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1 Introduction

In this paper we study the trajectories of hybrid systems
cvolving according to constant, convex inclusions and Lip-
schitz nonlinear inclusions. Two questions arc addressed.
First. we investigate the existence of continuous selections
of trajectories with respect to the initial conditions. Second,
previous work on timed automata and hybrid automata has
examined equivalence relations on runs of the automaton
that visit the same locations and regions of the state space.
Here we examine an equivalence relation defined directly
on the trajectorics. With suitable conditions on the enabling
regions and using a suitable metric, we construct a homo-
topy on the set of solutions and use the homotopy to torm
an equivalence relation on the trajectories. We show the
relationship hetween region equivalence introduced in [ 1]
and homotopic equivalence. The tools needed for studying
homotopic equivalence are the same as for obtaining conti-
nuity with regpect to initial conditions.

2 Preliminaries

2.1 Notation

We denote by |- the Luclidean norm. d(x. B) is the distance
from a point x to set B defined by d(x, B) = infyep |x —
¥l. The Hausdorfl distance between two sets. denoted dy is
dy(A, B) = max{sup,c 4 d(x. B).sup,cpd(y. A)}.

For an interval 1 = [ry, ] let C(1) and Cyo(1) denote the
spaces of continuous and absolutely continuous functions
f 1 — R" endowed with the sup norm | flx and the
norm || fllac = 1 f(r0)] + f; | £ (s)|ds. respectively. We de-
note by £1(1) the Lebesgue integrable functions on I. xf
is the characteristic tunction of the set £. I'inally, F(R")
denotes the space of Lipschitz differential inclusions de-
fined from R” to 2R". We denote by D(R") the space
of all functions f : R — R”" that are left continuous.
lim;4, f(t) = f(a). and have limits from the right.

2.2 Timed automata

We review the definition and semantics of timed automata,
since hybrid automata build upon this model. A timed au-
0-7803-4394-8/98 $10.00 © 1998 IEEE

tomaton is a tuple
A=10.5.0" E. )

consisting of the following components. @ = L x R” is the
state space consisting of a finite set L of control locations
and a continuous variable x € R”. The dynamics for each
! € L are given by the translation vector field ¥ = 1. X is
a finite observation alphabet. @° : L — 2R" is a function
assigning an initial set of states for each location such that
if the automaton is initialized in location /. then x € Q%
atr = 0. E C L x £ x L is a transition relation defining a
tinite set of edges. ¢ = (/, 0, ') is a directed edge between
a source location [ and a target location I” with observation
. Wewrite | = I' fore = ([.a.1") € E where o is the
observation of e.

J 1 E — G x Ris alunction assigning to each edge a guard
condition and a reset condition. G = {g | g € R"} is the
set of guard conditions on the continuous states. R = {r}
is a set of reset maps. where r : R? — 2R is a set-valued
map. We use the notation G(e) = g, and R(e) = r.. The
cnabling conditions are generated by the grammar:

g:=xi < il = ol < il > cilgi A galgi v g

where ¢; € Z. The reset condition is of the form ri(x) =
laj. bi]. where r; is the ith component of the reset map.
and «.b € Z. The reset map initializes the ith clock
non-deterministically to a value between g; and ;. where
d;i . bi € Z. When a clock is not reset ri{x) = x;.

2.3 Hybrid automata

The wple A = (@, . D, Q" Inv. E. J) denotes a hybrid

automaton consisting of the following components:

State space The state space Q@ = L x R”, with [/ a finite set
of control locations.

Events ¥ isa finite observation alphabet.

Differential Inclusions D : L — 7 (R") is a function as-
signing a Lipschitz differential inclusion to cach lo-
cation. We use the notation D(/) = F,. For location
[. the dynamics are given by x € Fi(x). F; € F(R").

Initial conditions Q° : L — 2®" is a function assigning
an initial set of states tor each location. If the automa-
ton is started in location /. then x € Qo(l yatr = (.
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Invariant conditions /rv: L — 2% isa function assign-
ing for cach location, an invariant condition on the
continuous states.  The invariant condition restricts
the region on which the continuous states can evolve
for each location.

Control switches £ C L x ¥ x L is a set of control
switches. e = (/. o.1') is a dirccted edge between
a source location / and a target location I” with obser-
vation o,

Jump conditions J : £ — G x R is a function assigning
to each edge a guard condition and a reset condition.
G = {g 1 g C R" is the set of guard conditions
on the continuous states. R = {r} is the set of reset
conditions. where r = R" — 2% is a set-valued map.

We assume at the outset that for cach ¢ = (I.0./') € E.
ge C Invih). rag.) € Inv(l’). and forcach/ € L. Q%) C
Inv(l).

2.3.1 Semantics: A state is a pair (/. x) satisfying
x € Inv(l). The invariant can bhe used to enforce edges
from location /. In location / the continuous state evolves
according to the differential inclusion £7. (/) denotes the
set of events possible at I € L and E(/) denotes the set
of edges possible at [ € L. An edge is enabled when the
discrete location is [ and the continuous state satisfies x €
ge. fore € E(I). When the transition e = (1. 0. 1"} is taken,
the event o is recorded., the discrete location becomes [, and
the continuous state is reset (possibly non-deterministically)
wx’ =rylx).

For o € £ a o-step is a wple e 0 x @ and we write
q R ¢'. Define ¢! (x) to be a trajectory of Fp at /. starting
from x and evolving for time 1. For r € RT, define a r-step
to be the tuple Le 0 x Q. We write (I, x) 2 (I',x")
=0 2)ar 0, x' x.and (3) forr > 0,
x" = glx), where ¢l (x) € Fi(¢l(x)). When we do not
want to explicitly fix the duration of the #-step, we use the
label T .

A timed word of A is a finite or infinite sequence T =
7172 -+ of letters from ¥ U R™: that is. cach 7; is ci-
ther an observation of A or a non-negative real that denotes
a duration of time between observations. The timed word T
is divergent if T is infinitec and Y {7;|1; e RT.i e N} = x.
A rrajectory  of A is a finite or infinite sequence

T0 14t T
Tigo = qr —> q2—>

where go € QY. and foralli > O, wehave g; € Q. 1; € TU
R™*. The trajectory m accepts the timed word T = 107 - - -
and m is called divergent if 7 is divergent. Finally, a run of A
is the projection to the discrete part of a trajectory accepted
by A: namely, a finite or infinite sequence /o, /1. . ... of
admissible locations. TT is the set of all trajectories of A
and is called the rrajectory language. T1p denotes the set of
trajectories of A defined on a finite time interval. Finally,
M4 is the set of all runs accepted by A.
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In the sequel we frequently view the trajectory as progress-
ing in steps. A step refers to a r-step lollowed by a o-step.
Associated with the kth step of a trajectory is the data [ k=
(7% 5+ 1), the time interval of the step, where t¢ = A+ — 16
is the duration. and q"' = (%, xk (1)), the state. where [ is
fixed over I* and xk(r) satisties ¥F (1) e F/I-(Xk(f))‘ Thus.
the step can be represented as
. . ! 3 . . o ek .

(II‘..'CA) RN (II\.KA(f’\+l)) BRAN (,]\4-]“‘/‘\-}1) . (2[)
where xK(/#+1y is the value of the continuous state before
the reset.
We assume throughout a non-zeno condition: every trajec-
tory of A admits a finite number of o-steps in any bounded
time interval.

2.3.2 Bisimulation: A bisimulation of A is a binary
relation =C @ x Q satistying the additional condition: for
allstates p.g € Q.if p=gando € £ U T . then

(@) it p 5 p'.then 3¢’ such that ¢ > ¢’ and p’ ~ ¢
(b) i g 5 ¢’ then 3p” such that p 2> p’ and p’ ~ ¢,
2.4 Skorohod metric for hybrid systems
Now we introduce a metric which yields a suitable topology
for hybrid trajectories. The Skorohod metric was originally
used in the study of stochastic processes with right (or left-
continuous sample paths, such as Poisson processes |3].
We define the metric on 2X(R”) denoted /(1. g). as fol-
lows. Given two functions f : [y — R"and g : [, - R”
the Skorohod merric d[(f. g) is the infimum of € > 0 for
which there exists a strictly increasing, continuous. onto
functionx : [y — I, such that

(@) sup,¢y, In(r) —1] < €and

(b) sup,es, 1F() = glk(D)] < €.

We detine a metric on [Ty that combines the Skorohod met-
ric on the continuous parts of a pair of lrajectories with
the distance between the corresponding runs in the Cantor

topology. The resulting metric space is denoted (T, dy ).
Let .7’ € Tlo with # = {(K. XK} and v =

{.yc"'(r)};\’,'z_“l referring to the entire (finite) continuous trajec-
tory. Analogous terms can be detined for 7', Then the dis-
tance between o and 7' is given by

r—1 ’
) p 1 : & {m —m’|
dyr.a') =djx.x)+ ) 71(1‘ AN+ —

2/‘
k=0 -

where r = min{m, m'} and 1(.) is the indicator function.

3 Regularity

Regularity. or equivalently, continuity with respect to ini-
tial conditions for hybrid systems with Lipschitz ditferen-
tial inclusions is established under a rransversality condi-
tion, stated in Definition 3.1. Let 7o be a trajectory starting



from po. We show that if g satisfies the transversality con-
dition, and under mild assumptions on the automaton stated
in Assumption 3.2, there exists a continuous selection of
trajectories from ITp on a neighborhood of po.

Consider the problem

X e F(x), x(0)=¢ 3.1

on a time interval [0, T'], where & ranges over a compact
X < R” with diameter D. In addition, we assume F satis-
fies

Assumption 3.1. The inclusion satisfies:

(a) The values of F are closed. nonempty subsets of R”.

(b) There exists K € R such that dy(F(x), F(x")) <
Kix — x'j.

Under Assumption 3.1, an absolutely continuous solution
to (3.1) exists foreach & € X [5]. Let&y € X and x(-) be
a solution of (3.1) such that x(0) = &. It is shown in |6]
that there exists a selection ¢;(£) from the set of solutions
of (3.1) (with the topology of C,.), which is continuous in
& € X and such that ¢,(&) = x(t). Such a selection is
found by constructing a sequence of approximate trajecto-
ries, {¢}" (é)};;o which are shown to form a Cauchy se-
quence in the normed space Cy.. In particular. this sequence
can be chosen to satisfy

(K T)m E,ZKT
m! om+1 )

lg” &) — "1 E)llae < D(
Thus,

o) ~ 9"®)llac < D(XT 4+ 2KT)  (3.2)

where

t

PlE) =¢ +[) @s(Eo)ds (3.3)

is the initial guess of the approximate trajectorics. Thus, we
obtain the estimate

@) — @Eo)lac < D(XT + KT £ 1), (3.4)

Assumption 3.2. The automaton A satisfies the following:

(a) The inclusion ¥ € Fj(x) at each location / satisfies
Assumption 3.1.

(b) Foreache € E, g, iseither a compact, n-dimensional
smooth manifold with boundary, or an embedded (n —
1)-dimensional submanifold.

(c) r. is a lower semi-continuous reset map from R” to
the closed, convex subsets of R”.

The following definition is essential for our main result.

Definition 3.1. Lete = ([,0,/Yand x(2),t € |t5. T| be a
solution of ¥ € Fy(x) such that x(T') € dg.. We say that
x(t) is transversal to g, at x(T) if, for some € > 0.

(i) there exist a neighborhood V of x(T), and local co-
ordinates v = (uy, ..., up) centered at x(7") map-
ping V onto V x (—€,¢) ¢ R"™! x R” such that
w IV x {(0})) C dg. In addition. il g. is n-
dimensional, then u,(v) > 0. ¥y € V Ninf(ge).

(ii) the interval of definition of x(r) can he extended to
[to. T + €], in such a manner that

() - Vup(x()) = 1, ac.on{r:x(r) eV}

We say that an m-step trajectory w1 = {(Ik.xk(r))};:':_(,l.

whose steps are denoted as in (2.1). is a rransversal tra-
jectory if for cach k such that xK(FA+Y) e dg.e. xK(r) is
transversal to g« at x¥ (7+1).

The following technical lemma is needed.

Lemma 3.1. Let X € Fy(x) be a Lipschitz inclusion satis-
fving Assumption 3.1, and let x(1), 1 € [to, t1] be a solution
that is transversal to g, ¢ = (I, 0.1') ar x(11). Then there
exist 1’ > 11, a neighborhood W of x(10), and a continuous
selection of solutions ¢ : W — Cuc(lto.1]']) of ¢ € Fi(g)
such that
(a) @(x(10)) = x(1),
(b) there exists t]' € (I, 11) such that, with u denoting the
coordinates in Definition 3.1, Y& € W,
. l ! 1"
@(&E) - Vuy (g (8)) = 5. a.e. ()I?Il‘l.flj.
(c) there exists a continuous t : W — |1}, 1], sarisfving
T(x(10)) = 11, such that gr¢)(§) € dgo. VE € W.

Proof: By the transversality assumption there exists an
open neighborhood V oof x(7;) and coordinates ¢ : V. —
V x (—e.€) € R*! x R such that x can be extended to
[0. 71+ €] and X (1) Vi (x(r)) > l.ae. on {r : x(n € V}.
Since Vu, is continuous, there exists an open set V! C V.,
containing x(#1), such that. Yv € V',
3 ,
i) - Vuu(v) > R ac.on{r:x(e V'l (35)
Select times 1; < 1y < #; such that x(7) € V'. ¥r € [r]. 1]']
and let

€ = min{—un(x(tl/)). u,,(x(flﬂ))}' (3.6)

Finally, select 8’ > 0 such that

’

up(v) < ——%, Yv e B(x(rl'), 8. (3.7a)

€ -
up(v) > 7 Yv e B(x(t]),8), (3.7b)
B(x(r). 8y C V', vre .l (3.7¢)

and choose D to satisfy

1)(eK(';"’0) 3 2K -0 1) < ¥, (3.8a)

a) " l
2DKeXKT=10) L up |Vu, ()] < = . (3.8b)

veV’ 4
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We use the construction :n [6]. Let {(pf"(E) }:z(, denote the
sequence of approximate solutions in Cy( ({10, 1{']), with & in
some neighborhood of x (7). converging to ¢, (£) uniformly
in Coc(lro. 1)

Tet & = x(r0). We claim that. for all £ € B(&, 1—2))

p(E)e V. Yreln, il (3.9)
3 €

unp () < =5 and un(gp (&) > 3 (3.10)
l 7

@& - Vup(g(£)) = 3 ae.onfn.ffl. (3.1

By (3.4) and (3.8a). ¢ (£) — x(1)] < 8. which together with
(3.7) proves (3.9)—(3.10).

It remains to show (3.11). Using the construction in [6] one
can derive the following. Corresponding to each m > 0 and
to cach & € B(&. %). there is a finite partition {Ij(E)}'}L
of |10, 1}']. and a finite set E,, = {Ej‘ O<t<m-—1,1<
J < ny } Em C Bl&, ’132). not depending on &. such that,
with £7' = £, the following estimate holds a.e. on /;(£). for

t=1..... m— L.
o &) — o 71ETh] <
-1 )
(Klf ~ 1)) e2KU~10)
1)1([ ] . (312
TSIy % ( )
I'rom (3.12), using a triangle incquality, we obtain
‘(p;n(é-) _ (P?(é?)‘ < I)K[(,K(r—lo) + eZK’(l—ro)]
: 3.13)

< ZI)KPZK”I”_IO) .
a.c. on /;(&). Combining (3.5). (3.8b) and (3.13). and using
the fact that ¢(£]) = x(1).

1

(o]
&) = ¢ €D =

([),m(é) . V"”(w’m

[Vin (o (EN] - |

(&) = 2(t)- Vu

~H

2

£))

3 1 |

ae. on lj(§), V& € B(&, 123). thus establishing (3.11). by
passing to the limit as m — oc. Parts (a) and (b) of the
L.emma follow if we select W = B(&. ’2—) .

Vinally. by (3.11). for cach £ € W there exists a unique
T(€) € (1].1]) and such that @;¢)(§) € dg. or equiva-
lently un(@rg)(€)) = 0. To prove continuity, we argue by
contradiction. Suppose {&} C W is a sequence converg-
ing.ask — .o &* € W, and t(&) A t(£*). Then,
along some subscquence. denoted also by {&}. t(&) —
¥, for some t* # T(£%). It follows that @y (&) —
@ (%), and hence. upn(@re) &) — un(pre(E%)). But
un(@ee) (&) = 0. implying un (@7 (€%)) = 0. which con-
tradicts the uniqueness of t(£*). This proves part (¢). [

Theorem 3.2. Suppose A satisfies Assumption 3.2 and let
7o be a ransversal m-step trajectory of A with initial state
Po = (19, €%, There exists a neighborhood (%, U) of po,
with U C R" open, and W(t, &), a selection of Ty, such
thar W(1. £%) = mo(r) and (-, £) is continuous on U.
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Proof: Suppose that 7o has an m step run [0, ... "1,
cach step represented by (2.1), and visits the enabling con-
ditions g%, ..., g™, with r0 ... r™=1 denoting the cor-
responding reset maps. Observe first, that in order to obtain
a continuous selection. the selection trajectories must take
m steps. and have identical runs 10, ..., /"L,

First consider the reset of the kth step. Since r* is locally
selectionable by Michael’s Selection Theorem, there exists
a continuous selection 7% of r*, satisfying

P (k) = Xk (3.142)

Hence. given an open neighborhood WF+! of x¥+1 there

exists an open subset V¥ containing x*(#4+') such that

F(vEngh) c whtl (3.14b)

It x*(/*+1) ¢ 9g* then by Lemma 3.1, given an open set
vk 5 xk(tk+1) there exists a neighborhood W¥ of x*(z%)
and a continuous selection y¥ : Wk — C, ([0, #*+1 — £5]),
for some 1 > t5+1 of solutions of ¥* = Fy(y*), along
with a continuous t¥ : W& — [0, #! — ¢*] such that

te [0, At — ], (3.152)

(3.15b)
(3.15¢)

(K ah)) = ok — by,

‘L'k(xk(tk)) — fk+l N fk .

wfk(w,(w) e vk ﬂgk. Yw e Wk
On the other hand, if x¥(¢**t1) € int(g¥), then selecting
an open neighborhood V¥ ¢ gk of x#(¢%*1), and defining
% = (k1 _ /K by the results in [6], there is a continuous
selection ¥* defined on some open set WX 5 xk(*) such
that (3.15) holds.

A finite iteration of the arguments in the last two para-
graphs. yiclds collections of open sets {W?, ..., wm=1}
and {V° ..., V™! along with continuous selections
{1//"}2';01 and continuous maps {F"};c":_o1 and {r¥}
defined above. such that (3.14) and (3.15) hold.

Define ¥* : WK — V&N gk by g4 (w) = tpfk(w)(w).

m—1
k=0 * a8

From the continuity of w > ¥ (w) and of ¥ along with
the absolute continuity of 1 — V/f(w). and the triangle in-
cquality
W) — P ) < gk, ) = Y, (w)l +
Whk oy (W) = ¥ (N1, (3.16)

we obtain that % is continuous on WX, Let U = W9 and
definefor§ e Uandk=1,...,m,

BrEY =10 o 00 g0E), B =¢
k—1

FE) = "o ).
=0

W, &) =Y e, 0 BB, re k@), FH @)



It follows that #¥(-) and W(z, -). for fixed . are continuous
on U. To show continuity of W(-. -) in the hybrid metric ds.
let £, £ € U and define. for r € (K (&), F+1(&)).

FrE - R &)

k ’
——————— (&),
,k—#—l(é)_ &)

(r=(r—1 :
et = ) k(&)

It is straightforward to show that |r — ()] 0.

——

uniformly on [r'(£), 7 (£)] and using a triangle incqual-
ity as in (3.16), we can also show the same holds for
[W(1. &) — W(x(1), E")]. The proof is complete. O

4 Homotopic equivalence for hybrid systems with
convex inclusions

We are given a hybrid automaton A, whose dynamics folow
a constant, convex inclusion x € Fy. atcach/ € L. We also
assume that each enabling region g, is convex and the reset
re 1 R" — 2P i compact, convex vatued.

Definition 4.1. We define the relation R on @ by:
[(.x). (I'.x")] € R if for every trajectory starting from
(/. x) there is a trajectory starting from (/. x") which takes
the same next edge. and vice versa. Let R* be the coarsest
stable refinement of R,

While we are primarily interested in hybrid systems with
differential inclusions. it is worth pointing out the relation-
ship bewween edge cquivalence and the region equivalence
of 1] Tor timed automata. which we call R4p.

Lemma 4.1. Parrition R* of timed automaton T is R ap.

4.1 Homotopic equivalence
Consider two trajectories o, w1 € (I, dy). The kth step
of my. o € {0. 1} is represented by

Eoaky — (K, kb akrlyy o ghet gk
where /, is the location, x, is the continuous state, and 7, is
the time,

Definition 4.2. We say trajectorics wy. my € (Ig. dy) are
homotopically equivalent. or o =y, my if there is a con-
tinuous map A(-) : [0, 1] — (Iy. ds) soch that, for each

4 e [0, 1]. h(6) is a trajectory of A and A(0) = mq.
h(1) =m.

We  define  the  homotopy  relation 9 on  Q by:
[(.x). (', x")] € JI il to every trajectory starting

from (/. x) there is a trajectory starting from (/. x') that is
homotopically equivalent to it and vice versa. Clearly 41
18 an cquivalence relation.

Lemmad4.2. J{ C R*
Proof: If not. there exist states (/.x). (/. x") and
[(,x). (', xy € 20 but [(1,x), (I'. x"}] ¢ R. This means
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there exists a trajectory m starting at (/, x) and £ € Z, such
that location /¥ is visited after the kth transition. whereas for
any trajectory 7’ starting from (//, x’), the location visited
after the kth transition is not /X, It is clear from the defini-
tion ol the hybrid metric dy that 7w and 7" are not homotopic
and consequently [(/, x). (', x")] ¢ H. O

Suppose that 7o and 71 have an m step run I(")' = [" k =
0.....m— 1 and visit the enabling conditions {g"}k -

with {r }]\ _o denoting the corresponding reset maps. We
define the homotopy h(6) to be a trajectory of A with the
kth step denoted by:

A—H))_)(II\—H I\-H)

(. Ry > 1k, Rk 4.1)

where z& (1) is the continuous part of the trajectory over the
kth step and  is time. The initial and reset times and states
are given by

wb =l ok, k=0.....m, 2)
F= b ot k=0...m. ‘
Fork=0..... m—land o =0, |, define
kel gk
) = [ E—
Uy — Uy
' (4.3
+1 k k+1
(H) w1, — H’u
F+1
uptt —uk
and. foru € (uf,, uf‘,JFI]~ let
Auy=0- H)xk(uf"‘(ﬁ)u + v @) +
oy (1K @ + v ). 44y

Note that (1 —#)ub(#) +#645(#) = 1. hence differentiating
(4.4) and using the convexity of the inclusion as well as the
convexity of the Ll]dblil’l}: condition and the reset map, we
deduce that {I" ATD }A' o isatrajectory of A, for each# €
[0, 1]. To establish umlmuily we tilst define, for #. 8" €

10. 1]. the map ko4 : lul). ult] — [} L] by
k+1 k k+1 k ko k1
o at) = u, —u”u wy Uy, — g,
R/
' k+1 k k+1 k
uy Uy Uy —uy
foru e (uf, uf‘,‘”] It is straightforward to show that
sup — ()
m (7]
uc lu |

and that the same holds for

R* = 491,

Ky = 2K (ko).

Theorem 4.3.

Proof: We need only show that R* C M. Suppose
[t x). (", x")} € R*. Then. ! = I’. and for cach finite tra-
jectory my = {1"'. xke )}'Zl o starting from (/. x) there exists.
a trajectory my = {[" v k(. )}A —o- Construct the homotopy
h(#) as defined in (4.1)—(4.4). By definition #(0) = m and
a(l)y = my, A is continuous in @ and is a trajectory of A.
Theretore. |(I. x), (/. x")) € IL. O



5 Homotopic equivalence with Lipschitz inclusions

In this scction we consider the class of hybrid automata A
satisfying Assumption 3.2, The goal is to characterize the
homotopy equivalence relation #{ on wrajectories of A, In
contrast with the constant. convex inclusion case, it is not
adequate to consider the partition formed by states whose
runs take the same transitions. A finer partition is needed.
Forcache e E.let g, = Ufi’;]g(,,,, be the decomposition of
ge into its path connected components.

Definition 5.1. We say [(/.x). ((".x)] € R, ifl
(a) [d.x). (' x| eR.
(b) Ve e E(l) andVa. x € g., it v € g0 .

We detine path connected edge equivalence ’R,*, to be the
coarsest stable path connected refinement of the equivalence
relation R .

Itis difficult to show that R, < J . without additional hy-
potheses. We present here a result on homotopy of solutions
to inclusions. This result is a ramification of the results of
|6]. and essentially guarantees that any two solutions ol a
Lipschitz inclusion are homotopic. It is stated below with-
out prool. tor brevity.

Theorem 5.1. Let

xe F(x) (5.0

satisfy Assumption 3.1 and K C R" he a compuct set. Sup-
i

e .. N
pose that a set of initial condirions {x; },_1 C K. and corre-

sponding solutions {y,-(t) }’N:l are given on d time interval
|0, T). Then there exists a continuous selection of solutions
y(r.x) of (5.1). defined onr € [0.T), x € K, such thar
y.xi)y=yi() fori=1,...,
Acknowledgments The author thanks Pravin Varaiya for
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