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Abstract. The conditions under which a semigroup ring is regu-

lar (in the sense of von Neumann) are investigated. Sufficient con-

ditions are obtained in order that the semigroup ring of an inverse

semigroup be regular. Consequences of the regularity of the semi-

group ring for the subgroups of the semigroup are established. The

two results are then used to find necessary and sufficient conditions

for the regularity of the semigroup ring when the semigroup is

inverse and a union of groups.

1. Introduction. Regularity of group rings has been investigated by

Auslander [l], Connell [3] and McLaughlin [4]. In this paper we

attempt to extend their results to semigroup rings.

Throughout this paper R will denote an associative ring having an

identity element. If R is a ring and D is a semigroup RD will denote

the semigroup ring of D over R and (RD)o the contracted semigroup

ring if D has a zero. The definition of (contracted) semigroup rings is

given in [8, §3]. It is analogous to the definition of semigroup algebra

given in [2, p. 159]. Other concepts which are not defined here can

also be found in [2]. A ring S is regular (in the sense of von Neumann)

if for every sES there exists xES such that sxs = s. An integer n is

said to be a unit in a ring R with identity element 1 if n ■ 1 is invertible

in P.

The result on regularity of group rings (cf. [3, Theorem 3]) is as

follows:

Theorem A. If G is a group and R a ring with identity then RG is

regular if and only if R is regular, G is locally finite and the order of

every finite subgroup of G is a unit in R.

In §3 we prove three theorems.

Theorem 1. Let D be an inverse semigroup, i.e., a regular semigroup

in which idempotents commute. (RD)q is regular if

(i) R is regular,
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(ii) every finite subset of D is contained in a finite inverse semigroup,

and

(iii) the order of every finite subgroup of D is a unit in R.

A partial converse is obtained for semigroup rings of arbitrary

semigroups.

Theorem 2. Let D be any semigroup. If (RD)0 is regular then

(i) R is regular,

(ii) every subgroup of D is locally finite, and

(iii) the order of every finite subgroup of D is a unit in R.

Applying Theorems 1 and 2 to a special case we obtain:

Theorem 3. Let D be an inverse semigroup which is a union of groups

Ga, «GO. Then (RD)0 is regular if and only if

(i) R is regular,

(ii) for every aE&, Ga is locally finite, and

(iii) for every a£SL the order of every finite subgroup of Ga is a unit

in R.

As a consequence of Lemma 2, each of the above theorems remain

valid if we replace contracted semigroup ring (RD)0 by semigroup

ring RD.

2. Preliminaries. In this section we isolate the lemmas that are

needed to prove the main theorems. The reader may find it expedient

to proceed directly to §3 and refer to the lemmas as needed.

Lemma 1. Let I be a two-sided ideal of a ring R. Then R is regular

if and only if R/I and I are regular.

Proof. Assume R is regular. Let r + IER/I. There exists xER

such thatrxr=r. Hence (r+I)(x + I)(r+I) =rxr+I = r+I. Therefore

R/I is regular. Let aEI- There exists xER such that axa=a. Now

a(xax)a=a and xaxEI- Hence / is regular. Conversely, assume R/I

and i" are regular. Let aER- Since R/I is regular there exists x+I

such that (a + I)(x+I)(a + I) =a + I. Hence axa + I = a+I, which

implies axa — aEI- Since I is regular, there exists yEI such that

(axa—a)y(axa — a)=axa—a. Therefore a = a(x— xayax+yax+xay—y)a.

Hence R is regular.

Lemma 2. Let Dbea semigroup with a zero element z and suppose that

Dy±{z}.
(i) If (RD)o is regular then both R and D are regular.

(ii) RD is regular if and only if (RD) 0 is regular.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1970] REGULARITY OF SEMIGROUP RINGS 501

Proof, (i) Choose dED, d^z and choose rER- The element rd

of iRD)0 is regular so there exists x=Xidi+ ■ ■ ■ +xndnEiRD)0 such

that ird)xird) =rd. Thus rd = rxirddxd+ ■ ■ ■ +rxnrddnd. This implies

that for some i, ddid = d. Hence D is regular, since for the zero element

we have zzz = z. Continuing, we have r = r(X/x<)r where2J' is over all

i such that ddtd = d. Therefore R is a regular ring.

(ii) (RD)o = RD/I where /= {x<EPZJ>|x(<0 =0 if d^z}. If RD is
regular then by Lemma 1, (RD)0 is also. Conversely, if (RD)0 is

regular, by (i) P is regular. Since I^.R, applying Lemma 1, we see

that RD is regular.

In light of Lemma 2, and since a zero can be adjoined to any semi-

group, we limit our discussion to the regularity of (RD)o where D is

a semigroup with zero.

If B is an ideal of the semigroup D, D/B denotes the Rees factor

semigroup of D modulo B.

Lemma 3. // B is an ideal of D, then (RD) 0/(RB)0=(RD/B)0.

Proof. Let ridi + ■ • • +r„d„+(RB)o be an element of

(PrOo/(PPOo.Define<KM1+ • • • +rndn + (RB)o)=ndi+ ■ ■ • +rndn

E(RD/B)o- It is easy to verify that <p is well defined and is a ring

isomorphism of iRD)0/iRB)0 onto (RD/B)0.

Lemma 4. Let D=Di3D23 ■ ■ ■ DDmDDm+i= {o} be a principal

series for D, where 0 is the zero element of D. Then iRD)0 is regular if

and only if iRDi/Di+i)o is regular for i=l, ■ ■ ■ , m.

Proof. iRD)0=iRDi)03iRDi)o3 ■ ■ ■ D(RDm)„D{o} is a finite

chain of ideals of iRD)0. The lemma is established using induction,

Lemma 1 and Lemma 3.

The above lemmas are used in studying the question of the regu-

larity of iRD)0 when D is finite. The next and last lemma provides

the connection with the known results on group rings.

Lemma 5. Let D be a semigroup and G a subgroup of D. If (PU)0 is

regular then RG is regular.

Proof. Denote by e the identity of G. Let rERG. Since RG is

contained in iRD) 0 in a natural way, there exists x E {RD) o such that

rxr=r. Clearly riexe)r = r. Write exe=22xid)d with x(d)^0. Then

2^,x(d)d = exe = e(exe)e = ~Yjxid)ede. Hence if xid)?*0 we have d = ed'e,

for some d'ED. Thus ede = eied'e)e = ed'e = d. Now write

exe = 23 xid)d =  ]T) xid)d + 2~1 xid)d
deO <J€G

and let
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y =  E x(d)d    and    z =  ^Z x(d)d.

Then exe = y+z and r = r(exe)r = ryr+rzr. We claim that rzr has sup-

port disjoint from G. Otherwise there exists d in the support of z

such that g\dg2 = g3 for some gi, g2, g3EG. But if d is in the support of

z, certainly x(d)^0 and so d = ede = gi1gidg2g21=gi1g3g21EG, which

is a contradiction. Since the support of ryr is contained in G and r

was chosen in RG, we have r = ryr.

The following corollary follows immediately from the lemma and

Theorem A.

Corollary. If (RD)0 is regular and G is any subgroup of D, then

G is locally finite and the order of every finite subgroup of G is a unit in R.

3. Proofs.

Proof of Theorem 1. We sketch the proof since the technique is

standard. Condition (ii) allows us to assume, without loss of general-

ity, that D is a finite inverse semigroup and thus has a principal

series. Lemma 4 reduces the theorem to proving (RQ)o is regular

where Q is a factor of a principal series.

It is well known that if Q is a principal factor of a finite inverse

semigroup, then Q is a finite 0-simple inverse semigroup. Q is 0-simple

by definition and inverse by [6, Corollary 3]. Munn [5, Lemma 4.2]

has shown that in this case Q is isomorphic to a nXn Rees matrix

semigroup over a group with zero G° (G a subgroup of Q, and hence of

D) with nXn identity matrix as sandwich matrix. Using this fact, it is

easy to verify (see [8, Lemma 3.1], or [2, Lemma 5.17]) that (RQ)o

= (RG)n the ring of nXn matrices over the group ring RG. Since (R)n

is regular if and only if R is regular [7, Theorem 2.14], it suffices to

show that RG is regular. But this follows from Theorem A since G is a

finite subgroup of D and hence its order is a unit in R.

Proof of Theorem 2. Assume (RD)0 is regular. The proof of

Lemma 2 shows that R is regular. Lemma 5 and Theorem A establish

conditions (ii) and (iii).

It is easy to see that the conditions of Theorem 2 are not sufficient

for (RD)a to be regular. If D is the bicyclic semigroup and R is the

rationals, (RD)0 is not regular and yet D satisfies conditions (ii) and

(iii) of Theorem 2 and in fact is inverse.

One can also verify that for (RD) o to be regular it is not necessary

that D be inverse. Let R be the rational numbers and D the 2X2

Rees matrix semigroup over a group with zero G° with sandwich

matrix P. Choose G = {1, g | g2 = 1} to be the cyclic group of order

two and
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'-c a-
Then P is invertible considered as a matrix over RG so (P.D)o is

semisimple [2, Theorem 5.20] and hence regular. But D is not inverse.

Proof of Theorem 3. If iRD)0 is regular, conditions (i), (ii) and

(iii) follows by Theorem 2. Conversely assume (i), (ii) and (iii) hold

and that D is an inverse semigroup which is a union of groups. Then,

[2, Theorem 4.11], D is a semilattice Q of groups Ga («£!]). We will

show that conditions (ii) and (iii) of Theorem 1 are satisfied. Let

S = {di, • ■ • , dn} be a finite subset of D. Let Sa = Sr\Ga. Then only

a finite number of the Sa are nonempty, say Sai, ■ • ■ , Sak- Let Ha.

be the subgroup in Gai generated by Sai, i = l, • • ■ , k. Since Gai is

locally finite, Ha< is finite, i = l, • • • , k. Now the subsemilattice of

12 generated by {a\, • ■ ■ , ak] is finite, say it is {Bi, ■ ■ • , 8t}. Hence

the set of products of elements from the groups Hai is contained in

U]_i Gpt. The set of such products being finite, and each Gpc being

locally finite imply that the semigroup generated by Uf_i Hai is con-

tained in a subsemigroup D' which is a finite semilattice of finite

groups. Now the idempotents of D' commute, since they are a subset

of the idempotents of D. Hence D' is a finite inverse subsemigroup of

D containing {di, • • • , dn}. This establishes condition (ii) of Theo-

rem 1. Condition (iii) of Theorem 1 holds since it is easily verified

that any subgroup of D is a subgroup of some Ga. Hence iRD)0 is

regular.
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