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REGULARITY OF SOLUTIONS OF THE NEUMANN PROBLEM

FOR THE LAPLACE EQUATION

DAGMAR MEDKOVÁ

Let u be a solution of the Neumann problem for the Laplace equation in
G with the boundary condition g. It is shown that u ∈ L q(∂G) (equivalently,

u ∈ B
q,2
1/q(G) for 1 < q ≤ 2, u ∈ L

q
1/q(G) for 2 ≤ q < ∞) if and only if

the single layer potential corresponding to the boundary condition g is in
Lq(∂G). As a consequence we give a regularity result for some nonlinear
boundary value problem.

If G is a bounded domain in Rm with C1 boundary then the boundary
integral equation method enables not only to prove the existence of
solutions of the Dirichlet and Neumann problems for the Laplace equation
but also to study its regularity (see [5], [3], [4]). If u is a solution of the
Dirichlet problem with the boundary condition from L p(∂G) then u is
an L p-solution of the Dirichlet problem, i.e. the nontangential maximal
function of u is in L p(∂G) and the boundary condition is the nontangential

limit of u (or equivalently, u ∈ B
p,2
1/p(G) for 1 < p ≤ 2, u ∈ L

p
1/p(G)

for 2 ≤ p < ∞ and the boundary condition is the trace of u). If u is
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a solution of the Neumann problem with the boundary condition from
L p(∂G) then u is an L p-solution of the Neumann problem, i.e. the
nontangential maximal function of |∇u| is in L p(∂G) and the boundary
condition is fulfilled in the sence of a nontangential limit (or equivalently,

u ∈ B
p+1,2
1/p (G) for 1 < p ≤ 2, u ∈ L

p+1
1/p (G) for 2 ≤ p < ∞ and the

boundary condition is fulfilled in the sence of a trace). It is well-known
that the L p-solution of the Dirichlet problem with the boundary condition
g is an Lq -solution of the Neumann problem if and only if g ∈ L

q
1(∂G).

We find in this paper the necessary and sufficient condition for the L p-
solution of the Neumann problem to be an Lq -solution of the Dirichlet
problem. If m = 2 then every L p-solution of the Neumann problem is
continuous on the closure of G . So, we restrect ourselves to the case
when m > 2.

Let G ⊂ Rm , m > 2, be a bounded domain with C 1 boundary ∂G .
It means that for each x ∈ ∂G there is a coordinate system centered at
x and a function � of the class C1 on Rm−1 such that �(0, . . . , 0) = 0
and in some neighbourhood of x the set G lies under the graph of �

and Rm\ clG lies above the graph of �. Here clG denotes the closure
of G .

If x ∈ ∂G , α > 0, denote the non-tangential approach region of
opening α at the point x

�α(x) = {y ∈ G; |x − y| < (1 + α)dist(y, ∂G)}.

If u is a function in G we denote on ∂G the non-tangential maximal
function of u

Nα(u)(x) = sup{|u(y)|; y ∈ �α(x)}.

If

c = lim
y→x,y∈�α(x)

u(y)

for each α > α0, we say that c is the nontangential limit of u at x .

Since G has C1 boundary there is α0 > 0 such that x ∈ cl�α(x) for
each x ∈ ∂G , α > α0.

If g ∈ L p(∂G), 1 < p < ∞, we define L p-solution of the problem

�u = 0 in G,

(1)
∂u

∂n
= g on ∂G

as follows:
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Find a function u harmonic in G, such that Nα(|∇u|) ∈ L p(∂G)

for each α > α0, ∇u has the nontangential limit ∇u(x) for almost all
x ∈ ∂G and g(x) = n(x) · ∇u(x) for allmost all x ∈ ∂G, where n(x) is
the exterior unit normal of G at x .

If g ∈ L p(∂G), 1 < p < ∞ then there is an L p solution of the
Neumann problem (1) if and only if

(2)

�

∂G

f dHm−1 = 0.

(Here Hk denotes the k-dimensional Hausdorff measure normalized so
that Hk is the Lebesgue measure in Rk .) This solution is unique up to
additive constant and there is f ∈ L p(∂G) such that the single layer
potential with density f

S f (x) =
1

(m − 2)Hm−1(∂�1(0))

�

∂G

f (y)|x − y|2−m dHm−1(y)

is a solution of the problem (1) (see [3], Theorem 2.6). (Here �r (x)
denotes the open ball with the centre x and the diameter r .)

For f ∈ L p(∂G) and x ∈ ∂G define
(3)

K ∗ f (x) = lim
�→0+

1

Hm−1(∂�1(0))

�

∂G\��(x)

n(x) · (y − x)

|x − y|m
f (y) dHm−1(y).

This limit exists for allmost all x ∈ ∂G and K ∗ is a bounded linear
operator on L p(∂G) (see [3], Theorem 1.9). Moreover, S f is an L p-
solution of the Neumann problem (1) with g ∈ L p(∂G) if and only if
1
2
f + K ∗ f = g (see [3], Theorem 1.10).

If f ∈ L p(∂G), 1 < p < ∞ then S f (x) has a sence for allmost
all x ∈ ∂G , S f ∈ L p(∂G) and S f is an L p-solution of the Dirichlet
problem for the Laplace equation with the boundary condition h = S f
(see [14], Lemma 1.8 and [2], Theorem 2).

If h ∈ L p(∂G), 1 < p < ∞, we define L p-solution of the problem

�u = 0 in G,

(4) u = h on ∂G

as follows:

Find a function u harmonic in G , such that Nα(|u|) ∈ L p(∂G) for
each α > α0 and u has the nontangential limit h(x) at allmost all
x ∈ ∂G .
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Remark that this solution is unique (see [2] and [14], Theorem 0.9D).

For 1 < p < ∞ and 0 ≤ s < ∞ the Sobolev space L
p
s is defined

by

L p
s = {(I − �)−s/2g; g ∈ L p(Rm)}

with the norm

� f �L ps = �(I − �)s/2 f �L p(Rm).

Remark that f ∈ L
p
1+s if and only if f ∈ L

p
s and ∇ f ∈ L

p
s .

Define L
p
s (G) as the space of restrictions of functions in L

p
s to G .

(If s is integer then L
p
s (G) is the set of functions from L p(G) which

partial derivatives in the sense of distributions up to the order s are from
L p(G).)

For 0 < s < 1, 1 < p, q < ∞ let us introduce Besov spaces

B p,q
s ≡

�

f ∈ L p(Rm);

�
1

|y|m+ps

��

| f (x)− f (x+y)|pdx

�q/p

dy < ∞

�

,

B
p,q
1+s ≡

�

f ∈ B p,q
s ; ∇ f ∈ B p,q

s

�

.

Define B
p,q
s (G) as the space of restrictions of functions in B

p,q
s to G .

If u is an L p solution of the Dirichlet problem (4) and 2 ≤ p < ∞

then u ∈ L
p
1/p(G). If u is an L p solution of the Dirichlet problem (4)

and 1 < p ≤ 2 then u ∈ B
p,2
1/p(G). If u is an L p solution of the Neumann

problem (1) and 2 ≤ p < ∞ then u ∈ L
p
1+1/p(G). If u is an L p solution

of the Neumann problem (1) and 1 < p ≤ 2 then u ∈ B
p,2
1+1/p(G). (See

[4], Theorem 5.15 and [5], Theorem 2.2.22.)

We use the following result proved in [6] (Lemma 2.18):

Lemma 1. Let ν be a real measure with a compact support in Rm .
Denote

Sν(x) =
1

(m − 2)Hm−1(∂�1(0))

�

∂G

|x − y|2−m dν(y)

whenever this integral has a sence. Let k > 0, λ > m − 2 be such
constants that

|ν|(�r(x) ≤ krλ

for all x ∈ Rm and all r > 0. If 0 < α < min(1, λ −m + 2) then Sν is
an α-Hölder function in each bounded subset of Rm .
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Lemma 2. Let f ∈ L p(∂G). If 1 < p < m − 1 then S f ∈

L p(m−1)/(m−1−p)(∂G). If p = m−1 then S f ∈ Lq(∂G) for all 1 < q < ∞.
If p > m − 1 then S f ∈ Cα(clG) for each α ∈ (0, 1 − (m − 1)/p).

Proof. Since S f ∈ L
p
1 (∂G) by [14], Lemma 1.8 we deduce from

[1], Theorem 5.4 that S f ∈ L p(m−1)/(m−1−p)(∂G) for p < m − 1
and S f ∈ Lq(∂G) for all 1 < q < ∞ and p = m − 1. Let now
p > m − 1, α ∈ (0, 1 − (m − 1)/p). Since the boundary of G is
locally a graph of a Lipschitz function there is a constant M such that
Hm−1(∂G ∩ �r (x)) ≤ Mrm−1 for each x ∈ ∂G and r > 0. For such x ,
r we have

�

∂G∩�r (x)

| f | dHm−1 ≤

��

∂G∩�r (x)

| f |p
�1/p�

Hm−1(�r(x))

�(p−1)/p

≤ � f �L p(∂G)M
(p−1)/pr (m−1)(p−1)/p.

If x ∈ Rn , r > 0 then
�

∂G∩�r (x)

| f | dHn−1 ≤ � f �L p(∂G)M
(p−1)/p(2r)(m−1)(p−1)/p.

Thus S f ∈ Cα(clG) by [6], Lemma 1.

Remark 3. Let u be an L p solution of the Neumann problem (1),
1 < p < ∞. Then there is the nontangential limit h(x) of u at allmost
all x ∈ ∂G . If p ≥ m − 1 then u is an Lq -solution of the Dirichlet
problem (4) for each 1 < q < ∞. If p < m−1 then u is an Lq -solution
of the Dirichlet problem (4) for each 1 < q ≤ p(m − 1)/(m − 1 − p).

Proof. According to [10], Theorem 5.1, [10], Theorem 5.2 and [5],
Corollary 2.1.12 there is f ∈ L p(∂G) such that u = S f . Put h = S f
on ∂G . Then h(x) is a nontangential limit of u at allmost all x ∈ ∂G .
If p ≥ m − 1 then h ∈ Lq(∂G) for 1 < q < ∞; if p < m − 1 then
h ∈ Lq(∂G) for 1 < q ≤ p(m − 1)/(m − 1 − p) by Lemma 2. If
h = S f ∈ Lq(∂G), 1 < q < ∞ then u = S f is an Lq -solution of the
Dirichlet problem (4) by [2], Theorem 2.

The following result was proved in [14] (Theorem 1.12):

Lemma 4. There is a sequence of C∞ domains G j with the following
properties:

1. clGj ⊂ G.
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2. There are homeomorphisms �j : ∂G → ∂Gj , such that sup{|y −

�j(y)|; y ∈ ∂G} → 0 as j → ∞ and there is α > 0 such that
�j(y) ∈ �α(y) for each j and each y ∈ ∂G.

3. There are positive functions ω j on ∂G bounded away from zero and
infinity uniformly in j such that for any measurable set E ⊂ ∂G,�
E ωj dHm−1 = Hm−1(�j(E)), and so that ω j → 1 pointwise a.e.
and in every Lq(∂G), 1 ≤ q < ∞.

4. The normal vectors to G j , n(�j(y)), converge pointwise a.e. and in
every Lq(∂G), 1 ≤ q < ∞, to n(y).

Lemma 5. Let 1 < p < ∞, u be an L p-solution of the problem (1).
Then there is the nontangential limit h(x) of u at a.a. x ∈ ∂G and
h ∈ L p(∂G). For f ∈ L1(∂G) and x ∈ G denote

D f (x) =
1

Hm−1(∂�1(0))

�

∂G

f (y)
n(y) · (y − x)

|x − y|m
dHm−1(y)

the double layer potential with density f . Then u = Sg + Dh in G.

Proof. According to [3], Theorem 2.6 there are f ∈ L p(∂G) and a constant
c such that u = S f + c. Using the boundary properties of single layer
potentials (see [14], Lemma 1.8 and [2], Theorem 2) we get that there is
the nontangential limit h(x) of u at a.a. x ∈ ∂G and Nα(u) ∈ L p(∂G).

Let Gj be domains from Lemma 4. If x ∈ G we get using Lebesque’s
Lemma and [7], p. 136.

Sg(x) + Dh(x) =

lim
j→∞

�
1

(m − 2)Hm−1(∂�1(0))

�

∂Gj

∂u(y)

∂n
|x − y|2−m dHm−1(y)+

1

Hm−1(∂�1(0))

�

∂Gj

u(y)
n(y) · (y − x)

|x − y|m
dHm−1(y)

�

= u(x).

Lemma 6. Let 1 < p, q < ∞. Denote SL p,q = { f ∈ L p(∂G);S f ∈

Lq(∂G)}. Then S : f �→ S f is a closed linear operator from SL p,q ⊂

L p(∂G) to Lq(∂G). For f ∈ Lq(∂G) and x ∈ ∂G define
(5)

K f (x) = lim
�→0+

1

Hm−1(∂�1(0))

�

∂G\��(x)

n(y) · (x − y)

|x − y|m
f (y) dHm−1(y).
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This limit exists for allmost all x ∈ ∂G and K is a bounded linear operator
on Lq(∂G). If f ∈ SL p,q then K ∗ f ∈ SL p,q and SK ∗ f = KS f .

Proof. Let fn ∈ SL p,q , fn → f in L p(∂G) and S fn → g in Lq(∂G)

as n → ∞. Put r = min(p, q). Since fn → f in Lr (∂G), S fn → g
in Lr(∂G) as n → ∞ and S is a continuous linear operator on Lr(∂G)

(see [14], Lemma 1.8) we get S f = g. Therefore S is a closed linear
operator from SL p,q ⊂ L p(∂G) to Lq(∂G). It is well-known fact that
the limit (5) exists for allmost all x ∈ ∂G and K is a bounded linear
operator on Lq(∂G) (see [5], Theorem 2.2.13).

Let f ∈ SL p,q . Then S f is an L p-solution of the problem (1) with

g =
1

2
f +K ∗ f (see [3], Theorem 1.10). Since S f (x) is the nontangential

limit of S f at a.a. x ∈ ∂G (see [14], Lemma 1.8) Lemma 5 gives that
S f = S[(1/2) f + K ∗ f ] + DS f in G . Using boundary properties of
single layer and double layer potentials (see [5], Theorem 2.2.13) we get
S f = S[(1/2) f +K ∗ f ]+ [(1/2)−K ]S f on ∂G and thus SK ∗ f = KS f .
Since S f ∈ Lq(∂G) and K is a bounded linear operator in Lq(∂G) we
have SK ∗ f = KS f ∈ Lq(∂G) what forces K ∗ f ∈ SL p,q .

Definition 7. Let X be a Banach space, T be a bounded linear operator
in X . Denote by KerT the kernel of T , by X ∗ the dual space of X ,
by T ∗ the adjoint operator on X ∗, by α(T ) the dimension of KerT and
by β(T ) the dimension of KerT ∗. The operator T is called Fredholm if
T (X ) is a closed subspace of X , α(T ) < ∞ and β(T ) < ∞. We then
denote i(T ) = α(T ) − β(T ) the index of T . Denote by I the identity
operator. If X is a complex Banach space denote by �(T ) the set of all
λ ∈ C for which λI − T is a Fredholm operator.

We use the following result proved in [9] (Theorem 5):

Lemma 8. Let X and X̃ be complex Banach spaces, Y be a subspace
of X . Let T be a bounded linear operator in X , T̃ be a bounded linear
operator in X̃ , T (Y ) ⊂ Y . Let S be a closed linear operator from Y to
X̃ such that T̃ Sy = ST y for each y ∈ Y . Denote by � the unbounded
component of �(T )∩ �(T̃ ). Let µ ∈ � be such that Ker(T − µI )n ⊂ Y
for each n ∈ N . If x, y ∈ X , (T − µI )x = y then x ∈ Y if and only if
y ∈ Y .

Lemma 9. Let X , Y be Banach spaces, T be a bounded linear
Fredholm operator in X , T be a bounded linear Fredholm operator
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in Y , i(T ) = i(T ) = 0. Let X ⊂ Y , Y ∗ ⊂ X ∗ and T x = T x for each
x ∈ X , T ∗z = T

∗z for each z ∈ Y ∗. Then KerT n = KerT n for each
n ∈ N .

Proof. Clearly, KerT n ⊂ KerT n , Ker(T ∗)n ⊂ Ker(T ∗)n . Since T n , T
n

are Fredholm operators with index 0 (see [12], Theorem 5.7) we obtain

α(T n) ≤ α(T n) = β(T n) = α((T ∗)n)≤α((T ∗)n) = β(T n) = α(T n)<∞

by [12], p. 58. Therefore KerT n = KerT n .

Theorem 10. Let 1 < p, q < ∞. Let u be an L p-solution of the Neumann
problem (1) with the boundary condition g. Denote by h the nontangential
limit of u on ∂G. Then the following are equivalent

1) Nα(u) ∈ Lq(∂G) for each α > α0.

2) h ∈ Lq(∂G).

3) Nα(Sg) ∈ Lq(∂G) for each α > α0.

4) Sg ∈ Lq(∂G).

Proof. Suppose first that q ≤ p. Then 1), 2) are fulfilled by Remark 3
and 3), 4) are fulfilled by [14], Lemma 1.8 and [2], Theorem 2.

We can suppose that p < q . Put r = q/(q−1). Then q = r/(r −1).
Since r ≤ p the function u is an Lr -solution of the Neumann problem
(1). Therefore we can suppose that q = p/(p − 1).

1) ⇒ 2) Since |h(x)| ≤ Nαu(x) for each x ∈ ∂G and Nαu ∈ Lq(∂G)

we deduce h ∈ Lq(∂G).

2) ⇒ 1) For x ∈ G denote by ωx the harmonic measure corre-
sponding to x . Denote Hh(x) =

�
h(y) dωx for x ∈ G . Then Hh

is an Lq -solution of the Dirichlet problem (4) by [2], Theorem 2. Put
r = min(p, q). Then Hh is an Lr -solution of the Dirichlet problem (4).
Since u = S f for some f ∈ L p(∂G) (see [3], Theorem 2.6) the function
u is an L p-solution of the Dirichlet problem (4) by [14], Lemma 1.8 and
[2], Theorem 2. This forces that u is an Lr -solution of the problem (4).
From the uniqueness of an Lr -solution of the Dirichlet problem (4) we get
that u = Hh (see [2] and [14], Theorem 0.9D). Thus Nα(u) ∈ Lq(∂G)

for each α > α0.

3) ⇔ 4) Since S f is an L p solution of the Neumann problem with
the boundary condition ( 1

2
f + K ∗ f ) and the nontangential limit of S f
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on ∂G is S f this equivalence follows from 1) ⇔ 2).

2) ⇒ 4) u = Sg+Dh in G by Lemma 5. Using boundary properties
of single layer and double layer potentials (see [5], Theorem 2.2.13) we
get Sg = 1

2
h+ Kh in ∂G . Since h ∈ Lq(∂G) and K is a bounded linear

operator in Lq(∂G) we obtain Sg ∈ Lq(∂G).

4) ⇒ 2) If X is a real linear space with the norm � � we denote
complX = {x + iy; x, y ∈ X } the complexification of X with the norm
�x + iy� = �x� + �y�. If T is a linear operator from D(T ) ⊂ X to
the real linear space Z define T (x + iy) = T x + iT y ∈ complZ for
x, y ∈ D(T ).

Since K is a compact linear operator in compl Lq(∂G) by [5],
Corollary 2.2.14 we have C \ {0} ⊂ �(K ) in compl Lq(∂G) by [12],
Theorem 7.8. Since K ∗ is a compact linear operator in compl L p(∂G)

(see [5], Corollary 2.2.14) we obtain C \ {0} ⊂ �(K ) in compl L p(∂G)

(see [12], Theorem 7.8). Lemma 6 yields that S is a closed linear operator
from compl SL p,q to compl Lq(∂G), K ∗(complSL p,q) ⊂ complSL p,q

and SK ∗ f = KS f for each f ∈ complSL p,q . Lemma 9 yields
that Ker ( 1

2
I + K ∗)n ⊂ complLq(∂G). Since S is a bounded linear

operator in compl Lq(∂G) (see [5], Theorem 2.2.20) this gives that Ker
( 1

2
I + K ∗)n ⊂ complSL p,q for each n ∈ N .

According to [3], Theorem 2.6 there is f ∈ L p(∂G) such that u = S f .
Since ( 1

2
I + K ∗) f = g by [5], Theorem 2.2.13 and g ∈ SL p,q , Lemma

8 yields that f ∈ SL p,q . Thus h = S f ∈ Lq(∂G).

Definition 11. Let 1 < p < ∞. We say that u is a weak solution of the
problem (1) in L

p
1 (G) if u ∈ L

p
1 (G) and

�

G

∇u · ∇ϕ dHm =

�

∂G

gϕ dHm−1

for all ϕ ∈ L
q
1(G) where q = p/(p − 1).

Remark 12. If u is an L p-solution of the problem (1), 1 < p < ∞, then
u is a weak solution of the problem (1) in L

p
1 (G) by [8], Lemma 4.1.

Corollary 13. Let 1 < p, q < ∞. Let f be a Borel measurable function
from ∂G × R1 such that | f (x, y)| ≤ h(x) + C|y|λ for each x ∈ ∂G,
y ∈ R1, where h ∈ Lq(∂G), C, λ are constants, 0 < λ < ∞ for p ≥ m,
0 < λ < p(m − 1)/(m − p) for p < m. If u is a weak solution of the
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problem

�u = 0 in G,

∂u

∂n
(x) = f (x, u(x)) on ∂G

in L
p
1 (G) then g(x) = f (x, u(x)) ∈ Lq(∂G) and u is an Lq-solution

of the problem (1). Moreover, if q > m − 1 then u ∈ C α(clG) for each
α ∈ (0, 1 − (m − 1)/q).

Proof. Let 1 < β < ∞ be such that g ∈ Lβ(∂G). Put r = min(p, β).
We get from the definition of a weak solution for ϕ ≡ 1 that

�

∂G

g dHm−1 = 0.

According to [3], Theorem 2.6 there is an Lβ -solution v of the problem
(1). The function v is a weak solution of the problem (1) in L r

1(G) by
[8], Lemma 4.1. Since u is a weak solution of the problem (1) in Lr1(G)

there is a constant c such that u = v + c in G (see [13], Theorem 4.1).
Therefore u is an Lβ -solution of the problem (1).

If p ≥ m then u ∈ Lqλ(∂G) by [11], Theorem 4.6. Hence g ∈ Lq(∂G)

and u is an Lq -solution of the problem (1).

Suppose now that p < m . Then u ∈ L p(m−1)/(m−p)(∂G) by [11],
Theorem 4.7. Hence g ∈ Lr(∂G) where r = min(q, p(m − 1)(m −

p)−1λ−1) > 1 and u is an Lr -solution of the problem (1). We can restrict
ourselves to the case when p(m − 1)/(m − p) < qλ. We now show that
u ∈ Lqλ(∂G).

Let p(m − 1)/(m − p) ≤ β ≤ qλ be such that u ∈ Lβ(∂G).
Then β/λ > 1 and g ∈ Lβ/λ(∂G). Lemma 2 gives that Sg ∈

Lqλ(∂G) for β/λ ≥ (m − 1) and Sg ∈ Lβ(m−1)/[λ(m−1)−β](∂G) for
β/λ < (m − 1). If β ≥ λ(m − 1) then u ∈ Lqλ(∂G) by Theorem
10. Suppose now that p(m − 1)/(m − p) ≤ β < (m − 1)λ. Then
λ > p/(m − p) and u ∈ Lβ(m−1)/[λ(m−1)−β](∂G) by Theorem 10.
Since p(m − 1)/(m − p) ≤ β we have u ∈ Lsβ(∂G) where
(m−1)/[λ(m−1)−β] ≥ s ≡ (m−1)/[λ(m−1)− p(m−1)/(m− p)] >

(m − 1)/[(m − 1)m/(m − p) − p(m − 1)/(m − p)] = 1. Using the
induction we get u ∈ Lqλ(∂G). Since u ∈ Lqλ(∂G), h ∈ Lq(∂G)

we have g ∈ Lq(∂G) and therefore u is an Lq -solution of the
problem (1).

Let now p be arbitrary and q > m − 1, α ∈ (0, 1 − (m − 1)/q).
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According to [3], Theorem 2.6 there is ϕ ∈ Lq(∂G) and a constant c
such that u = Sϕ + c. Lemma 2 gives that u ∈ Cα(clG).

Corollary 14. Let 1 < p, q < ∞. Let f be a Borel measurable function on
∂G × Rm+1 such that | f (x, y, z1, . . . , zm)| ≤ h(x) + C1|y|

λ + C2(|z1| +

. . . |zm|)α for each x ∈ ∂G, y, z1, . . . , zm ∈ R1 , where h ∈ Lq(∂G),
C1, C2, α, λ are constants, 0 < α < 1, 0 < λ < ∞ for p ≥ m,
0 < λ < p(m − 1)/(m − p) for p < m. If u is an L p-solution of the
problem

�u = 0 in G,

(6)
∂u

∂n
(x) = f (x, u(x),∇u(x)) on ∂G

then u is an Lq-solution of the problem (6). If q > m−1 then u ∈ C α(clG)

for each α ∈ (0, 1 − (m − 1)/q).

Proof. We can suppose p < q . Let p ≤ β ≤ q be such that u
is an Lβ -solution of the problem (6). Put g(x, y) = f (x, y,∇u(x)),
v(x) = h(x) + C2m|∇u|α . Then g is a Borel measurable function on
∂G × R1 and |g(x, y)| ≤ v(x) + C1|y|

λ. Since u is an Lβ -solution of
the problem (6) we have |∇u| ∈ Lβ(∂G). Thus v ∈ Lmin(q,β/α)(∂G).
Corollary 13 gives that u is an Lmin(q,β/α)-solution of the problem (6).
Repeating the process we get that u is an Lq -solution of the problem
(6).

If q > m− 1 then u ∈ Cα(cl G) for each α ∈ (0, 1 − (m− 1)/q) by
Corollary 13.

Corollary 15. Let 1 < p, q, r < ∞. Let f ∈ Lr(∂G), g be a Borel
measurable function in R1 such that |g(y)| ≤ C|y|λ for each y ∈ R1 ,
where 0 < C < ∞, 0 < λ ≤ 1 are constants. Let u be a weak solution
of the problem

�u = 0 in G,

(7)
∂u

∂n
(x) = f (x) + g(u(x)) on ∂G

in L
p
1 (G). Then u is an Lq -solution of the problem (4) with h = u if

and only if S f ∈ Lq(∂G).

Proof. u is an Lr -solution of the problem (7) by Corollary 13. If r ≥ m−1
then S f ∈ Lq(∂G) by Lemma 2, u ∈ Lq(∂G) by Corollary 13 and
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therefore u is an Lq -solution of the problem (4) by Theorem 10. Suppose
now that r < m − 1.

Suppose first that u is an Lq -solution of the problem (4). Then
S f +Sg(u) ∈ Lq(∂G) by Theorem 10. Since g(u(x)) ∈ Lq(∂G) Lemma
2 gives that Sg(u) ∈ Lq(∂G) and thus S f ∈ Lq(∂G).

Suppose now that S f ∈ Lq(∂G). Remark 3 gives that u ∈ Lr(∂G).
Let r ≤ β ≤ q be such that u ∈ Lβ(∂G). Since g(u(x)) ∈

Lβ(∂G) Lemma 2 gives that Sg(u) ∈ Lβ(m−1)/(m−1−r)(∂G). Thus u ∈

Lmin(q,β(m−1)/(m−1−r))(∂G) by Theorem 10. Using the induction we get
that u ∈ Lq(∂G) and thus u is an Lq -solution of the problem (4) by
Theorem 10.

Example 16. Fix λ ∈ (1/(m − 1), 1). Take a coordinate system so that
[0, 0, . . . , 0] ∈ ∂G and for some ρ > 0, h > 0 there is a function
f of class C1 in M = {[x1, . . . , xm−1]; |x1|, . . . , |xm−1| < 2ρ} such
that K ≡ ∂G ∩ {[x1, . . . , xm]; |x1|, . . . , |xm−1| < 2ρ, |xm| < h} =

{[x1, . . . , xm−1, f (x1, . . . , xm−1)]; [x1, . . . , xm−1] ∈ M}. Put

g(x1,..., xm) = |x1|
−λ for [x1,..., xm] ∈ K , x1 > 0, |x1|,..., |xm−1| < ρ,

−c|x1|
−λ for [x1,..., xm] ∈ K , x1 < 0, |x1|,..., |xm−1| < ρ,

0 elsewhere

where c is a such positive constant that

(8)

�

∂G

g dHm−1 = 0.

If 1 < p < ∞ then g ∈ L p(∂G) if and only if p < 1/λ (< m − 1). If
1 < p < 1/λ < m− 1 then there is an L p-solution u of the problem (1)
(see [3], Theorem 2.6). Moreover, there is ϕ ∈ L p(∂G) and a constant
C such that u = Sϕ + C (see [3], Theorem 2.6). Therefore u ∈ Lq(∂G)

for each 1 < q ≤ p(m− 1)/(m− 1 − p) (see Remark 3). Since two L p-
solutions of the problem (1) differ by a constant (see [3], Theorem 2.6)
the function u is an Lr -solution of the problem (1) for all 1 < r < 1/λ

and thus u ∈ Lq(∂G) for each 1 < q < (m − 1)/[λ(m − 1) − 1] < ∞.
Using Theorem 10 we can show that u ∈ Lq(∂G) for each 1 < q < ∞.

Denote by H the restriction of Hm−1 onto ∂G . Put ν = gH. Denote

L = sup
|x1|,...,|xm−1|≤ρ

�
1 + |∇ f (x1, . . . , xm−1)|2.
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If z ∈ Rm , r > 0 then

|ν|(�r (z)) =

�

K∩�r (z)

|g| dH ≤ L(1+c)

�

|x1|,...,|xm−1|<r

|x1|
−λ dx1 . . . dxm−1

= rm−2+(1−λ)L(1 + c)2m−1/(1 − λ).

Lemma 1 shows that Sg ∈ C(∂G) and thus u ∈ Lq(∂G) for all
1 < q < ∞ by Theorem 10.

REFERENCES

[1] R. A. Adams, Sobolev Spaces, Accademic Press, New York 1975.

[2] B. E. J. Dahlberg, On the Poisson integral for Lipschitz and C 1-domains,
Stud. Math., 66 (1979), pp. 13-24 .

[3] E. B. Fabes, M. Jodeit - N. M. Riviére, Potential techniques for boundary
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