^{p} \tag{64}\\
& -\left|v_{0}\right|^{2}\left(\partial_{l m} \Gamma_{n n}^{i}\right) \sum_{(a, b, c)} J_{a b}^{l} J_{c}^{m} \\
& -2\left|v_{0}\right|\left(\partial_{l m} \Gamma_{n k}^{i}\right) \sum_{(a, b, c)} \dot{J}_{a}^{k} J_{b}^{l} J_{c}^{m} \\
& -2\left|v_{0}\right| R_{k \beta n}^{i} \sum_{(a, b, c)}\left(\dot{J}_{a}^{k} J_{b c}^{\beta}+\dot{J}_{a b}^{k} J_{c}^{\beta}\right) \\
& -2\left(\partial_{\beta} \Gamma_{j k}^{i}\right) \sum_{(a, b, c)} \dot{J}_{a}^{j} \dot{J}_{b}^{k} J_{c}^{\beta},
\end{align*}
$$

still with null initial conditions. Here, we will require the full strength of Lemmas 2 and 3 to check the intrinsic character of the right hand-side coefficients of the J 's and \dot{J} 's. Granted this is done, recalling Lemmas 4 and 9, we may already record a standard result of second order ODE theory, namely:

Lemma 12 There exists a constant $c_{3}>0$ under control such that, for each $t \in[0,1]$, the following g-norms:

$$
\left|\partial_{x v v}^{3} X\left(0, v_{0}, t\right)\right|,\left|\partial_{v v v}^{3} X\left(0, v_{0}, t\right)\right|,
$$

are bounded above by c_{3}.
To proceed further with Equation (64), let us distinguish cases.
First case: $i=n$. The equation reads:

$$
\ddot{J}_{a b c}^{n}=\mathrm{I}_{a b c}+\mathrm{II}_{a b c}+\mathrm{III}_{a b c}+\mathrm{IV}_{a b c}+\mathrm{V}_{a b c}
$$

where:

$$
\mathrm{I}_{a b c}:=-\left|v_{0}\right|^{2}\left(\partial_{l m p} \Gamma_{n n}^{n}\right) J_{a}^{l} J_{b}^{m} J_{c}^{p}
$$

is $\simeq 0$ due to a combination of $(29)(30)$ and the first formula of Lemma 3, with Lemma 4; then:

$$
\mathrm{II}_{a b c}:=-\left|v_{0}\right|^{2}\left(\partial_{l m} \Gamma_{n n}^{n}\right) \sum_{(a, b, c)} J_{a b}^{l} J_{c}^{m}
$$

is $\simeq 0$ due to $(29)(30)$ combined with Lemmas 4 and 9 ; besides:

$$
\mathrm{III}_{a b c}:=-2\left|v_{0}\right|\left(\partial_{l m} \Gamma_{n k}^{n}\right) \sum_{(a, b, c)} \dot{J}_{a}^{k} J_{b}^{l} J_{c}^{m}
$$

is $\simeq 0$ due to $(29)(30)(31)$ combined with Lemma 4; furthermore:

$$
\mathrm{IV}_{a b c}:=2\left|v_{0}\right| R_{\beta n \gamma}^{n} \sum_{(a, b, c)}\left(\dot{J}_{a}^{\beta} J_{b c}^{\gamma}+\dot{J}_{a b}^{\beta} J_{c}^{\gamma}\right)
$$

becomes, using Lemmas 4 and 9:

$$
\mathrm{IV}_{a b c} \simeq 2\left|v_{0}\right| \sum_{\beta<n} \sum_{(a, b, c)}\left(\dot{J}_{a}^{\beta} J_{b c}^{\beta}+\dot{J}_{a b}^{\beta} J_{c}^{\beta}\right),
$$

or else, in terms of the above spherical quantities $\bar{J}_{a}, \bar{J}_{b c}$, after use of the finite differences trick combined with Lemmas 5, 8, 10, 11:

$$
\mathrm{IV}_{a b c} \simeq 2\left|v_{0}\right| \sum_{\beta<n} \sum_{(a, b, c)}\left(\dot{\bar{J}}_{a}^{\beta} \bar{J}_{b c}^{\beta}+\dot{\bar{J}}_{a b}^{\beta} \bar{J}_{c}^{\beta}\right) ;
$$

last:

$$
\mathrm{V}_{a b c}:=-2\left(\partial_{\beta} \Gamma_{j k}^{n}\right) \sum_{(a, b, c)} \dot{J}_{a}^{j} \dot{J}_{b}^{k} J_{c}^{\beta},
$$

splits into a sum over $j<n$ and $k<n$, which is by (29) equal to:

$$
\frac{2}{3}\left(R_{\lambda \mu \beta}^{n}+R_{\mu \lambda \beta}^{n}\right) \sum_{(a, b, c)} \dot{J}_{a}^{\lambda} \dot{J}_{b}^{\mu} J_{c}^{\beta}
$$

and so, using Lemma 4 , which is $\simeq 0$, and a sum for j or k equal to n which, by (29), reads:

$$
2 R_{\gamma n \beta}^{n} \sum_{(a, b, c)}\left(\dot{J}_{a}^{n} \dot{J}_{b}^{\gamma} J_{c}^{\beta}+\dot{J}_{a}^{\gamma} \dot{J}_{b}^{n} J_{c}^{\beta}\right),
$$

hence, by Lemma 4:

$$
\mathrm{V}_{a b c} \simeq 2 \sum_{\beta<n} \sum_{(a, b, c)}\left(\dot{J}_{a}^{n} \dot{J}_{b}^{\beta} J_{c}^{\beta}+\dot{J}_{a}^{\beta} \dot{J}_{b}^{n} J_{c}^{\beta}\right)
$$

and, finally, combining the finite differences trick with Lemmas 5 and 8:

$$
\mathrm{V}_{a b c} \simeq 2 \sum_{\beta<n} \sum_{(a, b, c)}\left(\dot{\bar{J}_{a}^{n}} \dot{\bar{J}}_{b}^{\beta} \bar{J}_{c}^{\beta}+\dot{\bar{J}}_{a}^{\beta} \dot{\bar{J}}_{b}^{n} \bar{J}_{c}^{\beta}\right) .
$$

Altogether, Equation (64) with $i=n$ thus yields:

$$
\ddot{J}_{a b c}^{n} \simeq 2 \sum_{\beta<n} \sum_{(a, b, c)}\left[\left|v_{0}\right|\left(\dot{\bar{J}}_{a}^{\beta} \bar{J}_{b c}^{\beta}+\dot{\bar{J}}_{a b}^{\beta} \bar{J}_{c}^{\beta}\right)+\left(\dot{\bar{J}}_{a}^{n} \dot{\bar{J}}_{b}^{\beta} \bar{J}_{c}^{\beta}+\dot{\bar{J}}_{a}^{\beta} \dot{\bar{J}}_{b}^{n} \bar{J}_{c}^{\beta}\right)\right]
$$

Let us set $\bar{J}_{a b c}^{n}(t)$ for the solution of the unperturbed equation:

$$
\ddot{\vec{J}}_{a b c}^{n}=2 \sum_{\beta<n} \sum_{(a, b, c)}\left[\left|v_{0}\right|\left(\dot{\bar{J}}_{a}^{\beta} \bar{J}_{b c}^{\beta}+\dot{\bar{J}}_{a b}^{\beta} \bar{J}_{c}^{\beta}\right)+\left(\dot{\bar{J}}_{a}^{n} \dot{\bar{J}}_{b}^{\beta} \bar{J}_{c}^{\beta}+\dot{\bar{J}}_{a}^{\beta} \dot{\bar{J}}_{b}^{n} \bar{J}_{c}^{\beta}\right)\right]
$$

with null initial conditions, and $\mathcal{E}_{a b c}^{n}$ for the difference $J_{a b c}^{n}-\bar{J}_{a b c}^{n}$ which satisfies:

$$
\ddot{\mathcal{E}}_{a b c}^{n} \simeq 0, \mathcal{E}_{a b c}^{n}(0)=\dot{\mathcal{E}}_{a b c}^{n}(0)=0
$$

The latter implies the existence of a constant under control $c>0$ such that:

$$
\begin{equation*}
\forall t \in[0,1],\left|\mathcal{E}_{a b c}^{n}(t)\right| \leq c \delta \tag{65}
\end{equation*}
$$

Second case: $i=\rho<n$. In that case, Equation (64) written in perturbative form reads as follows:

$$
\ddot{J}_{a b c}^{\rho}+\left|v_{0}\right|^{2} J_{a b c}^{\rho}=\mathrm{I}_{a b c}^{\rho}+\mathrm{II}_{a b c}^{\rho}+\mathrm{III}_{a b c}^{\rho}+\mathrm{IV}_{a b c}^{\rho}+\mathrm{V}_{a b c}^{\rho}+\mathrm{VI}_{a b c}^{\rho}
$$

with:

$$
\begin{aligned}
& \mathrm{I}_{a b c}^{\rho}:=\left|v_{0}\right|^{2}\left(\operatorname{Cur}_{1}-\operatorname{Riem}\right)_{n \gamma n}^{\rho} J_{a b c}^{\gamma}, \\
& \mathrm{II}_{a b c}^{\rho}:=-\frac{1}{3}\left|v_{0}\right|^{2}\left(\partial_{l m p} \Gamma_{n n}^{\rho}\right) \sum_{(a, b, c)} J_{a}^{l} J_{b}^{m} J_{c}^{p}, \\
& \mathrm{III}_{a b c}^{\rho}:=-\left|v_{0}\right|^{2}\left(\partial_{l m} \Gamma_{n n}^{\rho}\right) \sum_{(a, b, c)} J_{a b}^{l} J_{c}^{m}, \\
& \mathrm{IV}_{a b c}^{\rho}:=-2\left|v_{0}\right|\left(\partial_{l m} \Gamma_{n k}^{\rho}\right) \sum_{(a, b, c)} \dot{J}_{a}^{k} J_{b}^{l} J_{c}^{m}, \\
& \mathrm{~V}_{a b c}^{\rho}:=-2\left|v_{0}\right| R_{k \beta n}^{\rho} \sum_{(a, b, c)}\left(\dot{J}_{a}^{k} J_{b c}^{\beta}+\dot{J}_{a b}^{k} J_{c}^{\beta}\right), \\
& \mathrm{VI}_{a b c}^{\rho}:=-2\left(\partial_{\beta} \Gamma_{j k}^{\rho}\right) \sum_{(a, b, c)} \dot{J}_{a}^{j} \dot{J}_{b}^{k} J_{c}^{\beta} .
\end{aligned}
$$

Deferring the treatment of $\mathrm{I}_{a b c}^{\rho}$, let us proceed with the other terms. Each summand of $\mathrm{II}_{a b c}^{\rho}$ with l, m, or p equal to n, is $\simeq 0$ by (29) and (30) combined with Lemma 4; using the latter and the second formula of Lemma 3, we infer:

$$
\mathrm{II}_{a b c}^{\rho} \simeq \frac{4}{9}\left|v_{0}\right|^{2} \sum_{(\lambda, \mu, \nu)} \sum_{(a, b, c)} \delta_{\lambda \rho} \delta_{\mu \nu} J_{a}^{\lambda} J_{b}^{\mu} J_{c}^{\nu}=\frac{4}{3}\left|v_{0}\right|^{2} \sum_{(a, b, c)} J_{a}^{\rho} \sum_{\mu<n} J_{b}^{\mu} J_{c}^{\mu}
$$

After use of the finite differences trick combined with Lemmas 4 and 5, we thus obtain:

$$
\mathrm{II}_{a b c}^{\rho} \simeq \overline{\mathrm{I}}_{a b c}^{\rho}:=\frac{4}{3}\left|v_{0}\right|^{2} \sum_{(a, b, c)} \bar{J}_{a}^{\rho} \sum_{\mu<n} \bar{J}_{b}^{\mu} \bar{J}_{c}^{\mu}
$$

By (29) and (30) combined with Lemmas 4 and 9, we have $\mathrm{III}_{a b c}^{\rho} \simeq 0$. Each summand of $\mathrm{IV}_{a b c}^{\rho}$ with l, m, or k equal to n, is $\simeq 0$ by (29) and (30) combined with Lemma 4; moreover, by (32) combined with Lemma 4, the remaining sum bearing on $(l, m, k)=(\lambda, \mu, \nu)$ is $\simeq 0$ as well. Next, Lemmas 4 and 9 yield:

$$
\mathrm{V}_{a b c}^{\rho} \simeq-2\left|v_{0}\right| \sum_{(a, b, c)}\left(\dot{J}_{a}^{n} J_{b c}^{\rho}+\dot{J}_{a b}^{n} J_{c}^{\rho}\right)
$$

combining the finite differences trick with Lemmas 5, 8, 10 and 11, we thus get:

$$
\mathrm{V}_{a b c}^{\rho} \simeq \overline{\mathrm{V}}_{a b c}^{\rho}:=-2\left|v_{0}\right| \sum_{(a, b, c)}\left(\dot{\bar{J}_{a}^{n}} \bar{J}_{b c}^{\rho}+\dot{\bar{J}_{a b}^{n}} \bar{J}_{c}^{\rho}\right) .
$$

Finally, let us write $\mathrm{VI}_{a b c}^{\rho}=(\mathrm{VI}-1)_{a b c}^{\rho}+(\mathrm{VI}-2)_{a b c}^{\rho}+(\mathrm{VI}-3)_{a b c}^{\rho}$ with:

$$
\begin{gathered}
(\mathrm{VI}-1)_{a b c}^{\rho}:=-2\left(\partial_{\beta} \Gamma_{n n}^{\rho}\right) \sum_{(a, b, c)} \dot{J}_{a}^{n} \dot{J}_{b}^{n} J_{c}^{\beta}, \\
(\mathrm{VI}-2)_{a b c}^{\rho}:=-2\left(\partial_{\beta} \Gamma_{\lambda n}^{\rho}\right) \sum_{(a, b, c)}\left(\dot{J}_{a}^{\lambda} \dot{J}_{b}^{n} J_{c}^{\beta}+\dot{J}_{a}^{n} \dot{J}_{b}^{\lambda} J_{c}^{\beta}\right), \\
(\mathrm{VI}-3)_{a b c}^{\rho}:=-2\left(\partial_{\beta} \Gamma_{\lambda \mu}^{\rho}\right) \sum_{(a, b, c)} \dot{J}_{a}^{\lambda} \dot{J}_{b}^{\mu} J_{c}^{\beta} .
\end{gathered}
$$

From (29), we have:

$$
\begin{gathered}
(\mathrm{VI}-1)_{a b c}^{\rho}=-2 R_{n \beta n}^{\rho} \sum_{(a, b, c)} \dot{J}_{a}^{n} \dot{J}_{b}^{n} J_{c}^{\beta}, \\
(\mathrm{VI}-2)_{a b c}^{\rho}=-2 R_{\lambda \beta n}^{\rho} \sum_{(a, b, c)}\left(\dot{J}_{a}^{\lambda} \dot{J}_{b}^{n} J_{c}^{\beta}+\dot{J}_{a}^{n} \dot{J}_{b}^{\lambda} J_{c}^{\beta}\right), \\
(\mathrm{VI}-3)_{a b c}^{\rho}=-\frac{2}{3}\left(R_{\lambda \beta \mu}^{\rho}+R_{\mu \beta \lambda}^{\rho}\right) \sum_{(a, b, c)} \dot{J}_{a}^{\lambda} \dot{J}_{b}^{\mu} J_{c}^{\beta} .
\end{gathered}
$$

Using Lemma 4, we get (VI-1) ${ }_{a b c}^{\rho} \simeq-2 \sum_{(a, b, c)} \dot{J}_{a}^{n} \dot{J}_{b}^{n} J_{c}^{\rho},(\mathrm{VI}-2)_{a b c}^{\rho} \simeq 0$ and:

$$
\begin{aligned}
(\mathrm{VI}-3)_{a b c}^{\rho} & \simeq-\frac{2}{3}\left(2 \delta_{\beta}^{\rho} \delta_{\lambda \mu}-\delta_{\mu}^{\rho} \delta_{\lambda \beta}-\delta_{\lambda}^{\rho} \delta_{\mu \beta}\right) \sum_{(a, b, c)} \dot{J}_{a}^{\lambda} \dot{J}_{b}^{\mu} J_{c}^{\beta} \\
& =\frac{2}{3} \sum_{\mu<n} \sum_{(a, b, c)}\left[\left(\dot{J}_{a}^{\rho} \dot{J}_{b}^{\mu}+\dot{J}_{a}^{\mu} \dot{J}_{b}^{\rho}\right) J_{c}^{\mu}-2 \dot{J}_{a}^{\mu} \dot{J}_{b}^{\mu} J_{c}^{\rho}\right] .
\end{aligned}
$$

Combining the finite differences trick with Lemmas 5 and 8, we find:

$$
\begin{gathered}
(\mathrm{VI}-1)_{a b c}^{\rho} \simeq \overline{(\mathrm{VI}-1)}_{a b c}^{\rho}:=-2 \sum_{(a, b, c)} \dot{\bar{J}_{a}^{n}} \dot{\bar{J}_{b}^{n}} \bar{J}_{c}^{\rho}, \\
(\mathrm{VI}-3)_{a b c}^{\rho} \simeq \overline{(\mathrm{VI}-3)}_{a b c}^{\rho}:=\frac{2}{3} \sum_{\mu<n} \sum_{(a, b, c)}\left[\left(\dot{\dot{J}_{a}^{\rho}} \dot{\bar{J}}_{b}^{\mu}+\dot{\bar{J}}_{a}^{\mu} \dot{\dot{\bar{J}}_{b}^{\rho}}\right) \bar{J}_{c}^{\mu}-2 \dot{\vec{J}}_{a}^{\mu} \dot{\bar{J}}_{b}^{\mu} \bar{J}_{c}^{\rho}\right] .
\end{gathered}
$$

Back to the, yet untreated, right-hand term $\mathrm{I}_{a b c}^{\rho}$, we may now use Lemma 12 which implies: $\mathrm{I}_{a b c}^{\rho} \simeq 0$.
Let us set $\bar{J}_{a b c}^{\rho}(t)$ for the solution of the unperturbed equation:

$$
\ddot{\bar{J}}_{a b c}^{\rho}+\left|v_{0}\right|^{2} \bar{J}_{a b c}^{\rho}=\overline{\mathrm{II}}_{a b c}^{\rho}+\overline{\mathrm{V}}_{a b c}^{\rho}+\overline{(\mathrm{VI}-1)}_{a b c}^{\rho}+\overline{(\mathrm{VI}-3)}_{a b c}^{\rho}
$$

with null initial conditions, and $\mathcal{E}_{a b c}^{\rho}$ for the difference $J_{a b c}^{\rho}-\bar{J}_{a b c}^{\rho}$. By construction, $\mathcal{E}_{a b c}^{\rho}$ satisfies:

$$
\ddot{\mathcal{E}}_{a b c}^{\rho} \simeq 0, \mathcal{E}_{a b c}^{\rho}(0)=\dot{\mathcal{E}}_{a b c}^{\rho}(0)=0
$$

hence there exists a constant under control $c^{\prime}>0$ such that:

$$
\begin{equation*}
\forall t \in[0,1],\left|\mathcal{E}_{a b c}^{\rho}(t)\right| \leq c^{\prime} \delta \tag{66}
\end{equation*}
$$

Setting $\overline{\partial_{x v v}^{3} X_{0}}(t)=\bar{J}_{x^{a} v^{b} v^{c}}^{i}(t) d x^{a} \otimes d v^{b} \otimes d v^{c} \otimes \frac{\partial}{\partial x^{i}}$ and similarly for $\overline{\partial_{v v v}^{3} X_{0}}(t)$, we can express our results (65)(66) by the following statement:

Lemma 13 There exists a constant under control $c_{3}>0$ such that, for each $t \in[0,1]$, the following g-norms:

$$
\left|\partial_{x v v}^{3} X\left(0, v_{0}, t\right)-\overline{\partial_{x v v}^{3} X_{0}}(t)\right|,\left|\partial_{v v v}^{3} X\left(0, v_{0}, t\right)-\overline{\partial_{v v v}^{3} X_{0}}(t)\right|,
$$

are bounded above by $c_{3} \delta$.

2.6 Perturbative c-curvature calculation

We are now in position to complete the proof of Theorem 2. Given a fixed couple of unit vectors (ξ, ν) in $T_{m_{0}} M_{n}$, let us go back to the defining expression (8) of the c-curvature $\mathcal{C}\left(m_{0}, v_{0}\right)(\xi, \nu)$ and compute it in a normal chart at m_{0}, starting from the local formula (41). Set, for short:

$$
J_{v^{k}}^{i}=\frac{\partial X^{i}}{\partial v^{k}}(0, v, 1), J_{x^{k}}^{i}=\frac{\partial X^{i}}{\partial x^{k}}(0, v, 1)
$$

and $\left(Y_{i}^{k}\right)$ for the $n \times n$ matrix inverse of $\left(J_{v^{k}}^{i}\right)$. Near $v=v_{0}$, the local matrix field $v \mapsto\left(Y_{i}^{k}\right)$ satisfies:

$$
\begin{equation*}
Y_{i}^{l} J_{v^{k}}^{i}=\delta_{k}^{l}, \text { hence in turn } d Y_{j}^{l}=-Y_{i}^{l} Y_{j}^{k} d J_{v^{k}}^{i} \tag{67}
\end{equation*}
$$

From (9)(41), setting $\xi_{k} d x^{k}:=g(\xi,$.$) , we thus start from the expression:$

$$
A(v)(\xi):=A\left(m_{0}, v\right)(\xi)=Y_{i}^{k} J_{x^{j}}^{i} \xi^{j} \xi_{k}
$$

apply twice to it the (vertical, flat) derivative $\partial_{\nu}=\nu^{m} \frac{\partial}{\partial v^{m}}$, then let $v=v_{0}$. Using repeatedly (67), we routinely obtain (with obvious notations to abbreviate second and third derivatives of $J^{i}=X^{i}(x, v, t)$ at $\left(0, v_{0}, 1\right)$, as well) the general local expression of the c-curvature in any normal chart at m_{0}, namely:

$$
\begin{align*}
\mathcal{C}\left(m_{0}, v_{0}\right)(\xi, \nu) & =-\left.\nu^{l} \nu^{m} \partial_{v^{l} v^{m}}^{2} A(v)(\xi)\right|_{v=v_{0}} \tag{68}\\
& =\left[2 Y_{i}^{p} Y_{q}^{k} J_{x^{j} v^{l}}^{i} J_{v^{m} v^{p}}^{q}\right. \\
& -\left(Y_{i}^{r} Y_{s}^{p} Y_{q}^{k}+Y_{i}^{p} Y_{q}^{r} Y_{s}^{k}\right) J_{x^{j}}^{i} J_{v^{l} v^{p}}^{q} J_{v^{m} v^{r}}^{s} \\
& \left.-Y_{i}^{k} J_{x^{j} v^{l} v^{m}}^{i}+Y_{i}^{p} Y_{q}^{k} J_{x^{j}}^{i} J_{v^{l} v^{m} v^{p}}^{q}\right] \nu^{l} \nu^{m} \xi^{j} \xi_{k} .
\end{align*}
$$

Remark 6 As a simple application of that formula, let us calculate the expression of the c-curvature in the special case $v_{0}=0$. The geodesic $\gamma_{0}(t)=$ $\exp _{m_{0}}\left(t v_{0}\right)$ is then constant, equal to m_{0}. Using a Riemannian normal chart at m_{0}, Eq. (43) (resp. Eq. (49)) read along $X(0,0, t) \equiv 0$ and supplemented by the initial conditions (44) or (45) (resp. (50)) yields immediately:

$$
\partial_{x^{a}} X^{i}(t)=\delta_{a}^{i}, \partial_{v^{a}} X^{i}(t)=t \delta_{a}^{i}, \partial_{a b}^{2} X^{i}(t) \equiv 0
$$

In particular, we thus have: $Y_{i}^{a}=\delta_{i}^{a}$. Moreover, differentiating Eq. (49) with respect to v^{c}, taking null initial conditions and using the preceding equalities, we get at once:

$$
\begin{gathered}
\partial_{x^{a} v^{b} v^{c}}^{3} X^{i}(t)=-t^{2} \partial_{a} \Gamma_{b c}^{i}(0) \equiv-\frac{t^{2}}{3}\left(R_{b a c}^{i}+R_{c a b}^{i}\right)(0) \\
\partial_{v^{a} v^{b} v^{c}}^{3} X^{i}(t)=-\frac{t^{3}}{3} \sum_{(a, b, c)} \partial_{a} \Gamma_{b c}^{i}(0) \equiv 0
\end{gathered}
$$

where the former identity goes back to Riemann [11, Eq. (22), p.244] and the latter vanishing is thus due to the first Bianchi identity. Plugging all these values into Formula (68), we obtain:

$$
\mathcal{C}\left(m_{0}, 0\right)(\xi, \nu)=-J_{x^{j} v^{l} v^{m}}^{k} \nu^{l} \nu^{m} \xi^{j} \xi_{k}=\frac{2}{3} R_{l j m}^{k}(0) \nu^{l} \nu^{m} \xi^{j} \xi_{k} .
$$

If $\xi \perp \nu$, we thus find $\mathcal{C}\left(m_{0}, 0\right)(\xi, \nu)$ equal to the $2 / 3$-rd of the sectional curvature of $\left(M_{n}, g\right)$ at the 2-plane defined by m_{0} and (ξ, ν).

Using the local barred quantities introduced in the preceding three sections, henceforth understood taken at $t=1$ (unless otherwise specified), and setting $\left(\bar{Y}_{i}^{k}\right)$ for the inverse matrix of $\left(\bar{J}_{v^{k}}^{i}\right)$, we have by construction: $\bar{A}\left(m_{0}, v_{0}\right)(\xi) \equiv$ $\bar{Y}_{i}^{k} \bar{J}_{x^{j}}^{i} \xi^{j} \xi_{k}$ and we may identify the spherical c-curvature $\overline{\mathcal{C}}\left(m_{0}, v_{0}\right)(\xi, \nu)$, as calculated in Appendix A, with the right-hand side of (68) written with the corresponding barred quantities. Doing so, and using the finite differences trick in a systematic way, we find for the c-curvatures difference the following expression:

$$
\begin{equation*}
\mathcal{C}\left(m_{0}, v_{0}\right)(\xi, \nu)-\overline{\mathcal{C}}\left(m_{0}, v_{0}\right)(\xi, \nu)= \tag{69}
\end{equation*}
$$

$$
\begin{gathered}
\left\{2\left(Y_{i}^{p}-\bar{Y}_{i}^{p}\right) \bar{Y}_{q}^{k} \bar{J}_{x^{j} v^{l}}^{i} \bar{J}_{v^{m} v^{p}}^{q}+2 Y_{i}^{p}\left(Y_{q}^{k}-\bar{Y}_{q}^{k}\right) \bar{J}_{x^{j} v^{l}}^{i} \bar{J}_{v^{m} v^{p}}^{q}\right. \\
+2 Y_{i}^{p} Y_{q}^{k}\left(J_{x^{j} v^{l}}^{i}-\bar{J}_{x^{j} v^{l}}^{i}\right) \bar{J}_{v^{m} v^{p}}^{q}+2 Y_{i}^{p} Y_{q}^{k} J_{x^{j} v^{l}}^{i}\left(J_{v^{m} v^{p}}^{q}-\bar{J}_{v^{m} v^{p}}^{q}\right) \\
-\left[\left(Y_{i}^{r}-\bar{Y}_{i}^{r}\right) \bar{Y}_{s}^{p} \bar{Y}_{q}^{k}+Y_{i}^{r}\left(Y_{s}^{p}-\bar{Y}_{s}^{p}\right) \bar{Y}_{q}^{k}+Y_{i}^{r} Y_{s}^{p}\left(Y_{q}^{k}-\bar{Y}_{q}^{k}\right)\right. \\
\left.+\left(Y_{i}^{p}-\bar{Y}_{i}^{p}\right) \bar{Y}_{q}^{r} \bar{Y}_{s}^{k}+Y_{i}^{p}\left(Y_{q}^{r}-\bar{Y}_{q}^{r}\right) \bar{Y}_{s}^{k}+Y_{i}^{p} Y_{q}^{r}\left(Y_{s}^{k}-\bar{Y}_{s}^{k}\right)\right] \bar{J}_{x^{j}}^{i} \bar{J}_{v^{l} v^{p}}^{q} \bar{J}_{v^{m} v^{r}}^{s} \\
-\left(Y_{i}^{r} Y_{s}^{p} Y_{q}^{k}+Y_{i}^{p} Y_{q}^{r} Y_{s}^{k}\right)\left[\left(J_{x^{j}}^{i}-\bar{J}_{x^{j}}^{i}\right) \bar{J}_{v^{l} v^{p}}^{q} \bar{J}_{v^{m} v^{r}}^{s}+J_{x^{j}}^{i}\left(J_{v^{l} v^{p}}^{q}-\bar{J}_{v^{l} v^{p}}^{q}\right) \bar{J}_{v^{m} v^{r}}^{s}\right. \\
\left.+J_{x^{j}}^{i} J_{v^{l} v^{p}}^{q}\left(J_{v^{m} v^{r}}^{s}-\bar{J}_{v^{m} v^{r}}^{s}\right)\right]-\left(Y_{i}^{k}-\bar{Y}_{i}^{k}\right) \bar{J}_{x^{j} v^{l} v^{m}}^{i}-Y_{i}^{k}\left(J_{x^{j} v^{l} v^{m}}^{i}-\bar{J}_{x^{j} v^{l} v^{m}}^{i}\right) \\
\quad+\left(Y_{i}^{p}-\bar{Y}_{i}^{p}\right) \bar{Y}_{q}^{k} \bar{J}_{x^{j}}^{i} \bar{J}_{v^{l} v^{m} v^{p}}+Y_{i}^{p}\left(Y_{q}^{k}-\bar{Y}_{q}^{k}\right) \bar{J}_{x^{j}}^{i} \bar{J}_{v^{l} v^{m} v^{p}} \\
\left.\left.+Y_{i}^{p} Y_{v^{k}}^{k}\left(J_{v^{j}}^{i}-\bar{J}_{x^{j}}^{i}\right) \bar{J}_{i}^{q}+Y_{v^{m} v^{p}}^{k}-\bar{J}_{v^{l} v^{m} v^{p}}^{q}\right)\right\} \nu^{l} \nu^{m} \xi^{j} \xi_{k} .
\end{gathered}
$$

It is important, here, that we record (in connection with the constant C_{2} of Theorem 2) the particular structure of the right-hand side of Equation (69): apart from the unit-vectors ξ, ν of course, it involves only Y, \bar{Y}, the J 's and the \bar{J} 's; it does it in a polynomial way; moreover, each summand contains exactly one of the differences $(Y-\bar{Y}),(J-\bar{J})$. With the view of proving the estimate (12), let us evaluate a difference like $\left(Y_{i}^{l}-\bar{Y}_{i}^{l}\right)$ in terms of the differences $\left(J_{v^{k}}^{j}-\bar{J}_{v^{k}}^{j}\right)$. To do so, we first write:

$$
J_{v^{k}}^{i}=\bar{J}_{v^{j}}^{i}\left[\delta_{k}^{j}-\bar{Y}_{l}^{j}\left(\bar{J}_{v^{k}}^{l}-J_{v^{k}}^{l}\right)\right]
$$

and, setting provisionally $\mu_{j}^{l}:=\bar{Y}_{k}^{l}\left(\bar{J}_{v^{j}}^{k}-J_{v^{j}}^{k}\right)$, we infer the formal expansion:

$$
Y_{i}^{l}=\left(\delta_{j}^{l}+\mu_{j}^{l}+\mu_{j}^{l_{1}} \mu_{l_{1}}^{l}+\sum_{N=2}^{\infty} \mu_{j}^{l_{1}} \mu_{l_{1}}^{l_{2}} \ldots \mu_{l_{N-1}}^{l_{N}} \mu_{l_{N}}^{l}\right) \bar{Y}_{i}^{j}
$$

Assuming $v_{0} \neq 0$ and using a Fermi chart associated to (m_{0}, v_{0}), we have

$$
\bar{J}_{v^{a}}^{\alpha}=\delta_{a}^{\alpha} \frac{\sin \left(\left|v_{0}\right| t\right)}{\left|v_{0}\right|}
$$

as well-known (cf. e.g. [19]), hence:

$$
\bar{Y}_{a}^{\alpha}=\delta_{a}^{\alpha} \frac{\left|v_{0}\right|}{\sin \left|v_{0}\right|}, \bar{Y}_{a}^{n}=\delta_{a}^{n}
$$

Moreover, recalling (48), the sole differences $\left(J_{v^{k}}^{l}-\bar{J}_{v^{k}}^{l}\right)$ to take in account will be those for k and l smaller than n. Recalling Lemma 5 and Remark 5 , we set $\mathcal{D}_{\beta}^{\alpha}:=\bar{J}_{\beta}^{\alpha}-J_{\beta}^{\alpha}$, thus with the g-norm bound $|\mathcal{D}| \leq 2 \delta \sqrt{n-1}$; writing $\mu_{j}^{l}=\delta_{\alpha}^{l} \delta_{j}^{\beta} \frac{\left|v_{0}\right|}{\sin \left|v_{0}\right|} \mathcal{D}_{\beta}^{\alpha}$, we infer from the above expansion that $\left(Y_{i}^{l}-\bar{Y}_{i}^{l}\right)$ is formally equal to:

$$
\delta_{\alpha}^{l} \delta_{i}^{\beta}\left(\frac{\left|v_{0}\right|}{\sin \left|v_{0}\right|}\right)^{2} \mathcal{D}_{\gamma}^{\alpha}\left[\delta_{\beta}^{\gamma}+\frac{\left|v_{0}\right|}{\sin \left|v_{0}\right|} \mathcal{D}_{\beta}^{\gamma}+\sum_{N=2}^{\infty}\left(\frac{\left|v_{0}\right|}{\sin \left|v_{0}\right|}\right)^{N} \mathcal{D}_{\gamma_{1}}^{\gamma} \mathcal{D}_{\gamma_{2}}^{\gamma_{1}} \ldots \mathcal{D}_{\beta}^{\gamma_{N-1}}\right] .
$$

The condition (11) of Theorem 2 implies: $\frac{\left|v_{0}\right|}{\sin \left|v_{0}\right|}|\mathcal{D}| \leq \frac{1}{2}$, which ensures the uniform convergence of the latter expansion and yields the g-norm upper bound:

$$
\begin{equation*}
|Y-\bar{Y}| \leq 4 \sqrt{n-1}\left(\frac{\left|v_{0}\right|}{\sin \left|v_{0}\right|}\right)^{2} \delta \tag{70}
\end{equation*}
$$

The latter, combined with the triangle inequality and (11), provides the upper bound:

$$
\begin{equation*}
\sqrt{\sum_{\alpha, \beta}\left(Y_{\beta}^{\alpha}\right)^{2}} \leq 2 \sqrt{n-1} \frac{\left|v_{0}\right|}{\sin \left|v_{0}\right|} \tag{71}
\end{equation*}
$$

By a lengthy but routine inspection of each of its summand, we can now estimate the right-hand side of (69), using repeatedly the triangle and Schwarz inequalities combined with $(70)(71)\left(\right.$ and $\left.Y_{a}^{n}=\delta_{a}^{n}, Y_{n}^{a}=\delta_{n}^{a}\right)$, the inequality $\frac{\left|v_{0}\right|}{\sin \left|v_{0}\right|} \geq 1$
and Lemmas $4,5,9,10,12,13$, and obtain the existence of a constant $C_{2} \geq 1$ under control such that:

$$
\left|\mathcal{C}\left(m_{0}, v_{0}\right)(\xi, \nu)-\overline{\mathcal{C}}\left(m_{0}, v_{0}\right)(\xi, \nu)\right| \leq C_{2}\left(\frac{\left|v_{0}\right|}{\sin \left|v_{0}\right|}\right)^{4} \delta
$$

Last, we note that the function $\theta \mapsto \frac{\theta}{\sin \theta}$ is increasing from 1 to ∞ on $[0, \pi)$, where it satisfies the following (easily verified) inequality:

$$
\frac{\theta}{\sin \theta} \leq \frac{\pi}{\pi-\theta}
$$

The latter yields for $\left|v_{0}\right|=\left(1-\eta_{0}\right) \pi$, with $\eta_{0} \in(0,1)$, the upper bound:

$$
\frac{\left|v_{0}\right|}{\sin \left|v_{0}\right|} \leq \frac{1}{\eta_{0}}
$$

so the proof of Theorem 2 is complete.
In order to test the sharpness of the resulting bound (12), let us exhibit a summand of (69) which is $O\left(\frac{\delta}{\eta_{0}^{4}}\right)$ as η_{0} goes to 0 . Among the terms of the sum:

$$
-Y_{i}^{r} Y_{s}^{p}\left(Y_{q}^{k}-\bar{Y}_{q}^{k}\right) \bar{J}_{x^{j}}^{i} \bar{J}_{v^{l} v^{p}}^{q} \bar{J}_{v^{m} v^{r}}^{s} \nu^{l} \nu^{m} \xi^{j} \xi_{k}
$$

fixing $\alpha \in\{1, \ldots, n-1\}$, take those with:

$$
l=m=n, p=q=r=k=s=\alpha
$$

(the latter equalities imply $i=j=: \beta<n$), which reads:

$$
-\sum_{\beta<n} \xi_{\alpha} \xi^{\beta}\left(\nu^{n}\right)^{2} Y_{\beta}^{\alpha} Y_{\alpha}^{\alpha}\left(Y_{\alpha}^{\alpha}-\bar{Y}_{\alpha}^{\alpha}\right) \bar{J}_{x^{\beta}}^{\beta}\left(\bar{J}_{v^{n} v^{\alpha}}^{\alpha}\right)^{2}=: T_{\alpha}
$$

At $t=1$, we have $\bar{J}_{x^{\beta}}^{\beta}=\cos \left|v_{0}\right|$ for each $\beta<n$, and:

$$
\bar{J}_{v^{n} v^{\alpha}}^{\alpha}=\frac{1}{\left|v_{0}\right|^{2}}\left(\left|v_{0}\right| \cos \left|v_{0}\right|-\sin \left|v_{0}\right|\right)
$$

as readily checked. So there exists a constant $c \geq 1$ (independent of $\left(m_{0}, v_{0}\right), \delta$ and n) such that:

$$
\left|T_{\alpha}\right| \leq c\left|Y_{\alpha}^{\alpha}\right|\left|Y_{\alpha}^{\alpha}-\bar{Y}_{\alpha}^{\alpha}\right| \sum_{\beta<n}\left|Y_{\beta}^{\alpha}\right|
$$

hence also, by $(70)(71)$ and the expression of $\bar{Y}_{\alpha}^{\alpha}(c f$. supra $)$, such that:

$$
\left|T_{\alpha}\right| \leq 16(n-1)^{2} c\left(\frac{\left|v_{0}\right|}{\sin \left|v_{0}\right|}\right)^{4} \delta .
$$

A bound on $\left|T_{\alpha}\right|$ of order $O\left(\frac{\delta}{\eta_{0}^{4}}\right)$ thus, indeed, occurs as $\eta_{0} \downarrow 0$.
Remark 7 In Theorem 2, we may take the constant C_{2} such that, for some integer k, the quantity $C_{2} n^{-k / 2}$ remains bounded as $n \rightarrow \infty$. The existence of such an integer k follows by a careful inspection of our estimates of Sections 2.3
through 2.6, provided the initial standard estimation scheme used for Lemmas 4, 9 and 12 , is replaced by the improved ad hoc scheme described below. Granted it, using extensively the triangle and Schwarz inequalities (for the norm and scalar product $g_{m_{0}}$) combined with (10) and (11), each estimate derived in the aforementioned sections turns out, indeed, polynomial in the ultimate variables:

$$
\max _{t \in[0,1]}\left|\partial_{x} \overline{X_{0}}(t)\right|=\max _{t \in[0,1]}\left|\partial_{v} \overline{X_{0}}(t)\right|=\sqrt{n}, \text { and }\left|\operatorname{Cur}_{1}\right|=\sqrt{2 n(n-1)},
$$

with universal constants as coefficients ($N . B$. the bounds for the barred quantities are obtained from the others by letting Riem $=\operatorname{Cur}_{1}$ and $\delta=0$).
Ad hoc estimation scheme. Rewrite the non-homogeneous Jacobi equation under study in the form:

$$
\ddot{J}+\operatorname{Cur}_{1}\left(J, \dot{\gamma}_{0}\right) \dot{\gamma}_{0}=\left(\operatorname{Cur}_{1}-\operatorname{Riem}\right)\left(J, \dot{\gamma}_{0}\right) \dot{\gamma}_{0}+P
$$

and use the representation device of Lemmas 6 and 7 for its solution, combined with condition (10) and the Schwarz and triangle inequalities, to get:

$$
\max _{t \in[0,1]}|J(t)| \leq|J(0)|+|\dot{J}(0)|+2 \delta \max _{t \in[0,1]}|J(t)|+2 \max _{t \in[0,1]}|P(t)| .
$$

Recalling (11), conclude:

$$
\max _{t \in[0,1]}|J(t)| \leq 2\left(|J(0)|+|\dot{J}(0)|+2 \max _{t \in[0,1]}|P(t)|\right)
$$

Here, either $|J(0)|$ or $|\dot{J}(0)|$ is equal to \sqrt{n}, the other one vanishing, in case we deal with first derivatives of $X(x, v, t)$ at $\left(0, v_{0}, t\right)$, or $|J(0)|=|\dot{J}(0)|=0$ in case we deal with higher order derivatives.
Derive the estimate on $|\dot{J}(t)|$ from the equation, by writing:

$$
\dot{J}(t)=\dot{J}(0)+\int_{0}^{t} \ddot{J}(\tau) d \tau=\dot{J}(0)+\int_{0}^{t}\left[P(\tau)-\operatorname{Riem}\left(J, \dot{\gamma}_{0}\right) \dot{\gamma}_{0}\right] d \tau
$$

and by using the preceding estimate on $|J(\tau)|$ (combined again with the Schwarz and triangle inequality).

A Spherical c-curvature calculations

For completeness, we provide here the proof of inequality (17) and thus redo formally some of Loeper's calculations [35]. Fixing $\left(m_{0}, v_{0}\right) \in$ NoCut with $v_{0} \neq 0$ and a couple (ξ, ν) of arbitrary unit vectors in $T_{m_{0}} M_{n}$, let us compute

$$
\overline{\mathcal{C}}\left(m_{0}, v_{0}\right)(\xi, \nu)=-\left.D d\left[v \mapsto \bar{A}\left(m_{0}, v\right)(\xi)\right]\right|_{v=v_{0}}(\nu, \nu)
$$

where D stands for the canonical flat connection of $T_{m_{0}} M_{n}$ and $\bar{A}\left(m_{0}, v\right)(\xi)$ is given by $\bar{A}\left(m_{0}, v\right)(\xi)=1-\varphi(v) h(v)$ with $\varphi(v)=\Phi(|v|):=1-|v| \cot |v|$ and $h(v):=1-\left\langle\xi, \frac{v}{|v|}\right\rangle^{2}$ (setting $\langle.,\rangle:.=g_{m_{0}}(.,$.$) for short). We readily get for$ $\overline{\mathcal{C}}\left(m_{0}, v_{0}\right)(\xi, \nu)$ the expression:

$$
h\left(v_{0}\right) D d \varphi\left(v_{0}\right)(\nu, \nu)+2 d \varphi\left(v_{0}\right)(\nu) d h\left(v_{0}\right)(\nu)+\varphi\left(v_{0}\right) D d h\left(v_{0}\right)(\nu, \nu)
$$

or else:

$$
\begin{aligned}
& h\left(v_{0}\right)\left\{\Phi^{\prime}\left(\left|v_{0}\right|\right)[D d|v|(\nu, \nu)]_{v=v_{0}}+\Phi^{\prime \prime}\left(\left|v_{0}\right|\right)[d|v|(\nu)]_{v=v_{0}}^{2}\right\} \\
& +2 \Phi^{\prime}\left(\left|v_{0}\right|\right)[d|v|(\nu)]_{v=v_{0}} d h\left(v_{0}\right)(\nu)+\varphi\left(v_{0}\right) D d h\left(v_{0}\right)(\nu, \nu) .
\end{aligned}
$$

Using the auxiliary formulas:

$$
\begin{gathered}
d|v|(\nu)=\left\langle\nu, \frac{v}{|v|}\right\rangle \quad, \quad D d|v|(\nu, \nu)=\frac{1}{|v|}\left(1-\left\langle\nu, \frac{v}{|v|}\right\rangle^{2}\right), \\
d\left\langle\xi, \frac{v}{|v|}\right\rangle(\nu)=\quad-\quad \frac{1}{|v|}\left(\left\langle\xi, \frac{v}{|v|}\right\rangle\left\langle\nu, \frac{v}{|v|}\right\rangle-\langle\xi, \nu\rangle\right), \\
\Phi^{\prime}(r)=\frac{r-\sin r \cos r}{\sin ^{2} r} \quad, \quad \Phi^{\prime \prime}(r)=\frac{2(\sin r-r \cos r)}{\sin ^{3} r},
\end{gathered}
$$

and setting for short: $r=\left|v_{0}\right|, \overline{v_{0}}=\frac{v_{0}}{r}$, we find $\overline{\mathcal{C}}\left(m_{0}, v_{0}\right)(\xi, \nu)$ equal to:

$$
\begin{aligned}
& {\left[1-\left\langle\xi, \overline{v_{0}}\right\rangle^{2}\right]\left\{\frac{r-\cos r \sin r}{r \sin ^{2} r}\left[1-\left\langle\nu, \overline{v_{0}}\right\rangle^{2}\right]+\frac{2(\sin r-r \cos r)}{\sin ^{3} r}\left\langle\nu, \overline{v_{0}}\right\rangle^{2}\right\} } \\
& +\frac{4(r-\cos r \sin r)}{r \sin ^{2} r}\left\langle\xi, \overline{v_{0}}\right\rangle\left\langle\nu, \overline{v_{0}}\right\rangle\left(\left\langle\xi, \overline{v_{0}}\right\rangle\left\langle\nu, \overline{v_{0}}\right\rangle-\langle\xi, \nu\rangle\right) \\
+ & \frac{2(\sin r-r \cos r)}{r^{2} \sin r}\left[\left\langle\xi, \overline{v_{0}}\right\rangle^{2}\left(1-4\left\langle\nu, \overline{v_{0}}\right\rangle^{2}\right)+\langle\xi, \nu\rangle\left(4\left\langle\xi, \overline{v_{0}}\right\rangle\left\langle\nu, \overline{v_{0}}\right\rangle-\langle\xi, \nu\rangle\right)\right] .
\end{aligned}
$$

Incidentally, one can readily infer from that expression that the following limit holds:

$$
\forall(\xi, \nu) \in\left(T_{m_{0}} M_{n}\right)^{2}, \lim _{v_{0} \rightarrow 0} \overline{\mathcal{C}}\left(m_{0}, v_{0}\right)(\xi, \nu)=\frac{2}{3}\left(|\xi|^{2}|\nu|^{2}-\langle\xi, \nu\rangle^{2}\right)
$$

Back to our present purpose, we take the unit vectors orthogonal: $\xi \perp \nu$. Applying the easily established inequalities:

$$
\forall t \in[0, \pi], \sin t-t \cos t \geq \frac{t^{3}}{\pi^{2}}, t-\sin t \cos t \geq \frac{t^{3}}{\pi^{2}}
$$

and setting:

$$
\begin{aligned}
P(x, y, z) & :=z[z(1-x)(1-y+2 y z)+2 x(1-y)], \\
\Psi(t) & :=2 t^{2}-3 \sin ^{2} t+t \cos t \sin t,
\end{aligned}
$$

we infer from the above expression the lower bound:

$$
\overline{\mathcal{C}}\left(m_{0}, v_{0}\right)(\xi, \nu) \geq \frac{1}{\pi^{2}} P\left(\left\langle\xi, \overline{v_{0}}\right\rangle^{2},\left\langle\nu, \overline{v_{0}}\right\rangle^{2}, \frac{r}{\sin r}\right)+\frac{2\left\langle\xi, \overline{v_{0}}\right\rangle^{2}\left\langle\nu, \overline{v_{0}}\right\rangle^{2}}{r^{2} \sin ^{2} r} \Psi(r) .
$$

A lengthy but routine check (differentiating six times the function ζ defined on $[0,2 \pi]$ by $\zeta(t):=\Psi(t / 2))$ shows that the function Ψ is non-negative on $[0, \pi]$. So

$$
\overline{\mathcal{C}}\left(m_{0}, v_{0}\right)(\xi, \nu) \geq \frac{1}{\pi^{2}} P(x, y, z)
$$

with

$$
x:=\left\langle\xi, \overline{v_{0}}\right\rangle^{2}, y:=\left\langle\nu, \overline{v_{0}}\right\rangle^{2}, z:=\frac{\left|v_{0}\right|}{\sin \left|v_{0}\right|},
$$

satisfying:

$$
\begin{equation*}
x \geq 0, y \geq 0, x+y \leq 1, z \geq 1 \tag{72}
\end{equation*}
$$

From the latter inequality, we have $P(x, y, z) \geq z Q(x, y)$ with:

$$
Q(x, y):=1+x+y-3 x y
$$

Using the arithmetic-geometric inequality, we get

$$
Q(x, y) \geq 1+(x+y)\left[1-\frac{3}{4}(x+y)\right]
$$

hence, by (72), we have $Q(x, y) \geq 1$ and:

$$
\overline{\mathcal{C}}\left(m_{0}, v_{0}\right)(\xi, \nu) \geq \frac{1}{\pi^{2}} \frac{\left|v_{0}\right|}{\sin \left|v_{0}\right|} .
$$

Finally, on the one hand, we have $\frac{\left|v_{0}\right|}{\sin \left|v_{0}\right|} \geq 1$, on the other hand, since $\left|v_{0}\right|=\left(1-\eta_{0}\right) \pi$ and $\sin \left|v_{0}\right|=\sin \eta_{0} \pi \leq \eta_{0} \pi$, we also have $\frac{\left|v_{0}\right|}{\sin \left|v_{0}\right|} \geq \frac{1-\eta_{0}}{\eta_{0}}$. Altogether, we obtain the lower bound (17) as claimed.

B The Ma-Trudinger-Wang estimate

The interior C^{2} estimate carried out in [38, Theorem 4.1] requires preliminary bounds, notably on the cost-function c up to its fourth partial derivatives (in some local charts). We need to adapt it to our manifold context in order to keep track of an intrinsic control on all auxiliary quantities.

B. 1 Expressing the optimal transport equation

Fix $\left(m_{0}, V_{0}\right) \in$ NoCut and let x (resp. y) be a chart of M_{n} at m_{0} (resp. at $\left.p_{0}=\exp _{m_{0}}\left(V_{0}\right)\right)$ with $x\left(m_{0}\right)=0$. Set (x, v) for the natural chart of $T M_{n}$ associated to x, with $(x, v)\left(m_{0}, V_{0}\right)=\left(0, v_{0}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$, and for $(m, V) \in T M_{n}$ close to $\left(m_{0}, V_{0}\right)$, set

$$
E(x, v):=y\left[\exp _{m}(V)\right]
$$

where $x=x(m)$ and $V=v^{i} \partial_{x^{i}}$. Consider the real function Φ defined near (m_{0}, V_{0}) in $T M_{n}$ by:

$$
\Phi(m, V)=\frac{\sqrt{|g|}(x)}{\sqrt{|g|}(E(x, v)) \operatorname{det}\left(\frac{\partial E}{\partial v}(x, v)\right)},
$$

where the same symbol $\sqrt{|g|}$ abusively denotes the Riemannian density in either charts x or y; so, for instance: $\mathrm{d} \operatorname{Vol}(m)=\sqrt{|g|}(x) d x^{1} \ldots d x^{n}$. One can routinely
check that the function Φ is independent of the choice of the charts x and y; as such, it is globally defined on NoCut. We set:

$$
\forall(m, V) \in \text { NoCut }, \forall t \in[0,1], B_{t}(m, V):=\frac{\rho_{0}(m)}{\rho_{t}\left(\exp _{m} V\right)} \Phi(m, V)
$$

(where the function ρ_{t} is the one defined in the statement of Theorem 1). Now, Equation (1) globally reads as follows [16]:

$$
\begin{equation*}
\forall m \in M_{n}, \frac{\operatorname{det} \operatorname{Hess}^{(c)} u_{t}}{\operatorname{det} g}(m)=B_{t}\left(m, \operatorname{grad}_{m} u_{t}\right) . \tag{73}
\end{equation*}
$$

In order to fit with the local setting of [38, Theorem 4.1], we will require another expression of it, a local one, attached to a couple of charts x and y as above. Fixing henceforth $t \in \mathcal{T}$, we set:

$$
\psi(x, v):=\log \left[\operatorname{det} g(m) B_{t}(m, V)\right] \equiv \log \left[\frac{\rho_{0}|g|^{3 / 2}(x)}{\rho_{t} \sqrt{|g|}(E(x, v)) \operatorname{det}\left(\frac{\partial E}{\partial v}(x, v)\right)}\right]
$$

From the identity (40), the map \mathcal{V} given by

$$
\begin{equation*}
\mathcal{V}^{i}(x, y)=-g^{i j}(x) \partial_{x^{j}} c(x, y) \tag{74}
\end{equation*}
$$

near $\left(0, y_{0}\right)\left(\right.$ with $\left.y_{0}:=y\left(p_{0}\right)\right)$, satisfies:

$$
y=E(x, v) \Longleftrightarrow v=\mathcal{V}(x, y)
$$

and at $y_{t}:=y\left[\exp _{m}\left(\operatorname{grad}_{m} u_{t}\right)\right]$, recalling (3), we get from (74):

$$
\left.\mathfrak{A}_{i j}\left(x, d u_{t}\right) \equiv \partial_{x^{i} x^{j}}^{2} c(x, y)\right|_{y=y_{t}} .
$$

So Equation (1) locally reads:

$$
\begin{equation*}
\log \operatorname{det}\left(w_{i j}\right)=\psi\left(x, \nabla_{x} u_{t}\right) \tag{75}
\end{equation*}
$$

where $\nabla_{x} u_{t}:=T_{m} x\left(\operatorname{grad}_{m} u_{t}\right) \equiv \mathcal{V}\left(x, y_{t}\right)$ and

$$
w_{i j} d x^{i} \otimes d x^{j}:=\left.\operatorname{Hess}^{(c)} u_{t} \equiv \partial_{x^{i} x^{j}}^{2}\left[c(x, y)+u_{t}(x)\right]\right|_{y=y_{t}} .
$$

B. 2 Maximum principle à la Ma-Trudinger-Wang

Let us consider the test-function $m \mapsto \mathfrak{T}(m)$ on M_{n} equal to the g-trace of the covariant symmetric tensor $H_{i j} d x^{i} \otimes d x^{j}:=\operatorname{Hess}^{(c)} u_{t}(m)$ and let $m_{0} \in M_{n}$ be a point where \mathfrak{T} assumes its maximum. We aim at a uniform upper bound on $\mathfrak{T}\left(m_{0}\right)$; since the tensor field $\operatorname{Hess}^{(c)} u_{t}$ is positive-definite, its eigenvalues with respect to the metric g will, indeed, be uniformly controlled by such a bound.

At the maximum point m_{0}, if $d u_{t}\left(m_{0}\right)=0$ we take a Riemannian normal chart [43]; if $d u_{t}\left(m_{0}\right) \neq 0$, we take a Fermi chart along the vector $V_{0}=\operatorname{grad}_{m_{0}} u_{t}$ as in Definition 1. In either case, we use the same chart x at m_{0} (where x is centered) and at $p_{0}=\exp _{m_{0}}\left(V_{0}\right)$, but it is convenient to stick to the (x, y) notation of [38], using y to denote the second argument of the local expression
of the cost-function c, and to set still $y_{0}=x\left(p_{0}\right)$ and $y_{t}:=x\left[\exp _{m}\left(\operatorname{grad}_{m} u_{t}\right)\right]$, thus with $y_{t}=E\left(x, \nabla_{x} u_{t}\right)$ where $x=x(m)$. The test-function \mathfrak{T} reads:

$$
\mathfrak{T}(x)=\left.g^{i j}(x) \partial_{x^{i} x^{j}}^{2}\left[c(x, y)+u_{t}(x)\right]\right|_{y=y_{t}}
$$

near $x=0$. Using Equation (75), one can now derive for \mathfrak{T} at $x=0$ an estimate which is a close variant of the quite robust one presented in [38, pp.162-164]. To do so, a careful inspection of the proof shows that, granted the existence of a positive lower bound θ on the c-curvatures at $\left(m_{0}, V_{0}\right)$ as in (18), we require nothing but bounds under control on the second derivatives of the local tensor $g^{i j}$ at $x=0$ and on the local functions $\psi(x)$ and $c(x, y)$ together with the following derivatives of theirs:

$$
\begin{gathered}
\partial_{x^{i}} \psi, \partial_{v^{j}} \psi, \partial_{x^{i} x^{j}}^{2} \psi, \partial_{x^{i} v^{j}}^{2} \psi, \partial_{v^{i} v^{j}}^{2} \psi \\
\partial_{x^{i} x^{j}}^{2} c, \partial_{x^{i} y^{j}}^{2} c, \partial_{x^{i} x^{j} x^{k}}^{3} c, \partial_{x^{i} x^{j} y^{k}}^{3} c, \partial_{x^{i} y^{j} y^{k}}^{3} c, \partial_{x^{i} x^{j} x^{k} x^{l}}^{4} c, \partial_{x^{i} x^{j} x^{k} y^{l}}^{4} c, \partial_{x^{i} x^{j} y^{k} y^{l}}^{4} c
\end{gathered}
$$

respectively calculated at $x=0$ and at $(x, y)=\left(0, y_{0}\right)$. Granted such bounds, the proofs of Corollaries 1 and 2 are thus complete.

B. 3 Bounds under control on $g^{i j}, \psi$ and c

Control on derivatives of $g^{i j}$

The first partial derivatives of $g^{i j}$ at 0 vanish in either types of chart (Riemann or Fermi); so we are left with the second derivatives, given by:

$$
\partial_{k l} g^{i j}(0)=-\partial_{k l} g_{i j}(0)
$$

In a Riemannian normal chart (if $V_{0}=0$), the derivatives $\partial_{l i} g_{j k}(0)$ are intrinsic (formally given by the next equation), a result which goes back to Riemann's dissertation (see [43, chap.4]). In the Fermi chart case (if $V_{0} \neq 0$), aside from (28), we require the classical identity, valid on the axis:

$$
\begin{equation*}
\partial_{\alpha \beta} g_{\gamma \lambda}=\frac{1}{3}\left(R_{\gamma \lambda \beta}^{\alpha}+R_{\lambda \gamma \beta}^{\alpha}\right) \tag{76}
\end{equation*}
$$

It can be checked (from the definition of the Riemann curvature tensor) by routine calculation, using (34) and (35).

Controls on E and ψ

If $V_{0}=0$, sticking to the notations of Section 2.2 , we have $X(0,0, t) \equiv 0$ and:

$$
\begin{gathered}
\partial_{x^{j}} X^{i}(0,0, t)=\delta_{j}^{i}, \partial_{v^{j}} X^{i}(0,0, t)=t \delta_{j}^{i}, \\
\forall(k, l) \in \mathbb{N}^{2}, k+l \geq 2 \Rightarrow\left|\partial_{x}^{k} \partial_{v}^{l} X(0,0, t)\right| \equiv 0 .
\end{gathered}
$$

Since $E(x, v) \equiv X(x, v, 1)$, Lemma 14 below (read with $\left.v_{0}=0\right)$ follows at once. Furthermore, using the notation (67), we also get $Y_{j}^{i} \equiv \delta_{j}^{i}$ which, combined with the preceding result, readily yields the required bounds on ψ and its first and second derivatives at $x=0$.
If $V_{0} \neq 0$, since $u_{t} \in \mathcal{A}$, we have $\left(m_{0}, V_{0}\right) \in \operatorname{NoCut}$. Of course, for (x, v) close
to $\left(0, v_{0}\right)$, the identity $E(x, v) \equiv X(x, v, 1)$ holds in the Fermi chart as well. Moreover, one can readily establish for $\left|\partial_{x x}^{2} X\left(0, v_{0}, t\right)\right|\left(\right.$ resp. $\left.\left|\partial_{x x v}^{3} X\left(0, v_{0}, t\right)\right|\right)$ a boundedness result analogous to that of Lemma 9 (resp. Lemma 12). Combining the latter with Lemmas 4, 9, and 12, we infer the:

Lemma 14 The g-norms of:

$$
\partial_{x} E, \partial_{v} E, \partial_{x x}^{2} E, \partial_{x v}^{2} E, \partial_{v v}^{2} E, \partial_{x x x}^{3} E, \partial_{x x v}^{3} E, \partial_{x v v}^{3} E, \partial_{v v v}^{3} E
$$

calculated at $\left(0, v_{0}\right)$, are under control.
Besides, recalling (67), we have: $\left[\partial_{v} E(0, v)\right]^{-1} \equiv Y$ for v close to v_{0}, and the bound (71) (together with $Y_{a}^{n}=Y_{n}^{a}=\delta_{n a}$) combined with Lemma 14 yields again the required bounds on the function ψ and its first and second derivatives at $x=0$. In the sequel, we thus focus on bounds for the sole function $c(x, y)$.

Control on \mathcal{V}

Recalling (74), setting for short $\mathcal{Y}=\mathcal{Y}(x, y):=\frac{\partial \mathcal{V}}{\partial y}$ and differentiating with respect to y the identity $y=E[x, \mathcal{V}(x, y)]$ (with x fixed), we find:

$$
\begin{equation*}
\mathcal{Y}_{j}^{a} \partial_{v^{a}} E^{i}=\delta_{j}^{i} \tag{77}
\end{equation*}
$$

in particular, letting $x=0$ and recalling (67), we may record at $y=E(0, v)$ the identity:

$$
\mathcal{Y}(0, y) \equiv Y(v)
$$

Differentiating (77), once again with respect to y, yields:

$$
\begin{equation*}
\partial_{y^{p}} \mathcal{Y}_{j}^{a}=-\mathcal{Y}_{p}^{b} \mathcal{Y}_{i}^{a} \mathcal{Y}_{j}^{c} \partial_{v^{b} v^{c}}^{2} E^{i} \tag{78}
\end{equation*}
$$

Besides, differentiating with respect to x (for fixed v) the other identity, namely $v=\mathcal{V}[x, E(x, v)]$, we get:

$$
\begin{equation*}
\partial_{x^{k}} \mathcal{V}^{a}=-\mathcal{Y}_{i}^{a} \partial_{x^{k}} E^{i} \tag{79}
\end{equation*}
$$

Using the latter to differentiate (77) with respect to x, we obtain:

$$
\begin{equation*}
\partial_{x^{k}} \mathcal{Y}_{j}^{a}=-\mathcal{Y}_{i}^{a} \mathcal{Y}_{j}^{b}\left(\partial_{x^{k} v^{b}}^{2} E^{i}-\mathcal{Y}_{l}^{c} \partial_{v^{b} v^{c}}^{2} E^{i} \partial_{x^{k}} E^{l}\right) \tag{80}
\end{equation*}
$$

From $\partial_{y^{k}} \mathcal{V}^{a} \equiv \mathcal{Y}_{k}^{a}$ and (79) combined with (78) and (80), we readily infer the:
Lemma 15 All the partial derivatives of \mathcal{V} at (x, y) are expressible (in a polynomial way) solely in terms of $\frac{\partial \mathcal{V}}{\partial y}$ itself and the partial derivatives of E evaluated at $[x, \mathcal{V}(x, y)]$. In particular, the g-norm of the third order jet of \mathcal{V} calculated at $\left(0, y_{0}\right)$ is under control.

The final statement of the lemma simply follows from Lemma 14 combined with the bound (71). We are now in position to deal with the derivatives of the function $c(x, y)$.

Control on c

From (74) we get:

$$
\begin{equation*}
\partial_{x^{j}} c(x, y)=-g_{j s}(x) \mathcal{V}^{s}(x, y), \tag{81}
\end{equation*}
$$

which yields successively, at $\left(0, y_{0}\right)$:

$$
\begin{gathered}
\partial_{x^{j} y^{k}}^{2} c=-\partial_{y^{k}} \mathcal{V}^{j}, \partial_{x^{j} y^{k} y^{l}}^{3} c=-\partial_{y^{k} y^{l}} \mathcal{V}^{j}, \\
\partial_{x^{i} x^{j}}^{2} c=-\partial_{x^{i}} \mathcal{V}^{j}, \partial_{x^{i} x^{j} y^{k}}^{3} c=-\partial_{x^{i} y^{k}} \mathcal{V}^{j}, \partial_{x^{i} x^{j} y^{k} y^{l}}^{4} c=-\partial_{x^{i} y^{k} y^{l}} \mathcal{V}^{j},
\end{gathered}
$$

hence, by Lemma 15 , the preceding derivatives of c at $\left(0, y_{0}\right)$ are under intrinsic control. Next, since $\mathcal{V}^{i}\left(0, y_{0}\right)=\delta_{n}^{i}\left|v_{0}\right|$, further differentiating (81) provides us with a set of three equalities, beginning with:

$$
\partial_{x^{l} x^{i} x^{j}}^{3} c\left(0, y_{0}\right)=-\left|v_{0}\right| \partial_{l i} g_{n j}(0)-\partial_{x^{l} x^{i}}^{2} \mathcal{V}^{j}\left(0, y_{0}\right)
$$

which shows, recalling (28) and Lemma 15 , that the derivatives $\partial_{x^{l} x^{i} x^{j}}^{3} c\left(0, y_{0}\right)$ are under control. The second equality which we get is:

$$
\partial_{x^{l} x^{i} x^{j} y^{r}}^{4} c\left(0, y_{0}\right)=-\partial_{l i} g_{j k}(0) Y_{r}^{k}\left(v_{0}\right)-\partial_{x^{l} x^{i}}^{2} \mathcal{Y}_{r}^{j}\left(0, y_{0}\right)
$$

Combining (28), (76) with Lemma 15 and the bound (71), we readily infer that the derivatives $\partial_{x^{l} x^{i} x^{j} y^{r}}^{4} c\left(0, y_{0}\right)$ are under control.
The final equality which we get is:
$\partial_{x^{k} x^{l} x^{i} x^{j}}^{4} c\left(0, y_{0}\right)=-\left|v_{0}\right| \partial_{k l i} g_{n j}(0)-\sum_{(k, l, i)} \partial_{k l} g_{r j}(0) \partial_{x^{i}} \mathcal{V}^{r}\left(0, y_{0}\right)-\partial_{x^{k} x^{l} x^{i}}^{3} \mathcal{V}^{j}\left(0, y_{0}\right)$
the right-hand side of which is again under control for the same aforementioned reasons except for its $\partial_{k l i} g_{n j}(0)$ term whenever all three indices k, l, i lie in $\{1, \ldots, n-1\}$. The terms $\partial_{\alpha \beta \gamma} g_{n n}(0)$ turn out to be controlled by (31) because they coincide with $2 \partial_{\alpha \beta} \Gamma_{n \gamma}^{n}(0)$. As regards the others, noting the identity:

$$
\partial_{\alpha \beta \gamma} g_{n \lambda}=\partial_{\alpha \beta}\left(\Gamma_{n \gamma}^{\lambda}+\Gamma_{\lambda \gamma}^{n}\right)
$$

valid on the axis, and recalling (32), their control reduces to another one on $\partial_{\alpha \beta} \Gamma_{\lambda \gamma}^{n}(0)$, provided in Lemma 16 below.
Finally, in a Riemannian normal chart (case $v_{0}=0$), each of the previous controls holds a fortiori; the last one relies on the formula:

$$
\partial_{i k l} g_{j s}(0)=\frac{1}{6} \sum_{(i, k, l)}\left(\nabla_{i} R_{k j s l}+\nabla_{i} R_{l j s k}\right)(0),
$$

which can be routinely derived [28] from the third order expansion of the metric components calculated by Elie Cartan [11, p.243, Eq.(21)] (see also [24, p.193]).

Lemma 16 The following identity holds on the axis of a Fermi chart:

$$
\begin{align*}
\partial_{\alpha \beta} \Gamma_{\lambda \gamma}^{n} & =\frac{1}{4}\left(\nabla_{\alpha} R_{\gamma n \beta}^{\lambda}+\nabla_{\beta} R_{\gamma n \alpha}^{\lambda}\right) \tag{82}\\
& -\frac{1}{2} \nabla_{\gamma}\left(R_{\alpha n \beta}^{\lambda}+R_{\beta n \alpha}^{\lambda}\right) \\
& +\frac{5}{12} \nabla_{n}\left(R_{\alpha \gamma \beta}^{\lambda}+R_{\beta \gamma \alpha}^{\lambda}\right) .
\end{align*}
$$

Proof. For completeness, we first briefly recall the argument that leads to (33) read with $i=n$. In our Fermi chart, since $t \mapsto\left(t x^{1}, \ldots, t x^{n-1}, x^{n}\right)$ is a geodesic, we get using the geodesic equation:

$$
\Gamma_{\alpha \beta}^{i}(x) x^{\alpha} x^{\beta} \equiv 0 \text { and } g_{\alpha \beta}(x) x^{\alpha} x^{\beta} \equiv \sum_{\alpha=1}^{n-1}\left(x^{\alpha}\right)^{2},
$$

from what we readily infer:

$$
x^{\alpha} x^{\beta} \partial_{\alpha} g_{n \beta}(x) \equiv 0
$$

The quantity $\varrho(x):=\sqrt{\sum_{\alpha=1}^{n-1}\left(x^{\alpha}\right)^{2}}$ represents the distance to the axis. Using cylindrical coordinates, the trick is now to apply to the latter equation the operator $\varrho \partial_{\varrho} \equiv x^{\gamma} \partial_{\gamma}$. It yields:

$$
x^{\alpha} x^{\beta} x^{\gamma} \partial_{\alpha \gamma} g_{n \beta}(x) \equiv 0
$$

Setting $x^{\alpha}=\varrho \theta^{\alpha}$, dividing by ϱ^{3} then letting $\varrho \downarrow 0$, we get at $x=\left(0, x^{n}\right)$ the identity (33) read with $i=n$ (since the unit vector $\theta^{\alpha} \partial_{\alpha}$ is arbitrary in the hyperplane orthogonal to the axis). The same argument repeated once yields on the axis the higher order identity (now with a circular summation on 4 indices):

$$
\sum_{(\alpha, \beta, \gamma, \lambda)} \partial_{\alpha \beta \gamma} g_{n \lambda} \equiv 0
$$

Combining it with (33), (34) and (35) enables one to check by brute calculation the following equality:

$$
2 \partial_{\alpha \beta \gamma} g_{n \lambda}=\nabla_{n} R_{\alpha \gamma \beta}^{\lambda}-\nabla_{\gamma}\left(R_{\alpha n \beta}^{\lambda}+R_{\beta n \alpha}^{\lambda}\right)-\nabla_{\alpha} R_{\gamma n \beta}^{\lambda}
$$

valid on the axis, from which Lemma 16 routinely follows.

C Smooth optimal transport and covering spaces

The following result, yet unstated in the literature, is by now well-known:
Theorem 3 (folklore result) Let $p:\left(\widetilde{M_{n}}, \widetilde{g}\right) \rightarrow\left(M_{n}, g\right)$ be a Riemannian normal (or Galoisian) covering map between compact connected n-dimensional manifolds; set Γ for its covering transformations group, thus a finite subgroup of isometries of $\left(M_{n}, \widetilde{g}\right)$. Let $\left(\widetilde{\mu_{0}}, \widetilde{\mu_{1}}\right)$ be a couple of Γ-invariant smooth positive measures of same total mass on M_{n} and let $\left(\mu_{0}, \mu_{1}\right)$ be the couple of associated smooth positive measures on M_{n}, which satisfy the Radon-Nikodym derivatives equality:

$$
\begin{equation*}
\frac{d \widetilde{\mu_{i}}}{\widetilde{\mathrm{dVol}}}=\frac{d \mu_{i}}{\mathrm{dVol}} \circ p \tag{83}
\end{equation*}
$$

where $i \in\{0,1\}$. The optimal transportation map pushing $\widetilde{\mu_{0}}$ to $\widetilde{\mu_{1}}$ is smooth if and only if so is the optimal transportation map pushing μ_{0} to μ_{1}.

Proof. Assume that the optimal transportation map $G=\exp (\operatorname{grad} u)$ pushing μ_{0} to μ_{1} is smooth. Setting $\widetilde{u}=p^{*} u$ and recalling that p is locally an isometry,
naturality and geodesic uniqueness yield for the smooth map $\widetilde{G}:=\exp (\operatorname{grad} \widetilde{u})$ the covering morphism relation:

$$
\begin{equation*}
p \circ \widetilde{G}=G \circ p \tag{84}
\end{equation*}
$$

moreover, for each $\gamma \in \Gamma$, since the potential \widetilde{u} is Γ-invariant and γ is an isometry, we have:

$$
\begin{equation*}
\gamma \circ \widetilde{G}=\widetilde{G} \circ \gamma \tag{85}
\end{equation*}
$$

For each measurable real function \widetilde{f} on $\widetilde{M_{n}}$, set $\widetilde{f_{\Gamma}}$ for the Γ-invariant function obtained by averaging \widetilde{f} over Γ :

$$
\forall \widetilde{m} \in \widetilde{M_{n}}, \widetilde{f_{\Gamma}}(\widetilde{m})=\frac{1}{r} \sum_{\gamma \in \Gamma} \widetilde{f}[\gamma(\widetilde{m})]
$$

where r stands for the cardinal of the deck group Γ (so the covering is r-sheeted); set f_{Γ} for the function on M_{n} defined by: $\widetilde{f_{\Gamma}}=p^{*} f_{\Gamma}$. The following identity clearly holds: $\int_{\widetilde{M}} \widetilde{f} \widetilde{\mathrm{dVol}}=\int_{\widetilde{M}} \widetilde{f_{\Gamma}} \widetilde{\mathrm{dVol}}$, hence also, from (83), the other one:

$$
\begin{equation*}
\int_{\widetilde{M}} \widetilde{f} d \widetilde{\mu}_{i}=\int_{\widetilde{M}} \widetilde{f_{\Gamma}} d \widetilde{\mu_{i}} \tag{86}
\end{equation*}
$$

Recalling $G_{\#} \mu_{0}=\mu_{1}$, the latter with $i=1$ yields:

$$
\int_{\widetilde{M}} \widetilde{f} d \widetilde{\mu_{1}}=r \int_{M} f_{\Gamma} d \mu_{1}=r \int_{M}\left(f_{\Gamma} \circ G\right) d \mu_{0}=\int_{\widetilde{M}}\left(f_{\Gamma} \circ G \circ p\right) d \widetilde{\mu_{0}}
$$

Using (84)(85), we get: $\int_{\widetilde{M}} \widetilde{f} d \widetilde{\mu_{1}}=\int_{\widetilde{M}}\left(\widetilde{f_{\Gamma}} \circ \widetilde{G}\right) d \widetilde{\mu_{0}}=\int_{\widetilde{M}}(\widetilde{f} \circ \widetilde{G})_{\Gamma} d \widetilde{\mu_{0}}$ and by (86) we obtain:

$$
\int_{\widetilde{M}} \widetilde{f} d \widetilde{\mu_{1}}=\int_{\widetilde{M}}(\widetilde{f} \circ \widetilde{G}) d \widetilde{\mu_{0}} .
$$

Since \widetilde{f} is arbitrary, it means that the map \widetilde{G} pushes the measure $\widetilde{\mu_{0}}$ to $\widetilde{\mu_{1}}$; besides, the map G is optimal, unique [39] and smooth, so the first part of the equivalence is proved.
Conversely, let the smooth map $\widetilde{G}=\exp (\operatorname{grad} \widetilde{u})$ push $\widetilde{\mu_{0}}$ to $\widetilde{\mu_{1}}$. So must do the map $\exp [\operatorname{grad}(\widetilde{u} \circ \gamma)]$, for each $\gamma \in \Gamma$, since γ is an isometry which preserves the $\widetilde{\mu_{i}}$'s. By uniqueness of the potential \widetilde{u} (up to an additive constant) [16], the function \widetilde{u} must be Γ-invariant as well. Let u be the function on M_{n} defined by $\widetilde{u}=p^{*} u$ (and μ_{i} the measure on M_{n} defined by (83)). Consider the smooth $\operatorname{map} G=\exp (\operatorname{grad} u)$; the relation (84) is again satisfied. Moreover, using $\widetilde{G}_{\#} \widetilde{\mu_{0}}=\widetilde{\mu_{1}}$, we find for each measurable function f on M_{n} :

$$
\int_{M} f d \mu_{1}=\frac{1}{r} \int_{\widetilde{M}}(f \circ p) d \widetilde{\mu_{1}}=\frac{1}{r} \int_{\widetilde{M}}(f \circ p \circ \widetilde{G}) d \widetilde{\mu_{0}} .
$$

From (84), we further get:

$$
\int_{M} f d \mu_{1}=\frac{1}{r} \int_{\widetilde{M}}(f \circ G \circ p) d \widetilde{\mu_{0}}=\int_{M}(f \circ G) d \mu_{0}
$$

or else, since f is arbitrary: $G_{\#} \mu_{0}=\mu_{1}$. The proof of Theorem 3 is complete.

References

[1] U. Abresch and W.T. Meyer, Pinching below $\frac{1}{4}$, injectivity radius estimates, and sphere theorems, J. Diff. Geom. 40 (1994) 643-691.
[2] Th. Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren der math. Wissensch. 252 (Springer, New-York, 1982).
[3] R.L. Bishop, A relation between volume, mean curvature, and diameter, Amer. Math. Soc. Notices 10 (1963) 364.
[4] S. Bochner and K. Yano, Curvature and Betti numbers, Ann. Math. Stud. 32, Princeton Univ. Press, 1953.
[5] Y. Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs, C. R. Acad. Sci. Paris série I 305 (1987) 805-808.
[6] Y. Brenier, Polar factorization and monotone rearrangement of vectorvalued functions, Comm. Pure Appl. Math. 44 (1991) 375-417.
[7] Y. Brenier and G. Loeper, A geometric approximation to the Euler equations: the Vlasov-Monge-Ampère system, Geom. Funct. Anal. 14 (2004) 1182-1218.
[8] L. Caffarelli, Some regularity properties of the solutions of the MongeAmpère equation, Comm. Pure Appl. Math. 44 (1991) 965-969.
[9] L. Caffarelli, The regularity of mappings with a convex potential, J. Amer. Math. Soc. 5 (1992) 99-104.
[10] M. do Carmo, Riemannian Geometry, Birkhaüser, Boston (1992).
[11] E. Cartan, Leçons sur la Géométrie des Espaces de Riemann, 2ème Ed., Gauthier-Villars, Paris (1951).
[12] I. Chavel, Eigenvalues in Riemannian Geometry, Pure \& Appl. Math. 115, Academic Press, (2nd Edit., 1984).
[13] J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry, North-Holland Math. Library 9 (1975).
[14] D. Cordero-Erausquin, Sur le transport de mesures périodiques, C. R. Acad. Sci. Paris série I 329 (1999) 199-202.
[15] D. Cordero-Erausquin, R. McCann and M. Schmuckenschläger, A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Inventiones math. 146 (2001) 219-257.
[16] Ph. Delanoë, Gradient rearrangement for diffeomorphisms of a compact manifold, Diff. Geom. Appl. 20:2 (2004) 145-165.
[17] Ph. Delanoë, Lie solutions of Riemannian transport equations on compact manifolds, Diff. Geom. Appl. 26 (2008) 327-338.
[18] Ph. Delanoë, Differential geometric heuristics for Riemannian optimal transportation maps, in: Differential Equations - Geometry, Symmetries and Integrability, Proceedings Abel Symposium 2008, B. Kruglikov, V. Lychagin \& E. Straume Editors, Abel Symposia Series 5 (2009), SpringerVerlag, pp.49-73.
[19] Ph. Delanoë and G. Loeper, Gradient estimate for potentials of invertible gradient-mappings on the sphere, Calc. Var. PDE's 26 (2006) 297-311.
[20] D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math. 92 (1970) 102-163.
[21] A. Figalli and L. Rifford, Continuity of optimal transport maps and convexity of injectivity domains on small deformations of the two-sphere, Comm. Pure Appl. Math. LXII:12 (2009) 1670-1706. (2008).
[22] W. Gangbo and R. McCann, The geometry of optimal transportation, Acta Math. 177 (1996) 113-161.
[23] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der math. Wissensch. 224, Springer-Verlag, Berlin Heidelberg, 1977, 2nd edit. 1983, revised 3rd printing.
[24] A. Gray, Tubes, 2nd Ed., Progress in Math. 221, Birkhäuser, Basel (2004).
[25] M. Gromov, J. Lafontaine \& P. Pansu, Structures métriques pour les variétés riemanniennes, CEDIC, Paris 1981.
[26] K. Grove and K. Shiohama, A generalized sphere theorem, Ann. of Math. 106 (1977) 201-211.
[27] P. Günther, Einige Sätze über das Volumenelement eines Riemannschen Raumes, Pub. Math. Debrecen 7 (1960) 78-93.
[28] A. Jbilou, Equations hessiennes complexes sur des variétés kählériennes compactes, PhD Thesis (Univ. Nice-Sophia Antipolis, 19 Febr. 2010).
[29] J. Jost, Riemannian geometry and geometric analysis, Universitext (Springer, Berlin Heidelberg, 1995).
[30] Young-Heon Kim, Counterexamples to continuity of optimal transportation on positively curved Riemannian manifolds, Int. Math. Res. Notices 2008 (2008) article ID rnn120, 15 pages, doi:10.1093/imrn/rnn120.
[31] Young-Heon Kim and R. McCann, Continuity, curvature and the general covariance of optimal transportation, J. Eur. Math. Soc. (to appear).
[32] Young-Heon Kim and R. McCann, Towards the smoothness of optimal maps on Riemannian submersions and Riemannian products (of round spheres in particular), J. reine angew. Math. (to appear).
[33] W. Klingenberg, Contributions to Riemannian geometry in the large, Ann. of Math. 69 (1959) 654-666.
[34] W. Klingenberg, Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung, Comm. Math. helv. 35 (1961) 47-54.
[35] G. Loeper, On the regularity of maps solutions of optimal transportation problems, (preprint 08/2006).
[36] G. Loeper and C. Villani, Regularity of optimal transport in curved geometry: the nonfocal case, Duke Math. J. (to appear).
[37] G. Monge, Mémoire sur la théorie des déblais et remblais, Mémoires de l'Académie Royale des Sciences de Paris (1781).
[38] Xi-Nan Ma, N.S.Trudinger and Xu-Jia Wang, Regularity of potential functions of the optimal transportation problem, Arch. Rat. Mech. Anal. 177 (2005) 151-183.
[39] R. McCann, Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal. 11 (2001) 589-608.
[40] P. Petersen, Riemannian Geometry, Graduate Texts in Mathematics 171, Springer-Verlag, 1998.
[41] A.V. Pogorelov, The Minkowski Multidimensional Problem, Scripta Series in Math., Winston \& Sons, Washington 1978.
[42] T. Sakai, Riemannian Geometry, Translations of Mathematical Monographs, Vol. 149, Amer. Math. Soc. (1992).
[43] M. Spivak, Differential Geometry, Vol.II, second edit., Publish or Perish, Berkeley 1979.
[44] N.S. Trudinger, Recent developments in elliptic partial differential equations of Monge-Ampère type, Proc. Intern. Congress Math., Madrid, 2006, Europ. Math. Soc. Edit. (2006), 292-301.
[45] A.D. Weinstein, The cut locus and conjugate locus of a Riemannian manifold, Ann. of Math. 87:1 (1968) 29-41.

Philippe DELANOE
Université de Nice-Sophia Antipolis Laboratoire J.-A. Dieudonné, Parc Valrose F-06108 Nice CEDEX 2
e-mail: Philippe.DELANOE@unice.fr
Yuxin GE
Université Paris Est
Faculté des Sciences et Technologie Centre de Mathématiques, P3 (4ème étage)

61 avenue du Général De Gaulle
F-94010 Créteil Cedex e-mail: ge@univ-paris12.fr

[^0]: *2000 Mathematics Subject Classification: 35J60, 35B45, 53C21 ; Key-words: optimal transportation, regularity, cut-locus, positive curvature pinching, a priori estimates
 \dagger joint work supported by the CNRS and by the french Department of Foreign Affairs (grant PHC FAST \#12739WA)

[^1]: ${ }^{1}$ in [19, p.307], equation (43) is improperly called so

