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1 Introduction 

In this paper we study the tra-jectories of hybrid systems 
evolving according to constant. convex inclusions and I ip -  
schitz nonlinear inclusions. Two questions arc addressed. 
1;irst. we investigate the existence of continuous selections 
of trajectories with respect to the initial conditions. Second, 
previous work on timed automata and hybrid automata has 
examined equivalence relations on runs of the automaton 
that visit the same locations and regions of  the state space. 
Here we examine an equivalence relation defined directly 
on the trajectories. With suitable conditions on the enabling 
regions and using a suitable metric. we construct a homo- 
topy on the set of solutions and use the homotopy to form 
an equivalence relation on the trajectories. We show the 
relationship between region equivalence introduced in I I 1 
and homotopic equivalence. The tools needed for studying 
homotopic cquivalence are the same as for obtaining conti- 
nuity with respect to initial conditions. 

2 Preliminaries 

2.1 Notation 
Wedenote by 1 . 1  the Iiuclidean norm. d ( . x .  H )  is the distance 
from a point .x to set H delined by d ( x .  H )  = infYeH /.x - 
,VI. The Hausdorffdistance between two sets. denoted d~ is 
r f H ( A ,  H )  = max{sup,,,,,, d ( . w ,  H ) .  supvEB d(\.:. A ) ) .  

For an interval I = [to, 1 1  I let C( I )  and C c I c ( I )  denote the 
spaces of  continuous and absolutely continuous functions 
,f : 1 ---+ R". endowed with the sup noim l / , f l l x  and the 
norm l l f l l ~ I c  = l . f ( ro) l  + .I; Ifi.s)lds. respectively. We de- 
note by l'(]) the 1,ebesguc integrable functions on i. xs 
is the characteristic function oi' the set E .  Ikally,  .Y'(R") 
denotes the space of Iipschitz differential inclusions de- 
fined irom R" to 2"". We denote by 2)(R") the space 
of all functions .f' : R -+ R" that are left continuous. 
lim,tu , f , ( r )  = , f (u ) ,  and have limits from the right. 

2.2 Timed automata 
We review the delinition and semantics 01' timed automata, 
since hybrid automata build upon this model. A timed au- 

tomaton is a tuple 

A = ( Q ,  C,  Q". E .  J )  

consisting of the idlowing components. Q = L x R" is the 
state space consisting of a tinite set L of control locations 
and a continuous variable x E R". The dynamics for each 
I E L are given by the translation vector field .f = 1 .  C is 
a finite observation alphabet. Qo : L -+ 2R'' is a function 
assigning an initial set of states for each location such that 
if the automaton is initialized in location 1. then x E Q " ( l )  
at t = 0. E c L x C x L is a transition relation defining a 
tinite set of edges. e = (1. cr. 1 ' )  is a directed edge between 
a source location I and a target location l' with observation 
0. We write I 1' for P = ( 1 .  0. I') E E where U is the 
observation of c .  

J : E --f G x H is a function assigning to each edge a guard 
condition and a reset condition. G = {g I g c R'*) is the 
set of guard conditions o n  the continuous states. R = ( 1 ' )  

is a set of reset maps. where I' : R" -+ 2"" is a set-valued 
map. We use the notation G ( r )  = gr  and /?(e) = re,. The 
enabling conditions are pencrated by the grammar: 

x := .x; 5 f'j1.T; 3 c;/.Y; < C ; \ X ;  > C'i/gl A g2)gl V 82 .  

where c; E Z. The reset condition is of the form I ' ; ( x )  = 
I N ; .  h; 1. where r; is the ith component of the resct map. 
and u. h E Z. The reset map initializes the ith clock 
non-drterministically to a value between U; and 17;. where 
U ; .  h; E Z. When a clock is not reset I ' ; { X )  = x ; .  

2.3 Hybrid automata 
The tuple A = ( Q , C . I), Q", I n  U. E ,  J ) denotes il hybrid 
automaton consisting of the following components: 
State space The state space Q = L x RI', with I a finitc set 

Events C is a finite observation alphahet. 
Differential Inclusions D : L ---f 3.(Rn) is a function as- 

signing a Iipschitz differential inclusion to each lo- 
cation. We use the notation D(1) = FI .  For location 
1. the dynamics are given by .i E f i ( . x ) .  f i E g'(R"). 

Initial conditions Q" : L -+ 2IWn is a fiinction assigning 
an initial set of states for each location. If the automa- 
ton is started in location 1. then .x E eo(/) at r = 0. 

of control locations. 
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Invariant conditions Inis : L + Zw" is a function assign- 
ing tor each location, an invariant condition on the 
continuous states. The invariant condition restricts 
the region on which the continuous states can evolve 
for each location. 

Control switches E c L x C x L is a set of control 
switches. c = ( I .  0. I ' )  is a directed edge between 
a source location I and a rarget location I' with obser- 
vation a. 

Jump conditions J : E + G x K is a f'unction assigning 
to each edge a guard condition and a reset condition. 
G = ( g  1 g C R") is the set of guard conditions 
on the continuous states. H = ( r }  is the set of reset 
conditions. where r : R" --+ 2"" is a set-valued map. 

We assume at the outset that tor each e = ( 1 . 0 .  I ' )  E E .  
, g ,  C I n v ( I ) .  r[Ag<,) C / l 7 1 J ( / ' ) .  and for each I E L.  go(/) 2 
I I? U ( I  ). 

2.3.1 Semantics: A state is a pair ( 1 . x )  satisfying 
.x E I i i v ( / ) .  The invariant can he used to enforce edges 
from location I .  In location I the continuous slate evolves 
according to the differential inclusion F!. C ( I )  denotes the 
set of events possible at I E L and E ( / )  denotes the set 
of edges possible at I E L. An edge is enabled when the 
discrete location is I and the continuous state satisfies .r E 
ge .  for e E E ( / ) .  When the transition e = ( I .  cr. I ' )  is taken. 
the event (3 is recorded, the discrete location becomes I ' ,  and 
the continuous state is reset (possibly non-deterministically) 
LO .x' := r6>(.Y). 

For 0 E c a a-step is a tuple SC Q x Q and we write 
(1 % (1'. I k f n e  cpf(.r) to he a trajectory of fi at 1.  starting 
from .x and evolving for time r .   or t E R+. detine a r - m p  
to he the tuple LC Q x Q .  We write ( / .XI  ( / ' , .Y ' )  
iff (1) I = I ' . ( 2 )  at t = 0. .r' = X.  and ( 3 )  for t > 0, 
x' = cp;(.x), where $;(.Y) E F j ( c p j ( . x ) ) .  When we do not 
want to explicitly fix the duration of the t-step. we use the 
label I. 

A tiincd ~ . o r d  of A is a kinit: or intinite sequence 5 = 
t 0 q t ~  . . . of letters from C U R+; that is. each T; is ei- 
ther an observation of A or a non-negative real that denotes 
a duration of time between observations. The timed word 7 
is divergent i f r  is inlinite and C(t; 1s; E IFS+. i E N] = x. 
A trajectoq JC of A is a finite or infinite sequence 

where qn E Q', and for all i 2 0, we have q, E Q. T, E C i l  
R+. The trajectory JC accepts the timed word 7 = TOTI . . . 
and JC is called divergent if t is divergent. Finally, a run of A 
is the projection to the discrete part of a trajectory accepted 
by A ;  namely, a finite or infinite sequence IO, It. I?. . . . of' 
admissible locations. l7 is the set of all trajectories of A 
and is called the trajectory Iunguage. l7o denotes the set of 
trajectories of A defined on a finite time interval. 1-'inally. 

is the set of all runs accepted by A. 

In the sequel we I'requently view the trajectory as progrcss- 
ing in steps. A step relkrs to a r-step followed hy a a-step. 
Associated with the kth step o f  a trajectory is the data I k  = 
( t k ,  rk+'  1. the time interval o f  the step, where r k  = t k t l  - r k  
is the duration. and qk = (IL-. . r k ( t ) ) ,  the state. where I" is 
fixed over I' and . r k ( t )  satislies . i " ( t )  E F ' , A ( . x k ( t ) ) .  Thus. 
the step can he rcpresentcd as 

( / k , . . k )  -i, (Ik..Yk(tk+t)) 2 ( / k + I  k+-I  
. . Y  1 .  (2.1) 

where . Y k ( t k + '  ) is the value ot the continuous slate hefore 
the re.wt. 

Wc assuinc throughout a izon-z~wo condition: every tra,jec- 
tory of A admits a tinitc numhcr of a-steps in  any houndcd 
time interval. 

2.3.2 Bisimulation: A hisiii~i~lation oi A is a binary 
relation :C Q x Q satisfying the additional condition: for 
all states p .  q E Q. i f  17 z q and a E E U ' T .  tlicn 

(a) it 1)  2 1''. then 3q' such that q 2 q' and p' = q' 
(b) i t  q 2 q' .  then 311' such that 11 1)' and 1)' 2 q' .  

2.4 Skorohod metric for hybrid systems 
Now we introduce a metric which yields a suitable topology 
for  hyhrid trajectories. The Skorohod metric was originally 
used i n  the study of stochastic processes with right (or left)- 
continuous sample paths. such as Poisson processes 1.31. 

We delinu the metric on 2)(R") denoted (1,: (,I. .  g ). as 101- 
lows. Given two functions ,f : I , ,  + R" and g : I ,  + R" 
the Skornhotl ttirtric d { (  f .  g )  i s  the intimum o f  t > 0 for 
which there exists a strictly increasing. continuous. onto 
function K : IJ -+ I,? such that 

(a)  supre/, l ~ ( r )  - ri 5 E and 
(h) l , f ( t )  - $ ( K ( f ) ) I  5 C .  

We deline a metric on I30 that combines the Skorohod met- 
ric on the continuous parts o f  a pair of tra.iectories with 
the distance between the concsponding runs i n  the Cantor 
topology. The resulting metric space is denoted (no. (1, ). 

I x t  T. n' E no with JC = ( ( I k ,  . Y k [ t ) } T ; /  and .r = 
{ . x k  ( t )  1:;: referring to the cntirc (linite) continuous trajec- 
tory. Analogous teims can be delined for  r'. Then the dis- 
tance between T and JC' is given by 

where r = min(m, i n ' }  and 1( .) is the indicator function. 

3 Regularity 

Regularity. or equivalently. continuity with respect to ini- 
tial conditions for hybrid system with I ipschitz differen- 
tial inclusions is established under a trurzsversalir?, condi- 
tion. stated in Definition 3.1. Let JQ) he a trajectory starting 
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from p ~ .  We show that if n~ satisfies the transversality con- (i)  there exist a neighborhood V of x ( T ) ,  and local co- 
dition, and under mild assumptions on the automaton stated ordinates i~ = (u1, . . . , U , , )  centered at . x (T)  map- 
in Assumption 3.2, there exists a continuous selection of ping V onto x ( - E , E )  c R”-’ x R” such that 
trajectories from no on a neighborhood of yo. L I - ’ ( ~  x ( 0 ) )  c i),gc,. In addition. if ,ge is n- 

dimensional, then U , ( ! )  > 0 .  Vy E V n i n t ( g c ) .  Consider the problem 
(ii) the interval of definition of . x ( t )  can he cxtendcd to 

[ro.  T + E 1, in such a manner that i E F ( x ) ,  .x(O) = ( ( 3 .  I ) 

on a time interval [O, TI ,  where 6 ranges over a compact 
X c R” with diameter D. In addition, we assume F satis- 
fies 

Assumption 3.1. The inclusion satisfies: 

. t ( t ) .  ~ u , ( . x ( r ) )  3 I ,  ax. on { t  : . r ( r )  E V } .  

we say that an t7,-step trajectory = { ( / k .  .x!i(r))};i;, 
whose steps are denoted as in (2.1). is a rransvrrsal mi- 
jrctor! if for each k such that . r k ( t k + ’ )  E i)gci. . x k ( f )  is 
transversal to get at .xk(tk+’  1. 

(a) The values of F are closed, nonempty subsets of R”. 
(b) There exists K E IR such that d ~ ( F ( x ) ,  F( .x’ ) )  5 The lollowing technical lemma is needed. 

Lemma 3.1. Let i E fi  (.x ) hr a Lilwhir: inclusion satis- 
K l x  - X’I. 

Under Assumption 3.1, an absolutely continuous solution 
to (3.1) exists for each $ E X [SI. Let ( 0  E X and . r ( , )  be 
a solution of (3.1) such that x ( 0 )  = 60. It is shown in 161 
that there exists a selection c p l ( ( )  from the set of solutions 
of (3.1) (with the topology of C,,.), which is continuous in 

E X and such that yl(Co) = .r(r). Such a selection is 
found by constructing a sequence of approximate trajecto- 
ries, { y y  (t)},“=” which are shown to form a Cauchy se- 
quence in the normed space c,,.. In particular. this sequcnce 
can be chosen to satisfy 

,fiing Assuni,!~rion 3. I ,  and let .x ( I ) ,  t E 1 to, ti J hr N solution 
that is transversal to gc. P = ( I ,  (T. 1‘) ut . x ( t l ) .  Thrn thrw 
exist ti’ > t l ,  a neighhorhooti W of .v ( t ( ) ) ,  and a continuous 
selection of solutions ip : W -+ C,, (110. t i ’ / )  of $I E F I ( ~ )  
such that 

( a )  yt(x(r0))  = x ( t ) .  
(b)  there exists ti E ( t o ,  r l  ) such that. tvith U dmoring fhr. 

coordinatrs in Dyfiniriori 3.1, VE E W .  

I 
g t ( t - ) .  V u , l ( y t ( 6 ) )  1 - u.e. on If;. t ; ’ l .  

2 ‘  

(c) there r.xists a continuous T : W + I t i ,  I;’ 1. satisfi:ing 
s [ .x(ro) )  = t l ,  such rharipT(c,(()  E i)gt., VC E W .  

Thus, 
Proof: By the lransversality assumption there exists an 
open neighborhood V of  .r(rl) and coordinate& I I  : V -+ 

x ( - e ,  6 )  c R”-’ x R such that .r can he cxtcnded to 
l O , t ~ + ~ j a n d . ~ ( r ) ~ V u ~ ( . x ( r ) )  2 1.a.e. on { r  : . r ( t )  E V ) .  
Since Vu,,  is continuous, there exists an opcn set V’ c V .  

1 l v o ( ~ )  - y O ( 6 ) l l a c  D ( ~ K T  + ,2KT) (3 .2 )  

where 

( 3 . 3 )  containing . x ( t l ) .  such that. Vv E V’. 

1 
. i ( t ) .  VU,(V)  2 - ,  a x .  on { I  : x ( r )  E V ’ } .  ( 3 . 5 )  

Select times ti < 1 1  < t r  such that r ( r )  E V’. Vt E [ t ; ,  ti’] 
a n d k t  

(3.6) 

is the initial guess of the approximate trajectories. Thus, we 

(3.4) 

Assumption 3.2. The automaton A satisfies the following: 
(a) The inclusion .i E A ( x )  at each location I satisfies 

Assumption 3.1. 
(b) For each e E E ,  ge is either a compact, n-dimensional 

smooth manifold with boundary, or an embedded (n - 

1 )-dimensional submanifold. u n ( u )  r -, v u  E B ( . x ( t ; ) ,  8 ’ ) .  (3.7b) 
(c) r, is a lower semi-continuous reset map from R” to 

the closed, convex subsets of R”. 

4 
obtain the estimate 

l lY (0  - v(t0)llnc 5 q e K T  + PT + 1 ) .  
E’ := min{ - u n ( . x ( t i ) ) .  u n ( . x ( t ; ) ) } .  

Finally, select 6’ > 0 such that 

€’ 

2 
u,(u) < --, vu E B ( . r ( t ; ) .  8’). (3.7a) 

6’ 

2 
B(.x(r) ,  6’) c V’ ,  Vt E [ t i .  (‘1. (3.7c) 

q e K ( t ; ’ - t o )  + p ( 1 ,  - l o )  + 1) 5 6’. 

2 n K e 2 K ( t ;  -10) . sup IVu,,(u)l 5 - . 

and choose D to satisfy 
The following definition is essential for our main result. 

Definition 3.1. Let e = ( 1 . 0 ,  I’) and . x ( t ) ,  t E [to. TI be a 
( M a )  

(3.8h) 
1 
4 

solution of 1 E E(x )  such that x ( T )  E age. We say that 
x ( t )  is transversal tog, at x ( T )  if, for some E > 0. U €  V 
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We use the construction .n 161. Let {qy ( ( ) } , j t=O denote the 
sequence of approximate solutions in C,,.([ro, r y ] ) ,  with ( in 
some neighborhood of.r( to ) ,  converging to pt (6) uniformly 
i n  Cc,c([to, t i ' ] ) .  

1.e~ $0 := .u ( to) .  We claim that. for all 6 E H ( & ) ,  

q , (o  E v'. Vt E l t ~ , t ~ l .  (3.9) 

I g t c o  ' V [ J , ? ( P , ( t ) )  :z - ax .  on [ t i ,  (1. (3.11) 

I3y (3.4) and ( 3 . h ) .  Iq,($)- u ( t ) l  5 A'. which together with 

It  remains to show (3.1 I 1. Using the construction in 161 one 
can derivc the Ihllowing. Corresponding to each m 2 0 and 
to each 6 E H ( & ) .  f). there IS a finite partition { 
of Ita, t;']. and a finite set E,,, = {<;, o 5 .I 5 i n  - 1, 1 5 

5 I ? , , , ) ,  E,,, c H ( h .  91, not depending on 6 ,  such that, 
with 5;' = (. the following estimate holds a x .  on l j ( t ) .  for 
t =  I . . . . . i n -  I .  

2'  

(3.7) proves (3.9)-(3. I O ) .  

I*'rom (,2.12). using a triangle inequality. we obvain 

ax .  on f,(<). Combining (3.5).  (3.8b) and (3.13). and using 
the lhct that @:)(cy)  = . t ( t ) .  

y;(o ' vU,,(py(o) 3 . t ( t)  . VU,,(cp:"(O) - 
D O  

IVun(q:"(O)l . ! @ Y ( $ )  - @, ( 6 j  )I  2 $ - = 4. 
a.e. on l j ( 6 ) ,  V t  E H ( t o ,  +). thus establishing (3.11 ), by 
passing to the limit as in -+ x. Parts (a) and (b) of the 
Ixmma follow if we select w = ~ ( ( 0 .  $1. 

Finally. by ( 3 .  I I). for each 6 E W there exists a unique 
t ( 6 )  E ( t i ,  ti') and such that c p T ( c ) ( ( )  E age or equiva- 
lently u n ( q r ( [ , ( ( ) )  = 0. To prove continuity, we argue by 
contradiction. Suppose (&] c W is a sequence converg- 
ing. a s k  -+ x, to 6* E W. and t(&) f. s((* ) .  Then, 
along some subsequence. denoted also by {&}. t(&) + 

t*. for some t* # r ( < * ) .  It follows that qr(ck)(&) -+ 

q , . ( t* ) .  and hence. U n ( ( P r ( t k ) ( 6 k ) )  -+ un(qr+(6*)). But 
u n ( q r ( t ) ( & ) )  = 0. implying u n ( q T ~  ((*)) = 0, which con- 
tradicts the uniqueness of s ( e * ) .  This proves part (c). 0 

Theorem 3.2. Suppose A satisfies Assumption 3.2 and let 
no De a transversal m -step trujec tory of A wirh initial state 
po  = (1'. to). There exists U neighborhood ( l o ,  U )  of yo, 
with U c W" open, und Q ( f ,  $1. a selection of no, such 
that * ( I .  = j q ( t )  unrl Q(.. 0 is continuous on U .  

Proof: Suppose that no has an m step run l o ,  . . . . l"'-', 
each step represented by (2.1), and visits the enabling con- 
ditions go, . . . , g'"-* , with r o ,  . . . . rm-I denoting the cor- 
responding reset maps. Observe first. that in order to obtain 
a continuous selection. the selection trajectories must take 
in steps. and have identical runs lo ,  . . . , I"- '. 

I;irst consider the reset of the kth step. Since r k  is locally 
selectionable by Michael's Selection Theorem, there exists 
a continuous selection ?' of r' , satisfying 

Jk(xk( tk+l ) )  = X k + l .  (3.144 

Hence. given an open neighborhood W"' of xk+* there 
exists an open subset V k  containing x k ( f k + l )  such that 

?'(vk n g k )  c wk+l. (3.14b) 

I f . r k ( f k + ' )  E d g k  then by Lemma 3.1, given an open set 
V k  3 . r k ( t k + l )  there exists a neighborhood W k  of . x k ( f k )  
and a continuous selection @ k  : wk --z c,,([o, P + l  - t k ] ) ,  
for some ik+l > # + I ,  of solutions of $k = F l k  (@), along 
with a continuous rk  : W k  + [ O ,  fktl - t k ]  such that 

k k  @ P ( . x k ( r k ) )  = .x ( t  - t ) ,  

t"xk( t")  = [k+'  - [ k .  

r E [0, t k f l  - t k ] ,  (3.15a) 

(3.1Sb) 

$ : k ( l t , ) ( ~ ~ )  E V' n g k ,  VU) E wk (3.1%) 

On the other hand, if . x k ( t k + l )  E int(gk), then selecting 
an open neighborhood V k  c g k  of x k ( r k t l ) ,  and defining 
tk = tk+' - r k ,  by the results in 161, there is a continuous 
selection qk defined on some open set W k  3 . x k ( t k )  such 
that (3. 15) holds. 

A finite iteration of the arguments in the last two para- 
graphs. yields collections of open sets { WO, . . . , W n r - l )  
and ( v O ,  . . . , vnl-l } along with continuous selections 
{+klr=;' and continuous maps { ~ k l ~ i i  and {rk};~;. as 
defined above. such that (3.14) and (3.15) hold. 

Iklinc $k : W k  ---f V k  n g k  by G k ( w )  = I + ? ; ~ ( ~ ) ( U J ) .  

From the continuity of U: H I+?;(UJ) and of tk along with 
the absolute continuity of r H j!r:(w), and the triangle in- 
equality 
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I t  follows that t k ( . )  and q ( r ,  .). for fixed t ,  are continuous 
on U .  To show continuity of Q(., .) in the hybrid metric 
let <. <‘ E U and define, f o r t  E ( r k ( O ,  rh+’ ( < ) I .  

It is straightforward to show that Ir - K ( r ) J  -- 0.  

uniformly on [ t”( t ) ,  t ” l ( < ) J  and using a triangle inequal- 
ity as i n  (3.16). we c a i  also show the same holds for 
\ * ( f .  6) - * ( K ( t ) .  [’)I. The proof is complete. c 

€ +€ 

4 Homotopic equivalence for hybrid systems with 
convex inclusions 

We are given a hybrid automaton A, whose dynamics follow 
a constant. convex inclusion .i E f i .  at each / E L .  We also 
assume that each enabling region g ,  is convex and the reset 
I;. : R‘? + Pi is compact, convex valued. 

Definition 4.1. We define tlic relation X on Q by: 
I(/. x ) ,  (/’. x’)I E % if  for every trajectory starting from 
(/. . Y )  there is a trajectory starting from (/’. .r’) which takes 
the same next edge. and vice versa. I x t  !K* be the coarsest 
stable refinement of R.  

While we arc primarily interested in hybrid systems with 
diflerential inclusions. i t  is worth pointing o u t  thc relation- 
ship hetwccn edge cyuivalence and the region equivalence 
ot’ 1 I 1  l’or timed automata. which we call R , A ~ .  

Lemma 4.1, P(irtitioii Y< of  riinrrl u m t i l r m n  T i.c K.41) .  

4.1 Homotopic equivalence 
Consider two trajectories 770. T I  E (no, (I., 1. The k t h  step 
of xlu. 1y E (0. I ] is reprcsented hy 

where 
the time. 

is the location. .rcr is the continuous state. and ru is 

Definition 4.2. We say trajectories no. ill E (no. (I., ) are 
homotoqkally rquivalmt. or no J I I  if there is a con- 
tinuous map /?(.) : IO, 1 ] + (no. d 5 )  such that, for each 
0 E IO. 11. h ( H )  is a trajectory of  A and h ( 0 )  = TO. 
h(1)  = n1. 
We define the homorrp! rdution 9 1  on Q by: 
I (1 .  .U). (/’, .r’)l E YL if to every trajectory starting 
from ( 1 .  .U) there is a trajectory starting from (/’. .r’) that is 
homotopically equivalent to it ,  and vice versa. Clearly .’Jl- 
is an equivalence relation. 

Lemma4.2. 3 1  & R*. 

Proof: If not. there exist statcs (1 .  XI. ( / I .  .r’) and 
l ( l , . r ) ,  (/’,.~-’)l E 31 but [ ( / , . U ) ,  (/‘. .r’)I $ 7<. This ineans 

thcre exists a trajectory n starting at (I, .r) and k E Z. such 
that location Ik is visited after the kth transition. whereas for 
any trajectory n’ starting from (/’, .U’), the location visited 
alter the kth transition is not / k .  It is clear from the defini- 
tion of the hybrid metric d, that n and n‘ are not homotopic 

Suppose that no and nl have an in step run /{ = /f. k = 
k tu-1 0. . . . , in - 1. and visit the enabling conditions {g I,=,, , 

k 111-1 with { r }k=o denoting the corresponding reset maps. We 
define the homotopy h(H) to he a trajectory of A with the 
kth step denoted by: 

and consequently [ ( / ,XI .  ( l ’ ,  x’)] $ 31.. 

(4.1) 

where z b ( u )  is the continuous part of thc trajectory over the 
ktli step and 14 is time. The initial and reset times and states 
are givcn by 

( / h -  ,,,I k --f ( / k , z ; ( / d : + l ) )  --f (/k+l.z;+l) 

I i ) r  k = 0.  . . . . m - 1 and U = 0.  I .  define 

(4.3) 

k k  
+ / / )  = ( I  - H 1 . U  ( l l t r ( H ) U  + 1 & H ) )  + 

N \ k ( / l ; ( H ) / I  + Uf(H)). (4.4) 

Note that ( I  - H ) p l , ( O )  + H , r t ( H )  = 1. hence differentiating 
(4.3) and using the convexity of the inclusion as well as the 
convexity of thc enabling condition and the m e t  map, we 
deduce that ( I k .  Z:(U)}~:; is a trajectory of‘ A,  for each H E 

IO. I ] .  To establish continuity we first define, tor H. H’ E 

10. 11. the lnap K/ j , f /  : 1/4:1. U;;] -+ IN)! . i i i i ’ , ] .  by 

for 14 E ( i4b.  U;”]. It  is straightforward to show that 

sup /<,,.,,,(U) - U [  0 
l l ’ + l l  lElu:,,d;;l 

and that the same holds for l z b ( u )  - C ; . ( K O , ~ , ~ ( M ) ) / .  

Theorem 4.3. 7<* = :fl 

Proof: Wc need only show that R* E H. Suppose 
\ ( / . . r ) .  ( /’ . .r’)]  E R*.  Then. / = /‘. and for each tinite tra- 
,jectory no = { I k .  . r k ( . ) } l L O  starting from (1 .  .r)  there exists. 
;I tra.iectory j-r1 = { l k ,  yk(.)}r=O. Construct the homotopy 
h ( H )  as defined in (4. I k(4.4). By definition h ( 0 )  = no and 
h(  I )  = T I ,  h is continuous in H and is a trajectory of A.  

U Therel’ore, I ( / .  x ) ,  (/’,.r’)J E .‘If. 
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5 Homotopic equivalence with Lipschitz inclusions 

In this section we consi&r the class of hybrid automata A 

161 A. Cellina and A. Ornelas. Kcpresentation of the at- 
tainable sct for I .ipschitLian differential inclusions. Rock\ 
Mountain ./o/lrfla/ o f  Muthrrnutic.s. V o l .  22. 110. 1. WillteI' 
1902. satisfying Assumplion 3.2 .  The god is to characterize the 

homotopy equivalence relation :If' on trajectories of  A .  I n  
contrast with the constant. convex inclusion case. i t  is not 
adequate to consider the partition formed hy states whose 
runs take the same transitions. A finer partition is needed. 
For each e E E .  let gc. = U ~ ~ ~ l c q c , , , r  be the decomposition 01' 
gc into its path connected components. 

Definition 5.1. We say I(/. .VI. (1'. x ' ) ]  E R,, ill' 

(b) 'de E E ( / )  and Vu.  .x E K ~ . , ~ ,  iff  \ E gc. . l i .  
(a) l ( 1 . x ) .  (l'..r')l E R. 

We deline path coriiirc~trd edge equivalence R;, to be thc 
coarsest stable path connected relinemcnt 01' the equiviilencc 
relation X,,. 

I t  is difficult to show that X;, c 91, without additional hy- 
pdieses.  We present here a result on homotopy of solutions 
to inclusions. This result is a ramilication of the results of 
16 I. and essentially guarantees that any two solutions of a 
I.ipschilz inclusion are homotopic. It is stated below with- 
out prool, for brevity. 

Theorem 5.1. Let 

.i E F ( . r )  ( 5 .  I ) 

satisfi; Assumption 3. I and K c R" he a compact set. Sup- 
pose that LI set of initiul conditions { x i  } ;=, C K .  and corw- 

sponding soIutions { yi ( I  I} ;=, art) givon on a time intonwl 
IO. T 1. Then there exists a continiious selection of'.soIution~$ 
y ( t . . r )  of (S.1). tkfinocl o i i  f E IO. TI ,  .r E K .  s r i r h  rhat 
y(.,.r;) = y ; ( . ) . , f i ) r i  = I .  . . . ,  N .  

A' 

A: 
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