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Abstract

We show that the solution of Schrödinger’s functional equation is measurable in space, kernel

and marginals. As an application, we show that the drift vector of the h-path process with given

two end point marginals is a measurable function of space, time and marginal at each time. In

particular, we show that the coefficients of mean field PDE systems which the marginals satisfy

are measurable functions of space, time and marginal.

1. Introduction

1. Introduction
E. Schrödinger considered a probabilistic problem from which he obtained the so-called

Schrödinger’s functional equation (see section 7 in [24] and also [3, 23]). We describe

Schrödinger’s functional equation. Let S be a σ-compact metric space, let C(S × S ) denote

the space of all continuous functions on S ×S with the topology induced by the uniform con-

vergence on every compact subset of S and let (S ) denote the space of all Borel probability

measures on S with the strong topology. Fix a positive function q ∈ C(S ×S ). Schrödinger’s

functional equation can be described as follows. For µ1, µ2 ∈ (S ), find a product measure

ν1(dx1)ν2(dx2) of nonnegative σ-finite Borel measures on S for which the following holds:

(1.1)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

µ1(dx1) = ν1(dx1)

∫

S

q(x1, x2)ν2(dx2),

µ2(dx2) = ν2(dx2)

∫

S

q(x1, x2)ν1(dx1)

It is known that (1.1) has the unique solution (see [6, 12] and also [4, 10]).

(1.2) ui(xi) := log

(

∫

S

q(x1, x2)ν j(dx j)

)

, i, j = 1, 2, i � j.

Then exp(u1(x)) and exp(u2(x)) are positive and

(1.3) µi(dx) = exp(ui(x))νi(dx), i = 1, 2.
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(1.1) can be rewritten as follows: for i, j = 1, 2, i � j,

(1.4) exp(ui(xi)) =

∫

S

q(x1, x2) exp(−u j(x j))µ j(dx j), µi(dxi) − a.s..

In particular, Schrödinger’s problem (1.1) is equivalent to finding a function u1(x1) + u2(x2)

for which (1.4) holds. Since ν1(dx1)ν2(dx2) is the unique solution of (1.1), it is a functional

of µ1, µ2 and q. Since it is a product measure, ν1 and ν2 are also functionals of µ1, µ2 and q

(see the proof of Corollary 2.1 in section 3):

(1.5) νi(dx) = νi(dx; q, µ1, µ2), ui(x) = ui(x; q, µ1, µ2), i = 1, 2.

This does not imply the uniqueness of ν1 and ν2. Indeed, for C > 0,

ν1ν2 = Cν1 ·C−1ν2.

Let {An}n≥1 be a nondecreasing sequence of compact subsets of S such that S = ∪n≥1An.

A1 := S when S is compact. We assume that the following holds so that νi, ui, i = 1, 2 are

unique:

(1.6) ν1(An0(µ1,µ2)) = ν2(An0(µ1,µ2)),

where n0(µ1, µ2) := min{n ≥ 1| µ1(An)µ2(An) > 0}.
Let (S ) denote the space of all Radon measures on S . In this paper we denote by a

Radon measure a locally finite and inner regular Borel measure. It is known that a locally

finite and σ-finite Borel measure on a σ-compact metric space is a Radon measure in our

sense (see e.g., p. 901, Prop. 32.3.4 in [11]).

In Theorem 2.1, we show that if S is compact, then the following are strongly continuous:

νi(dx; ·, ·, ·) : C(S × S ) × (S ) × (S ) �→(S ),

ui : C(S × S ) × (S ) × (S ) �→ C(S ),

and ui ∈ C(S×C(S×S )×(S )×(S )). In Corollary 2.1, we also show that if S isσ-compact,

then the following are weakly Borel measurable and Borel measurable, respectively:

νi(dx; ·, ·, ·) : C(S × S ) × (S ) × (S ) �→(S ),

ui : S ×C(S × S ) × (S ) × (S ) �→ R ∪ {∞}.

As an application of this measurability result, we show that the coefficients of the mean

field PDE system which the marginal distributions of the h-path process with given two end

point marginals satisfy are measurable functions of space, time and marginal. To describe

the problem more precisely, we introduce Jamison’s result on SDEs for the h-path process

with given two end point marginals. We first describe assumptions and then state Jamison’s

results.

(A1.1) d ≥ 1 and σ(t, x) = (σi j(t, x))d
i, j=1

, (t, x) ∈ [0, 1] × Rd, is a d × d-matrix. a(t, x) :=

σ(t, x)σ(t, x)∗, (t, x) ∈ [0, 1]×Rd, is uniformly positive definite, bounded, once continuously

differentiable and uniformly Hölder continuous. Dxa(t, x) is bounded and the first derivatives

of a(t, x) are uniformly Hölder continuous with respect to x.

(A1.2) b(t, x) : [0, 1] × Rd �→ Rd is bounded, continuous and uniformly Hölder continuous
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with respect to x.

Theorem 1.1 ([13], p. 330). Suppose that (A1.1) and (A1.2) hold. Then for any P0 ∈
(Rd), the following SDE has the unique weak solution with a positive continuous transition

probability density p(t, x; s, y), 0 ≤ t < s ≤ 1, x, y ∈ Rd:

dX(t) = b(t, X(t))dt + σ(t, X(t))dW(t), 0 < t < 1,(1.7)

PX(0)−1
= P0.

Here W(t) denotes a d-dimensional σ[X(s); 0 ≤ s ≤ t]-Brownian motion. Besides, for any

µ1, µ2 ∈ (Rd), and the solution ν2 of (1.1) with S and q(x1, x2) respectively replaced by Rd

and p(0, x1; 1, x2),

(1.8) h(t, x) :=

∫

Rd

p(t, x; 1, x2)ν2(dx2) ∈ C1,2([0, 1) × Rd),

(1.9)

(

∂

∂t
+t

)

h(t, x) = 0, (t, x) ∈ [0, 1) × Rd.

Here

t :=
1

2
Trace(a(t, x)D2

x) + 〈b(t, x),Dx〉.

Theorem 1.2 (Markovian reciprocal process). ([13], Theorem 2) Suppose that (A1.1)

and (A1.2) hold. Then for any P0, P1 ∈ (Rd) for which P1(dy) ≪ dy, there exists the

unique weak solution to the following SDE:

dX(t) = {a(t, X(t))Dx log h(t, X(t)) + b(t, X(t))}dt + σ(t, X(t))dW(t), 0 < t < 1,(1.10)

PX(t)−1
= Pt, t = 0, 1.

Here, to define h(t, x), we consider (1.1) with µ1, µ2, q(x1, x2) and S respectively replaced

by P0, P1, p(0, x1; 1, x2) and Rd. W(t) also denotes a d-dimensional σ[X(s); 0 ≤ s ≤ t]-

Brownian motion. Besides,

(1.11) PX(t)−1(dx) =

(∫

Rd

ν1(dx1)p(0, x1; t, x)

)

h(t, x)dx, 0 ≤ t ≤ 1,

where
∫

Rd

ν1(dx1)p(0, x1; 0, x)dx := ν1(dx),

h(1, x) =

∫

Rd

ν2(dx2)p(1, x; 1, x2) :=
ν2(dx)

dx
.

Remark 1.1. Replace S by Rd in (1.1). Then the following holds (see (1.2), (1.3), (1.8) and

(1.11)): for x ∈ Rd,

(1.12) h(t, x) :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

exp{u1(x; p(t, ·; 1, ·), PX(t)−1, P1)}, t ∈ [0, 1),

ν2(dx; p(0, ·; t, ·), P0, PX(t)−1)

dx

= exp{−u2(x; p(0, ·; t, ·), P0, PX(t)−1)}PX(t)−1(dx)

dx
, t ∈ (0, 1].



834 T. M

As an application of Corollary 2.1 in section 2, we show that

(1.13) U(t, x, P) :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u1(x; p(t, · ; 1, ·), P, P1), t ∈ [0, 1),

log

(

ν2(dx; p(0, · ; t, ·), P0, P)

dx

)

, t = 1

is a Borel measurable function from [0, 1]×Rd ×(Rd) to R (see Corollary 2.2). Theorems

1.1 and 1.2 and (1.12)-(1.13) imply that if P1(dy) ≪ dy, then p(t, x)dx := PX(t)−1(dx)

satisfies the following mean field PDE system (see [1, 2, 5, 14] and the references therein

for the mean field games and the master equations). For any f ∈ C2
b
(Rd) and t ∈ (0, 1],

∫

Rd

f (x)p(t, x)dx −
∫

Rd

f (x)P0(dx)(1.14)

=

∫ t

0

ds

∫

Rd

(s f (x) + 〈a(s, x)DxU(s, x, PX(s)−1),D f (x)〉)p(s, x)dx,

and for (t, x) ∈ (0, 1) × Rd,

0 =
∂U(t, x, PX(t)−1)

∂t
+tU(t, x, PX(t)−1)(1.15)

+
1

2
〈a(t, x)DxU(t, x, PX(t)−1),DxU(t, x, PX(t)−1)〉,

U(1, x, PX(1)−1) = log

(

ν2(dx; p(0, · ; 1, ·), P0, P1)

dx

)

.

Here we consider U(t, x, PX(t)−1) as a function of (t, x).

Let γ(t;ω) denote a progressively measurable Rd-valued stochastic process on some fil-

tered probability space and consider the following SDE in a weak sense:

(1.16) dXγ(t) = {γ(t;ω) + b(t, Xγ(t))}dt + σ(t, Xγ(t))dW(t),

provided it exists (see e.g. [8]). Here W(t) denotes a d-dimensional Brownian motion de-

fined on the same filtered probability space as γ(t;ω).

It is also known that the h-path process with given two end point marginals is the unique

minimizer of the following stochastic optimal control problem (see [7, 9], [15]-[22], [25],

[26] and the references therein for recent progress, especially for stochastic optimal trans-

port).

Theorem 1.3 ([7], [21], [26]). Suppose that (A1.1) and (A1.2) hold. Then for any

P0, P1 ∈ (Rd) for which P1(dy) ≪ dy, γ(t;ω) = a(t, Xγ(t))Dx log h(t, Xγ(t)) is the unique

minimizer of the following:

V(P0, P1)(1.17)

:= inf

{

E

[

∫ 1

0

1

2
|σ(t, Xγ(t))−1γ(t)|2dt

]

∣

∣

∣

∣

∣

PXγ(t)−1
= Pt, t = 0, 1

}

=

∫

Rd

log h(1, x)P1(dx) −
∫

Rd

log h(0, x)P0(dx),

provided it is finite (see (1.10) for notation).
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Remark 1.2. A sufficient condition for the finiteness of V(P0, P1) is given in [20] for more

general problems.

Schrödinger’s functional equation (1.1) with q(x1, x2) and S respectively replaced by

p(0, x1; 1, x2) and Rd is equivalent to the Euler equation for V(P0, P1). We state and prove it

for readers’ convenience since we could not find any literature (see Proposition 2.1).

In section 2 we state our main results and prove them in section 3.

2. Main results

2. Main results
In this section we state our main results. We first describe assumptions.

(A2.1) S is a compact metric space.

(A2.2) q ∈ C(S × S ; (0,∞)).

(A2.1)’ S is a σ-compact metric space.

For a metric space X and µ ∈(X),

(2.1) ||µ|| := sup

{∫

X

φ(x)µ(dx)

∣

∣

∣

∣

∣

φ ∈ C(X), ||φ||∞ ≤ 1

}

∈ [0,∞],

where for f ∈ C(X),

(2.2) || f ||∞ := sup
x∈X
| f (x)|.

When S is compact, we have the continuity results on νi, ui in (1.5) (Recall (1.6)).

Theorem 2.1. Suppose that (A2.1) and (A2.2) hold. Suppose also that µi,n, µi ∈ (S ),

qn ∈ C(S × S ; (0,∞)), i = 1, 2, n ≥ 1 and

(2.3) lim
n→∞

(||µ1,nµ2,n − µ1µ2|| + ||qn − q||∞) = 0.

Then

lim
n→∞
||ν1(·; qn, µ1,n, µ2,n)ν2(·; qn, µ1,n, µ2,n)(2.4)

−ν1(·; q, µ1, µ2)ν2(·; q, µ1, µ2)|| = 0,

lim
n→∞

2
∑

i=1

||ui(·; qn, µ1,n, µ2,n) − ui(·; q, µ1, µ2)||∞ = 0.(2.5)

Besides, for i = 1, 2, and {xn}n≥1 ⊂ S which converges, as n→ ∞, to x ∈ S ,

(2.6) lim
n→∞

ui(xn; qn, µ1,n, µ2,n) = ui(x; q, µ1, µ2).

When S is σ-compact, we only have the Borel measurability results on νi, ui in (1.5).

Corollary 2.1. Suppose that (A2.1)’ and (A2.2) hold. Then the following are Borel mea-

surable: for i = 1, 2,
∫

S

f (x)νi(dx; ·, ·, ·) : C(S × S ) × (S ) × (S ) �→ R, f ∈ C0(S ),

ui : S ×C(S × S ) × (S ) × (S ) �→ R ∪ {∞}.

As an application of Corollary 2.1, we obtain the following.
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Corollary 2.2. Suppose that (A1.1) and (A1.2) hold. Then U(t, x, P) in (1.13) is a Borel

measurable function from [0, 1] × Rd × (Rd) to R. In particular, (1.14)-(1.15) hold.

For P0 ∈ (Rd) and Borel measurable f : Rd �→ R,

(2.7) V∗P0
( f ) := sup

{

∫

Rd

f (x)P(dx) − V(P0, P) : P ∈ (Rd)

}

(see (1.17) for notation). Then since P �→ V(P0, P) is convex, lower semicontinuous and

� ∞, for P ∈ (Rd),

(2.8) V(P0, P) = sup

{

∫

Rd

f (x)P(dx) − V∗P0
( f ) : f ∈ Cb(Rd)

}

∈ [0,∞]

(see [18, 19, 21, 25] and the references therein). The following gives the variational meaning

to Schrödinger’s functional equation.

Proposition 2.1. Suppose that (A1.1) and (A1.2) hold. Then for any P0, P1 ∈ (Rd)

for which P1(dy) ≪ dy and for which V(P0, P1) is finite, Schrödinger’s functional equation

(1.1) with µ1, µ2 and q(x1, x2) respectively replaced by P0, P1 and p(0, x1; 1, x2) is equivalent

to the following:

(2.9) P1(dy) =
δV∗

P0
(log h(1, ·))
δ f

(dy).

Here
δV∗

P0
( f )

δ f
denotes the Gâteaux derivative of V∗

P0
( f ).

3. Proof of main results

3. Proof of main results
In this section we state and prove lemmas and prove our main results.

mq := inf{q(x1, x2)|x1, x2 ∈ S },(3.1)

Mq := sup{q(x1, x2)|x1, x2 ∈ S }.

The following two lemmas are proved in [4].

Lemma 3.1 ([4], p. 194). Suppose that (A2.1) and (A2.2) hold. Then, for any µ1, µ2 ∈
(S ), there exists a unique pair of nonnegative finite measures ν1, ν2 on S for which (1.1)

and the following holds:

(3.2)
1
√

Mq

≤ ν1(S ) = ν2(S ) ≤ 1
√

mq

,

(3.3)
mq
√

Mq

≤ exp(ui(x)) ≤
Mq
√

mq

, x ∈ S , i = 1, 2

(see (1.2) for notation).

Lemma 3.2 ([4], section 7). Suppose that (A2.1) and (A2.2) hold. Then, there exists

a function c(a, b) which is nonincreasing in a and nondecreasing in b such that for any

µi, µ̃i ∈ (S ), i = 1, 2,

(3.4) ||ν1ν2 − ν̃1ν̃2|| ≤ c(mq,Mq)||µ1µ2 − µ̃1µ̃2||
1
2 .
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Here ν̃i(dx) := νi(dx; q, µ̃1, µ̃2), i = 1, 2 (see (1.5) and (2.1) for notation).

The following lemma can be proved by Lemma 3.1.

Lemma 3.3. Suppose that (A2.1) and (A2.2) hold and that qn ∈ C(S × S ; (0,∞)), n ≥ 1

and

(3.5) lim
n→∞
||qn − q||∞ = 0

(see (2.2) for notation). Then, for any µi ∈ (S ), i = 1, 2,

(3.6) lim
n→∞
||νn,1νn,2 − ν1ν2|| = 0,

where νn,i(dx) := νi(dx; qn, µ1, µ2) (see (1.5) and (2.1) for notation).

Proof. un,i(x) := ui(x; qn, µ1, µ2). Then, from (1.2)-(1.3),

un,i(xi) = log

(∫

S

qn(x1, x2)νn, j(dx j)

)

, i, j = 1, 2, i � j,(3.7)

νn,i(dx) = exp(−un,i(x))µi(dx), i = 1, 2.

For i = 1, 2,

{

νn,i(dx)

νn,i(S )

}

n≥1

is a tight family of probability measures and {νn,i(S )}n≥1 is

bounded from above and below by (3.2). In particular, there exist {s(n)}n≥1 and a finite

measure νi such that νs(n),i weakly converges, as n→ ∞, to νi. From construction, (3.2) with

νi replaced by νi also holds.

(3.8) ui(xi) := log

(∫

S

q(x1, x2)ν j(dx j)

)

, i, j = 1, 2, i � j.

Then for i = 1, 2,

(3.9) νi(dx) = exp(−ui(x))µi(dx).

Indeed, from (3.7),

νs(n),i(dx) − exp(−ui(x))µi(dx) = (exp(−us(n),i(x)) − exp(−ui(x)))µi(dx).

For i, j = 1, 2, i � j and xi ∈ S ,

| exp(us(n),i(xi)) − exp(ui(xi))| ≤
∣

∣

∣

∣

∣

∫

S

(qs(n)(x1, x2) − q(x1, x2))νs(n), j(dx j)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

S

q(x1, x2)(νs(n), j(dx j) − ν j(dx j))

∣

∣

∣

∣

∣

≤ ||qs(n) − q||∞ × νs(n), j(S )

+

∣

∣

∣

∣

∣

∫

S

q(x1, x2)(νs(n), j(dx j) − ν j(dx j))

∣

∣

∣

∣

∣

→ 0, n→ ∞,

from (3.2) and (3.5). From (3.3),

exp(−us(n),i(xi)) ≤
√

Mqs(n)

mqs(n)

→
√

Mq

mq

, n→ ∞, i = 1, 2.

In particular, the bounded convergence theorem implies that (3.9) is true.

From (3.8)-(3.9),
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µi(dxi) = exp(−ui(xi))µi(dxi) exp(ui(xi))(3.10)

= νi(dxi)

∫

S

q(x1, x2)ν j(dx j), i, j = 1, 2, i � j.

The uniqueness of the solution to (1.1) implies that

(3.11) νi(dx) = νi(dx), i = 1, 2

since (3.2) hold for both of νi and νi. Since the above method applies for any subsequence

of {qn}n≥1, the discussion in (3.9) implies that the following holds:

(3.12) lim
n→∞
||νn,i − νi|| = 0, i = 1, 2.

(3.2) and (3.12) completes the proof. �

We prove Theorem 2.1 by Lemmas 3.1-3.3.

Proof of Theorem 2.1. Lemmas 3.2 and 3.3 imply (2.4). We prove (2.5). Without loss of

generality, we only have to consider the case when i = 1. For sufficiently large n ≥ 1,

||u1(· ; qn, µ1,n, µ2,n) − u1(· ; q, µ1, µ2)||∞(3.13)

≤ − log

{

1 −
√

Mq

mq

(

||qn − q||∞√
mqn

+ ||q||∞ · ||ν2(· ; qn, µ1,n, µ2,n) − ν2(· ; q, µ1, µ2)||
)}

→ 0, n→ ∞.

We prove (3.13). For x ∈ S ,

u1(x; qn, µ1,n, µ2,n) − u1(x; q, µ1, µ2)

= log

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 +

∫

S
qn(x, x2)ν2(dx2; qn, µ1,n, µ2,n) −

∫

S
q(x, x2)ν2(dx2; q, µ1, µ2)

∫

S
q(x, x2)ν2(dx2; q, µ1, µ2)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

∣

∣

∣

∣

∣

∣

∣

∫

S
qn(x, x2)ν2(dx2; qn, µ1,n, µ2,n) −

∫

S
q(x, x2)ν2(dx2; q, µ1, µ2)

∫

S
q(x, x2)ν2(dx2; q, µ1, µ2)

∣

∣

∣

∣

∣

∣

∣

≤ 1
∫

S
q(x, x2)ν2(dx2; q, µ1, µ2)

{
∣

∣

∣

∣

∣

∫

S

(qn(x, x2) − q(x, x2))ν2(dx2; qn, µ1,n, µ2,n)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

S

q(x, x2)(ν2(dx2; qn, µ1,n, µ2,n) − ν2(dx2; q, µ1, µ2))

∣

∣

∣

∣

∣

}

≤
√

Mq

mq

(

||qn − q||∞√
mqn

+ ||q||∞ · ||ν2(· ; qn, µ1,n, µ2,n) − ν2(· ; q, µ1, µ2)||
)

from (3.2)-(3.3). The following also holds:

lim
n→∞
||ν2(· ; qn, µ1,n, µ2,n) − ν2(· ; q, µ1, µ2)|| = 0.

Indeed, for f ∈ Cb(S ) for which || f ||∞ ≤ 1, from (2.4) and (3.2),
∫

S

f (x)(ν2(dx; qn, µ1,n, µ2,n) − ν2(dx; q, µ1, µ2))
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=
1

ν1(S ; qn, µ1,n, µ2,n)

∫

S

f (x)
{

(ν1(S ; qn, µ1,n, µ2,n)ν2(dx; qn, µ1,n, µ2,n)

−ν1(S ; q, µ1, µ2)ν2(dx; q, µ1, µ2))

+
(

ν1(S ; q, µ1, µ2) − ν1(S ; qn, µ1,n, µ2,n)
)

ν2(dx; q, µ1, µ2)
}

≤
√

Mqn

{

||ν1(· ; qn, µ1,n, µ2,n)ν2(· ; qn, µ1,n, µ2,n) − ν1(· ; q, µ1, µ2)ν2(· ; q, µ1, µ2)||

+

∣

∣

∣

∣

∣

√

ν1(S ; q, µ1, µ2)ν2(S ; q, µ1, µ2) −
√

ν1(S ; qn, µ1,n, µ2,n)ν2(S ; qn, µ1,n, µ2,n)

∣

∣

∣

∣

∣

1
√

mq

}

→ 0, n→ ∞.

The following completes the proof of (3.13):

log(1 − |a|) ≤ log(1 + a) ≤ log(1 + |a|) ≤ − log(1 − |a|), |a| < 1.

We prove (2.6). From (2.5), we only have to prove the following: for i = 1, 2, and {xn}n≥1 ⊂
S which converges to x ∈ S as n→ ∞,

(3.14) lim
n→∞

ui(xn; q, µ1, µ2) = ui(x; q, µ1, µ2).

This can be proved by the bounded convergence theorem. �

For µ1, µ2 ∈ (S ),

(3.15) µi|n(E) :=
µi(E ∩ An)

µi(An)
, E ∈ (S ), n ≥ n0(µ1, µ2), i = 1, 2,

where (S ) denotes the Borel σ-field of S (see (1.6) for notation). When we replace X and

S by An in (2.1)-(2.2) and (3.1), we use notations || · ||n, || · ||∞,n, mq,n and Mq,n instead of || · ||,
|| · ||∞, mq and Mq, respectively. We use a similar convention when it is not confusing.

We introduce and prove two lemmas to prove Corollary 2.1.

Lemma 3.4. Suppose that (A2.1)’ and (A2.2) hold. Then, for any µ1, µ2 ∈ (S ) and any

k ≥ n0(µ1, µ2), there exists a unique pair of nonnegative finite measures ν1|k, ν2|k on Ak for

which Lemma 3.1 with S , mq, Mq, µi, νi, ui, i = 1, 2 replaced by Ak, mq,k, Mq,k, µi|k, νi|k, ui|k,

i = 1, 2 respectively holds. Suppose, in addition, that µi,n ∈ (S ), qn ∈ C(S × S ; (0,∞)),

i = 1, 2, n ≥ 1 and

lim
n→∞

(||µ1,nµ2,n − µ1µ2||k + ||qn − q||∞,k) = 0.

Then (2.4)-(2.6) hold even if νi, µi,n, µi, || · ||, ui, || · ||∞ and S is replaced by νi|k, µi,n|k, µi|k,

|| · ||k, ui|k, || · ||∞,k and Ak, respectively.

Proof. Theorem 2.1 and the following completes the proof:

(3.16) ||µ1,n|kµ2,n|k − µ1|kµ2|k||k ≤ 2
||µ1,nµ2,n − µ1µ2||k
µ1(Ak)µ2(Ak)

.

(3.16) is true, since

µ1,n|k(dx1)µ2,n|k(dx2) − µ1|k(dx1)µ2|k(dx2)

=
1

µ1(Ak)µ2(Ak)

{

(µ1,n(dx1)µ2,n(dx2) − µ1(dx1)µ2(dx2))



840 T. M

+
µ1(Ak)µ2(Ak) − µ1,n(Ak)µ2,n(Ak)

µ1,n(Ak)µ2,n(Ak)
µ1,n(dx1)µ2,n(dx2)

}

.

�

For any µ1, µ2 ∈ (S ) and any n ≥ n0(µ1, µ2),

(3.17) µ(n)(dx1dx2) := q(x1, x2)1An×An
(x1, x2)ν1|n(dx1)ν2|n(dx2).

The following is known.

Lemma 3.5 ([12], Theorem 3.2). Suppose that (A2.1)’ and (A2.2) hold. Then for any

µi ∈ (S ), i = 1, 2, there exists a unique solution ν1(dx1)ν2(dx2) to (1.1) and µ(n)(dx1dx2)

weakly converges, as n→ ∞, to µ(dx1dx2) := q(x1, x2)ν1(dx1)ν2(dx2).

By Lemmas 3.4 and 3.5, we prove Corollary 2.1.

Proof of Corollary 2.1. Without loss of generality, we only have to prove the case

when i = 1. From Lemma 3.4, for any n ≥ 1,
∫

S×S
f (x1, x2)µ(n)(dx1dx2) is continuous in

( f , q, µ1, µ2) on the open set

Cb(S × S ) ×C(S × S ) × {(µ1, µ2) ∈ (S ) × (S )|n0(µ1, µ2) ≤ n}

(see (1.6)). Notice that n0(µ1, µ2) ≤ n if and only if µ1(An)µ2(An) > 0. From Lemma 3.5,
∫

S×S
f (x1, x2)µ(dx1dx2) is measurable in ( f , q, µ1, µ2). The following implies the first part of

Corollary 2.1: for f ∈ Co(S ) and x ∈ R,
{

(q, µ1, µ2) ∈ C(S × S ) × (S ) × (S )

∣

∣

∣

∣

∣

∫

S

f (x1)ν1(dx1; q, µ1, µ2) < x

}

=

∞
⋃

k=1

{

(q, µ1, µ2) ∈ C(S × S ) × (S ) × (S )

∣

∣

∣

∣

∣

n0(µ1, µ2) = k,

∫

S×Ak
f (x1)q(x1, x2)−1µ(dx1dx2; q, µ1, µ2)

√

∫

Ak×Ak
q(x1, x2)−1µ(dx1dx2; q, µ1, µ2)

< x

}

.

For any x ∈ S and φn ∈ Co(S ) for which 0 ≤ φn ≤ 1 and φn(y) = 1, y ∈ An,
∫

S
φn(x2)q(x, x2)ν2(dx2) is measurable in (q, µ1, µ2) in the same way as above and is contin-

uous in x. In particular, it is measurable in (x, q, µ1, µ2) and so is the following: by Fatou’s

lemma,

exp(u1(x)) = lim
n→∞

∫

S

φn(x2)q(x, x2)ν2(dx2).

�

Corollary 2.1 immediately implies Corollary 2.2.

Proof of Corollary 2.2. Since p(t, · ; 1, ·) is continuous on [0, 1) from Theorem 1.1,

(t, x, P, P1) �→ (x, p(t, · ; 1, ·), P, P1)

is continuous on [0, 1)×Rd ×(Rd)×(Rd), which implies the measurability of U(t, x, P).

It is easy to see that (1.14) - (1.15) hold. �
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We prove Proposition 2.1.

Proof of Proposition 2.1.

(3.18)
δV∗

P0
(log h(1, ·))
δ f

(dy) = h(1, y)dy

∫

Rd

p(0, x; 1, y)
P0(dx)

h(0, x)
.

Indeed, for any ψ ∈ Cb(Rd) and ε ∈ R, instead of P1, consider Schrödinger’s problem (1.1)

with S , µ1, µ2 and q(x1, x2) respectively replaced by Rd, P0, µ
εψ and q(0, x1; 1, x2), where for

f ∈ Cb(Rd)

µ f (dy) := h(1, y) exp( f (y))dy

∫

Rd

P0(dx)
p(0, x; 1, y)

∫

Rd p(0, x; 1, z)h(1, z) exp( f (z))dz

(see (1.1)-(1.4)). Then, from Theorem 1.3 and (2.8) (see e.g. [7, 26] and also [21]),

V∗P0
(log h(1, ·) + εψ)

=

∫

Rd

log

(∫

Rd

p(0, x; 1, y)h(1, y) exp(εψ(y)) dy

)

P0(dx)

(see (1.8)). This implies (3.18). From (1.8),

(3.19) P0(dx) =

(∫

Rd

h(1, y)dyp(0, x; 1, y)

)

P0(dx)

h(0, x)
.

(3.18) and (3.19) completes the proof. �
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