
Max-Planck-Institut

für Mathematik

in den Naturwissenschaften

Leipzig

Regularity of Solutions of the Nonlinear Sigma

Model with Gravitino

by

Jürgen Jost, Enno Keßler, Jürgen Tolksdorf, Ruijun Wu, and

Miaomiao Zhu

Preprint no.: 68 2016





REGULARITY OF SOLUTIONS OF THE NONLINEAR SIGMA MODEL
WITH GRAVITINO

JÜRGEN JOST, ENNO KEßLER, JÜRGEN TOLKSDORF, RUIJUN WU, MIAOMIAO ZHU

Abstract. We propose a geometric setup to study analytic aspects of a variant of the super
symmetric two-dimensional nonlinear sigma model. This functional extends the functional
of Dirac-harmonic maps by gravitino fields. The system of Euler–Lagrange equations of the
two-dimensional nonlinear sigma model with gravitino is calculated explicitly. The gravitino
terms pose additional analytic difficulties to show smoothness of its weak solutions which are
overcome using Rivière’s regularity theory and Riesz potential theory.

1. Introduction

The various versions of the two-dimensional sigma model are among the most important and
best studied models of quantum field theory. On one hand, such models possess important
symmetries, in particular conformal invariance. On the other hand, they can be analyzed in
detail with difficult, but currently available mathematical methods. Here, we shall investigate its
probably most general and physically and mathematically richest version, the two-dimensional
supersymmetric nonlinear sigma-model, introduced in [7, 13]. This model possesses a subtle
mathematical structure, see [12, 19]. The physical and mathematical structure of the model
depends on the symmetries it possesses. These include the Weyl symmetry, which generalizes
conformal invariance, and supersymmetry, hence the name of the model.

While supersymmetry requires anti-commuting variables, a version of this model with all
fields commuting has been intensively studied by mathematicians in the last decade. The
mathematical analysis started with various reduced forms of this model. The simplest instance
are harmonic functions, which correspond to the linear sigma model, and they have played an
important role in analysis and geometry for a long time. The nonlinear version leads to harmonic
maps instead of functions, and these are likewise well studied objects with many applications in
geometric analysis. In the super version, the map gets coupled with a super partner, a vector
spinor. Chen–Jost–Li–Wang [9, 8] initiated the analysis of such coupled fields, which they called
Dirac-harmonic maps. The full physical model contains still more additional terms, some of
which were considered in [10, 4, 5, 6, 21]. Based on those works, we are now in a position to
address the full model, including the gravitino terms. The supersymmetric action functional has
been mathematically studied from an algebraic and geometric perspective in a systematic way
in [20]. Here we shall start to explore the analytic aspects.

Let (M, g) be a closed, oriented surface and (N, h) a closed Riemannian manifold. We will
study the super action functional A defined on the space

X 1,2
1,4/3(M,N) = {(φ, ψ)

∣∣φ ∈ W 1,2(M,N), ψ ∈ Γ1,4/3(S ⊗ φ∗TN)},

with a Riemannian metric g and a gravitino χ as parameters of the functional. Here by
Γ1,4/3(S ⊗ φ∗TN) we mean the space of W 1,4/3 sections of the twisted spinor bundle S ⊗ φ∗TN .
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The precise description will come in Section 3. The action functional then is

A(φ, ψ; g, χ) :=

ˆ
M

| dφ|2T ∗M⊗φ∗TN + 〈ψ, /Dψ〉S⊗φ∗TN

− 4〈(1⊗ φ∗)(Qχ), ψ〉S⊗φ∗TN − |Qχ|2S⊗TM |ψ|2S⊗φ∗TN −
1

6
RN(ψ) dvolg,

(1)

where Q is a projection operator, defined in Section 3, whereas RN is the pullback of the
curvature of N under φ, and the curvature term in the action is locally defined by

−1

6
RN(ψ) = −1

6
RN
ijkl〈ψi, ψk〉S〈ψj, ψl〉S.

Since the action functional is somewhat involved and contains many different fields and at the
same time possesses rich symmetries, the derivation of the associated Euler–Lagrange equations
requires substantial computations. This will be the first achievement of this paper. The result
is:

Theorem 1.1. The Euler–Lagrange equations for the super action functional A are given by

τ(φ) =
1

2
Rφ∗TN(ψ, eα · ψ)φ∗eα −

1

12
S∇R(ψ)

− (〈∇S
eβ

(eα · eβ · χα), ψ〉S + 〈eα · eβ · χα,∇S⊗φ∗TN
eβ

ψ〉S),

/Dψ =|Qχ|2ψ +
1

3
SR(ψ) + 2(1⊗ φ∗)Qχ.

(2)

The notations are explained in detail below in Section 3, but these equations already make
the growth order transparent with which the various fields enter. SR(ψ) stands for a term
involving the curvature of the target N that is cubic in ψ and S∇R(ψ) involves derivatives of
that curvature and is quartic in ψ.

We shall then turn to the properties of their solutions. More precisely, we want to show the
regularity of weak solutions, that is, those that satisfy the Euler–Lagrange equations in the
sense of distributions.

The basic issues in geometric analysis are the existence, uniqueness and smoothness of critical
points. That is, one wishes to show the existence of weak solutions and then their uniqueness and
regularity. In this paper, we settle the smoothness. The Euler–Lagrange equations (2) of this
action functional turn out to be critical for the Sobolev framework, in the sense that, with initial
data assumed to lie in some Sobolev spaces, the classical bootstrap arguments are not strong
enough to improve the regularity. That is, the powerful scheme of elliptic regularity theory
does not directly apply, and we need to utilize the structure of the equations, and in particular
their symmetries, in a subtler way. Our analytical tools are the Morrey spaces, which can be
viewed as finer subspaces of the Lebesgue spaces. With estimates on Riesz potentials, we can
then iteratively improve the regularity, and get the system away from the critical case. Related
methods have been used in [28, 26, 4]. Then the Rivière regularity theory (see e.g. [23, 24, 25])
can be applied to the map component of the critical pairs. Finally, we can show that

Theorem 1.2. The critical points of the super action functional

A : X 1,2
1,4/3(M,N)→ R,

(φ, ψ) 7→ A(φ, ψ; g, χ),

are smooth.
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This result should also help in finding solutions of its associated Euler–Lagrange equations.
Moreover, our method is of interest in its own right, as we shall explain later. Further geometric
and analytic aspects of this model will be addressed in subsequent work.

As in the aforementioned works, we shall work with the version of the model that only
has commuting fields. As explained in [11], this depends on an appropriate representation
of the Clifford algebra involved. Thus, in contrast to [20], we shall not have to work in the
category of supermanifolds, but can confine ourselves to the setting of Riemannian geometry.
Yet, in the framework of supermanifolds, the action functional (1) and its symmetries obtain
a natural geometric interpretation. In [20] it was shown that the fields g and χ determine a
super Riemann surface, a super geometric generalization of a Riemann surface. Recall that
Teichmüller theory can be developed with the help of the harmonic action functional. The
functional A can be seen as a super analogue of the harmonic action functional. Hence it is
expected that an understanding of the solution space of the Euler–Lagrange equations (2) helps
to study geometric properties of the moduli space of super Riemann surfaces.

Concerning the organization of this paper, we shall first set up the geometric background
for the model and introduce the action functional as well as its basic properties. Then we
shall derive its Euler–Lagrange equations. For our regularity scheme, we need to bring the
equations into a suitable form. This treatment of the Euler–Lagrange equations which builds
upon [30, 29, 11, 26, 4] is crucial for our paper, and we hope that it will also be useful for the
further mathematical investigation of the model. We can then finally show the regularity of weak
solutions of the Euler–Lagrange equations. The main lemma in improving the regularity appears
in the last section in a somewhat more general form than needed for our present purposes.

2. Preliminaries

In this section we summarize the geometrical background and thereby also fix the notation
used in what follows in the subsequent sections. The main purpose of this section is to provide
a geometrical setup such that the action functional (1) can be seen as a real-valued action
functional with non-vanishing Dirac-action. Those two requirements will be satisfied using a
real four-dimensional spinor representation. In contrast, in the description of non-linear sigma
models on two-dimensional manifolds, two-dimensional real or complex spinor representations
are usually taken into account, see for example [9, 20]. For the convenience of the reader we
add some comments on how these different geometrical settings are related.

2.1. Let (M, g) be a closed, oriented, two-dimensional Riemann spin manifold with fixed spin
structure. The corresponding Spin(2) principal bundle is denoted by PSpin(2). For any bilinear
form b on TM we denote by Cl(M, b) the corresponding Clifford algebra bundle, which is
isomorphic to the quotient of the tensor algebra by the two-sided ideal generated by

X ⊗ Y + Y ⊗X − 2b(X, Y ),

where X, Y ∈ Γ(TM). In the following we will only use b = ±g.
The typical fiber of Cl (M, g), denoted by Cl2,0, is a simple algebra and isomorphic to gl(2,R).

We denote this isomorphism by γ+ : Cl2,0 → gl(2,R). Hence, the spinor bundle of Cl (M, g) is
given by Σ = PSpin(2) ×γ+ R2 where Spin(2) ⊂ gl(2,R) acts by left-multiplication on R2. We
denote the Clifford multiplication of a tangent vector X with s ∈ Γ(Σ) by γ+(X)s or simply by
X · s if no confusion arises. By its construction as an associated bundle to PSpin(2), the bundle Σ
possesses a natural fiber metric gΣ such that the Clifford action by tangent vectors is symmetric.
The Levi-Civita connection on TM lifts to the spin connection ∇Σ on Σ.
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The spin Dirac operator is defined with respect to a local g-orthonormal frame ea by /∂Σs =
ea · ∇Σ

eas for a section s of Σ. It is easy to see that /∂Σ is antisymmetric and hence for any
spinor s the Dirac action vanishes, that is,

(3)
ˆ
M

gΣ

(
s, /∂Σs

)
dvolg = 0.

In order to avoid the vanishing of the Dirac action one may work with anti-commuting spinors,
see for example [20] and references therein. Another possibility to obtain a non-vanishing
Dirac action is to consider the complexification ΣC = Σ ⊗ C and the resulting Hermitian
form hΣC . Then the operator i/∂CΣ, where /∂

C
Σ is the complex linear extension of /∂Σ, is symmetric.

Consequently the Dirac actionˆ
M

hΣC

(
s, i/∂

C
Σs
)

dvolg, s ∈ Γ(ΣC)

does not vanish identically and is real valued. An equivalent reformulation of this approach was
introduced in [9]. Notice, however, that the third summand of (1) involves a scalar product
of two different spinors. If this scalar product were to be implemented by hΣC , the action
functional (1) would not be guaranteed to be real. Whence we replace the two-dimensional
complex spinor representation of the approach presented in [9] by a four-dimensional real one.
This step will be explained next.

2.2. The typical fiber of the Clifford algebra bundle Cl (M,−g) is the Clifford algebra Cl0,2. As
a real associative algebra with unit the Clifford algebra Cl0,2 is isomorphic to the quaternions H.
Consequently, the left-regular representation of Cl0,2 on itself is irreducible. Hence, we may
regard the vector bundle S = PSpin(2) ×Spin(2) Cl0,2 as a spinor bundle, where Spin(2) ⊂ Cl0,2
acts via the left-regular representation of Cl0,2. The spinor bundle S is a four-dimensional real
vector bundle.

Notice that Cl0,2 is a Z2-graded module over the Z2-graded commutative algebra Cl0,2. As
a consequence also the spinor bundle S = S0 ⊕ S1 is a Z2-graded module over the Z2-graded
algebra bundle Cl (M,−g). Here, both, the even and the odd part of S are isomorphic to Σ as
associated bundles to PSpin(2). The Clifford action γ(X) of a tangent vector X on S must be of
the form

(4) γ(X) =

(
0 −γ+(X)

γ+(X) 0

)
because it is odd with respect to the Z2-grading. Recall that γ+(X) denotes the Clifford
multiplication of X on Σ, where X is considered as an element of Cl (M, g).

The induced metric and spin connection on S are denoted, respectively, by gS = gΣ ⊕ gΣ and
∇S = ∇Σ ⊕∇Σ. The action of TM ⊂ Cl (M,−g) on S is skew-symmetric with respect to gS.
Whence the spin Dirac operator /∂ = eα · ∇S

eα : Γ(S)→ Γ(S) is symmetric with respect to the
L2(S) scalar product

〈s, t〉L2(S) =

ˆ
M

gS(s, t) dvolg s, t ∈ Γ(S).

In particular, the Dirac action
〈
s, /∂s

〉
L2(S)

is non-trivial, as opposed to its Cl2,0 counter part (3).
Furthermore, /∂ is essentially self-adjoint, see [22, Chapter II, Theorem 5.7]1.

1Notice that this reference uses a different sign convention and naming scheme for Clifford algebras.
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2.3. We now explain the different complex structures on the spinor bundles Σ and S. This will
be needed later on and help to clarify the relation to the geometrical setup introduced in [9].

Recall that the Riemann surface M possesses an integrable almost complex structure JM that
is defined by

g(JMX, Y ) = dvolg(X, Y )

for all tangent vectors X and Y . Consequently, the tangent bundle TM is a holomorphic
complex line bundle.

When seen as TM ⊂ Cl (M, g), the almost complex structure JM can be realized as right-
multiplication by the volume form ω. With respect to a local oriented g-orthonormal frame eα
the volume form is given by ω = e1 · e2. Similarly, left-multiplication by ω induces an almost
complex structure on Σ, which we denote by JΣ. The bundle ΣC = Σ ⊗ C decomposes in
eigen bundles of iJC

Σ , where JC
Σ denotes the complex linear extension of JΣ. The complex line

bundles W = (Σ, JΣ) of eigenvalue −1 and W = (Σ,−JΣ) of eigenvalue +1 are, respectively,
the so-called bundles of “left- and right-handed” Weyl spinors.

On W = (Σ, JΣ) there is a bilinear form with values in T ∗M given by

gΣ(s, eα · t)eα, s, t ∈ Γ(Σ),

where eα is the dual basis to the g-orthonormal frame eα. The compatibility of Clifford
multiplication and almost complex structures, (JMX) · t = X · JΣt = −JΣ (X · t), turns the
bilinear form into a complex linear isomorphism W ⊗C W = T ∗M . In particular W is a
holomorphic vector bundle. In other words, holomorphic tangent vector fields on a Riemann
surface with fixed spin structure have a “square root”. Conversely, on a Riemann surface (M,JM )
every square root of TM gives rise to a spin structure on M .

Obviously, the complex vector bundle (S, JΣ ⊕ JΣ) is isomorphic to W ⊕W . In addition, the
spinor bundle S possesses three almost complex structures IS, JS, KS ∈ End(S) that commute
with the Clifford multiplication and satisfy the quaternionic relations: I2

S = J2
S = K2

S = − IdS
and IS = JS ◦KS = −KS ◦ JS, etc. Explicitly, they are given by IS(s, t) = (−t, s), JS(s, t) =
(JΣs,−JΣt) and KS(s, t) = (JΣt, JΣs) for all spinors (s, t) ∈ S = S0 ⊕ S1. Hence, S may
alternatively be viewed as a quaternionic line bundle. This may not come as a big surprise
for Cl0,2 ' H = R ⊕ R3. When viewed as complex vector bundles of rank two, the three
complex spinor bundles (S, IS), (S, JS) and (S,KS) are isomorphic and may be identified with
ΣC = W ⊕W , whereby Cl(M,±g)⊗ C 'C End(ΣC).

Let us take a closer look at the identification of (S, IS) with ΣC. The spinor (s, t) ∈ S = S0⊕S1

is identified with s⊗ 1 + t⊗ i ∈ ΣC = Σ⊗ C. In particular IS is identified with IdΣ⊗i. Hence
Equation (4) can be rewritten as γ(X) = γ+(X)⊗ i, that is, the Clifford multiplication by X
on S differs from the Clifford multiplication by X on Σ by a factor of i. In this way any
representation of Cl (M, g) on Σ yields a purely imaginary representation of Cl (M,−g) on ΣC.
Furthermore, we obtain the following identifications of Dirac-operators:

/∂ = /∂Σ ⊗ i = i/∂
C
Σ.

We now derive a convenient local expression for the Dirac operator. Let us first assume that
(M, g) is the Euclidean space with standard coordinates x and y. The holomorphic tangent
bundle ofM is then spanned by ∂z = 1

2
(∂x − i∂y). The spinor bundle (S, IS) = W ⊕W possesses

a complex base s, s such that s ∈ W , s is the complex conjugate of s and s ⊗ s = dz. With
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respect to this basis the Clifford multiplication of Cl (M,−g) on (S, IS) is represented by

γ(∂x) =

(
0 1
−1 0

)
, γ (∂y) =

(
0 −i
−i 0

)
.

Hence the Euclidean Dirac-operator is given by

/∂ = 2

(
0 ∂z
−∂z 0

)
,

that is, by the standard Cauchy–Riemann operators. The general, non-Euclidean Dirac-operator
differs from the Euclidean one by a rescaling and zero-order terms. In particular, this means
that the regularity theory developed for Cauchy–Riemann equations applies.

2.4. In this paragraph we introduce the “super partner” of the metric, called gravitino.

Definition 2.1. A gravitino is a (global) section of the bundle S ⊗ TM .

Remark 2.2. Sometimes in the literature, e.g. [20], a gravitino is defined as a section of the
bundle S ⊗ T ∗M , but here we use the Riemannian metric g to identify T ∗M with TM , for later
convenience.

The Clifford multiplication gives a surjective map

γ : S ⊗ TM → S

s⊗ v 7→ v · s

and has a canonical right-inverse that is given with respect to a local g-orthonormal base eα of
TM by

σ : S → S ⊗ TM

s 7→ −1

2
δαβeα · s⊗ eβ.

Consequently the bundle S⊗TM has an orthogonal direct sum decomposition S⊗TM = S⊕ker γ
and the maps P = σ◦γ and Q = 1−P are projection operators on S and ker γ respectively. With
respect to the g-orthonormal frame eα the gravitino χ can locally be expressed as χ = χα ⊗ eα
with χα ∈ Γloc(S). The projection operators P and Q are given by

Pχ = −1

2
eβ · eα · χα ⊗ eβ, Qχ = −1

2
eα · eβ · χα ⊗ eβ.

Later we will mostly be concerned with the sections of ker γ, because only Qχ appears in
the action functional. Notice that ker γ can be identified with (S, JΣ ⊕ JΣ) ⊗C TM because
gravitinos of the form JMv⊗ s− v⊗ (JΣ⊕ JΣ)s span ker γ. Using the almost complex structure
JΣ ⊕ JΣ on S and T ∗M = W ⊗C W we obtain the following decomposition

S ⊗ TM = (W ⊕W )⊕W ⊗C (W ∗ ⊗C W
∗)

= W ⊕W ⊕ (W ⊗C W
∗ ⊗C W

∗)⊕ (W ⊗C W
∗ ⊗C W

∗)

This is the decomposition of S ⊗ TM into irreducible representations of Spin(2). Up to a metric
identification, the bundle S ⊗ TM decomposes into two representations of type 1

2
and two of

type 3
2
. The operator Q projects onto the 3

2
-part.
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2.5. We recall the definition of the field φ and its super partner ψ, see [9]. Let (N, h) be
a Riemannian manifold, with Levi-Civita connection ∇N ≡ ∇TN . Consider a smooth map
φ : M → N with tangent map Tφ : TM → TN . It induces a pullback bundle φ∗TN over M .
Equip the tensor product bundle S ⊗ φ∗TN with the induced metric and connection. More
precisely, let {yi} be a local coordinate on N, so that {φ∗( ∂

∂yi
)} is a local frame of φ∗TN .

Then the local sections, which will be referred to as “(local) vector spinors”, can be written as
ψ = ψj ⊗ φ∗( ∂

∂yj
), ϕ = ϕk ⊗ φ∗( ∂

∂yk
). The induced metric and connection can be expressed by

〈ψ, ϕ〉S⊗φ∗TM = 〈ψj, ϕk〉S ·
〈
φ∗

∂

∂yj
, φ∗

∂

∂yk
〉
φ∗TN

,

∇S⊗φ∗TN
X ψ = ∇S

Xψ
j ⊗ φ∗( ∂

∂yj
) + ψj ⊗∇φ∗TN

X φ∗(
∂

∂yj
),

where ∇φ∗TN
X φ∗( ∂

∂yj
) = φ∗(∇TN

Tφ(X)
∂
∂yj

), for any X ∈ TM . The twisted spin Dirac operator /D on
S ⊗ φ∗TN is defined as follows: In a local g-orthonormal frame eα as above,

/Dψ := eα · ∇S⊗φ∗TN
eα ψ = eα · ∇S

eαψ
j ⊗ φ∗( ∂

∂yj
) + eα · ψj ⊗∇φ∗TN

eα φ∗(
∂

∂yj
)

= /∂ψj ⊗ φ∗( ∂

∂yj
) + eα · ψj ⊗ φ∗(∇TN

Tφeα

∂

∂yj
).

Similarly to the spin Dirac operator /∂ the twisted spin Dirac operator /D is essentially self-adjoint
with respect to the scalar product in L2(S ⊗ φ∗TN).

3. The Action Functional

We want to consider the following action functional:

A(φ, ψ; g, χ) :=

ˆ
M

| dφ|2T ∗M⊗φ∗TN + 〈ψ, /Dψ〉S⊗φ∗TN

− 4〈(1⊗ φ∗)(Qχ), ψ〉S⊗φ∗TN − |Qχ|2S⊗TM |ψ|2S⊗φ∗TN −
1

6
Rφ∗TN(ψ) dvolg,

(5)

where the last curvature term is locally defined by

−1

6
Rφ∗TN(ψ) = −1

6
Rφ∗TN
ijkl 〈ψ

i, ψk〉S〈ψj, ψl〉S.

Notice that we use the following conventions for the curvature tensor:

RTN
ijkl =

〈
RTN

(
∂

∂yk
,
∂

∂yl

)
∂

∂yj
,
∂

∂yi

〉
=

〈
∇ ∂

∂yk
∇ ∂

∂yl

∂

∂yj
−∇ ∂

∂yl
∇ ∂

∂yk

∂

∂yj
,
∂

∂yi

〉
We will abbreviate Rφ∗TN as RN . Hence, the curvature term can be written as

RN(ψ) = RN
ijkl〈ψi, ψk〉S〈ψj, ψl〉S = RN

ijkl〈ψk, ψi〉S〈ψl, ψj〉S

= 〈RN(
∂

∂yk
,
∂

∂yl
)
∂

∂yj
,
∂

∂yi
〉TN〈ψk, ψi〉S〈ψl, ψj〉S

=
〈
〈ψl, ψj〉Sψk ⊗ φ∗(RN(

∂

∂yk
,
∂

∂yl
)
∂

∂yj
), ψi ⊗ φ∗( ∂

∂yi
)
〉
S⊗φ∗TN .

So if we set

(6) SR(ψ) := 〈ψl, ψj〉Sψk ⊗ φ∗(RN(
∂

∂yk
,
∂

∂yl
)
∂

∂yj
),
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then

RN(ψ) = 〈SR(ψ), ψ〉S⊗φ∗TN .

Note that since P and Q give an orthogonal decomposition,

|Qχ|2S⊗TM = 〈χ,Qχ〉.

This formula is convenient when expressing the terms locally.

Remark 3.1. In order to obtain a real valued action functional we work here with the real
spinor bundle S and the real scalar product gS = 〈·, ·〉S. Alternatively we might also work with
the complex spinor bundle ΣC and the hermitian form hΣC. We recall that the hermitian form
hS on (S, IS) induced by gS can be written as

2hS (s, t) = gS (s, t)− igS (ISs, t)

and coincides with hΣC under the complex linear isomorphism ΣC ' (S, IS). All summands
in (5) except the third one are symmetric in the spinors and would consequently be real. For
those terms the approach here and in [9] coincide. For the third term one could use equally the
real part of

−8hΣC ⊗ φ∗h ((1⊗ φ∗)(Qχ), ψ) .

We will refrain from using that expression later on.

The functional A(φ, ψ; g, χ) has rich symmetries. It is invariant under conformal transforma-
tions of the metric in the sense that

A(φ, e−uψ; e2ug, e−2uχ) = A(φ, ψ; g, χ)

where u ∈ C∞(M). To verify the conformal invariance we use the rescaling of the spinor
metric gS by eugS and that /D

e2ug
e−uψ = e−2u /D

g
ψ, see also [16, Proposition 1.3.10]. Here /D

g

denotes the Dirac operator defined with respect to the metric g.
Moreover, the functional stays invariant under super Weyl transformations:

A(φ, ψ; g, χ+ χ′) = A(φ, ψ; g, χ)

with Qχ′ = 0. This follows directly from the fact that the action functional only involves Qχ
and not Pχ. A is also Spin(2)-gauge-invariant, in particular under the following Z2-action on
the spinor bundle S:

A(φ, ψ; g, χ) = A(φ,−ψ; g,−χ).

These symmetries will be naturally inherited by its critical points. They are useful when dealing
with the solution space of the Euler–Lagrange equations.

As already mentioned in the introduction the functional (5) is essentially the action functional
of the two-dimensional nonlinear supersymmetric sigma model, see [7, 13, 20]. In contrast to
what is discussed there, we deal with commuting spinors. For that matter the action functional
does not have more symmetries than mentioned already, in particular no supersymmetry.
Furthermore, a term which vanishes identically at critical points is omitted here.
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4. Euler–Lagrange Equations

4.1. Now we derive the Euler–Lagrange equations for A. Fix (g, χ) and vary (φ, ψ) via (Φ,Ψ)
with variational fields (ξ, η). Here

ξ =
∂

∂t
Φ

∣∣∣∣
t=o

, η = ∇S⊗Φ∗TN
∂t

Ψ
∣∣
t=0

.

At a critical point, we have

0 =
d

dt

∣∣∣
t=0

A(Φ(t),Ψ(t); g, χ) =
d

dt

∣∣∣
t=0

(I+II+III+IV+V).

Here we denote by the roman numerals I, . . . ,V the summands under the integral in the action
functional A. We calculate them term by term.

(1) As for harmonic maps,

d

dt
I =

d

dt

ˆ
M

|dxΦ|2 =

ˆ
M

〈−2τ(Φ),Φ∗(∂t)〉Φ∗TN ,

where τ(Φ) is the tension field of Φ w.r.t. M . Hence,

d

dt

∣∣∣
t=0

I =

ˆ
M

〈−2τ(φ), ξ〉φ∗TN .

(2) With
∇S⊗Φ∗TN
∂t

/DΨ = /D∇S⊗Φ∗TN
∂t

Ψ + RΦ∗TN(Φ(∂t),Φ∗eα)eα ·Ψ,

we get

d

dt
II =

d

dt

ˆ
M

〈Ψ, /DΨ〉S⊗Φ∗TN =

ˆ
M

〈∇S⊗Φ∗TN
∂t

Ψ, /DΨ〉+ 〈Ψ,∇S⊗Φ∗TN
∂t

/DΨ〉

=

ˆ
M

〈∇S⊗Φ∗TN
∂t

Ψ, /DΨ〉+ 〈Ψ, /D∇S⊗Φ∗TN
∂t

Ψ + RΦ∗TN(Φ∗(∂t),Φ∗eα)eα ·Ψ〉

=

ˆ
M

〈∇S⊗Φ∗TN
∂t

Ψ, /DΨ〉+ 〈 /DΨ,∇S⊗Φ∗TN
∂t

Ψ〉+ 〈Ψ,RΦ∗TN(Φ∗(∂t),Φ∗eα)eα ·Ψ〉

=

ˆ
M

2〈∇S⊗Φ∗TN
∂t

Ψ, /DΨ〉+ 〈RΦ∗TN(Ψ, eα ·Ψ)Φ∗eα,Φ∗(∂t)〉.

Thus
d

dt

∣∣∣
t=0

II =

ˆ
M

2〈η, /Dψ〉+ 〈Rφ∗TN(ψ, eα · ψ)φ∗eα, ξ〉.

(3) Under a local orthonormal frame {eα},

−4〈(1⊗ Φ∗)(Qχ),Ψ〉S⊗Φ∗TN = 2〈eα · eβ · χα ⊗ Φ∗eβ,Ψ〉S⊗Φ∗TN .

Then
d

dt
III =

d

dt

ˆ
M

2〈eα · eβ · χα ⊗ Φ∗eβ,Ψ〉S⊗Φ∗TN

=

ˆ
M

2〈∇S⊗Φ∗TN
∂t

(eα · eβ · χα ⊗ Φ∗eβ),Ψ〉+ 2〈eα · eβ · χα ⊗ Φ∗eβ,∇S⊗Φ∗TN
∂t

Ψ〉,
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where the first integrand can be rewritten as

2〈∇S⊗Φ∗TN
∂t

(eα · eβ · χα ⊗ Φ∗eβ),Ψ〉 = 2〈eα · eβ · χα ⊗∇Φ∗TN
∂t Φ∗eβ,Ψ〉

= 2〈eα · eβ · χα ⊗∇Φ∗TN
eβ

Φ∗∂t,Ψ〉
= 2eβ〈eα · eβ · χα ⊗ Φ∗∂t,Ψ〉 − 2〈∇S

eβ
(eα · eβ · χα)⊗ Φ∗∂t,Ψ〉

− 2〈eα · eβ · χα ⊗ Φ∗∂t,∇S⊗Φ∗TN
eβ

Ψ〉.

The first summand vanishes after integration on the closed manifold M since it is a
divergence of some vector field. Therefore
d

dt

∣∣∣
t=0

III =

ˆ
M

− 2〈∇S
eβ

(eα · eβ · χα)⊗ ξ, ψ〉 − 2〈eα · eβ · χα ⊗ ξ,∇S⊗φ∗TN
eβ

ψ〉

+ 2〈eα · eβ · χα ⊗ φ∗eβ, η〉

=

ˆ
M

− 2
〈
(〈∇S

eβ
(eα · eβ · χα), ψ〉S + 〈eα · eβ · χα,∇S⊗φ∗TN

eβ
ψ〉S), ξ

〉
φ∗TN

+ 2〈eα · eβ · χα ⊗ φ∗eβ, η〉S⊗φ∗TN .

Here, by abuse of notation we denote by 〈∇S
eβ

(eα · eβ ·χα), ψ〉S, the section of φ∗TN that
arises by metric contraction of ψ by ∇S

eβ
(eα · eβ · χα).

(4) Likewise we have
d

dt
IV =− d

dt

ˆ
M

|Qχ|2〈Ψ,Ψ〉S⊗Φ∗TN

=−
ˆ
M

|Qχ|2(〈∇S⊗Φ∗TN
∂t

Ψ,Ψ〉+ 〈Ψ,∇S⊗Φ∗TN
∂t

Ψ〉)

=−
ˆ
M

2|Qχ|2〈Ψ,∇S⊗Φ∗TN
∂t

Ψ〉.

Thus,
d

dt

∣∣∣
t=0

IV =

ˆ
M

−2|Qχ|2〈ψ, η〉.

(5) In local coordinates, we compute
d

dt
V =

d

dt

ˆ
M

−1

6
Φ∗RN

ijkl〈Ψi,Ψk〉S〈Ψj,Ψl〉S

= −1

6

ˆ
M

∂t(Φ
∗RN

ijkl〈Ψi,Ψk〉S〈Ψj,Ψl〉S).

The integrand reads

∂t(Φ
∗RN

ijkl〈Ψi,Ψk〉〈Ψj,Ψl〉)
=(∇Φ∗TN

∂t Φ∗RN
ijkl)〈Ψi,Ψk〉〈Ψj,Ψl〉

+ Φ∗RN
ijkl〈∇S

∂tΨ
i,Ψk〉〈Ψj,Ψl〉+ Φ∗RN

ijkl〈Ψi,∇S
∂tΨ

k〉〈Ψj,Ψl〉
+ Φ∗RN

ijkl〈Ψi,Ψk〉〈∇S
∂tΨ

j,Ψl〉+ Φ∗RN
ijkl〈Ψi,Ψk〉〈Ψj,∇S

∂tΨ
l〉

=(∇Φ∗TN
∂t Φ∗RN

ijkl)〈Ψi,Ψk〉〈Ψj,Ψl〉+ 4Φ∗RN
ijkl〈∇S

∂tΨ
i,Ψk〉〈Ψj,Ψl〉

=Φ∗(∇TN
TΦ∂t RN)ijkl〈Ψi,Ψk〉〈Ψj,Ψl〉+ 4〈∇S⊗Φ∗TN

∂t
Ψ, SR(Ψ)〉

=
〈
Φ∗(∇TN RN)ijkl〈Ψi,Ψk〉〈Ψj,Ψl〉,Φ∗∂t

〉
+ 4〈∇S⊗Φ∗TN

∂t
Ψ, SR(Ψ)〉.
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We define S∇R analogously to SR, that is,

S∇R(Ψ) := Φ∗(∇TN RN)ijkl〈Ψi,Ψk〉〈Ψj,Ψl〉.
Using the metric to identify it with the corresponding vector field, we get

∂t(Φ
∗RN

ijkl〈Ψi,Ψk〉〈Ψj,Ψl〉) = 〈S∇R(Ψ),Φ∗∂t〉+ 4〈∇S⊗Φ∗TN
∂t

Ψ, SR(Ψ)〉.
Then,

d

dt

∣∣∣
t=0

V = −1

6

ˆ
M

〈S∇R(ψ), ξ〉+ 4〈η, SR(ψ)〉.

From the preceding computations, we obtain

0 =

ˆ
M

〈
− 2τ(φ) + RN(ψ, eα · ψ)φ∗eα −

1

6
S∇R(ψ), ξ

〉
φ∗TN

+
〈
− 2(〈∇S

eβ
(eα · eβ · χα), ψ〉S + 〈eα · eβ · χα,∇S⊗φ∗TN

eβ
ψ〉S), ξ

〉
φ∗TN

+ 2〈 /Dψ − |Qχ|2ψ − 1

3
SR(ψ) + eα · eβ · χα ⊗ φ∗eβ, η〉S⊗φ∗TN .

We can thus verify Theorem 1.1 which we restate here:

Theorem 1.1. The Euler–Lagrange equations for the super action functional A are given by

τ(φ) =
1

2
Rφ∗TN(ψ, eα · ψ)φ∗eα −

1

12
S∇R(ψ)

− (〈∇S
eβ

(eα · eβ · χα), ψ〉S + 〈eα · eβ · χα,∇S⊗φ∗TN
eβ

ψ〉S),

/Dψ =|Qχ|2ψ +
1

3
SR(ψ) + 2(1⊗ φ∗)Qχ.

(2)

Definition 4.1. A pair (φ, ψ) ∈ X 1,2
1,4/3(M,N) satisfying (2) in the sense of distributions is a

weak solution of the system.

4.2. We rewrite the Euler–Lagrange equations (2) in terms of local coordinates on N .
Let {yi} be a local coordinate system on N . Then {φ∗( ∂

∂yi
)} is a local frame for the vector

bundle φ∗TN . Then (2) can be written as

τ(φ)iφ∗(
∂

∂yi
) =

1

2
〈ψk, eα · ψl〉RN

( ∂

∂yk
,
∂

∂yl
)(
eα(φj)φ∗(

∂

∂yj
)
)
− 1

12
(∇RN)mjkl〈ψm, ψk〉〈ψj, ψl〉

−
(
〈∇S

eβ
(eα · eβ · χα), ψi〉+ 〈eα · eβ · χα,∇S

eβ
ψi〉
)
φ∗(

∂

∂yi
)

− 〈eα · eβ · χα, ψk〉∇φ∗TN
eβ

φ∗(
∂

∂yk
)

=
(1

2
〈ψk, eα · ψl〉eα(φj) Ri,N

jkl−
1

12
(∇i RN)mjkl〈ψm, ψk〉〈ψj, ψl〉

− eβ(〈eα · eβ · χα, ψi〉)− 〈eα · eβ · χα, ψk〉eβ(φj)Γi,Njk

)
φ∗(

∂

∂yi
)

and

/∂ψi⊗φ∗( ∂

∂yi
) + eα · ψk ⊗ eα(φj)Γi,Njk φ

∗(
∂

∂yi
)

= |Qχ|2ψi ⊗ φ∗( ∂

∂yi
) +

1

3
〈ψl, ψj〉ψk ⊗ Ri,N

jkl φ
∗(

∂

∂yi
)− eα · eβ · χα ⊗ eβ(φi)φ∗(

∂

∂yi
).
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Since the curvature of M does not appear in those formulas, we may omit the upper index N
for the curvature terms, and we will label it again whenever needed.

We may introduce local coordinates on M such that a conformal transformation brings the
metric into the following form

g = (dx1)2 + (dx2)2,

and then {eα ≡ ∂
∂xα
} is a local orthonormal frame. We define the vector fields V j on M ,

j = 1, . . . , n, via
〈V j,W 〉TM = 〈eα ·W · χα, ψj〉S

for any vector field W on M . Thus,

V j = V j,βeβ = 〈eα · eβ · χα, ψj〉eβ.

In particular, noting that ∇eαeβ = 0, we have

div V j = eβ(V j,β) = eβ〈eα · eβ · χα, ψj〉.

and
〈eα · eβ · χα, ψk〉eβ(φj)Γi,Njk = V k,βeβ(φj)Γijk = ΓijkV

k(φj) = Γijk〈V k,∇φj〉TM .
Thus, in those local coordinates the Euler–Lagrange equations become

τ i(φ) =
1

2
〈ψk, eα · ψl〉eα(φj) Ri

jkl−
1

12
(∇i R)mjkl〈ψm, ψk〉〈ψj, ψl〉

− div V i − Γijk〈V k,∇φj〉,

/∂ψi =− Γijk∇φj · ψk + |Qχ|2ψi +
1

3
Ri

jkl〈ψl, ψj〉ψk − eα · ∇φi · χα,

(7)

for 1 ≤ i ≤ n. One sees that the right hand side of the first equation lies in L1 while that of the
second equation lies in L4/3. This shows that the Euler–Lagrange equations are critical for the
Sobolev elliptic theory. Thus, the regularity of weak solutions is a subtle issue.

4.3. To get the regularity of weak solutions, we embed N isometrically into some Euclidean
space. In order to see what happens to the various fields involved, we start with a general
consideration. Let (N ′, h′) be another Riemannian manifold and f : N → N ′ a smooth immersion.
We get a composition

φ′ ≡ f ◦ φ : M → N → N ′,

and induced maps of vector bundles which fit into the following commutative diagram

TM (f ◦ φ)∗TN ′ f ∗TN ′ TN ′

TM φ∗TN TN

M N N ′

(f ◦ φ)∗ ˆ̂
φ f̂

φ∗ φ̂

φ̂∗(f∗) f∗

φ f
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Note that Tφ = φ̂ ◦ φ∗, etc. Let A be the second fundamental form of f , i.e., A(X, Y ) =
(∇X df)(Y ) for any X, Y ∈ Γ(TN). Then the tension fields of φ and φ′ are related by

τ(φ′) = φ̂∗(f∗)(τ(φ)) + A(φ)
(
Tφ(eα), Tφ(eα)

)
.

Now let (N ′, h′) = (RK , δ) be a Euclidean space with standard global coordinate functions
(ua)a=1,...,K , and let f : (N, h) → (RK , δ) be an isometric embedding. Then the second funda-
mental form A is perpendicular to N in the sense that, for any X, Y ∈ Γ(TN), extended locally
to RK and still denoted by X, Y respectively, the following orthogonal decomposition holds:

∇e
XY = ∇N

XY + A(X, Y ) ∈ TN ⊕ T⊥N = f ∗TRK ,

where ∇e denotes the flat connection on Euclidean space. See [2, 18]. Moreover, for any normal
vector field ξ ∈ Γ(T⊥N),

〈ξ, A(X, Y )〉 = 〈ξ,∇e
XY 〉 = −〈∇e

Xξ, Y 〉 = 〈P (ξ;X), Y 〉

where P (ξ;X) = −(∇e
Xξ)

> is the shape operator of N .
As in [30] and [11], we take a local orthonormal frame {νl|l = n+ 1, . . . , K} of T⊥N . (These

can be smoothly extended to a tubular neighborhood of N , and thus be defined in an open
subset of RK). Then

A(X, Y ) =
∑
l

〈A(X, Y ), νl〉νl = −
∑
l

〈Y,∇e
Xνl〉νl.

In terms of the global frame { ∂
∂ua
} we write the vector fields X, Y, Z tangent to the submanifold

N as

X = Xa ∂

∂ua
, Y = Y b ∂

∂ub
, Z = Zc ∂

∂uc
.

Then

A(X, Y ) =
∑
l

−〈Y b ∂

∂ub
,∇e

Xa ∂
∂ua
νl〉νl = −

∑
l,b

XaY b ∂ν
b
l

∂ua
νl;

P (A(X, Y );Z) = − (∇e
ZA(X, Y ))> =

∑
l,b

ZcXaY b ∂ν
b
l

∂ua
(
∂νl
∂uc

)>.

Since A is symmetric: A(X, Y ) = A(Y,X), we have

A(X, Y ) = −
∑
l,b

XaY b ∂ν
b
l

∂ua
νl = −

∑
l,b

XbY a ∂ν
b
l

∂ua
νl,

(8) P (A(X, Y );Z) =
∑
l,b

ZcXaY b ∂ν
b
l

∂ua
(
∂νl
∂uc

)> =
∑
l,b

ZcXbY a ∂ν
b
l

∂ua
(
∂νl
∂uc

)>.

We recall here the Gauss equation for X, Y, Z,W ∈ Γ(TN):

〈R (X, Y )Z,W 〉 = 〈A (X,W ) , A (Y, Z)〉 − 〈A (X,Z) , A (Y,W )〉
= 〈P (A (Y, Z) ;X) ,W 〉 − 〈P (A (X,Z) ;Y ) ,W 〉

Since this holds for all W ∈ Γ(TN), we have

(9) R (X, Y )Z = P (A (Y, Z) ;X)− P (A (X,Z) ;Y ) .
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We will denote the induced map on the tensor product bundles by

f# ≡ 1⊗ φ̂∗(f∗) : S ⊗ φ∗TN → S ⊗ φ′∗TN ′.

Then ψ′ ≡ f#(ψ) is a section of the latter bundle, i.e., a spinor field along the map φ′. In local
coordinates,

ψ = ψi ⊗ φ∗( ∂

∂yi
), ψ′ = ψ′a ⊗ φ′∗( ∂

∂ua
),

where

(10) ψ′a(x) =
∂ua

∂yi
(φ(x))ψi(x).

Moreover, the Dirac terms corresponding to φ and φ′ are related via (see [11])

(11) /D
′
ψ′ = f# /Dψ +A(φ∗eα, eα · ψ),

where

A(φ∗eα, eα · ψ) ≡ eα · ψi ⊗ φ∗
(
A(Tφ(eα),

∂

∂yi
)
)
.

4.4. We are now ready to write the Euler–Lagrange equations in terms of (φ′, ψ′).
Apply f# to /Dψ and use (11):

/D
′
ψ′ −A(φ∗eα, eα · ψ) = |Qχ|2ψ′ + 1

3
f#(SR(ψ)) + 2(1⊗ φ′∗)Qχ.

We compute the following terms:
• Note that

Tf

(
∂

∂yi

)
=
∂fa

∂yi
∂

∂ua
=
∂ua

∂yi
(φ)

∂

∂ua

and

Tφ′(eα) =
∂φi

∂xα
Tf

(
∂

∂yi

)
=
∂φi

∂xα
∂fa

∂yi
∂

∂ua
=
∂φ′a

∂xα
∂

∂ua
.

Using (10) and the expression for A, we have

A(φ∗eα, eα · ψ) = eα · ψi ⊗ φ∗(A(Tφ(eα),
∂

∂yi
))

= − eα · ψi ⊗
∑
l,b

∂φ′a

∂xα
∂ub

∂yi
(φ)

∂νbl
∂ua

(φ′)φ′∗νl

= −
∑
l,b

∂φ′a

∂xα
eα ·

∂ub

∂yi
ψi ⊗ ∂νbl

∂ua
νcl (φ

′)φ′∗(
∂

∂uc
)

= −
∑
l,b

∇φ′a · ψ′b ⊗ ∂νbl
∂ua

νcl (φ
′)φ′∗(

∂

∂uc
).
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• Recalling (6) and (9),

f#SR(ψ) = f#

(
〈ψl, ψj〉ψk ⊗ R(

∂

∂yk
,
∂

∂yl
)
∂

∂yj
)

= f#

{
〈ψl, ψj〉ψk ⊗

(
P (A(

∂

∂yj
,
∂

∂yl
);

∂

∂yk
)− P (A(

∂

∂yk
,
∂

∂yj
);

∂

∂yl
)
)}

= 〈ψl, ψj〉ψk ⊗ ∂ua

∂yj
∂ub

∂yl
∂uc

∂yk
∂νbl
∂ua

(
∂νl
∂uc

)>(φ′)

− 〈ψl, ψj〉ψk ⊗ ∂ua

∂yk
∂ub

∂yj
∂uc

∂yl
∂νbl
∂ua

(
∂νl
∂uc

)>(φ′)

=
(
〈ψ′b, ψ′a〉ψ′c − 〈ψ′c, ψ′b〉ψ′a

)
⊗ ∂νbl
∂ua

(
∂νl
∂uc

)>,dφ′∗(
∂

∂ud
).

• For the last term:

2(1⊗ φ′∗)Qχ = − eα · eβ · χα ⊗ φ′∗eβ = −eα · eβ · χα ⊗
∂φ′a

∂xβ
φ′∗(

∂

∂ua
)

= − eα · ∇φ′a · χα ⊗ φ′∗(
∂

∂ua
).

We thus obtain the equation for ψ′:

/∂ψ′a ⊗ φ′∗( ∂

∂ua
) = −

∑
l,b

∇φ′d · ψ′b ⊗ ∂νbl
∂ud

νal (φ′)φ′∗(
∂

∂ua
) + |Qχ|2ψ′a ⊗ φ′∗( ∂

∂ua
)

+
1

3

∑
l,b

(
〈ψ′b, ψ′d〉ψ′c − 〈ψ′c, ψ′b〉ψ′d

)
⊗ ∂νbl
∂ud

(
∂νl
∂uc

)>,aφ′∗(
∂

∂ua
)

− eα · ∇φ′a · χα ⊗ φ′∗(
∂

∂ua
).

(12)

In components, for each a,

/∂ψ′a = −
∑
l,b

∇φ′d · ψ′b ∂ν
b
l

∂ud
νal (φ′) + |Qχ|2ψ′a

+
1

3

∑
l,b

(
〈ψ′b, ψ′d〉ψ′c − 〈ψ′c, ψ′b〉ψ′d

)∂νbl
∂ud

(
∂νl
∂uc

)>,a − eα · ∇φ′a · χα.
(13)

Here /∂ is the Dirac operator /∂ on S and each ψ′a is a local pure spinor field.
Next we apply φ̂∗(f∗) to τ(φ) to get

τ(φ′)−
∑
α

A(φ)
(
Tφ(eα), Tφ(eα)

)
=

1

2
φ̂∗(f∗) Rφ∗TN(ψ, eα · ψ)φ∗eα −

1

12
φ̂∗(f∗)(S∇R(ψ))

− φ̂∗(f∗)
(
(div V j)φ∗(

∂

∂yj
) +∇φ∗TN

V j
φ∗(

∂

∂yj
)
)
.

Since RK is flat,

LHS = ∆φ′ −
∑
α

A(φ′)
(
Tφ′(eα), Tφ′(eα)

)
= ∆φ′ +

∑
α

∂φ′a

∂xα
∂φ′b

∂xα
∂νbl
∂ua

(φ′)φ∗(νl).

We deal with the terms on the right hand side as follows:
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• Using (9) we get

φ̂
(

Rφ∗TN(ψ, eα · ψ)φ∗eα
)

= 〈ψk, eα · ψl〉R(
∂

∂yk
,
∂

∂yl
)Tφ(eα)

= 〈ψk, eα
(
φj
)
· ψl〉R(

∂

∂yk
,
∂

∂yl
)
∂

∂yj

= 〈ψk,∇φj · ψl〉
(
P (A(

∂

∂yj
,
∂

∂yl
);

∂

∂yk
)− P (A(

∂

∂yk
,
∂

∂yj
);

∂

∂yl
)
)

= 〈ψk,∇φj · ψl〉P (A(
∂

∂yj
,
∂

∂yl
);

∂

∂yk
) + 〈∇φj · ψk, ψl〉P (A(

∂

∂yk
,
∂

∂yj
);

∂

∂yl
)

= 2〈ψk,∇φj · ψl〉P (A(
∂

∂yj
,
∂

∂yl
);

∂

∂yk
)

= 2〈ψk, eα · ψl〉P
(
A(Tφ(eα),

∂

∂yl
);

∂

∂yk
)

Hence
1

2
φ̂∗(f∗) Rφ∗TN(ψ, eα · ψ)φ∗eα = 〈ψk, eα · ψl〉φ̂∗ (f∗)P

(
A(Tφ(eα),

∂

∂yl
);

∂

∂yk
)

= 〈ψk, eα · ψl〉
∂φ′a

∂xα
∂ub

∂yl
∂uc

∂yk
∂νbl
∂ua

(
∂νl
∂uc

)>

= 〈ψ′c,∇φ′a · ψ′b〉∂ν
b
l

∂ua
(
∂νl
∂uc

)>

• To push S∇R forward, we note that we can extend the local coordinate functions, which
are defined in an open subset of N , so that they are constant in normal directions. Thus
yi, i = 1, . . . , n, are defined in a tubular neighborhood of a domain in N , which is an
open subset of RK . The derivatives of yi with respect to ua are uniquely defined on N .
Then

− 1

12
φ̂∗(f∗)(S∇R(ψ)) = − 1

12
φ̂∗(f∗)

(
(∇R)mjkl〈ψm, ψk〉〈ψj, ψl〉

)
= − 1

12

(
(∇R)abcd〈ψ′a, ψ′c〉〈ψ′b, ψ′d〉

)
,

where

(∇R)abcd(x) =
(
(∇R)ijkl

∂yi

∂ua
∂yj

∂ub
∂yk

∂uc
∂yl

∂ud
)
(φ′(x)).

Moreover, using Gauss equation again, one has

(∇R)ijkl = 2(〈∇Aik, Ajl〉 − 〈∇Ail, Ajk〉).

where we have written Aij ≡ A( ∂
∂yi
, ∂
∂yj

). See for example [4, 21]. Hence,

− 1

12
φ̂∗(f∗)(S∇R(ψ))

= −1

6

(
〈∇Aik, Ajl〉 − 〈∇Ail, Ajk〉

) ∂yi
∂ua

∂yj

∂ub
∂yk

∂uc
∂yl

∂ud
〈ψ′a, ψ′c〉〈ψ′b, ψ′d〉

=: Z(A,∇A)abcd〈ψ′a, ψ′c〉〈ψ′b, ψ′d〉.
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• In the same way as we have defined the vector fields V j, j = 1, . . . , n, we can define
vector fields V ′a, a = 1 . . . , K, on M by

〈V ′a,W 〉TM = 〈eα ·W · χα, ψ′a〉S, ∀W ∈ Γ(TM).

Then

φ̂∗(f∗)
(
(div V j)φ∗(

∂

∂yj
) +∇φ∗TN

V j
φ∗(

∂

∂yj
)
)

= eβ〈eα · eβ · χα, ψj〉S
∂ua

∂yj
φ′∗(

∂

∂ua
) + V j(

∂ua

∂yj
(φ′))φ′∗(

∂

∂ua
)− V j,βA(Tφ(eβ),

∂

∂yj
)

= eβ(〈eα · eβ · χα, ψ′a〉)φ′∗(
∂

∂ua
) +

∂φ′a

∂xβ
V ′b,β

∂νbl
∂ua

φ′∗(νl)

= (div V ′a)φ′∗(
∂

∂ua
) + 〈V ′b,∇φ′a〉∂ν

b
l

∂ua
φ′∗(νl).

Therefore the equation for φ′ is

∆φ′ = −
∑
α,l

∂φ′a

∂xα
∂φ′b

∂xα
∂νbl
∂ua

(φ′)φ′∗(νl) +
∑
b,l

〈ψ′c,∇φ′a · ψ′b〉∂ν
b
l

∂ua
(
∂νl
∂uc

)>(φ′)

+ Z(A,∇A)abcd〈ψ′a, ψ′c〉〈ψ′b, ψ′d〉 − (div V ′a)φ′∗(
∂

∂ua
)− 〈V ′b,∇φ′a〉∂ν

b
l

∂ua
φ′∗(νl).

In components, for each a,

∆φ′a = −
∑
α,b,l

∂φ′c

∂xα
∂φ′b

∂xα
∂νbl
∂uc

(φ′)νal (φ′) +
∑
b,l

〈ψ′c,∇φ′d · ψ′b〉∂ν
b
l

∂ud
(
∂νl
∂uc

)>,a(φ′)

+ Za(A,∇A)ebcd〈ψ′e, ψ′c〉〈ψ′b, ψ′d〉 − div V ′a − 〈V ′b,∇φ′c〉∂ν
b
l

∂uc
νal (φ′).

(14)

As in [30] and [11], we shall transform the equation in a suitable form for later use. Since φ′∗eα
is tangent to N while νl is perpendicular to N , they are orthogonal:

(15)
∑
b

∂φ′b

∂xα
νbl = 0, ∀α, ∀l.

Hence ∑
α,b,l

∂φ′c

∂xα
∂φ′b

∂xα
∂νal
∂uc

νbl = 0,

and we can add it to the first summand of (14) to get a term of the form∑
α,b,l

∂φ′b

∂xα
(∂φ′c
∂xα

∂νal
∂uc

νbl −
∂φ′c

∂xα
∂νbl
∂uc

νal
)

=
∑
α,b

ωabα
∂φ′b

∂xα
,

with

ωabα = −
(∂φ′c
∂xα

∂νal
∂uc

νbl −
∂φ′c

∂xα
∂νbl
∂uc

νal

)
= −ωbaα .
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The second summand of (14) can also be arranged into such a form. Actually, using the
symmetry (8), we get∑

b,l

〈ψ′c,∇φ′d · ψ′b〉∂ν
b
l

∂ud
(
∂νl
∂uc

)>,a

=
∑
b,l

〈ψ′c,∇φ′b · ψ′d〉∂ν
b
l

∂ud
(
∂νl
∂uc

)>,a

=
1

2

∑
b,l

(
〈ψ′c,∇φ′b · ψ′d〉+ 〈∇φ′b · ψ′d, ψ′c〉

)∂νbl
∂ud

(
∂νl
∂uc

)>,a

=
1

2

∑
α,b,l

〈ψ′c, eα · ψ′d〉
∂φ′b

∂xα
∂νbl
∂ud

(
∂νl
∂uc

)>,a + 〈eα · ψ′d, ψ′c〉
∂φ′b

∂xα
∂νbl
∂ud

(
∂νl
∂uc

)>,a

=
1

2

∑
α,b,l

〈ψ′c, eα · ψ′d〉
∂φ′b

∂xα
∂νbl
∂ud

(
∂νl
∂uc

)>,a − 〈ψ′c, eα · ψ′d〉
∂φ′b

∂xα
∂νbl
∂uc

(
∂νl
∂ud

)>,a.

Since φ′∗eα is tangent to N ,∑
b

∂φ′b

∂xα
∂νbl
∂ud

=
∑
b

∂φ′b

∂xα
(
∂νl
∂ud

)b =
∑
b

∂φ′b

∂xα
(
∂νl
∂ud

)>,b.

Thus the above term equals

1

2

∑
α,b,l

〈ψ′c, eα · ψ′d〉
(
(
∂νl
∂ud

)>,b(
∂νl
∂uc

)>,a − (
∂νl
∂ud

)>,a(
∂νl
∂uc

)>,b
)∂φ′b
∂xα

≡
∑
α,b

F ab
α

∂φ′b

∂xα
,

with

F ab
α =

∑
α,l

〈ψ′c, eα · ψ′d〉
(
(
∂νl
∂ud

)>,b(
∂νl
∂uc

)>,a − (
∂νl
∂ud

)>,a(
∂νl
∂uc

)>,b
)

= −F ba
α .

Similarly, using (15), the last summand of (14) can be rearranged as∑
c,l

〈V ′c,∇φ′b〉∂ν
c
l

∂ub
νal (φ′) =

∑
c,l,α

∂νcl
∂ub

V ′cα ν
a
l (φ′)

∂φ′b

∂xα

=
∑
b,c,l,α

(∂νcl
∂ub

V ′cα ν
a
l (φ′)− ∂νcl

∂ua
V ′cα ν

b
l (φ
′)
)∂φ′b
∂xα

≡ −
∑
α,b

T abα
∂φ′b

∂xα

where

T abα = −
∑
c

(
∂νcl
∂ub

V ′cα ν
a
l (φ′)− ∂νcl

∂ua
V ′cα ν

b
l (φ
′)

)
= −T baα .

Remark 4.2. Actually, for our proof of the local regularity of weak solutions, we don’t need
to write the second term and the last term into such an antisymmetric structure, see [4] for a
similar treatment for a simpler model. Former regularity proofs, see e.g. [30, 29, 11], however,
did need that structure. But it is also convenient to have such a structure.
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Therefore, the equations for φ′ appear in the elegant form:

(16) ∆φ′a =
∑
b,α

(ωabα + F ab
α + T abα )

∂φ′b

∂xα
+ Za(A,∇A)ebcd〈ψ′e, ψ′c〉〈ψ′b, ψ′d〉 − div V ′a,

for a = 1, . . . , K, where the coefficients of first derivative of φ′ are antisymmetric.

5. Regularity of weak solutions

We now come to the crucial contribution of our paper, the regularity of weak solutions. In
order to make the action functional A well-defined and finite-valued, we need to assume

φ ∈ W 1,2(M,N), ψ ∈ W 1,4/3(Γ(S ⊗ φ∗TN)).

The issue then is higher regularity of such weak solutions. More precisely, we shall show
that (φ, ψ) are smooth when they satisfy (2) in the weak sense. By the Sobolev embedding
theorem, φ ∈ Lp(M,N) for any p ∈ [1,∞) and ψ ∈ L4(Γ(S ⊗ φ∗TN)). Since f : N → RK

is a smooth embedding, (φ′, ψ′) have the same regularity as (φ, ψ), and so it suffices to show
smoothness of the former.

As the regularity is a local issue, we can take φ′ : B1 → RK defined in the euclidean unit disc
B1 ⊂ R2 ∼= C1. Over B1 the bundle S ⊗ φ∗TN ′ is trivial with typical fiber C2 ⊗ RK . Hence
ψ′ : B1 → C2 ⊗ RK is a vector valued function.

5.1. As we have seen, ψ′ satisfies (12) or equivalently (13). By the following lemma, which will
be proved in Section 6, all powers of ψ′ are integrable.

Lemma 5.1. Let p ∈ (4,∞) and ϕ ∈ L4(B1,C2 ⊗ RK) be a weak solution of the nonlinear
system

/∂ϕi = Aijϕ
j +Bi, 1 ≤ i ≤ K,

where A ∈ L2(B1, gl(2,C)⊗ gl(K,R)) and B ∈ L2(B1,C2 ⊗ RK). There exists a ε0 = ε0(p) > 0
such that if ‖A‖L2(B1) ≤ ε0, then ϕ ∈ Lploc(B1).

It follows from Lemma 5.1 that ψ′ ∈ Lploc(B1) for any p ∈ [1,∞). Since locally the Dirac
operator is given by the classical Cauchy–Riemann operators ∂z and ∂z, it follows from the
elliptic theory that ψ′ ∈ W 1,q(B1/2) for any q ∈ [1, 2).

5.2. We use the aforementioned Rivière’s regularity theory to deal with φ′. More precisely, we
use the following result which is an extension of [23] to improve the regularity of φ′.

Theorem 5.2. ([24, 25]) Let p ∈ (1, 2). Suppose that u ∈ W 1,2(B1,RK) is a weak solution of

−∆u = Ω∇u+ f,

where Ω ∈ L2(B1, so(K)⊗ R2) and f ∈ Lp(B1,RK). Then u ∈ W 2,p
loc (B1).

In the previous section we have written the equation for φ′ into such a form, see (16). Since
we have seen ψ′ ∈ Lploc(B1), 1 ≤ p < ∞, the hypotheses of Theorem 5.2 are satisfied. Thus
we can conclude that φ′ ∈ W 2,p

loc (B1) for any p ∈ [1, 2). It follows from the Sobolev embedding
theorems that φ′ ∈ W 1,q(B1/2) for any q ∈ [1,∞).

5.3. We can now apply the standard elliptic theory for a bootstrap argument, see e.g. [3, 15],
and hence conclude that (φ′, ψ′) are smooth. The smoothness of φ then follows directly. For ψ,
one can use (7) and the elliptic theory for Cauchy–Riemann operators (e.g. [3]) to conclude that
ψ is also smooth. Therefore the full regularity of weak solutions is obtained, completing the
proof of Theorem 1.2.
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6. Proof of Lemma 5.1

In this section, we provide the proof of Lemma 5.1. We shall use the Dirac type equation
to improve the integrability of the spinor. Results of this type were first obtained by [28] and
further developed in [26, 4]. Actually a stronger result holds in general. Before stating the
general result, we recall some basic facts on Morrey spaces, see for example [14].

Let U be a domain in Rn. For 0 ≤ λ ≤ n and 1 ≤ p <∞, the Morrey space on U is defined as

Mp,λ(U) :=
{
u ∈ Lp(U)

∣∣‖u‖Mp,λ(U) <∞
}
.

Here the (p, λ)-Morrey norm of u is defined by

‖u‖Mp,λ(U) := sup
x∈U,r>0

(rλ
rn

ˆ
Br(x)∩U

|u(y)|p dy
)1/p

.

Note that on a bounded domain U ⊂ Rn, for 1 ≤ p <∞ and 0 ≤ λ ≤ n, it holds that

L∞(U) = Mp,0(U) ⊂Mp,λ(U) ⊂Mp,n(U) = Lp(U).

In this section we consider a map ϕ : B1 → CL ⊗ RK satisfying a first order elliptic system,
where B1 ⊂ Rn is the euclidean unit ball and CL ⊗ RK is supposed to be the typical fiber of a
twisted complex spinor bundle over B1.

Lemma 6.1. Let n ≥ 2 and 4 < p < +∞. Let ϕ ∈ M4,2(B1,CL ⊗ RK) be a weak solution of
the nonlinear system

(17) /∂ϕi = Aijϕ
j +Bi, 1 ≤ i ≤ K,

where A ∈M2,2(B1, gl(L,C)⊗gl(K,R)) and B ∈M2,2(B1,CL⊗RK). There exist ε0 = ε0(n, p) >
0 such that if

‖A‖M2,2(B1) ≤ ε0,

then ϕ ∈ Lploc(B1). Moreover, for any U b B1,

‖ϕ‖Lp(U) ≤ C(n, p, U)
(
‖ϕ‖M4,2(B1) + ‖B‖M2,2(B1)

)
.

The proof is motivated from that in [28] and is adapted to this system with minor changes.
The idea is to use the fundamental solution of the Euclidean Dirac operator and apply Riesz
potential estimates. Thanks to the Bochner-Lichnerowicz-Weitzenböck type formulas, e.g.
see [22, Theorem II.8.17], [27, Lemma 4.1], [18, Theorem 4.4.2], the fundamental solution of the
Euclidean Dirac operator can be derived from that of the Euclidean Laplacian. We remark that
the M2,2-assumption on B here fits quite well to the proof.

Proof. Applying /∂ to (17), we have, for 1 ≤ i ≤ K,

−∆ϕi = /∂
2
ϕi = /∂(Aijϕ

j +Bi)

in the sense of distributions.
Let x0 ∈ B1, |x0| < 1, and let 0 < R < 1− |x0|. Take a cutoff function η ∈ C∞0 (BR(x0)) such

that 0 ≤ η ≤ 1 and η ≡ 1 on BR/2(x0). For each 1 ≤ i ≤ K, define gi : Rn → CL by

gi(x) =

ˆ
Rn

∂G(x, y)

∂yα
∂

∂yα
·
(
η2(Aijϕ

j +Bi)
)
(y) dy
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where G(x, y) is the fundamental solution of ∆ on Rn. Thus

−∆gi = /∂
(
η2(Aijϕ

j +Bi)
)

= /∂
(
Aijϕ

j +Bi
)

in BR/2(x0).

Setting hi := ϕi − gi, we see that hi, 1 ≤ i ≤ K, are harmonic in BR/2(x0):

∆hi = 0 in BR/2(x0).

Note that

|gi(x)| ≤ C

ˆ
Rn

1

|x− y|n−1
(η2|Aijϕj +Bi|) dy = CI1(η2(Aϕ+B)),

where I1 is the Riesz potential operator. By Adams’ inequality [1, Theorem 3.1], for 1 < q <
λ ≤ n,

‖I1(η2(Aϕ+B))‖
M

λq
λ−q ,λ(Rn)

≤ C‖η2|Aϕ+B|‖Mq,λ(Rn).

Step 1: By hypothesis we have

‖η2(Aϕ+B)‖
M

4
3 ,2(Rn)

≤ ‖(ηA)(ηϕ)‖
M

4
3 ,2(Rn)

+ ‖η2B‖
M

4
3 ,2(Rn)

≤ ‖ηA‖M2,2(Rn)‖ηϕ‖M4,2(Rn) + ‖η2B‖
M

4
3 ,2(Rn)

≤ ‖A‖M2,2(BR(x0))‖ϕ‖M4,2(BR(x0)) + ‖B‖
M

4
3 ,2(BR(x0))

≤ ‖A‖M2,2(BR(x0))‖ϕ‖M4,2(BR(x0)) + CR
1
2‖B‖M2,2(BR(x0)).

With q = 4
3
, λ = 2, λq

λ−q = 4. We get

‖g‖M4,2(Rn) ≤ C‖I1(η2(Aϕ+B))‖M4,2(Rn) ≤ C‖η2(Aϕ+B)‖
M

4
3 ,2(Rn)

≤ Cε0‖ϕ‖M4,2(BR(x0)) + CR
1
2 |B|.

where we have denoted |B| ≡ ‖B‖M2,2(B1).
Note that |hi|4 is subharmonic in BR/2(x0):

∆|hi|4 = ∆(hihi)
2

= 2|∇(hihi)|2 + 2|hi|2
(
(∆hi)hi + 2|∇hi|2 + hi∆hi

)
≥ 0

since ∆hi = 0. Hence
ffl
Br(x)

|hi|4 dy is a nondecreasing function in r, which implies that for any
1 ≤ i ≤ m and any θ ∈ (0, 1/6),

‖hi‖M4,2(BθR(x0)) ≤ (4θ)1/2‖hi‖M4,2(BR/2(x0)).

Recalling ϕi = gi + hi, we get
‖ϕ‖M4,2(BθR(x0)) ≤ ‖g‖M4,2(BθR(x0)) + ‖h‖M4,2(BθR(x0))

≤ Cε0‖ϕ‖M4,2(BR(x0)) + C|B|R
1
2 + 2θ1/2‖h‖M4,2(BR/2(x0))

≤ Cε0‖ϕ‖M4,2(BR(x0)) + C|B|R
1
2 + 2θ1/2

(
‖ϕ‖M4,2(BR/2(x0)) + ‖g‖M4,2(BR/2(x0))

)
≤ C0(ε0 + θ1/2)‖ϕ‖M4,2(BR(x0)) + C|B|R

1
2 .

Fix any β ∈ (0, 1
2
), we can find a θ ∈ (0, 1

2
) such that 2C0θ

1/2 ≤ θβ. Then take ε0 small enough
such that 2C0ε0 ≤ θβ. With such a choice we have

(18) ‖ϕ‖M4,2(BθR(x0)) ≤ θβ‖ϕ‖M4,2(BR(x0)) + C|B|R
1
2 .
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Note that (18) holds for any 0 < R < 1 − |x0|. Thus we can start the following iteration
procedure.

Let R < 1 − |x0|. Then for any 0 < r < R, there exists a unique k ∈ N such that
θk+1R < r ≤ θkR. (The case k = 0 is trivial, and we may thus assume k ≥ 1). Hence we have

‖ϕ‖M4,2(Br(x0)) ≤ ‖ϕ‖M4,2(B
θkR

(x0)) ≤ θβ‖ϕ‖M4,2(B
θk−1R

(x0)) + C|B|(θk−1R)
1
2

≤ θ2β‖ϕ‖M4,2(B
θk−2R

(x0)) + C|B|[θβ(θk−2R)
1
2 + (θk−1R)

1
2 ]

≤ θkβ‖ϕ‖M4,2(BR(x0)) + C|B|R
1
2 θ(k−1)β[1 + θ

1
2
−β + · · ·+ θ( 1

2
−β)(k−1)]

≤ 1

θβ
θ(k+1)β‖ϕ‖M4,2(BR(x0)) +

C|B|R 1
2
−β

θ2β

1− θ( 1
2
−β)k

1− θ 1
2
−β

(θk+1R)β

≤ 1

θβ
( r
R

)β‖ϕ‖M4,2(BR(x0)) +
C|B|

θ2β − θ 1
2

+β
rβ

where we used R ≤ 1 in the last inequality. In particular this implies that( 1

rn−2+4β

ˆ
Br(x0)

|ϕ|4 dy
) 1

4 ≤ 1

(θR)β
‖ϕ‖M4,2(B1) +

C|B|
θ2β − θ 1

2
+β

If we restrict to |x0| < 1
4
and R = 1

2
, we see that ϕ ∈M4,2−4β(B 1

4
), with

‖ϕ‖M4,2−4β(B1/4) ≤ C‖ϕ‖M4,2(B1) + C‖B‖M2,2(B1).

for some universal constant C = C(n, β).
Step 2: We improve the integrability. Let |x0| < 1

4
and 0 < R < 1

4
− |x0|. Take a cutoff

function η ∈ C∞0 (BR(x0)) and define gi, hi as before. Note that

‖η2(Aϕ+B)‖
M

4
3 ,2−

4β
3 (Rn)

≤ ‖η2Aϕ‖
M

4
3 ,2−

4β
3 (Rn)

+ ‖η2B‖
M

4
3 ,2−

4β
3 (Rn)

≤ ‖ηA‖M2,2(Rn)‖ηϕ‖M4,2−4β(Rn) + ‖η2B‖
M

4
3 ,2−

4β
3 (Rn)

≤ ‖A‖M2,2(BR(x0))‖ϕ‖M4,2−4β(BR(x0)) + ‖B‖
M

4
3 ,2−

4β
3 (BR(x0))

≤ ‖A‖M2,2(BR(x0))‖ϕ‖M4,2−4β(BR(x0)) + C‖B‖M2,2(BR(x0))R
1
2
−β

≤ ε0‖ϕ‖M4,2−4β(BR(x0)) + C|B|R
1
2
−β.

With q = 4
3
and λ = 2− 4β

3
, (note that we need 1 < q < λ ≤ n, which requires β < 1

2
), we see

that, λq
λ−q = 4(3−2β)

3−6β
, and

‖gi‖
M

4(3−2β)
3−6β

,2− 4β
3 (Rn)

≤ C‖I1(η2(Aϕ+B))‖
M

4(3−2β)
3−6β

,2− 4β
3 (Rn)

≤ C‖η2(Aϕ+B)‖
M

4
3 ,2−

4β
3 (Rn)

≤ Cε0‖ϕ‖M4,2−4β(BR(x0)) + C|B|R
1
2
−β.

Again, hi is harmonic in BR/2(x0) in the sense of distributions and hi ∈ L4(BR/2(x0)), by Weyl’s
lemma, it is smooth in BR/2(x0), see e.g. [17, Corollary 1.2.1]. By shrinking the radius R a little,
we may assume hi ∈ L∞(BR/2(x0)). Actually, by Harnack inequality in the disk together with
mean value equality one has, for any R′ < R,

‖h‖L∞(BR′/2(x0)) ≤C(R,R′, n)|h(x0)| ≤ C(R,R′, n)‖h‖L1(BR′/2(x0))

≤C
(
‖ϕ‖M4,2(B1) + ‖B‖M2,2(B1)

)
.
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Thus if we restrict to |x0| ≤ 1
16

and R = 1
8
, we see that hi ∈ M

4(3−2β)
3−6β

,2− 4β
3 (B 1

16
). By elliptic

theory, ‖h‖
M

4(3−2β)
3−6β

,2− 4β
3 (B 1

16
)
can be controlled by ‖ϕ‖M4,2(B1) and ‖B‖M2,2(B1).

Finally recall that

ϕi = hi + gi.

It follows that
‖ϕ‖

M
4(3−2β)
3−6β

,2− 4β
3 (B 1

16
)
≤‖g‖

M
4(3−2β)
3−6β

,2− 4β
3 (B 1

16
)
+ ‖h‖

M
4(3−2β)
3−6β

,2− 4β
3 (B 1

16
)

≤C(β, n)
(
‖ϕ‖M4,2(B1) + ‖B‖M2,2(B1)

)
.

(19)

Step 3: We note that (19) holds for any give 0 < β < 1
2
. Since

lim
β↗ 1

2

4(3− 2β)

3− 6β
= +∞,

and

M
4(3−2β)
3−6β

,2− 4β
3 (B 1

16
) ↪→ L

4(3−2β)
3−6β (B 1

16
),

we conclude that ϕ ∈ Lp(B 1
16

) for any 4 < p < +∞ and

‖ϕ‖Lp(B 1
16

) ≤ C(n, p)
(
‖ϕ‖M4,2(B1) + ‖B‖M2,2(B1)

)
.

This completes the proof of the Lemma. �

Finally note that in the 2-dimensional case,

M2,2(B1) = L2(B1), M4,2(B1) = L4(B1).

So Lemma 5.1 follows from Lemma 6.1.
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